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Abstract

Conformal Prediction (CP) is a principled framework in machine learning for uncertainty
quantification. Through the process of calibration or conformalisation, CP provides
the statistical guarantee of marginal coverage on any model’s outputs. However,
conformalisation is usually applied as a post-processing step after model training.
While this process gives the coverage guarantee, it can cause the outputs of the model
to be adjusted in unintended ways. If the model were to be aware of the conformalisation
that follows its training, it could learn to provide outputs which, post-conformalisation,
have both the guarantee of coverage and are well aligned with the original goals of the
model. There has been recent interest into integrating awareness of conformalisation
into the training regime. One such approach, called conformal training, has been
successfully applied to classification tasks. While there have been some examples of
similar methods for regression, a thorough and general approach has yet to be described.
The goal of this thesis is to provide a general framework to applying conformal training
to regression tasks. Called Conformal Training for Regression (CTR), our framework
can be applied to any regression model for which the goal is to provide conformal
uncertainty estimations. With a specific lens on conditional coverage, arguably the
most important property in conformal prediction, we present three distinct models
based on CTR and demonstrate that with the correct approach, results can be achieved
that, for most real datasets, are similar or significantly improve upon state-of-the-art
conformal prediction methods.
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Chapter 1

Introduction

The use of machine learning models is becoming increasingly widespread and their
impact on our daily lives more apparent. The potential to simplify arduous parts
of our daily lives, optimise healthcare, and automate industry is clear. However,
there are downsides to using these models – they are often not interpretable, nor
are they always reliable. For this reason, even though they clearly provide value,
they do so inconsistently, making the introduction of machine learning models into
high-risk domains and infrastructure extremely difficult. The development of reliable,
trustworthy, and transparent machine learning models is vital.

With a variety of different approaches (Abdar et al. (2021)), uncertainty quan-
tification (UQ) is an important research direction in machine learning which strives
to make models more reliable. In a general sense, its goal is to have models that
provide confidence estimations alongside their predictions. By doing so, we get a better
understanding of the risk associated with making any decisions based on a prediction.
One principled approach for UQ is the conformal prediction (CP) framework (Vovk
et al. (2005)). At its core is a statistical calibration method for predictive models
that can give finite-sample guarantees on the uncertainty that is predicted. With a
user-specified level of allowed risk, conformal calibration or conformalisation adjusts
the model’s predictions into predictive sets or intervals which, on average, contain the
true test labels or targets at least as often as the risk level requires.

Machine learning models tend to overfit and thus become overconfident in their
predictions in ways that do not align with the underlying data distribution – confor-
mal prediction is an excellent choice to correct for these issues. CP does not make
assumptions about the underlying data distribution nor the predictive model that is
used. The CP framework has been successfully applied in many real-life scenarios such
as robotics (Luo et al. (2022)), drug discovery (Eklund et al. (2015)) and more widely
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in the medical sciences (Papadopoulos et al. (2009), Alnemer et al. (2016), Pereira
et al. (2020)).

With this heightened research interest has come a push to increase the efficiency,
accuracy, and reliability of conformal predictors. One new direction, called conformal
training (Stutz et al. (2021)) has arisen from the need to integrate conformal prediction
into the model training phase. Normal CP consists of conformalisation after the base
model has already been fit. Bridging this gap by making the model aware of the
conformalisation that follows its training could significantly reduce inefficiencies in
prediction. Conformal training and other conformal-aware methods have shown some
success in classification (Bellotti (2021), Stutz et al. (2021), Einbinder et al. (2022))
and regression (Bellotti (2020), Lei and Bellotti (2023)).

While there have been conformal training methods introduced for regression, these
approaches either optimise for properties that are at odds with model reliability or
lack the ability to accommodate task-specific requirements. This thesis provides a
general and widely applicable framework for conformal training for regression. We
have a specific lens on model reliability through conditional validity, a property for UQ
models that faithfully communicate the inherent uncertainty in the data for any input.

We propose models based on this framework which have competitive performance
and reliability, not only compared to prior and concurrent work in conformal training
for regression, but also compared to state-of-the-art conformal regression methods
such as Conformalised Quantile Regression (Romano et al. (2019)) and Conformal
Histogram Regression (Sesia and Romano (2021)). Before we begin our background
chapter, we provide a list of contributions followed by a thesis outline.

1.1 Contributions

The contributions of this thesis are as follows:

1. In Chapter 2, we provide a comprehensive overview of conformal prediction for
regression including recent works in conformal training. Making it a contribution
to existing literature, we believe there exists a gap for an in-depth, modern
introduction to CP for regression.

2. In Chapter 3, we define a general framework for end-to-end conformal training
for regression (CTR). This allows for any task-specific loss function to be used.
It also has a more memory- and data-efficient calibration approach compared to
that of conformal training for classification by Stutz et al. (2021).
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3. We propose three different models, Width-Minimising CTR (Section 3.3), Quantile
CTR (Section 3.4) and Adaptive-Quantile CTR (Section 3.5), the last of which
uses a novel adjustment of the interval score loss function (Gneiting and Raftery
(2007)) to produce skew-adaptive predictions. On a synthetic dataset and multiple
real datasets, we present several important results.

(a) With Width-Minimising CTR, we demonstrate the adverse effect of directly
optimising for predictive interval width. Mean interval width is a commonly
used metric in CP literature, but it can be at odds with conditional coverage.
We present a clear case for why it is the case.

(b) We demonstrate that Quantile CTR and Adaptive-Quantile CTR provide
predictions that are similar to, and in many cases exceed the performance
of state-of-the-art conformal regressors.

1.2 Thesis outline

Aside from the introduction, the thesis is structured into four chapters. Chapter 2
contains the background necessary for introducing our general approach to conformal
training for regression. We begin by making a comprehensive overview of conformal
prediction, including detailed examples for different models and an in-depth modern
proof for full conformal prediction inspired by the original from Vovk et al. (2005).

In Chapter 3, we introduce our Conformal Training for Regression (CTR) framework.
We also describe in detail the three main models which we derive from it.

Chapter 4 details our experiments. We show results for the CTR-based models
including several other baseline models on a synthetic dataset. This is followed by
results from experiments on multiple real datasets. We provide a detailed analysis and
finish the chapter with a discussion.

Chapter 5 concludes this thesis. We discuss our approach in the context of conformal
prediction and suggest future avenues for further research.



Chapter 2

Background

In this chapter, we give an overview of conformal prediction (CP) and conformal training.
We begin by showing and proving the marginal coverage guarantee that conformal
prediction can provide, and then, with the help of concrete examples, work our way
up to the state-of-the-art conformalised quantile regression and conformal histogram
regression models. Next, we provide the necessary background for evaluating and
improving conformal predictors and highlight the importance of conditional validity for
reliable CP. We finish this background chapter with an overview of existing conformal
prediction methods which use conformal training. While CP can be successfully applied
to classification tasks, we will concentrate on and provide examples from regression.

2.1 Basics of Conformal Prediction

Having highly reliable prediction models that estimate uncertainty is important in
high-risk domains. For example, deploying a neural network (NN) model that predicts
average blood pressure changes as a result of a specific treatment is subject to being a
large source of risk in any drug development pipeline. Even if the model outputs an
interval of possible values instead of a single predictive value, there are no guarantees
for the reliability of these estimates. This matter is worsened in light of the fact that
complex NN models tend to overfit to training data and are thus overconfident in
their predictions. The conformal prediction framework allows us to take a model’s
predictions and convert them into prediction sets that have statistical guarantees on
their coverage of the prediction target.

Conformal prediction methods aim to make the use of inference models more reliable
by quantifying the uncertainty in model predictions. Although CP is also defined in
the classification setting, we will consider a regression model to illustrate how CP
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works. Consider an m-dimensional input-space X ≡ Rm and scalar output space Y ≡ R.
Let us also denote the space of input-output pairs as Z ≡ X × Y . Suppose we have
a dataset Dtrain = {(xi, yi)}i∈{1,...,n} with n feature vectors xi ∈ X with respective
targets yi ∈ Y . Given a test input xn+1 ∈ X with label yn+1 ∈ Y , and a coverage level
1− α ∈ [0, 1], where α is known as the miscoverage rate, we wish to find a conformal
subset Ĉ(xn+1) ⊆ Y such that

P
[
yn+1 ∈ Ĉ(xn+1)

]
≥ 1− α. (2.1)

Conformal prediction defines a procedure to find Ĉ where this property of marginal
coverage holds under the assumption of exchangeability which states that the joint
probability of a sequence of random variables is invariant to permutations of the
sequence. This is a weaker property compared to random variables being independent
and identically distributed (i.i.d.).

As a side note, given this problem statement, one may be tempted to just set
Ĉ(xn+1) = Y. Whilst it would not be useful method for quantifying uncertainty,
this would clearly have the required property of coverage. As we will see later,
conformal prediction methods are not equally powerful and there are several properties
of conformal predictors that illustrate the differences between them, one of which is
the size of Ĉ, called width in the (common) case that Ĉ is an interval (see Section 2.2).

2.1.1 Full Conformal Prediction

The foundational approach to conformal prediction is full or transductive conformal
prediction (Vovk et al. (2005, 2009)). While this approach in its unmodified form
is computationally infeasible for many regression tasks, it serves as an important
cornerstone for the more practical approaches that follow it. Given the previously
stated problem, for every possible ŷ ∈ Y we train a model f̂ : X → Y on Dŷ ≡
Dtrain ∪ {(xm+1, ŷ)}. For notational purposes let us explicitly show the model as being
conditioned on the dataset that it has been trained on by f̂(x;Dŷ) for any input
feature vector x. The only requirement is that f̂ is symmetric, or, in other words,
f̂(X;Dŷ) = f(X; π(Dŷ)) where π is a permutation operator on the dataset.

We then define a non-conformity score function s : X × Y → R which takes in a
data point x and the target label y and calculates how well the prediction f̂(x;Dŷ)
approximates y. The simplest candidate definition for such a function is the absolute
residual

s(x, y;Dŷ) = |y − f̂(x;Dŷ)|.
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Using the score function s, let us define the sequence s(ŷ) ∈ Sn+1 ≡ Rn+1 where the
element s

(ŷ)
i of s(ŷ) is given by s(xi, yi;Dŷ) when i ≤ n and s(xi, ŷ;Dŷ) when i = n + 1,

and where S is the score-space. Also, for any k ∈ (0, 1], we define the k-quantile qk(V )
for a multiset or sequence V of scalar values such that qk(V ) is the ⌈k|V |⌉-th smallest
element of V . Note that for multisets, this value can have a multiplicity larger than 1
in V .

Let us define the subset Ĉ(xn+1) by:

Ĉ(xn+1) = {y : s
(ŷ)
n+1 ≤ q1−α(s(ŷ))}.

This subset has the required coverage properties. This result is stated as a theorem
and proven next. The proof is a reformulation of the original proofs from Vovk et al.
(2005) to include detail and clarification relevant to this work.

Theorem 2.1.1 (Full Conformal Prediction Coverage). For any exchangeable distribu-
tion over Zn+1 with density g, and any symmetric model f̂ with Ĉ defined as above for
some score function s we have:

P(
(x1,y1),...,(xn+1,yn+1)

)
∼g

[
yn+1 ∈ Ĉ(xn+1)

]
≥ 1− α.

Proof. Let us show that

P(
(x1,y1),...,(xn+1,yn+1)

)
∼g

[
s

(yn+1)
n+1 ≤ q1−α(s(yn+1))

]
≥ 1− α (2.2)

with the main result deriving from this automatically by the definition of Ĉ. Instead
of a joint probability distribution g over the dataset, we can consider the probability
distribution canonically induced by g over score sequences with the joint probability
density gs : Sn+1 → [0, 1]. This gives us that we can equivalently to Eq. 2.2 prove

Ps∼gs

[
sn+1 ≤ q1−α(s)

]
≥ 1− α (2.3)

where we remove the superscripts for brevity. We have that since f̂ is symmetric and
g is exchangeable, then permuting the elements in s does not change the probability of
s. Hence gs is also exchangeable.

Now let us disentangle the notions of value and order for any sampled sequence
of scores s. First, let us define the set M all possible multisets of cardinality n + 1
such that for any multiset S ∈M we have that all elements s ∈ S are also in the score
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space S. In other words, M contains all possible multisets S with n + 1 (potentially
repeating) elements from S.

Next, we consider the transformation of S ∈ M into an ordered sequence. Let
us define the set ΠS of all unique permutations π of the elements of S, such that we
let π(S) represent the respective sequence in the given order. We have that |ΠS| is
given by multinomial coefficients, with the special case, for which we reserve Π ≡ ΠS,
when S has no duplicate elements and |ΠS| = (n + 1)!. Finally, due to exchangeability,
we sample the permutations from the uniform distribution over the set of unique
permutations. We denote the uniform distributions u ≡ U(Π) and uS ≡ U(ΠS).

This means that for an arbitrary π ∈ ΠS, we can define the probability density
h :M→ [0, 1] by

h(S) ≡ gs(π(S))
uS(π) = gs(π(S))|ΠS|

for any S ∈M.
This definition allows us to write Ps∼gs

[
sn+1 ≤ q1−α(s)

]
as the marginalisation of

Pπ∼uS

[
π(S)n+1 ≤ q1−α(π(S)), S

]
over all possible values of S ∈ M where π(S)n+1 is

simply the final element of the sequence π(S). This effectively means that we separate
the sampling of the sequence s into first sampling a multiset S followed by sampling a
permutation π. Our marginalisation can be written as

Ps∼gs

[
sn+1 ≤ q1−α(s)

]
=

∫
S∈M

Pπ∼uS

[
π(S)n+1 ≤ q1−α(π(S)) |S

]
h(S)dS.

We see in the right-hand side that

Pπ∼uS

[
π(S)n+1 ≤ q1−α(π(S)) |S

]
= Pπ∼u

[
π(S)n+1 ≤ q1−α(π(S)) |S

]
=

∑
π∈Sm+1

P
[
π(S)n+1 ≤ q1−α(π(S)) |S, π

]
u(π)

= 1
(n + 1)!

∑
π∈Sm+1

P
[
π(S)n+1 ≤ q1−α(π(S)) |S, π

]

≥ n!
(n + 1)!⌈(1− α)(n + 1)⌉

= ⌈(1− α)(n + 1)⌉
(n + 1) ≥ 1− α.

(2.4)

In the above equation, the first equality arises from the fact that P(π(S)) for a
specific value of π is invariant to whether π ∼ u or π ∼ uS. The second equality stems
from the fact that we can simply count all of the permutations. The third equality arises
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from the exchangeability property, i.e., with the uniform distribution, all permutations
are equiprobable. For the first inequality we see that P

[
π(S)n+1 ≤ q1−α(π(S)) |S, π

]
collapses into an indicator function, since S, π determine whether the inequality holds.
Thus we see that this sum counts the number of permutations π where π(S)n+1 is less
than or equal to the ⌈(1− α)(n + 1)⌉-th smallest element of S. This amounts to at
least n! · ⌈(1 − α)(n + 1)⌉ cases when accounting for the possibility of values s in S

with mS(s) > 1, giving the final inequality1. Thus, we have that

Ps∼gs

[
sn+1 ≤ q1−α(s)

]
≥

∫
S∈M

(1− α)h(S)dS

= 1− α

which gives our desired result.

It is important to stress that this approach is distribution-free. This means that we do
not need to know the distribution which generated the data, as long as exchangeability
holds. This highlights the fact that conformal prediction is a powerful tool that can be
applied in a wide array of domains. In the case of full conformal prediction however,
we have the caveat that the model ŷ needs to be trained over all y ∈ Y which, in the
usual case of Y = R, is infeasible. Whilst there are approximation-based approaches
to full conformal prediction Shafer and Vovk (2008), there is a more computationally
appealing approach used in practise known as split conformal prediction.

2.1.2 Split Conformal Prediction

First introduced by Papadopoulos et al. (2002) and also known as inductive conformal
prediction, split conformal prediction is a computationally more efficient approach than
full conformal prediction. Split CP does not require training multiple models for every
possible test label by splitting the training dataset into a training set Dtrain to fit a
single model f̂ and a calibration set Dcal to conformalise the predictions of f . Whilst
all of the original training data cannot be seen by the training process, only a single
model has to be fitted compared to the numerous models required for full conformal
prediction.

For split conformal prediction, we have a training set Dtrain of size m, a calibration
set Dcal of size n, a non-conformity score function s and an error rate α. Also, we have
a test dataset Dtest ⊂ Zm of m input-output pairs. We first fit a model f̂ on Dtrain

1Note that if S never has duplicate values, i.e. gs is continuous, then the first inequality in Eq. 2.4
becomes an equality and we also get a final upper bound of 1

n+1 + 1− α.
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Algorithm 1: Split Conformal Prediction
Input: Dtrain,Dcal, α, s (score function), fit (model training algorithm), x

(test input)
Result: Ĉ
n← |Dcal|;
Instantiate scalar sequence s of length n;
f̂ ← fit(Dtrain);
for (xi, yi) ∈ Dcal do

si ← s(xi, yi; f̂);
end
r ← q⌈((n+1)(1−α)⌉/n(s);
Ĉ ← {y : s(x, y; f̂) ≤ r};

and then calculate the scores si = s(xi, yi; f̂) over all (xi, yi) ∈ Dcal. We then calculate
the ⌈((n + 1)(1− α)⌉-th smallest score r and compute the conformal subset Ĉ per test
input x with target y ∈ Y such that s(x, y; f̂) is not greater than r. If s is defined to
be the absolute residual between y and f̂(x) for some input-label pair (x, y), then Ĉ

becomes an interval around x in the general case when Y = R.
The pseudo-code for split CP can be seen in Algorithm 1. To contrast with

full conformal prediction, other than the different dataset setup, the quantile which
we calculate is slightly different, however. This is simply a correction to account
that now the test point is not in the dataset that we calibrate with. Also, we drop
the requirement that f̂ is symmetric – this arises since proving coverage requires
enumerating the permutations of elements in Dcal, which, compared to Dtrain, do not
affect the fitted model f̂ .

Theorem 2.1.2 (Split Conformal Prediction Coverage). Consider an exchangeable
distribution with density g over Zm+n+1 of sequences of input-label pairs with the first
m pairs being the Dtrain, the following n pairs being Dcal and the final element being
the test input-label pair. For any model f̂ and non-conformity score function s with Ĉ

defined as above, we have:

P(
(x1,y1),...,(xm+n+1,ym+n+1)

)
∼g

[
ym+n+1 ∈ Ĉ(xm+n+1)

]
≥ 1− α.

The proof for this result is very similar to the full conformal prediction case. As
mentioned before, the only significant difference is that the proof requires enumerating
permutations over the calibration set instead of Dy.
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Example. We now demonstrate split conformal prediction using a very simple
synthetic example with X = [0, 1], Y = R and α = 0.15. We generate data using the
function f(x) ∼ 1x≤ 1

2
N (cos(5x), 1

4) + 1x> 1
2
N (1, 1

100) where 1 is the indicator variable
and x ∈ X . We sample 100 training input-label pairs and 30 calibration input-label
pairs. We use an algorithm that fits a polynomial of degree 4 to the data, resulting in
f̂ . The score function is simply the absolute error. We perform conformalisation using
Algorithm 1 and show the results in Figure 2.1.

Fig. 2.1 Split conformal prediction on a synthetic dataset. Conformal band (α = 0.15)
is shaded and the calibration datapoint respective to the quantile r of the calibration
scores is circled. The scores are illustrated by the magnitude of the vertical dashed
lines.

As can be seen, split conformal prediction adds an equally wide band around the
polynomial model f̂ . Since ⌈(n + 1)(1− α)⌉ = ⌈31 · 0.85⌉ = 27, the circled datapoint
denotes the 27th calibration datapoint closest to the respective model predictions –
note the three calibration datapoints outside the band.

One simple analysis that we can perform for this example is to measure the coverage
of the conformal band for unseen datapoints. For a large amount (106) of test points,
we calculate that the conformal band covers around 92% of the test points. Even
though the underlying model is poorly fitted, the conformalisation process still gives
prediction intervals with adequate coverage. This illustrates the power of conformal
prediction, and any kind of model can be made more trustworthy and dependable. We
note that we expand on the evaluation of conformal prediction methods in Section 2.2.

On the other hand, for the case of simple split CP, this example highlights the fact
that the constant-width conformal band can be ineffective for heteroskedastic data.
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We next turn extensions of basic split conformal prediction methods which can output
varying-width conformal bands.

2.1.3 Locally Adaptive Conformal Prediction

In the previous sections we saw that the non-conformity score function s has no special
restrictions placed upon it. The absolute residual |y − f̂(x)| is a convenient form for
the score function since it allows the conformal sets be defined as intervals defined as

Ĉ(x) = [f̂(x)− r, f̂(x) + r],

where r is the desired quantile value. In order to become free of the apparent restriction
of the constant-width conformal bands, the score function could instead be normalised
such that

s(x, y) = |y − f̂(x)|
σ(x) , (2.5)

where σ is a function which predicts the expected error, such as the average absolute
residual of f̂ at a point x (Papadopoulos et al. (2008), Johansson et al. (2015)). This
function is usually fitted separately either on the training set, which can be subject
to overfitting behaviour, or another held out dataset which we can denote as Dres. In
this case, noticing that σ(x)s(x, y) is the original absolute residual, we can define the
conformal sets as intervals of the form

Ĉ(x) = [f̂(x)− σ(x)r, f̂(x) + σ(x)r],

where r is the desired quantile value of the normalised scores. We refer to this approach
by Locally Adaptive Conformal Prediction (LACP).

One intuitive way to visualise this process is by first imagining that σ(x) defines
a scaling of the output space at each x. Then in this scaled output space, fixed-
width conformalisation is done. Finally, the scaling procedure is inverted to yield
varying-width conformal intervals.

Example. We use the same dataset as from the previous section. In addition to
the previous procedure, we fit a polynomial of degree 4 on the absolute residuals of the
training set given the model f̂ . We then calculate the conformal intervals as shown
below to yield the conformal band. The results are shown in Figure 2.2.

As we can see here, in a large part of X , the conformal band’s width is smaller
than in Figure 2.1. The predictive intervals have clearly adapted to the varying levels
of noise even though the underlying model is extremely simple. One downside to using
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Fig. 2.2 Locally adaptive split conformal prediction on the synthetic dataset from Figure
2.1. Conformal band (α = 0.15) is shaded and the calibration datapoint respective to
the quantile r of the calibration scores is circled. The residuals are illustrated by the
magnitude of the vertical dashed lines.

this approach is that there are two disjoint training runs: one for the mean prediction
and the other for the prediction for the normaliser of the score function. The normaliser
can only do so much if the mean predictions are not faithful to the actual data. We
now turn to a much more advanced method for conformal regression that does not
have this downside among others and produces significantly improved adaptive results.

2.1.4 Conformalised Quantile Regression

In this section we describe one of the most popular state-of-the-art approaches for
conformal regression. Conformalised Quantile Regression (CQR) (Romano et al. (2019))
shows significant improvements to the LACP procedure described above. Whilst this
procedure is also locally adaptive, we keep it distinct from LACP.

The main improvement that CQR introduces is that of using a quantile regression
model (Koenker and Bassett Jr (1978)) as its base model instead of a point-predictor. A
quantile regression (QR) model usually outputs quantile predictions q̂α(x) for different
levels α. The target qα(x) ∈ Y is defined as the value below which lies α of the
conditional probability mass of the true target distribution p(y|x). QR models are
usually trained via the pinball loss (Steinwart and Christmann (2011)) for each level α

lα(y, ŷ) = 1y−ŷ>0α(y − ŷ) + 1y−ŷ≤0(1− α)(ŷ − y), (2.6)
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where y is the true quantile value qα(x) and ŷ is the prediction q̂α(x).
Conformalised Quantile Regression uses, by default, as its base model a QR model

which predicts two quantiles, qαlo and qαhi . The conformalisation procedure follows
split conformal prediction with a held-out calibration set. The non-conformity score is
different to the point-predictor model and is defined as

s(x, y) = max(q̂αlo(x)− y, y − q̂αhi(x)). (2.7)

As before, the conformalisation procedure in this case involves finding the desired
quantile r such that at least 1 − α of the calibration scores are below r. Similarly,
the conformalised prediction interval for some test point x are thus defined to be
Ĉ(x) = {y | s(x, y) ≤ r}. Considering the score function s, the interval form of the
prediction set can simply be derived to be

Ĉ(x) = [q̂αlo(x)− r, q̂αhi(x) + r].

The reason as to why CQR performs much better than locally adaptive point-
prediction conformalisation arises due to the following. For one, the base model in
CQR is trained to estimate uncertainty from the get-go. This contrasts with the point-
predictor which tries to estimate the mean only and where the uncertainty estimate
comes from an additional model trained after the base model. What is more, the
mean estimate cannot capture any asymmetry present in the conditional probability
distribution p(y|x). The authors of CQR further highlight the fact that the uncertainty
estimate for the point-predictor is usually computed by training on the same training
set as the point predictor, yielding biased estimates of the uncertainty.

Example. We repeat our previous example, this time using conformalised quantile
regression. We fit two polynomials of degree 4 to get predictions q̂0.075 and q̂0.925 for
the two quantiles with the same miscoverage rate α = 0.15 as before. We perform
conformalisation using Equation 2.7 as the score function. The results are shown in
Figure 2.3.

Although, due to the simple base predictors, it is not immediately clear that this
approach for conformal regression is better, one difference that is clear between LACP
and CQR in this example is the number of training points outside the conformal band
– LACP seems to be overconfident at around x = 0.9. Using more complex data
alongside more expressive models like random forests and neural networks indeed shows
that CQR tends to be significantly more faithful to the underlying data distribution;
we refer the reader to the original work (Romano et al. (2019)) for a comparison of the
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Fig. 2.3 Conformalised quantile regression on the synthetic dataset from Figure 2.1.
Conformal band (α = 0.15) is shaded and the calibration datapoint respective to the
quantile r of the calibration scores is circled. The lower and upper quantile predictions
are shown in blue. The scores are illustrated by the magnitude of the vertical dashed
lines.

two approaches on real datasets. Also, we note that there are several variants of the
quantile score function – for more, see Sesia and Candès (2020). We now turn to the
last model in this section, which shows improvements over CQR with both methods
being considered state-of-the-art in conformal prediction for regression.

2.1.5 Conformal Histogram Regression

In this section, we introduce the Conformal Histogram Regression (CHR) model by
Sesia and Romano (2021). Often our target distributions are asymmetric or skewed.
We might wish to have predictive intervals which have valid coverage whilst being as
tight as possible. Hence, if our data is skewed, giving centred predictive intervals, such
as estimating q0.05 and q0.95 may not yield as tight intervals as predicting, say q0.0 and
q0.9. CHR is a solution to this problem. We will provide a simplified outline of the
method and refer the reader to the main paper for more.

Conformal Histogram Regression relies on the underlying model outputting a con-
ditional histogram of the target variable, a discretisation of the conditional probability
distribution p(y|x). More specifically, for a given ordered grid B ≡ (bi)i∈{0,...,N} ∈ YN+1

with histogram size N that divides the relevant Y into parts, we define the conditional
histogram for an input x ∈ X as Π(x) ≡ {π(x, i) = P[Y ∈ (bi−1, bi]]}i∈{1,...,N} with
the random variable Y taking values from Y. We refer to the model’s probability
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estimation of a bin at index i as π̂(x, i) which is an estimate of the probability that the
true target variable y is between bi−1 and bi. We refer to the whole set of bin estimates,
i.e., the respective histogram as Π̂(x).

CHR defines a calibration method for models which give estimates in this way. The
calibration consists of 1) converting for each (x, y) ∈ Dcal the conditional histogram
Π̂(x) into a nested sequence of intervals of increasing size, 2) finding the index of the
interval in this sequence for each x which covers the respective y – this yields the scores
over the calibration set – and 3) finding the appropriate quantile rcal of these scores as
shown in previous sections. This index rcal is then used for inference on a test point
x ∈ Dtest which consists of 1) converting the respective Π̂(x) into a nested sequence of
intervals and 2) choosing the interval at index rcal. This interval is then used as the
prediction. We now describe calibration and inference in more detail.

For the model to output calibrated predictions at some target miscoverage rate
α, these histogram predictions need a score function. Namely, the authors of CHR
define how to generate a sequence S(x) ≡

(
(ilo

j (x), ihi
j (x), )

)
j∈[K]

of some predetermined
number K of nested index-pairs from [N ]2 such that ilo

j (x) ≤ ihi
j (x), ilo

j (x) ≥ ilo
j+1(x),

and ihi
j (x) ≤ ihi

j+1(x) for all j ∈ [K]. Each index pair (ilo
j (x), ihi

j (x)) refers to the interval
(b

iloj (x)−1, bihi
j (x)] in Y. Thus, S(x) defines a sequence of nested intervals based on the

conditional histogram. The nested intervals are generated in such a way that that, for
each j ∈ [K] and a predetermined level of coverage αj, we have ∑ihi

j (x)
i=ilo

j (x) π̂(x, i) ≥ αj.
Having made this sequence, the nonconformity score that is calculated is simple.

For some (x, y) ∈ Dcal, we have s(x, y) is simply the smallest j ∈ [K] such that
bilo

j (x)−1 < y ≤ bihi
j (x). Having calculated the appropriate quantile rcal ∈ [K] of the

scores, this value is then used for all test set predictions x ∈ Dtest by selecting the rth

conditional nested interval (bilo
r (x)−1, bihi

r (x)] as the calibrated prediction.
As the authors of CHR show, this approach results in predictive intervals that are

smaller thanks to its adaptivity to data skewness through the generation of nested
intervals. Also, due to having access to the conditional histogram, the calibration
sequence is more unbiased towards different inputs x and any heteroskedasticity present
in the data. This yields improved conditional coverage – a very important property
describing predictor reliability that we will discuss in more depth in the next section.

Finally, we make a note on how the prediction of the conditional histogram can
be learnt in the first place. The authors of CHR demonstrate how to train a quantile
regression model on a grid of target quantile levels qα (with the default of α ∈
(0.01, 0.02, ..., 0.99)) using the pinball loss. They then convert the predictions q̂α into
the respective histogram of size N simply by considering the distances between adjacent
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quantile predictions. We note that our description of CHR is a simplified version of
the original with the authors making several adjustments to improve the stability and
accuracy of the approach.

So far we have discussed the presented models in qualitative terms. Even though
we have visualised predictions for some of these models using simple examples, we wish
to understand and compare their performance on more complex datasets. In the next
section we turn to describing some of the most important approaches for evaluating
and improving the performance of conformal prediction methods.

2.2 Evaluating and Improving Conformal Predic-
tors

Several metrics can be used to compare models that have undergone conformalisation.
In this section we introduce some of these beginning with a short overview of what
makes a good conformal predictor. We finish this section with a short overview of
Mondrian conformal prediction.

To understand whether a conformal predictor is a good one, it is important to go
beyond the notion of marginal validity – the possession of marginal coverage. Since
this is given for any base model that has undergone conformalisation, we must also
look at other measures for evaluation.

One of the most widely used metrics that accompany coverage in model comparisons
is average prediction set size, or, in the case of regression, mean interval width. Many
works on conformal prediction use this metric (e.g., Romano et al. (2019), Sesia and
Candès (2020), Lei et al. (2018)). However, small mean interval width for a model
with valid coverage does not necessarily mean it is better. In fact, it is possible to have
a marginally valid model which is extremely misleading in terms of the uncertainty it
predicts whilst having better mean interval width than other models. We will illustrate
this phenomenon in Chapter 4.

From the prior examples we showed that a good conformal predictor is one which
faithfully communicates the uncertainty present in the data. Instead of just the
marginal coverage guarantee

P
[
y ∈ Ĉ(x)

]
≥ 1− α,
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a stronger guarantee would be that for all points (x, y) ∈ Z we have

P[ y ∈ Ĉ(x) | x ] ≥ 1− α.

Called conditional validity, this initially does not look too different from marginal
validity. However, conditional validity is a significantly better property for a model
to have than small mean interval width – it gives the guarantee that the model
communicates its uncertainty consistently in an unbiased way.

Conditional coverage is not simple to measure, nor does there exist a calibration
process that guarantees it; conditional validity cannot be achieved through conformal-
isation for finite data in the general case (Vovk (2012), Lei and Wasserman (2014),
Foygel Barber et al. (2021)). As an intuition, the reason boils down to the fact that
there will be regions of the input space where samples x ∈ X have non-zero probability
p(x), but from where a sample has not been drawn – therefore the conditional target
distribution p(y|x) for those samples cannot be known and thus predicted with any
guarantee of coverage unless assumptions regarding smoothness are made.

For this reason, properties which interpolate between marginal and conditional
coverage, such as local conditional validity (Lei and Wasserman (2014)) or restricted
conditional validity (Foygel Barber et al. (2021)), are instead measured or optimised.
These measures effectively partition the input space into subgroups and measure
coverage in each subgroup – if a model has a coverage close to the target coverage
within each subgroup, then it can be said it has improved conditional coverage. There
are several approaches to partition the input space. One of them batches together
inputs from X depending on the respective predictive interval width (e.g., Feldman
et al. (2021)). Another way is to use the K-means algorithm on the dataset inputs (e.g.,
Izbicki et al. (2019), Alaa et al. (2023)). Of course, both approaches require choosing a
number k of subgroups beforehand – any metrics that are measured depend on this
– hence aggregating results across multiple different values for k yields more reliable
results.

One of the most popular metrics for approximating conditional coverage is worst-
slab coverage (Cauchois et al. (2021), with examples from Romano et al. (2020), Sesia
and Romano (2021), Feldman et al. (2021)). For a partitioning of the input space, it
gives the worst coverage across all subgroups, i.e., slabs. This is an elegant measure
indicating the lower bound on the model reliability.

Before we move on to Conformal Training, we finish this section by mentioning
Mondrian Conformal Prediction (Vovk et al. (2003)) due to its ties to improving
conditional coverage through partitioning the data before conformalisation. This
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approach partitions the calibration set Dcal into disjoint subsets or subgroups using
a predetermined splitting approach, i.e., a Mondrian taxonomy. Calibration is then
made for each group separately. Inference consists of finding the respective subgroup
in the taxonomy a test input x belongs to and applying the corrective quantile of the
scores calculated during calibration for that specific subgroup.

This approach has yielded multiple methods such as class-conditional Mondrian
classification where the Mondrian taxonomy is based on class predictions (Shi et al.
(2013)) and Mondrian conformal regressors which use the previously introduced LACP
method and establish the Mondrian taxonomy on the predicted uncertainty levels σ(x)
(Boström and Johansson (2020)).

2.3 Conformal Training Methods

One limitation of the conformalisation procedure is that it is performed after model
training. This means that the base model lacks conformal-awareness – it is unaware of
conformalisation and of its effect on the final conformalised outputs. A way to bring
this awareness to the model is by simulating conformalisation during training. There
are several potential advantages of doing this. For one, this can help the base model
adjust its predictions in ways that yields improved results post-conformalisation.

Another potential advantage of simulating conformalisation during training is the
increased freedom to choose a task-specific loss when using conformal prediction. This
flexibility is made possible since the conformalised outputs of a conformal-aware model
can be more faithful to the original loss function than those of a conformal-unaware
model. For example, consider a task with a specific loss which aims to reduce model
bias on certain minority subgroups of the data. If the model lacks conformal-awareness,
then the conformalisation process that follows its training may accentuate certain
biases which are intended to be avoided. However, if conformalisation were to be
simulated during training, the model could adjust its outputs in a way such that when
we finally conformalise after training, model bias is not worsened.

We now describe existing classification and regression approaches which integrate
conformalisation or conformal-awareness into model training. As our proposed method
also utilises this approach, we perform a deeper comparison of our and related methods
in Section 3.1.
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2.3.1 Classification

The notion of training models in a conformal-aware fashion is a new topic in conformal
prediction literature. In the classification setting, Stutz et al. (2021) introduce conformal
training which they denote “ConfTr”. This is a process whereby conformalisation is
“simulated” on a classifier f̂ such as a neural network. This is done in a differentiable
way on mini-batches during training.

Since the authors of ConfTr were first to propose such an approach, we refer to
this and other similar methods throughout this thesis by the name conformal training.
We will now describe a top-level overview of the approach. We refer the reader to the
original work for more details; moreover, for an introduction to conformal prediction
for classification, we refer the reader to Angelopoulos and Bates (2021).

At the core of conformal training is what we denote mini-batch calibration. This
is done during training by first splitting the mini-batch at hand into two parts, a
calibration subset Bcal ⊂ Z and a predictive subset Bpred ⊂ Z. We denote B

(X )
pred and

B
(Y)
pred as the features and respectively the targets of Bpred. We do the same to yield

B
(X )
cal and B

(Y)
cal from Bcal. An inductive conformalisation procedure is done by first

calculating the set of scores Scal for all predictions f̂(x) for x ∈ B
(X )
cal .

This is followed by taking the relevant quantile rcal, i.e., the ⌈(|Scal|+ 1)(1− α)⌉-
smallest element of Scal

2. Then, the predictions f̂(Bpred) are adjusted using rcal,
yielding mini-batch calibrated predictions. These adjusted predictions are then used
to calculate the loss and update model parameters. It must be noted that calibration
on a calibration set Dcal is still needed to be done after training, because the model
effectively trains on Bcal ⊂ Dtrain and can thus overfit to them.

The authors of ConfTr describe multiple avenues for a loss function – with conformal
training, the original loss function that otherwise would be used on f̂ is effectively freed
up. One approach they take is minimising the size of the locally conformalised predictive
sets. This allows for the base model to make outputs such that, after conformalisation
on a calibration set Dcal, would result in as small as possible predictive sets whilst
retaining the marginal coverage guarantees. However, as we note in later sections, this
is a dangerous loss function to use on its own since it can damage conditional validity.

2Note that the ConfTr method employs a differentiable sorting approach (for example, see Blondel
et al. (2020)) which yields a smoothed rcal. This allows the score quantile estimation to be more
stable whilst also allowing the loss gradient to flow through multiple scores instead of one.



2.3 Conformal Training Methods 20

2.3.2 Regression

In the regression setting, Lei and Bellotti (2023) train a point-predictor f̂ and an
uncertainty estimator σ̂ together as a single neural network model by employing con-
formal training. They denote their approach Directly Optimised Inductive Conformal
Regression (DOICR). As in Stutz et al. (2021), they also split the mini-batch into two,
Bcal and Bpred and perform mini-batch calibration as described before.

More specifically, after splitting the mini-batch, they follow by a forward pass
on both subsets to yield point-predictions and uncertainty estimations. They then
calculate the scores

Scal =
{

y − f̂(x)
exp(σ̂(x)) | (x, y) ∈ Bcal

}
and calculate its respective quantile rcal – the ⌈(|Scal|+ 1)(1− α)⌉-smallest element of
Scal.

The forward pass is then completed by calibrating f̂(x) using r for all x ∈ B
(X )
pred.

The predictive interval for an input x from B
(X )
pred is, similarly to Equation 2.5,

[f̂(x)− rcal exp(σ̂(x)), f̂(x) + rcal exp(σ̂(x))].

The loss for this approach is computed to minimise interval widths, equivalent
to 2rcal exp(σ̂(x)) for an input x. This results in the general form of the loss on the
mini-batch of

2rcal

|Bpred|
∑

x∈B
(X )
pred

exp(σ̂(x)).

However, while this loss indeed improves predictive efficiency, this approach can
cause a false sense of security – it tends to reduce conditional validity whilst retaining
marginal validity. In our thesis, we demonstrate that this phenomenon is prevalent
across different datasets for models such as DOICR. We propose models which aim to
reduce the exploitation of conditional coverage. This section concludes our background
chapter covering conformal prediction and conformal training. We now turn to the
next chapter of this thesis where we define and evaluate our general conformal training
method for regression.



Chapter 3

A Conformal Training Framework
for Regression

In this chapter, we introduce our general scheme for the conformal training of gradient-
based regression models which we refer to as Conformal Training for Regression (CTR).
We then follow by presenting three models based on CTR with different architectures
and loss functions. The first variant is an example of an approach we suggest avoiding
and acts as a counterexample – Width-Minimising Conformal Training for Regression
(WM-CTR). The second and third variants are Quantile Conformal Training for
Regression (Q-CTR) and Adaptive-Quantile Conformal Training for Regression (AQ-
CTR), both of which we demonstrate in the following chapter to yield state-of-the-art
results across multiple real datasets. Before we introduce our general CTR approach,
we give an overview of prior and concurrent work.

3.1 Related Work

In section we provide an overview of related work with a summary shown in Table 3.1.
We begin by comparing the two baseline methods we use that do not utilise conformal
training - conformalised quantile regression (see Section 2.1.4) and conformal histogram
regression (see Section 2.1.5) - to our own approach.

Conformalised quantile regression (CQR) (Romano et al. (2019)) is most similar to
our Q-CTR model which optimises the same loss function as CQR and hence gives
prediction intervals for to the centred quantile pair (qα/2, q1−α/2). Simply put, we
can say Q-CTR is conformally trained CQR. Conformal histogram regression (CHR)
(Sesia and Romano (2021)), compared to CQR, tries to output possibly non-centred
predictive intervals with valid coverage and minimal width. The difference between
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Table 3.1 Comparison of related prior and concurrent work on classification (Cls.) and
regression. The compared attributes are (1) fully end-to-end conformal training, (2)
improved conditional coverage, (3) prediction interval adaptivity to target distribution
skewness.

Method (1) (2) (3)
C

ls. ConfTr – Stutz et al. (2021) ✓ ✓ N/A

Einbinder et al. (2022) ✓ ✓ N/A

R
eg

re
ss

io
n

CQR – Romano et al. (2019) ✗ ✗ ✗

CHR – Sesia and Romano (2021) ✗ ✓ ✓

SCPO – Bellotti (2020) ✓ ✗ ✓

DOICR – Lei and Bellotti (2023) ✓ ✗ ✓

WM-CTR ✓ ✗ ✓

Q-CTR ✓ ✓ ✗

AQ-CTR ✓ ✓ ✓

the predictions of CHR and CQR is apparent in datasets with skewness present in
the target variable. This method bears most similarity to our AQ-CTR model which
uses our adaptive-quantile reformulation of the interval score loss function to adjust
to potentially skewed target distributions. Compared to AQ-CTR, CHR does not use
conformal training, has a complex calibration procedure, and needs the base model to
predict many conditional quantiles to compute its final predictive interval.

There have been several works which consider incorporating conformalisation into
the training of predictive models. These methods have been shown to work both for
classification and the regression tasks. We refer the reader to Section 2.3 for a general
introduction to these methods. The original work1 on incorporating conformalisation
into the training of classifiers was the introduction of the ConfTr framework (Stutz et al.
(2021)). This work showed impressive results by incorporating mini-batch calibration
into the training scheme.

For calibration, in contrast to our leave-one-out based calibration (LOOC) approach
(which we believe is more efficient based on our results in Section 4.3.2, Stutz et al.
(2021)), split each batch into two, a predictive set and a calibration set. We refer to
this approach as split calibration (SC). Furthermore, they use a differentiable sorting
approach (for an example work, see Blondel et al. (2020)) to smooth quantile estimation.
We in our model do not use differentiable sorting or any other smoothing approach
since during preliminary tests we did not notice any significant difference when using it

1We note that the work by Bellotti (2021) was done concurrently. However, while their method
was conformal-aware, they did not incorporate calibration into the training scheme.
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– we leave a conclusive analysis as future work. Finally, we note that the main method
they present optimises for the cardinality of the predictive sets. They do however
provide another variant which optimises for class-conditional coverage.

For the work on classification by Einbinder et al. (2022), they take a different
approach and optimise not for the cardinality of the predictions sets but maximise
the uniformity of the conditional score distribution. This prevents the model from
exploiting conditional coverage. However, this approach, as is the case for Bellotti
(2021), does not directly perform local conformalisation during training.

One of the earliest works on integrating conformal-awareness into regression was the
Surrogate Conformal Predictor Optimisation (SCPO) model by Bellotti (2020). They
use a linear model and do not use calibration during training. An extension to this for
the deep learning setting is the Directly Optimised Inductive Conformal Regression
(DOICR) model by Lei and Bellotti (2023). This work is most like our WM-CTR model
since they also include calibration in their training scheme and minimise width. They
have a base model with two outputs, one for the predictive mean and one to quantify
uncertainty for score normalisation similarly to Equation 2.5. Although our base
model for CTR also gives two outputs by default, we believe the mean and uncertainty
prediction approach to be more unstable during training due to normalisation. Also,
in contrast to our LOOC approach, they use SC (like Stutz et al. (2021)) and, most
importantly, they do not aim to counteract the negative effect on conditional coverage
from directly minimising predictive interval width.

Finally, we note the concurrent work by Colombo (2023). While they do not have
an end-to-end model as they rely on a pretrained base model, they use all scores in
the mini-batch for score adjustment. This bears a slight resemblance to LOOC. In
their words, this allows for the model to concurrently fit multiple target coverage
levels without the need for retraining. We believe that this has a similar effect of
directing the conditional score function to be uniform as in Einbinder et al. (2022), thus
improving conditional validity. However, by considering any dataset with some level of
skewness, one can see that optimising a single predictive interval for conformalisation
simultaneously over a wide grid of coverage levels can decrease efficiency for predictions
for any specific target level. In contrast to this, we use only a single target coverage
level for mini-batch calibration. Additionally, they use a class of score functions similar
to the approach of DOICR and their approach is not fully end-to-end since it requires
training the mean predictor in advance of training the uncertainty estimator.
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3.2 Conformal Training for Regression

In this section, we present our conformal training for regression (CTR) framework.
The general CTR-based model we propose outputs two bound estimates similar to the
quantile estimates in a normal quantile regression model. We define the base model as
a function from the function class F = {fθ | θ ∈ Θ} where Θ is a continuous space of
parameters which uniquely defines fθ ∈ F with fθ : X → R2. For some input xi from
the dataset D and parameters θ, we define the lower and upper bound estimate as
(ŷlo

i , ŷhi
i ) ≡ fθ(xi). A simple definition of Θ, the search-space of parameters, could be

the weight-space of a neural network.
During training, compared to standard conformalised quantile regression, we perform

mini-batch calibration to adjust predictions within the model forward pass, and allow
for any loss function to be used. We also perform local conformalisation after training
on a split calibration set Dcal to get the marginal coverage guarantee on the test data
Dtest. During inference on the test dataset, mini-batch calibration is not used and the
predictions are adjusted using the appropriately calculated quantile of the calibration
scores.

Both mini-batch calibration and post-training calibration are defined to use the same
score function. We represent it as s(ŷlo, ŷhi, y), where y is the true target and ŷlo, ŷhi

are defined as above. CTR allows different score functions to be used, which possibly
have more parameters. By default, the score function we use is the conformalised
quantile regression score function from Equation 2.7 which we define here as

s(ŷlo, ŷhi, y) = max(ŷlo − y, y − ŷhi). (3.1)

We now describe mini-batch calibration in more detail. The forward pass of CTR
during training is illustrated in Figure 3.1. The whole of the CTR method is provided
in Algorithm 2. We note that we use the default score function (Equation 3.1) in
the algorithm. For any other type of suitable score function, the correction using the
respective score quantiles may have to be adapted accordingly.

Mini-Batch Calibration

Mini-batch calibration is the process whereby for each xi in a mini-batch (with indices
defined to be from B ⊂ Itrain), bound estimates (ŷlo

i , ŷhi
i ) = fθ(xi) are transformed into

mini-batch conformalised estimates ȳlo
i , ȳhi

i . It consists of two main steps, leave-one-out
score quantile calculation and score adjustment.
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Algorithm 2: Conformal Training for Regression
Input: Dtrain,Dcal, α, x (test input), fθ ∈ F with θ (randomly initialised

parameters), b (mini-batch size), loss (loss function)
Result: Ĉ
for t = 1, ..., Nepochs do

Randomly partition Itrain (the indexing set of Dtrain) into family of
mini-batch indices B with each set of indices B ∈ B of size b;

for B ∈ B do(
(ŷlo

i , ŷhi
i )

)
i∈B
←

(
fθ(xi)

)
i∈B

; /* Evaluate fθ on batch */

(si)i∈B ←
(

max(ŷlo − y, y − ŷhi)
)

i∈B
; /* Calculate scores */

Set r1 as ⌈|B|(1− α)⌉-th smallest in (si)i∈B;
Set r2 as (⌈|B|(1− α)⌉+ 1)-th smallest in (si)i∈B;
Initialise empty list

(
r

(t)
i,α

)
i∈B

;
for i ∈ B do

/* Calculate leave-one-out score quantile: */
if si > r1 then

r
(t)
i,α ← r1;

else
r

(t)
i,α ← r2;

end
end
/* Finish mini-batch calibration and calculate loss: */(
(ȳlo

i , ȳhi
i )

)
i∈B
←

(
(ŷlo

i − r
(t)
i,α, ŷhi

i + r
(t)
i,α)

)
i∈B

LB = loss
((

(ȳlo
i , ȳhi

i )
)

i∈B
, (yi)i∈B

)
;

Update the model parameters θ using the gradients of LB

end
{(ŷlo

i , ŷhi
i )}i∈Dcal ← {fθ(xi)}i∈Dcal ;

Scal ← {max(ŷlo
i − yi, yi − ŷhi

i )}i∈Dcal ;
Calculate the ⌈(|Dcal|+ 1)(1− α)⌉-th smallest score rcal of the scores Scal;
(ŷlo, ŷhi)← fθ(x);
Ĉ ← [ŷlo − rcal, ŷhi + rcal];

end
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Fig. 3.1 Illustration of the forward pass of a mini-batch of the general CTR model
during training. This consists of a mini-batch of inputs being input to a neural network
to yield two bound estimates. These estimates are then locally adjusted through
mini-batch calibration. The loss of choice is calculated on the calibrated estimates.

For some i ∈ B, basic score quantile calculation is done simply by calculating the
target ⌈|B|(1−α)⌉/(|B|−1) quantile ri,α over the set of scores Si,B ≡ {s(ŷlo

j , ŷhi
j , yj) | j ∈

B, j ̸= i}. This constitutes the leave-one-out score quantile calculation. When using
the default score function (Equation 3.1), score adjustment is done using the quantile
ri,α, yielding

(ȳlo
i , ȳhi

i ) = (ŷlo
i − ri,α, ŷhi

i + ri,α).

Instead of directly using the base model’s outputs, these locally calibrated predictions
ȳlo

i , and ȳhi
i are then used for calculating the loss on each mini-batch element. We

stress that this form of the correction is the default case when Equation 3.1 is used
as the score function. For any other score function, the correction can be derived by
considering the predictive set Ĉ from Algorithm 1.

Conformalisation

After training, the base model has distilled information about the conformalisation
procedure, including the form of the score function. We then perform conformalisation
of the predictions of the base model using Dcal. It is important to note that during
the post-training conformalisation process 1) the same score function is used as during
training and 2) that we do not perform any kind of mini-batch calibration. We now
turn to defining three novel models which use CTR. We will show performance of these
models on multiple experiments in the following chapter.
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3.3 Width-Minimising CTR: A Counterexample

The first example of a model based on our CTR framework is Width-Minimising CTR
(WM-CTR). This serves as a counterexample to the two main models of this thesis
which are introduced directly after. For WM-CTR, we employ interval width as its loss
within the CTR framework. We aim to show with this approach of directly optimising
conformalised mean-interval width has adverse results specifically regarding conditional
validity and the resulting model is not advisable for use in practise due to its unreliable
nature.

Definition 3.3.1 (WM-CTR). As a CTR-based model, Width-Minimising CTR uses
the loss

l(ȳlo
i , ȳhi

i , yi) = ȳhi
i − ȳlo

i ,

where ȳlo
i and ȳhi

i are mini-batch calibrated estimates for input xi with target yi. The
score function is kept as the default (Equation 2.7).

This method can be considered in essence similar to DOICR (Lei and Bellotti
(2023)) as it also outputs two predictions, performs mini-batch calibration, and has
been trained to minimise mean interval width. However, the base model for WM-
CTR outputs lower and upper bound estimates whilst DOICR outputs a mean and
normaliser prediction. The latter in our experiments was more difficult to train due
to numerical issues to do with the normaliser. Another difference between the two
models we note is in the mini-batch calibration approach. WM-CTR uses leave-one-out
calibration (LOOC) while DOICR uses split calibration (SC). We believe LOOC utilises
the mini-batch more efficiently and we show preliminary results for this in Section
4.3.2. We note that for most intents and purposes, the main conclusions we make
about WM-CTR also apply to DOICR and any other similar conformal prediction
methods that solely optimise for mean interval width.

3.4 Quantile CTR

The first central model of this thesis that we propose is Quantile Conformal Training
for Regression (Q-CTR). Using the CTR framework, it applies the pinball loss in the
same way as for CQR. In other words, referring to the illustration in Figure 3.1, the
loss calculation is simply the sum of the pinball losses for the lower and upper bound
estimates. We suggest that this model can be regarded as an extension to the basic
CQR model making its predictions more reliable and trustworthy.
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Definition 3.4.1 (Q-CTR). As a CTR-based model, for a target miscoverage rate α,
Quantile CTR uses the loss

l(ȳlo
i , ȳhi

i , yi) = lα/2(y, ȳlo
i ) + l1−α/2(y, ȳhi

i ),

where ȳlo
i and ȳhi

i are mini-batch calibrated estimates for input xi with target yi and
lα/2 and l1−α/2 are pinball losses (Equation 2.6). The score function is kept as the
default (Equation 2.7).

The inherent value we believe conformal training on the CQR model introduces is
simple. It allows the base model to be aware of the conformalisation procedure which
follows fitting, thereby allowing it to output predictions that have an improved quantile
loss after conformalisation. We note that there are several issues with conformalisation
of a quantile regression model using the most basic score function (Equation 2.7).

For one, since conformalisation using the quantile score function does a constant
correction to the predicted intervals, we might end up with an uneven calibration that
is biased to certain input space regions. Furthermore, shifting intervals equally at the
lower and upper bounds may make for a suboptimal correction. While asymmetric
conformalisation (see Romano et al. (2019)) and model variants such as CQR-m and
CQR-r (for more details, see Sesia and Candès (2020)) address some of these concerns,
the results can vary from dataset to dataset with, to our knowledge, there being no
clear winner.

Once the model is trained to be aware of the constant-width conformalisation
procedure which we employ in CTR, it can correct its base predictions to accommodate
for any shortcomings of the conformalisation procedure subject to the dataset that it
is being trained on. For this reason, we believe this approach allows for more reliable
and robust predictions compared to CQR.

3.5 Adaptive-Quantile CTR

As the second central model based on CTR, we propose Adaptive-Quantile Conformal
Training for Regression (AQ-CTR). While dataset-dependent, there are a few potential
downsides for optimising using the pinball loss. For one, it requires fixing quantiles
to specific levels – say 0.05 and 0.95 for a target coverage of α = 0.9. This means
that if skewness is present in the conditional data distribution, the predictive intervals
may be unnecessarily wide. If interval width is of importance, this may become a
problem. Another issue is that the pinball loss for quantile regression is prone to
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driving sufficiently expressive models to overfit (for more see Chung et al. (2021)) –
this may have an effect even on a conformal-aware method that utilises this loss.

The loss we use for AQ-CTR is the interval score function from Gneiting and
Raftery (2007) which we have adjusted to allow for the model to provide adaptive
quantile estimation. The original interval score function is given as

lα(ȳlo, ȳhi, y) = (ȳhi − ȳlo) + 2
α

(
1y<ȳlo(ȳlo − y) + 1y>ȳhi(y − ȳhi)

)
, (3.2)

where ȳlo, ȳhi are lower and upper quantile predictions and y is the target. Introduced
specifically as a loss by Chung et al. (2021), the authors prove that this loss function is
minimised, on average, when the predictions are exactly the true quantiles qα/2 and
q1−α/2. We note that this means the interval width component of the loss is perfectly
balanced with the component which targets miscoverage.

This motivates an adjustment to Equation 3.2 which directs the model to predict
intervals with correct coverage that are minimal whilst having freedom to choose any
pair of target quantiles with valid coverage between them. The resulting loss we call
the adaptive-quantile interval score loss is given by

lα(ȳlo, ȳhi, β, y) = (ȳhi − ȳlo) + 2
α− β

1y<ȳlo(ȳlo − y) + 2
α + β

1y>ȳhi(y − ȳhi) (3.3)

where β is a quantile adjustment term with |β| < α which indicates that ȳlo is an
estimation of q(α−β)/2 and ȳhi is an estimation of q1−(α+β)/2 – still targeting a coverage
of 1− α between the two. This allows for the model to adapt to the skewness of the
data and produce tighter predictions thanks to the additional degree of freedom. In
our implementation, we make the value of β dependent on the input and learnable by
adding a third output to the base neural network model, thus yielding the adaptive
quantile predictions

(ŷlo
i , ŷhi

i , βi) ≡ fθ(xi).

We employ βi solely during training for the loss calculation. As an additional detail,
we restrict the output of β to −α + ϵ ≤ β ≤ α− ϵ using a suitably scaled hyperbolic
tangent activation function, where we set ϵ = 10−3 to prevent numerical instability
during training. For clarity, we formally state the definition of AQ-CTR next.

Definition 3.5.1 (AQ-CTR). As a CTR-based model, for a target miscoverage rate
α, Adaptive-Quantile CTR applies the adaptive-quantile interval score loss (Equation
3.3) to the CTR framework and adjusts the base model for an input x to yield an
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additional third output β, the quantile adjustment factor. The score function is kept
as the default (Equation 2.7).

Even though mean interval width is a component of this loss, this loss for any
specified β is still at a minimum when ȳlo = q(α−β)/2 and ȳhi = q1−(α+β)/2. Hence this
loss is faithful to the target level of coverage which is not the case for WM-CTR that
uses the interval width as its only loss component. We state this as a theorem next
and provide a proof in Appendix A.

Theorem 3.5.1. The adaptive-quantile interval score loss (Equation 3.3) achieves a
minimum whenever ȳlo = q(α−β)/2 and ȳhi = q1−(α+β)/2 and thus is faithful to a coverage
level of 1− α.

Finally, we note that this adaptive-quantile interval score loss could be used as a
drop-in replacement for the loss function used in CQR to yield improved adaptivity
to skewness. We leave analysing this model variant as a possible future research
direction. We now turn to the experiment section and present a thorough comparison
of the proposed models and related works using a synthetic dataset and numerous real
datasets.



Chapter 4

Empirical Results on Synthetic and
Real Datasets

In this chapter we provide results of the three proposed models on a synthetic dataset
and multiple real datasets. As a comparison, we also provide results for CQR (Romano
et al. (2019)), CHR (Sesia and Romano (2021)), both state-of-the-art conformal
prediction models based on quantile regression. As a direct comparison to other
conformal training methods, we give results for the DOICR method (Lei and Bellotti
(2023)) which is closest to our WM-CTR model1. At the end of the chapter, we provide
empirical evidence supporting our claim that our approach for mini-batch calibration
is more memory- and data-efficient than previously proposed approaches. We finish
this chapter with a discussion. We now give a short preview of the results.

In this chapter, we demonstrate the effectiveness of using conformal training. We
show that the novel Q-CTR and AQ-CTR methods yield more reliable estimates
than conformalised quantile regression (CQR); are significantly more robust than
conformal training methods which solely optimise for interval width; and also have
similar or improved results compared to conformal histogram regression (CHR) (Sesia
and Romano (2021)). Also, thanks to its adaptivity to target distribution skewness,
we show that AQ-CTR can provide tighter predictive intervals without sacrificing
coverage in areas of high uncertainty – in many cases making it more reliable than the
skew-adaptive CHR.

Furthermore, with our WM-CTR model, we demonstrate the pitfalls of directly
optimising for average predictive set size. We show on synthetic and real datasets,

1We note we include results for DOICR on the synthetic dataset only – we ran into numerical
instabilities due to the form of the score function during training of DOICR on the real datasets. The
authors of the method also mention this difficulty in their work.
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that a model fit using conformal training with a loss function that is solely mean
interval width can be expected to have worse conditional coverage than the classical
conformalised quantile regression case. Moreover, we show that this approach will
provide misleading estimations of uncertainty, e.g., giving tight predictive intervals
in regions of space where uncertainty should instead be high. Before we present
our results, we first describe our experimental design. We include details on models,
data preprocessing, the training scheme, and the metrics we use for assessing model
performance.

4.1 Experimental design

Data preprocessing

We use the same data loading and preprocessing approach as the authors of confor-
malised quantile regression (Romano et al. (2019)). For each dataset, this includes
randomly (for a given random generator seed) splitting D into Dtrain (40%), Dcal (40%)
and Dtest (20%). Further, we perform standardisation of inputs in all data splits given
the inputs in Dtrain. We also scale the targets of all splits by dividing them by the
mean of the targets Dtrain.

Hyperparameters and training scheme

For all experiments we set the miscoverage rate to α = 0.1, or, in other words, we
target a coverage of 90%. We use a neural network with two hidden 64 unit layers
with ReLU activation functions and dropout applied to the outputs of both layers
with 0.1 probability. The size of the output layer is 2 in all cases except for 3 in the
case of AQ-CTR and 99 for CHR. We use a batch size of 128 and the Adam optimiser
with a learning rate of 5 · 10−4 and a weight decay of 10−6. Also, since ŷlo and ŷhi can
cross, a notable issue when training bound predictions with neural networks, we add a
regularising loss of the form 102 · 1ŷlo>ŷhi ŷlo − ŷhi for the CTR models – while this does
not improve accuracy, it helps avoid numerical issues during training.

Furthermore, we perform cross-validation before training to determine a suitable
number of epochs for training. We randomly split Dtrain into a separate training and
validation set, with a ratio of 4:1. Out of 2000 epochs, measure the best number of
epochs in terms of a validation set metric which we then use for the real training run.
For the metric, we use coverage and mean interval width for CQR (as the authors of
the method specify), and the actual loss function which include mini-batch calibration
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for DOICR and all CTR-based models. For CHR, we use a single cross-validation
round as in the original work, 1 000 bins for the histogram, and randomisation during
prediction (for more, see Sesia and Romano (2021)).

Measuring Conditional Coverage

For the synthetic dataset, we can simply measure conditional coverage through ana-
lytically deriving oracle quantiles from the data generating process. However, for real
datasets, measuring conditional coverage is more difficult, since we do not know the
conditional probability density of the response variable given the input. For this reason
we turn to binning-based approaches to provide estimates of conditional coverage.
Simply put, we split the test data Dtest into k bins and calculate coverage for each bin
given a model.

More specifically, by defining the indexing set Itest ⊂ N ofDtest such that {(xi, yi)}i∈Itest =
Dtest, we represent the bins as a set G of index sets such that ⋃

G∈G G = Itest, Gi∩Gj = ∅
for any distinct Gi, Gj ∈ G, and |G| = k. We define the empirical coverage function c

as for an input set of bin G ∈ G as

c(G) = 1
|G|

∑
i∈G

1ŷlo≤yi≤ŷhi ,

where ŷlo
i and ŷhi

i are the respective lower and upper bound predictions of the model
given xi. This binning-based approach allows conditional coverage to be visualised in
an approximate way, but also allows calculating measures of conditional coverage.

For our metrics, we use mean absolute deviation (mMAD) from the target coverage
(e.g., 0.9) over all bins. We also use the worst slab coverage (mWSC) metric (Cauchois
et al. (2021)) with gives the coverage level of the bin which covers the least. To be
precise, mMAD is defined as

mMAD = 1
|G|

∑
G∈G

∣∣∣(1− α)− c(G)
∣∣∣

with mWSC given simply by minG∈G c(G). We report both values in percentages and
provide means and standard deviations of the values across all seeded runs.

We use two different tactics for partitioning the data into G, one is based on
predictive interval width and the other on clustering the input space using K-means.
The interval-width based partitioning takes the predictions of the baseline CQR method
and sorts them in ascending order. Then it performs an equal split of the sorted sequence
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of respective data points into k bins. This partition is then used for all models. This
has similarities with the work by Angelopoulos et al. (2020) where prediction sets are
partitioned by their size. We use this binning method only for visualisation purposes
(see the two top rows of Figure 4.2). The main method we use for binning is the
clustering of input data points. We use a K-means clustering approach and partition
the test inputs into k bins. All results given in the tables and the lower halves of Figure
4.2 and the figures from Appendix B are based on this approach.

To limit any bias, we perform our analysis over several values of k. Since our datasets
are of different sizes we split our datasets into two groups, small and large, both of
which has different set of values for k. This is such that we do not perform clustering
into too many bins which would render the mMAD and mWSC metrics uninformative.
For the smaller datasets (concrete, community, star), we use the number of bins
k ∈ {2, 3, ..., 10}. For the larger datasets (see below for more details), we use the
number of bins k ∈ {5, 10, 15, ..., 150}.

Overview of Datasets

We provide results across multiple real tabular datasets. This is the same collection
of datasets used in the original CQR work. The datasets consist of the following:
the concrete compressive strength dataset concrete (UC Irvine Machine Learning
Repository (2007)); the communities and crime dataset community (UC Irvine Machine
Learning Repository (2009)); the student teacher achievement ratio dataset star
(Word et al. (1990)); the bike sharing dataset bike (UC Irvine Machine Learning
Repository (2013a)); medical expenditure panel survey data meps_19 and meps_20
(Agency for Healthcare Research and Quality (2017)), and meps_21 (Agency for
Healthcare Research and Quality (2018)); the physicochemical properties of protein
tertiary structure dataset bio (UC Irvine Machine Learning Repository (2013b)); the
blog feedback dataset blog_data (UC Irvine Machine Learning Repository (2014));
and the Facebook comment volume datasets facebook_1 and facebook_2 (Singh et al.
(2015); UC Irvine Machine Learning Repository (2016)). We provide an overview of
the dataset targets and sizes in table 4.1.

4.2 Experiment on Synthetic Data

We begin with a synthetic dataset example to demonstrate the improved conditional
validity of the predictions of Q-CTR and AQ-CTR. The example further illustrates
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Table 4.1 Overview of real tabular regression datasets used. Includes a description of
the target scalar variable and the size of the dataset after preprocessing.

Dataset name Target description Size
concrete Concrete compressive strength 1 030
community Violent crimes per capita 1 994

star Student sum of reading and mathematics scores 2 161
bike Number of active rental bike users at given hour 10 886

meps_19 Patient total expenditure 15 785
meps_20 Patient total expenditure 17 541
meps_21 Patient total expenditure 15 656

bio Protein residue size 45 730
blog_data Blog post comment volume 52 397
facebook_1 Post comment volume 40 948
facebook_2 Post comment volume 81 311

that directly optimising predictive efficiency yields unreliable and even misleading
predictions in the case of WM-CTR and DOICR.

A datapoint in the heteroskedastic synthetic dataset we use is generated as follows.
First, we sample a latent z from the uniform distribution as z ∼ U([0, 1]). We then
define the respective input x ∈ R4 – which is arbitrary as long as it contains sufficient
information about z – to the model as

x =


sin 2z

z2

sin 3z

z3

 .

Finally, we sample the target y ∈ R with y ∼ N
(
0, (z + 1

2)8
)
. Thanks to the type of

noise we use, we can compare the predictions to an oracle and exactly calculate the
conditional coverage level given a prediction for a certain x. We generate 6000 data
points for D and perform the split with the same ratio as described in the previous
sections.

We show results in Figure 4.1. We highlight that the predictions of Q-CTR, AQ-
CTR are closest to the oracle’s predictions. CHR follows directly after. For CQR, we
can see undercoverage in the high-noise region and slight overcoverage elsewhere. This
could be attributable to the fact that the score function makes a constant correction
to the predictions which could be too large for the low noise area and too small for the
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Fig. 4.1 Results for CQR, WM-CTR, DOICR, CHR, and CAQR with α = 0.1 on
a synthetic dataset consisting of targets sampled from zero-centred Gaussian noise
with varying scale depending on latent variable z. Left: Lower and upper bound
predictions of y given z. Optimal predictions for bounds (0.05/0.95 quantiles) are given
in blue dashed lines. Samples from p(y|z) are shown scattered in blue. Right: actual
conditional coverage level given z for all models. Target 90% coverage is denoted with
a blue dashed line.

high noise area. We also note that cross-validation could have an impact on the results
for CQR, since the approach defined by the authors optimises for mean interval width.

Finally, WM-CTR and DOICR both significantly undercover in the high-noise
region, with DOICR even more markedly so. Whilst it is true, the area between the
lower and upper bound prediction in the left-hand-side of Figure 4.1 is smallest for WM-
CTR and DOICR, this highlights the misleading nature of models which solely optimise
for predictive efficiency. We reiterate a difference between the two models: whilst both
optimise for mean interval width, WM-CTR uses a quantile prediction base model and
DOICR estimates the conditional target mean and uncertainty (conformal normaliser)2.
Since it does not impact the calibration procedure, both models are incentivised to
inflate the largest tail end of the scores through minimising the respective predictive
interval widths – note the drop in interval width for DOICR and the reduction
of growth in interval width for WM-CTR from around z = 0.8 onwards. Noting
their difference, we believe the two models’ predictions vary slightly since, from an
optimisation standpoint, it could be easier to perform this inflation by decreasing the
values of the conformal normaliser (in the case of DOICR) than to bring two bound
predictions close to one-another (in the case of WM-CTR).

2The other difference between DOICR and WM-CTR is in the mini-batch calibration. However,
we believe it has no significant impact in this synthetic case. For more, see Section 4.3.2.
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Table 4.2 Mean absolute deviation (%) of bin coverage from target of 90%. Averaged
over 30 seeded runs with means and standard deviations reported. Lowest is best
and marked in bold. Partitions into bins calculated by K-means on the input space.
Multiple values for k for were used partitioning with k ∈ {2, ..., 10} for the small
datasets concrete, community, and star and k ∈ {5, 10, 15, ..., 150} otherwise.

Dataset Model
CQR WM-CTR CHR Q-CTR AQ-CTR

concrete 5.21 ±1.64 5.83 ±1.82 5.00 ±1.51 4.90 ±1.04 5.44 ±1.45

community 4.86 ±1.07 5.39 ±1.18 4.06 ±1.24 4.62 ±1.23 4.69 ±1.21

star 3.05 ±0.72 3.07 ±0.65 3.09 ±0.80 3.04 ±0.85 2.96 ±0.69

bike 6.98 ±0.60 6.79 ±0.50 7.04 ±0.74 6.29 ±0.50 6.08 ±0.52

meps_19 8.99 ±2.19 10.99 ±1.26 6.21 ±0.61 7.20 ±1.23 7.41 ±0.95

meps_20 8.23 ±1.78 10.53 ±1.19 5.55 ±0.50 6.55 ±0.97 6.95 ±0.92

meps_21 8.16 ±1.31 11.13 ±1.38 5.99 ±0.51 6.89 ±0.93 7.35 ±1.04

bio 5.55 ±0.90 6.22 ±1.11 5.47 ±0.84 5.31 ±1.24 5.22 ±0.93

blog_data 14.81 ±1.61 15.21 ±2.74 11.34 ±2.29 9.96 ±2.41 10.99 ±1.83

facebook_1 16.02 ±2.19 20.23 ±2.53 10.51 ±2.34 8.04 ±1.45 8.08 ±1.98

facebook_2 13.03 ±1.87 21.43 ±2.71 9.93 ±2.25 7.75 ±1.68 7.10 ±1.74

4.3 Experiments on Real Data

4.3.1 General Performance

We begin by showing extended results for three different real datasets in Figure 4.2. For
reference, we also provide the extended figures in Appendix B for all 11 datasets. We
provide summary statistics over different bin sizes for mean absolute deviation (MAD)
of bin coverage and worst slab coverage (WSC) in Tables 4.2 and 4.3 respectively. For
clarity, we note that the values for both tables for each dataset were averaged over
multiple values of k with partitioning done on the test set using the K-means algorithm.
We now describe our results in more detail.

Coverage

As can be seen in Figure 4.2, Q-CTR, AQ-CTR and CHR are consistently the top
performers for the three datasets in terms of their coverage profile. Namely, they have a
reduced drop in coverage levels for bins where prediction widths are the largest. While
the trend of coverage decreasing as widths become larger remains, we also see that these
models have less overcoverage in low prediction width regions compared to WM-CTR
and CQR. CHR was the best performer for all meps datasets. However, for the other
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Fig. 4.2 Various metrics measuring conditional coverage and predictive interval width
for blog_data, meps_19, and facebook_2 over 30 seeded runs with means and half
standard deviations reported. Upper half: coverage and log mean width for bins chosen
by the interval width-based method as described in Section 4.1. The respective number
of bins was chosen relative to dataset size with 50 for blog_data, 20 for meps_19,
and 80 for facebook_2. Lower half: mean absolute deviation and worst slab coverage
across different values of k using K-means clustering.
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Table 4.3 Worst slab (bin) coverage (%). Highest is best and marked in bold. Averaged
over 30 seeded runs with means and standard deviations reported. Bins are calculated
by K-means over the input space with k chosen as in Figure 4.2. Values in red mark
significant (<10%) undercoverage.

Dataset Model
CQR WM-CTR CHR Q-CTR AQ-CTR

concrete 79.34 ±7.20 76.49 ±7.85 80.55 ±6.17 81.76 ±4.33 79.27 ±7.88

community 82.33 ±4.34 80.70 ±3.78 82.07 ±4.88 81.66 ±4.40 81.56 ±4.68

star 85.28 ±2.42 84.59 ±2.51 84.81 ±2.67 84.75 ±2.76 85.29 ±2.55

bike 52.23 ±7.07 54.78 ±8.53 50.81 ±7.42 57.13 ±7.66 59.54 ±8.00

meps_19 27.29 ±16.06 23.27 ±10.46 42.94 ±12.73 41.92 ±13.70 37.71 ±9.18

meps_20 36.89 ±10.54 24.92 ±7.87 51.75 ±10.34 47.71 ±13.53 41.87 ±9.82

meps_21 35.76 ±8.67 21.39 ±9.70 47.52 ±9.49 45.51 ±13.15 38.81 ±11.23

bio 28.50 ±18.02 25.43 ±19.31 30.92 ±19.01 41.40 ±25.09 35.40 ±23.09

blog_data 6.87 ±5.54 7.78 ±5.28 12.98 ±10.82 21.07 ±16.16 16.73 ±11.60

facebook_1 5.48 ±6.14 1.48 ±2.08 10.88 ±11.79 18.35 ±14.67 19.42 ±18.33

facebook_2 5.85 ±10.71 0.60 ±1.26 13.48 ±19.15 22.82 ±23.56 27.43 ±24.43

datasets, the coverage curves for Q-CTR and AQ-CTR were better or matched CHR.
Also we bring attention to the fact that Q-CTR had slightly improved undercoverage
than AQ-CTR in the high-width regions. We believe this could be since AQ-CTR,
with its additional degree of freedom, is more prone to overfitting. Finally, similarly to
the synthetic data experiment, we see that WM-CTR had significant undercoverage in
high-width regions.

Mean Interval Length

We report several findings on mean interval width from Figure 4.2 and the figures in
Appendix B. First, Q-CTR has wider predictive intervals on average than AQ-CTR.
Also, both models have an in increased width in the regions of highest predictive
uncertainty – its effect is clearly seen by the improved coverage compared to other
models.

We note the difference between CHR and AQ-CTR for blog_data. In regions of
overcoverage for CHR, we see less overcoverage and tightened intervals for AQ-CTR.
Similarly, in regions of undercoverage for CHR, we see less undercoverage and widened
intervals. We see this also for the facebook datasets. This suggests that AQ-CTR,
while also being skew-adaptive, is in many cases more reliable than CHR. However,
we note the improved log mean width for CHR without significant loss of coverage
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across all bins for all meps datasets. Finally, we point to the clear drop in interval
width at the last bins for WM-CTR – an excellent example of the downsides of directly
optimising for mean interval width.

Mean Absolute Deviation and Worst Slab Coverage

As can be seen in Tables 4.2 and 4.3, results for Q-CTR and AQ-CTR are in large part
superior to CQR and WM-CTR. In general, we see performance is similar or improved
compared to CHR – whilst CHR performs slightly better on the meps datasets, Q-CTR
and AQ-CTR have a clear advantage for the four largest datasets. Also, we note that
CQR and WM-CTR had significantly worse results for the largest three datasets.

4.3.2 Effect of Calibration Type on Conformal Training

Before our discussion, we finish this experimental section with a short investigation
into two different calibration approaches during conformal training: our leave-one-out
calibration (LOOC) and the split calibration (SC) from Stutz et al. (2021) and Lei
and Bellotti (2023). We perform this investigation to see whether the use of LOOC is
justified compared to SC.

The difference between the two approaches arises from how the score quantile is
calculated. For LOOC, for each element of a mini-batch, we calculate the corrective
score quantile using all of the other elements of the batch. For SC, the mini-batch is
split into two – a calibration and a prediction batch. A single corrective score quantile
is computed on the calibration batch and applied to the prediction batch. The loss for
SC is applied to only the adjusted prediction batch.

We justify our use of LOOC since it is more memory- and data-efficient without
degradation in performance compared to SC. Due to the fact that LOOC uses approx-
imately twice as many predictions for calibration, a more precise estimation of the
score quantile can be made using LOOC compared to SC. This implies that given the
same hyperparameters, LOOC may decrease its loss further and more quickly during
training. We hypothesise that if batch size and the number of epochs was doubled for
SC, then the loss curve would look similar in shape.

In order to validate this, we use the facebook_1 dataset and compare loss curves
for the two approaches. We adjust the CTR method to work with split calibration,
namely with a split ratio of 1:1. We denote the respective models by CTR-SC. Our
original batch size is 128. Considering the case where the proportion of scores used
for calibration was the same between SC and LOOC, we additionally run the SC
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variant with double the batch size and double the number of epochs – denoting it by
CTR-SC(2x). We do this to validate whether the loss curve would look similar to that
of LOOC. We note that we downsample this loss curve by a factor of two to have a
fair comparison between CTR and CTR-SC(2x), since only half of the training data is
used during an epoch for calibration with SC given a split ratio of 1:1.

Fig. 4.3 Comparison of mean training loss curves over 10 different runs for the Q-CTR
& Q-CTR-SC & Q-CTR-SC(2x) (left) and WM-CTR & WM-CTR-SC & WM-CTR-
SC(2x) (right) models on the facebook_1 dataset. By taking the mean of every
consecutive non-overlapping pair of values, we downsample the loss curves by a factor
of two for the CTR-SC(2x) variants.

We show the mean loss curves over 10 runs for Q-CTR, Q-CTR-SC, Q-CTR-SC(2x),
WM-CTR, WM-CTR-SC, and WM-CTR-SC(2x) in Figure 4.3. As can be seen, the
curves for CTR and the downsampled curves for CTR-SC(2x) curves are very similar.
We believe this is sufficient validation for our hypothesis that the loss for CTR and
CTR-SC decreases in a similar manner albeit it takes CTR-SC twice as long with a
doubled batch size. We conclude that there is no significant difference between the two
approaches in terms of optimisation. However, clearly justifying its use, LOOC is more
memory- and data-efficient.

Finally, we note that leave-one-out calibration is slightly more computationally
intensive: it requires 1) sorting the whole mini-batch compared to half of the mini-batch
and 2) a comparison operation per mini-batch element to select the relevant quantile.
As a further experiment, we run Q-CTR and Q-CTR-SC on the facebook_1 dataset
for 10 000 epochs and report an average time of 1.04 and 1.05 seconds per epoch for
Q-CTR and Q-CTR-SC, respectively – a negligible time difference. The experiment
was done on an Intel(R) Core(TM) i7-10700K CPU. We conclude that having made
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calibration more memory- and data-efficient using LOOC, there is no real impact on
execution time.

4.4 Discussion

We conclude this chapter with a discussion of the results. We believe we have demon-
strated several significant results supporting the use of conformal training in building
reliable regression models for real use.

Post-training conformalisation is always biased in one way or another – including it
into training allows the model to correct for this bias. Our results show that, especially
for the larger datasets (with size greater than 10 000), both Q-CTR and AQ-CTR
give predictions with significantly improved conditional coverage compared to the
state-of-the-art CQR model. They also have similar or improved results compared
to CHR. We also note that, based on Figure 4.2 and figures in Appendix B, Q-CTR
seems to be more conservative and give wider predictive intervals in general. On the
other hand, AQ-CTR gives tighter interval estimations than Q-CTR while having
similar conditional coverage metrics. For this reason, we believe AQ-CTR is the most
competitive model out of our proposed approaches.

Of course, CHR (Sesia and Romano (2021)) proves to be a very useful model, with it
slightly outperforming other models on all of the meps datasets. We must note however,
that CHR is a much more complex model than the CTR-based models, requiring a
lengthy calibration procedure. It also requires the baseline quantile regression model
to estimate a large set of quantiles. This gives CHR access to significantly more
information for calibration and prediction, although it does make it computationally
more intensive to train. Also, as a sidenote, since CHR uses a sequence of nested
intervals calculated to minimize width, it can predict non-centred lower and upper
bounds, something that AQ-CTR can do while CQR and Q-CTR cannot. We believe
that this, accompanied by the robustness of the histogram-based approach, can give
CHR an upper hand in some scenarios.

Furthermore, with WM-CTR we have clearly demonstrated that solely optimising for
post-conformalisation predictive interval length will result in unreliable and misleading
predictions. We believe this also applies for the classification setting in terms of
optimising for predictive set cardinality. All-in-all this gives support to the claim that
average predictive efficiency is a poor indicator of model reliability.



Chapter 5

Conclusion

This thesis explored the integration of conformalisation into the training process of
conformal prediction for regression. In this final chapter, we conclude this work by
listing our findings, discussing limitations, and proposing future directions for research.

5.1 Findings

We defined Conformal Training for Regression (CTR), a general approach to conformal
training for regression which allows for any task-specific loss to directly optimise post-
conformalised outputs. This freedom wouldn’t be possible without the integration of
mini-batch calibration within the training loop. Also, defining a loss function would
usually require specifying a task-specific score function for conformalisation. However,
as conformal training introduces information about the existing score function, finding
an optimal score function is not necessarily required, making the CTR framework more
robust. We believe these are important attributes of CTR and constitute the main
reason to believe it has a positive impact in practise.

Based on the CTR framework, we defined three models, WM-CTR, Q-CTR, and
AQ-CTR, which we analysed extensively on a synthetic dataset and multiple real
datasets. With WM-CTR, we demonstrated the perils of optimising for predictive set
size – even though mean width is reduced, conditional coverage is severely worsened,
especially in regions of high uncertainty. With Q-CTR, we showed how introducing
conformal awareness to the CQR model yields improved results after conformalisation.
Finally, with AQ-CTR, we demonstrated a skew-adaptive approach which aims to find
tight intervals while retaining relatively even coverage. For both Q-CTR and AQ-CTR,
we showed that conditional coverage levels are similar or improve upon the CQR and
CHR baselines.
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As our conformal training framework used a different calibration approach than
other previously defined end-to-end conformal training methods, we performed a
comparative analysis. We demonstrated that our calibration is more memory- and
data-efficient without any significant loss of execution time.

5.2 Limitations

Our CTR framework and conformal training in general has some limitations. First,
it is more computationally expensive to train compared to the counterpart that does
not use conformal training. This is mainly due to the sorting operation required for
mini-batch calibration. However, if batch size is kept fixed, computational cost still
scales linearly with dataset size. For this reason, we believe using this approach for
large datasets remains feasible.

Another issue that is unexplored in this thesis is the problem of overfitting. While we
use cross-validation to estimate an optimal training duration, we believe the discrepancy
between the estimated score quantile during mini-batch calibration compared to the
actual score quantile from the calibration set could be impactful and should therefore
be investigated.

5.3 Future Work

We believe that the topic of conformal training for regression has great potential to play
a role in developments in the field down the line. There are several avenues that open
up with this thesis. For example, we used the default score function across all CTR-
based models. The idea of adapting the score function by modelling additional values
could be an interesting research direction. This may allow for the improvement of the
conformalisation procedure used both during and after training. Another noteworthy
direction is adapting the CTR method to work with Mondrian CP methods, or with
models that give estimations of the full conditional distribution of the target, such
as distributional conformal prediction (Chernozhukov et al. (2021)) or conditional
histogram regression (Sesia and Romano (2021)).
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Appendix A

Adaptive-Quantile Interval Score
Loss is Faithful to Target Coverage

In this Appendix, we prove Theorem 3.5.1 which states that the adaptive-quantile
interval score loss achieves a minimum whenever ȳlo = q(α−β)/2 and ȳhi = q1−(α+β)/2

and thus is faithful to a coverage level of 1 − α. We restate the adaptive-quantile
interval score loss from Equation 3.3. For a specified target level of miscoverage α, the
adaptive-quantile interval score loss is given by

lα(ȳlo, ȳhi, β, y) = (ȳhi − ȳlo) + 2
α− β

1y<ȳlo(ȳlo − y) + 2
α + β

1y>ȳhi(y − ȳhi)

where β is a quantile adjustment term with |β| < α, ȳlo is an estimation of q(α−β)/2,
ȳhi is an estimation of q1−(α+β)/2, and y is the target variable.

We will now provide the proof which is an adjustment of the proof by Chung et al.
(2021) for the same property of the basic interval score loss.

Proof. First, we consider the expected loss under the target distribution f with
respective c.d.f. FY such that y ∼ f :

Ey∼f

[
lα(ȳlo, ȳhi, β, y)

]
=

∫ ∞

−∞
lα(ȳlo, ȳhi, β, y)f(y)dy

= (ȳhi − ȳlo)

+ 2
α− β

∫ ȳlo

−∞
(ȳlo − y)f(y)dy

+ 2
α + β

∫ ∞

ȳhi
(y − ȳhi)f(y)dy.
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Next, we calculate the partial derivatives of the expectation with respect to both
ȳlo and ȳhi. We have

∂Ey∼f

[
lα(ȳlo, ȳhi, β, y)

]
∂ȳlo = −1 + 2

α− β

∫ ȳlo

−∞
f(y)dy = −1 + 2

α− β
FY (ȳlo) and

∂Ey∼f

[
lα(ȳlo, ȳhi, β, y)

]
∂ȳhi = 1− 2

α + β

∫ ∞

ȳhi
f(y)dy = 1− 2

α + β

(
1− FY (ȳhi)

)
.

Finally, we set these partial derivatives to zero. We hence have that the adaptive-
quantile interval score loss is minimised whenever FY (ȳlo) = α−β

2 and FY (ȳhi) = 1− α+β
2 ,

i.e. when ȳlo = q(α−β)/2 and ȳhi = q1−(α+β)/2 with FY (ȳhi)−FY (ȳlo) = 1− α+β
2 −

α−β
2 =

1− α giving the target level of coverage.



Appendix B

Extended Results for All Real
Datasets

In this appendix, we show the results over all real datasets (see Table 4.1) of all the
relevant models as in Figure 4.2. The results can be seen in Figures B.1, B.2, B.3, and
B.4.
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Fig. B.1 Various metrics measuring conditional coverage and predictive interval width
for concrete, community, and star over 30 seeded runs with means and half standard
deviations reported. See Figure 4.2 for more details.
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Fig. B.2 Various metrics measuring conditional coverage and predictive interval width
for bike, bio, and blog_data over 30 seeded runs with means and half standard
deviations reported. See Figure 4.2 for more details.
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Fig. B.3 Various metrics measuring conditional coverage and predictive interval width
for meps_19, meps_20, and meps_21 over 30 seeded runs with means and half standard
deviations reported. See Figure 4.2 for more details.
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Fig. B.4 Various metrics measuring conditional coverage and predictive interval width
for facebook_1 and facebook_2 over 30 seeded runs with means and half standard
deviations reported. See Figure 4.2 for more details.
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