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Abstract

This project addresses the ongoing challenge of achieving reliable Information Extraction
(IE), particularly in domains which require near-perfect precision. ELICIT (Butcher et al.,
2023) introduced a novel approach that combines the processing speed of automated IE tools
with the precision of manual annotation through a unique approach of weak supervision
labeling and human validation. The existing setup achieved impressive results when it came
to precision, but the recall of the system can still be greatly improved. Recognizing the
potential of Large Language Models (LLMs) in tasks that require language understanding,
this project focuses on extending ELICIT’s capabilities with LLMs and evaluating their
effectiveness in the context of structured IE. The research is grounded in the legal domain,
focusing on evaluations on UK Crown Court sentencing remarks, and court transcripts. The
latter usually contains multiple speakers with different narratives, necessitating the extraction
of reliable information along with speaker attribution. This project builds upon the existing
system, improving it in two signficant ways: firstly, by introducing LLMs as an extraction
tool, and secondly, by extending the system’s functionality to extract information attributed
to specific speakers. The integration of LLMs into ELICIT resulted in improved recall
compared to the previous version. Moreover, through the utilization of human-validated
extractions for fine-tuning, the enhanced system showcased improved recall on both already
extracted documents and unseen ones. The research demonstrates how fine-tuning with
limited data leads to enhanced performance, while also requiring fewer extractions to be
shown to the user, thereby reducing potential manual efforts.
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Chapter 1

Introduction

In recent years, Large Language Models (LLMs) have demonstrated exceptional performance
in tasks which require language understanding (Brown et al., 2020). Among the domains
standing to benefit from this advancement is Information Extraction (IE), which concerns
the extraction of structured information from unstructured textual data. IE finds applications
in many fields like healthcare (Javaid et al., 2022; Qayyum et al., 2020), finance (Ghoddusi
et al., 2019), and law (Bansal et al., 2019; Carnaz et al., 2020).

However, these domains often involve sensitive data, the use of which has serious
consequences, highlighting the importance of IE with near-perfect precision. The legal sector
for instance, is especially sensitive to inaccuracies in IE, which could lead to wasted resources,
unfair legal outcomes, or the loss of public trust. These issues could be addressed by tasking
a human with IE, but such a solution requires significant time and financial resources.
Conversely, automated methods, while demonstrating rapid processing, compromise on
precision of the extracted information (Yang et al., 2022).

Addressing this challenge, the ELICIT framework, introduced by Butcher et al. (2023),
offers a novel approach by combining automated IE systems with human validation. This
approach attains precision comparable to manual annotation, surpassing automated tools,
and most importantly reduces annotation time relative to manual annotation.

Nevertheless, the limiting element of the system is its imperfect recall, primarily caused
by the automated component. In light of the promising advancements by LLMs in natural
language processing, this project extends ELICIT by incorporating LLMs as the automated
IE element. Furthermore, the objective of this research is to evaluate the effectiveness of
LLMs in IE.

Since it is not possible to fit the full documents into LLM prompts due to their context
window limits, the decision was made to divide them into smaller passages, extracting the
information from the most relevant ones. While more commonly embedding models are used
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for passage retrieval (Kamalloo et al., 2023), this research also explores the use of prompting
LLMs for relevant passage retrieval. Moreover, the impact of using validated extractions for
fine-tuning are evaluated, with the objective of enhancing the system’s performance.

The research is grounded in the legal domain through evaluations on UK Crown Court
sentencing remarks, the same dataset utilized by Butcher et al. (2023). Additionally, a novel
task of IE involving source attribution is introduced, focusing on extraction of information
provided by the speakers present in the text. Synthetic court transcript, generated using
GPT-4 (OpenAI, 2023b) based on real sentencing remarks, serve as the basis for evaluation.

In the baseline model setting, the developed system exhibits superior recall to the current
version of ELICIT. The baseline LLM performs worse than the embedding model in passage
retrieval, showing the limitation of direct use of general LLMs. However, fine-tuning
on a limited amount of human validated extractions results in significant improvement in
performance, matching the embedding model’s performance for sentencing remarks, and
even exceeding it for court transcripts. This improvement also transfers to the complete IE
system, which includes the human validator. Notably, the fine-tuning results in significant
increases in recall in both unseen documents, and already processed ones, requiring fewer
extractions shown to the human validator.

1.1 Context and Motivation

The motivation for the project comes from the desire to accomplish structured information
extraction on various types of documents, specifically those in the legal domain - sentencing
remarks and transcripts of court proceedings. Sentencing remarks, which are the judge’s
remarks during the announcement of the sentence to the defendant, follow a consistent
format - they are given from the perspective of the judge and directed to the defendant.
They encapsulate a lot of information about the case, including the description of the crime,
substantial evidence, and discussions on the mitigating and aggravating factors. Thus, they
present a valuable summary of information related to the case, whose extraction would
benefit future researchers with more comprehensive datasets from the legal domain.

The project is also dictated by the types of variables aimed to be extracted from these
documents. The extraction system is designed to have an open nature, accommodating a
wide variety of categorical variables. The ability to extract information, regardless if it’s
presented explicitly, or if it is subjective, is desired. For instance, users should be able to
define simple variables, such as the victim’s sex, but also more complex and subjective one’s
such as the presence of emotional abuse or whether remorse was shown by the defendant.
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Transcripts of court proceedings represent another source of information. Criminal court
proceedings consist of multiple stages, including counsel’s opening and closing remarks,
witness evidence (examination), and others. Thus, these are extensive documents, usually
running into hundreds of pages, presented in dialogue format with each speaker identified by
a dialogue tag. Whereas sentencing remarks are from a single person’s perspective, court
transcripts consist of the multiple parties involved in the case. This variety adds a layer of
subjectivity to the information presented, since the defense and prosecution often present
opposing narratives and provide different interpretations of the same facts. The reliability of
witness testimonies can also vary, since the examinations are led by the prosecutor or defense
and will usually consist of questions favouring the respective counsel’s narrative. Therefore,
it’s evident that court transcripts pose a significantly more challenging setting for information
extraction.

The inherent subjectivity and potential presence of contradictory facts in court transcripts
necessitate the need for an alternative information extraction process. Unlike with sentencing
remarks, where the goal is to extract a single value for a variable, the aim now is to extract all
values presented by each speaker for a given variable. This changes the nature of the problem
from variable-centric to speaker-centric.

This type of information could potentially reveal what facts or interpretations of those
facts were presented by each counsel. Moreover, what evidence was provided by each witness
and whether there were any contradictions could be identified. Extraction of data through
this novel approach, can lead to a more comprehensive understanding of legal cases, as well
as, potential practical applications for future cases and policy-making.

1.2 Contributions

The main contributions of this project are the following:

1. Development of an end-to-end system for structured information extraction employing
LLMs, and its implementation in the ELICIT codebase. The developed system out-
performs the original ELICIT system in terms of recall in sentencing remarks using
Vicuna-13B (Chiang et al., 2023), and with a significant margin on human-validated
data after fine-tuning the models.

2. Introduction of a novel task of information extraction with source attribution, which
focuses on the extraction of information for distinct speakers within documents. The
challenges inherent in this task are outlined, and a methodology utilizing LLM prompt-
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ing is proposed and implemented. The evaluation of this methodology is carried out
on a dataset of synthetic legal court transcripts.

3. A method of generating synthetic text documents, namely legal court transcripts, is
proposed, which uses an iterative summarization approach to overcome context window
limitations of GPT-4.

4. Analysis of the impact of human-validated data for LLM-finetuning. This fine-tuning
enhances recall for already extracted and unseen documents, requiring fewer extractions
to be shown to the human validator.

5. Comparison of passage retrieval using a vector index storing passage embeddings
with an LLM-based approach. Particularly noteworthy is the demonstration of the
performance of Vicuna-13B fine-tuned with limited data, which is comparable to an
embedding model specifically trained for semantic search.

1.3 Thesis Outline

In Chapter 2, the background pertinent to understanding the concepts utilized in the project
is introduced. This encompasses the concepts of IE and Question Answering (QA), LLMs,
and the ELICIT framework.

In Chapter 3, the methodology employed to achieve the established research goals is
described. This includes the selection of datasets, including the generation of synthetic court
transcripts, as well as the evaluation metrics. Furthermore, the specific design choices made
to accomplish information extraction using LLMs are outlined.

In Chapter 4, the results of evaluating the different components of the LLM-enhanced
system are presented and discussed, both in a supervised dataset and end-to-end setting.

In Chapter 5, an overview of the project is provided, key findings are reiterated, and
potential future research directions are proposed.



Chapter 2

Background

In this chapter, I present the background relevant to the project in order to better understand
the context and motivation behind the research. I begin by introducing the concepts of
Information Extraction and Question Answering, which set the stage for our project task.
Next, I discuss the idea of extracting multiple variable values and assigning them to a specific
speaker. The concepts of Large Language Models, the specific model that was chosen, and
the selected framework of fine-tuning are covered. Finally, the ELICIT system (Butcher
et al., 2023), which is the practical setting for our information extraction task, is introduced.

2.1 Information Extraction and Question Answering

Information Extraction (IE) is a crucial task in natural language processing, which aims to
extract structured information from unstructured textual data. In this project, the goal of
the system is to create tabular datasets from sentencing remarks and court transcripts with
variables consisting of categorical values.

Many IE tasks are typically focused on explicit information, with a common approach
being Named Entity Recognition (NER) methods. These include the identification of persons,
locations, dates, and other information. Additionally, Relationship Extraction methods seek
to identify the semantic connections between different entities in a document. Conversely,
Question Answering (QA) presents a broader spectrum of tasks since it can accommodate a
multitude of different queries.

QA tasks are usually categorized by the type of context they encompass: closed-book
tasks, which provide no context, and open-book tasks, where context is given. Within IE, QA
is considered an open-book task, more specifically a reading comprehension one, where the
goal is to find evidence in a provided context. The output of QA tasks also varies, ranging
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from span prediction, where part of the context serves as the answer, multiple choice QA, or
free-form responses.

The SQuAD dataset (Rajpurkar et al., 2018, 2016) is one of the most common benchmarks
for QA tasks, containing question-answer pairs generated from Wikipedia articles, and
requiring that answers form part of the provided context. Currently the best performing
methods are pre-trained language models fine-tuned on question answering datasets (Lan
et al., 2020; Raffel et al., 2020). More recently, large language models in a few-shot setting
have also demonstrated competitive performance in such tasks (Brown et al., 2020).

A recent topic of interest is the application of IE and QA in conversational settings. The
FriendsQA (Yang and Choi, 2019) dataset was introduced to tackle questions asked about
multi-party dialogue, utilizing transcripts from the TV show "Friends". Its tested outputs
include answer utterance selection and answer span prediction. The paper highlights the
increased complexity of QA tasks in a multi-party dialogue scenario compared to conventional
QA tasks.

Another dataset, DREAM (Sun et al., 2019), introduced a multiple-choice QA problem
for dialogue-based texts. This dataset presents unique challenges since most answers are not
extractive and necessitate multi-sentence reasoning. The language in a conversational setting
can also include interruptions or reasoning, which spans multiple turns. The Molweni dataset
(Li et al., 2020) consists of multi-party chat conversations on the topic of Ubuntu. The authors
showcase that strong QA models display a significant drop in their performance compared
to the SQuAD 2.0 dataset. However, Molweni only consists of question answering over
short spans of text. QAConv (Wu et al., 2022) introduces a dataset for question answering
with long and complex conversations as the context. Furthermore it consists of two testing
scenarios - where only the relevant chunk is provided, or the full text. This is closer to the
setting of this project, where information needs to be extracted over long documents.

These recent research undertakings provide the context for the task at hand, which in-
volves extracting information from sentencing remarks and court transcripts. Sentencing
remarks align with standard IE tasks but introduce complexity due to the length of the docu-
ments and the complex variables being extracted, which are not explicit factual information.
Court transcripts introduce a conversational setting with multiple parties, a scenario which
recent research has identified as particularly complex. This helps in understand how the work
of this project fits into the larger field of IE and QA, and shows the need for more advanced
methods to solve these problems.
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2.2 Multi-Value Extraction and Source Attribution

The unique context of court transcripts introduces additional challenges to standard Informa-
tion Extraction (IE) and Question Answering (QA) tasks. One such complication arises from
the fact that a single variable within a document can attain multiple values, dependent on the
speaker.

Traditional IE methods, such as Named Entity Recognition (NER), are capable of ex-
tracting a varying number of values. However, as discussed in the previous section, it is not
sufficient for the task, which demands extraction of complex, non-explicit information.

On the other hand, most QA tasks are set with a context that contains a single answer, or
no answer at all. This structure is notably different from the setting, where multiple variable
values may exist in the text, derived from multiple speakers.

The task of this project holds some resemblance to argument mining (Lawrence and
Reed, 2019) or opinion mining (Sun et al., 2017), since the information about a variable
could be thought of as an argument or opinion. While these methods focus on explicit
arguments or opinions, the task of this project involves a wider range of textual nuances,
such as implications, answers to questions, and other forms of language. Thus, it necessitates
a broader approach to capture the richness and diversity of information present in the texts.

In addition to dealing with multiple possible values for a variable, the project also aims to
attribute these values to their respective speakers. While quotation-to-speaker attribution in
dialogue-based texts of known format can often be completed with pattern matching, which
is a relatively straightforward approach, research which attempts to assign the extracted
information to one of multiple speakers has not been identified.

2.3 Large Language Models

The core of this thesis is Large Language Models (LLMs), which have become very popular
tools in natural language processing tasks, competing with most specialised models (Radford
et al., 2020; Sun et al., 2020; Yang et al., 2020). LLMs are neural networks with many
parameters (with state-of-the-art models in the trillions), which are trained on vast amounts
of unlabeled texts from general sources, such as Wikipedia (Wikimedia Foundation, 2001),
Common Crawl (Common Crawl, 2007) and others.

LLMs are used in this project based on the fact that they have been shown to work well
in different tasks which require language understanding (Brown et al., 2020; Chung et al.,
2022), which is the main problem of our thesis - extracting information from unstructured
texts.
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In this section, the concept of auto-regressive language models, is described. This is
followed by the introduction of the Transformer architecture (Vaswani et al., 2017), which is
the most popular architecture of modern LLMs. This leads to the presentation of the LLaMA
models (Touvron et al., 2023) and its extension, Vicuna (Chiang et al., 2023), which is the
model used in this project. Finally, the concept of fine-tuning through Low-Rank Adaption
(Hu et al., 2021) is introduced, and why it is a suitable fine-tuning approach for this project.

2.3.1 Auto-regressive Language Models

Auto-regressive models, such as (Chiang et al., 2023, introduced in Section 2.3.4), are a
class of sequential models that generate each output by conditioning it on all the previously
generated outputs.

This process can be formalized by the following formula:

p(sequence) = p(y0:N) = p(y0)
N

∏
i=1

p(yi|y0:i−1) (2.1)

This distribution can then be used to generate model responses p(response|prompt) using
a decoding strategy (e.g. sampling token by token, or choosing the highest probability token
at each step). In the context of language models, yi represents a token at the i-th position in
the sequence of length N.

A token is an integer that uniquely represents some text. Tokens are produced by
a tokenizer, which is trained independently, before the language model itself. Various
tokenization strategies exist, broadly categorized into word-level and subword tokenization.
The Vicuna model, which is based on the LLaMA model (Touvron et al., 2023), employs a
Byte-Pair Encoding tokenization strategy (Sennrich et al., 2016). This strategy splits words
into subword units merging together frequently occurring pairs, resulting in an efficient
tokenizer capable of handling words not present in the vocabulary.

The significant advancements in auto-regressive and other language models in recent
years can be attributed to the introduction of the Transformer architecture by Vaswani et al.
(2017). This architecture revolutionized the training of models with a large number of
parameters on vasts amounts of data.

2.3.2 Transformer

The Transformer addressed several limitations of previous state-of-the-art models, such as
gated Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) models,
and enabled effective handling of long-range dependencies.
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The key concept behind the Transformer is the attention mechanism (Bahdanau et al.,
2016), which allows the model to selectively focus or attend to different parts of the input
context. Unlike sequential processing, the Transformer looks at multiple parts of the context
simultaneously and focuses on parts it finds more important. This is achieved through scaled
dot-product attention and multi-head attention mechanisms.

The scaled dot-product attention, shown in the left of Figure 2.1, is computed as:

Attention = softmax
(

QKT
√

dk

)
V (2.2)

where Q, K, and V represent the query, key, and value, respectively, and dk is the dimension
of each key. Q = xW Q, K = xW K , V = xWV are linear projections of the layer input x, itself
a matrix with s (sequence length) rows and d (embedding dimension) columns. The weights
are trained so that QT

i K j expresses how much the i-th input depends on the j-th input.
To enhance the attention mechanism, the Transformer employs multi-head attention,

shown in the right of Figure 2.1, which uses multiple attention functions or "heads", allowing
the model to focus on multiple segments of the context simultaneously. Each head computes
the attention independently, and the results are concatenated and combined as follows:

MultiHead = Concat(head1, ...,headh)W O (2.3)

where headi = Attention(xW Q
i ,xW K

i ,xWV
i ) represents the attention computed by the i-th

head. W Q
i , W K

i , and WV
i are the weight matrices for each head, and W O is the output weight

matrix. Each head is applied to a subset of the embedding dimension. For h heads and
an embedding dimension dmodel, the weight matrices have dimensions dmodel ×dw, where
dw = dmodel/h (h is chosen such that dw is an integer).

The Transformer architecture follows an encoder-decoder structure (Vaswani et al., 2017).
Both the encoder and decoder consist of self-attention blocks. In the encoder self-attention
mechanism, the queries, keys, and values are derived from the outputs of the previous encoder
layer. On the other hand, in the decoder self-attention mechanism, the inputs are obtained
from the outputs of the previous decoder layer, but with masked attention, as illustrated in
the left of Figure 2.1, so that it only attends to preceeding tokens. Equations 2.3.2 and 2.3.2
provide the formulas for self-attention. Additionally, the decoder includes a cross-attention
block, however, it is not utilized in the models employed in this project; further details on
cross-attention can be found in Vaswani et al. (2017).

The absence of recurrence in the Transformer architecture makes it highly suitable for
parallelization on multiple GPUs, leading to significantly reduced training times. Addition-
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Fig. 2.1 Scaled dot-product attention (left) and Multi-head attention (right). Figures taken
from Vaswani et al. (2017).

ally, Transformers do not suffer from vanishing and exploding gradient problems, which is
an issue with RNNs and LSTMs when processing extremely long sequences (Pascanu et al.,
2013). This advantage stems from the Transformer’s ability to attend to all input positions
simultaneously.

In the upcoming sections, the LLaMA model (Touvron et al., 2023) and its fine-tuned
version Vicuna (Chiang et al., 2023), will be introduced, which are pre-trained auto-regressive
language models based on the Transformer architecture. As mentioned before, these models
only use the decoder part (without cross-attention), not the full architecture proposed by
Vaswani et al. (2017).

2.3.3 LLaMA

LLaMA (Touvron et al., 2023) is a collection of auto-regressive language models developed
by Meta AI, which have showcased competitive performance at a smaller parameter size.
LLaMA was developed based on recent work in Hoffmann et al. (2022), which showed that
better performance can be achieved not by making the models bigger, but by increasing the
amount of training data. It was trained on 1 trillion tokens for the 7B and 13B models (the
"B" indicates the number of parameters in billions), and 1.4 trillion for the 33B and 65B
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models. LLaMA-13B has been shown to outperform GPT-3 (Brown et al., 2020), while
being more than ten times smaller (Touvron et al., 2023).

LLaMA has become a popular option for fine-tuning for downstream tasks, since the
smaller models can be run on a single GPU with lower floating point precision, but still result
in competitive performance.

2.3.4 Vicuna

The open-source nature of LLaMA has resulted in many publicly available models fine-tuned
on more specific datasets. Vicuna (Chiang et al., 2023) is an open-source language model,
which was trained on 140k (for the 1.3 version, which is used in the project; the version in
the article was trained on 70k) user-shared chatbot conversations from ShareGPT (Eccleston,
2023). Using an automated evaluation framework with GPT-4 (Zheng et al., 2023), the
authors found that Vicuna-13B performs on-par with OpenAI’s ChatGPT-3.5 (OpenAI, 2022)
and Google’s Bard (March 2023 version) (Manyika, 2023).

Vicuna was trained as an autoregressive chatbot model, meaning that it generates output
in an autoregressive fashion and produces sequences in a chatbot conversation style - user
messages are followed by assistant (chatbot) messages. The standard way of using Vicuna
is to provide a prompt consisting of a series of user and assistant messages, with the final
assistant message being left empty for the model to generate a response. Figure 2.2 showcases
the prompting format of Vicuna.

A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user's questions.

USER:
How long would it take for a commercial airline to fly
around the Earth?

ASSISTANT:
It would take a commercial airline approximately 40
hours to fly around the Earth, assuming a direct flight
and no stops. However, most commercial flights do not
take this route, as it would be both impractical and
inefficient due to the need to refuel and the fact that
most airports are not equipped to handle such long
flights. Instead, commercial flights typically follow more
direct routes that take them over oceans and between
major hubs.

Fig. 2.2 An example of the prompt format in Vicuna. The black bold text represents the
fixed template, which is required in every prompt for consistent performance. The red text
highlights the user input, while the blue text is the completion from Vicuna-13B.



12 Background

2.3.5 Fine-tuning using Low-Rank Adaptation

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a technique for parameter efficient fine-
tuning of large pre-trained language models. Full fine-tuning large pre-trained models with
billions of parameters can be computationally expensive. To address this, the authors propose
the LoRA approach.

In LoRA, during the fine-tuning process, the update of a pre-trained weight matrix
W0 ∈ Rd×k can be expressed as W0 +∆W . Typically the weight matrices are full-rank, thus
the authors propose expressing the update matrix as a low-rank decomposition W0 +∆W =

W0 +BA, with matrices B ∈ Rd×r and A ∈ Rr×k, where rank r ≪ min(d,k). By freezing W0

during fine-tuning, while B and A are updated, LoRA achieves parameter efficiency.
The low-rank assumption is based on the observation that the rank of the update matrix is

often low when adapting a pre-trained model to a specific task. This is because the fine-tuning
task is usually narrower in scope compared to the broad pre-training task. The authors refer
to Aghajanyan et al. (2020), which shows that large pre-trained models have a low "intrinsic
dimension" when adapting to a task, and thus can be reparameterised in more efficient forms.

LoRA offers several advantages over other existing fine-tuning methods:

• LoRA is parameter and memory efficient, resulting in reduced training times and
lower GPU memory requirements. According to the authors, the number of trainable
parameters can be reduced by up to 10,000 times, while the GPU memory requirements
can be reduced by up to 3 times (Hu et al., 2021).

• A single pre-trained model can be used with multiple LoRA modules. This flexibility
allows for task-specific modules to be easily swapped, enabling the use of a single
pre-trained model for multiple downstream tasks. For instance, in this project, where
the aim is to utilize user-validated data for fine-tuning for different subtasks, LoRA
enables the use of just a single pre-trained model and fine-tune multiple modules to the
specific subtasks, which eliminates the need of using multiple large models.

• LoRA introduces less additional inference latency compared to methods such as
adapters (Houlsby et al., 2019). This is due to the linear of nature of the method, where
the existing weight matrices are modified by adding the update matrices, avoiding
the need for additional modules. This property makes LoRA an efficient choice for
real-time applications.

In summary, LoRA provides an efficient fine-tuning process that is suitable for this project.
Its parameter and memory efficiency, along with the ability to use a single pre-trained model
for multiple tasks, make it an appealing choice.
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2.4 ELICIT

ELICIT is an information extraction system, introduced in Butcher et al. (2023), designed
to enhance extraction efficiency and precision through a combination of weak supervision
and human validation. The purpose of ELICIT was to address the imperfect accuracy of
automated systems, and the slowness of manual annotation by combining the two. By incor-
porating modern language model capabilities and the ability to identify differing opinions
and attribute them to specific speakers, we aim to further extend the system’s functionality in
this project.

2.4.1 Approach

In ELICIT, users begin by defining a set of variables they wish to extract, with each variable
consisting of a range of possible values. This is called a categorical schema, an example of
which is given in Listing 2.4.1. To handle cases where the desired information is not present
in the document, an "Abstain" value is used in the system.

Listing 2.1 An example of a categorical schema. It defines the possible values that each
variable can take.

r e l a t i o n s h i p : # v a r i a b l e name
# v a r i a b l e v a l u e s :
− f a m i l y
− f r i e n d
− p a r t n e r
− c o l l e a g u e
− none

To automate the extraction process, the users selects a set of labelling functions. These
functions are automated tools that return a predetermined number of candidates, which
are excerpts from the document labeled with a particular variable value. Each candidate
is accompanied by a confidence score, indicating the system’s level of certainty in its
assignment.

ELICIT utilizes a ranking mechanism to prioritize the candidates and presents the Top-k
candidates per variable to the user. This ranking enables the user to focus on the most
relevant and potentially accurate extractions. The system also combines excerpts from
different labelling functions with significant overlap.
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Finally, the user engages in the validation process by reviewing and validating each
candidate. This validation step contributes to the completion of the extraction process,
ensuring that the extracted information is accurate and reliable.

Fig. 2.3 A high-level overview of ELICIT for a single variable extraction.

2.4.2 Labelling Functions

The recall of ELICIT is mainly determined by the quality of the labelling functions. Each
selected labelling function is applied to the complete set of documents under examination.
ELICIT is comprised of four main labelling functions, each specifically designed to identify
and categorize a singular variable within a document. These functions are explained in detail
below.

1. QA Model Followed by Zero-shot Classification: This labeling function requires the
user to define a question schema, which contains supporting questions for each variable.
Subsequently, the document is split up into smaller contexts, and each question-context
pair is supplied to a RoBERTa model that has been fine-tuned for question-answering
tasks on the Squad2 (Liu et al., 2019; Rajpurkar et al., 2018). The output from the
model is an extract from the context, where the model believes the answer to be.
Along with extract, a relevance score is also computed, interpretable as the conditional
probability PQA(excerpt|question). This extracted portion is then fed into a RoBERTa
Natural Language Inference zero-shot classification model (Yin et al., 2019), with the
variable values operating as labels. The model generates a score PNLI(label|excerpt)
for every value, and the total confidence score is computed as the product of these two
probabilities: PNLI(label|excerpt) ·PQA(excerpt|question).

2. QA Model Followed by Cosine Similarity: This labelling function has the same
mechanism of the previous one, except for the final classification phase. Here, instead
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of zero-shot classification, the function uses cosine similarity computation among
RoBERTa embeddings for the final classification. Each text excerpt and variable value
is embedded in the pattern “this is a {word}”, with "{word}" referring to the excerpt or
variable value, which is being embedded. Subsequently, the cosine similarity between
all excerpt embeddings and label (variable value) embeddings is calculated. The
aggregate confidence score in this approach is the product of the cosine similarity and
the QA probability: Pcos(label,excerpt) ·PQA(excerpt|question).

3. Semantic Search: This method employs a transformer model to embed every sentence
from the document. The dot product between each sentence embedding and the embed-
dings of questions from the question schema is calculated. The average score for all
questions is taken as Pquestions(sentence,questions). Then these sentence embeddings
are compared to the embeddings of each label, yielding the score Plabel(sentence, label).
The total score for a sentence-label pairing is the product of these two scores, specifi-
cally, Plabel(sentence, label) ·Pquestions(sentence,questions).

4. Keyword Search: This labelling function requires the user to define a keyword schema,
which contains a set of keywords for each variable. The function employs a phrase
matcher from the SpaCy library (Honnibal et al., 2020) to detect all instances of these
keywords in the document. Due to the absence of a scoring mechanism in the keyword
matching, the extractions are attributed a default value of 0.1.

In conclusion, the ELICIT system uses each of these labelling functions to produce
candidate excerpts from the text along with the identified labels. The recall of the system
is dependant on at least one labelling function being able to identify a relevant part of the
document, as well as, to assign it to the correct label. However, the current version of ELICIT
assumes that only a single variable value corresponds to a document, which is not the case
for many documents, for example, court transcripts. In this project, the work is focused on
extending ELICIT’s capabilities by introducing new labelling functions, which make use of
LLMs, and which have the ability to attribute information to speakers in the text.





Chapter 3

Methodology

In this chapter, I describe the methodology of the project, which is used to achieve the
research goals. The process of creating a suitable dataset for the project is detailed, and
the specific approaches of using LLMs for information extraction in a single-speaker and
multi-speaker setting. The technical modifications implemented in ELICIT to accommodate
the approach are also discussed. Furthermore, the method of utilizing user-validated data
for model fine-tuning is explained. Lastly, the metrics employed to assess and compare the
impact of the decisions on the results are described.

3.1 Datasets

3.1.1 Sentencing Remarks

For a fair comparison against the extraction methods presented in Butcher et al. (2023), the
same extracted sentencing remarks as in the paper are used for the single-speaker information
extraction. The documents used are part of openly accessible cases published by the United
Kingdom Judiciary for cases of public interest.

The authors have selected the sentencing remarks of nineteen murder cases. Each of
the documents was manually labelled for eighteen categorical variables. To ensure privacy,
each named person in the text was anonymized, and the names of the defendant and victim
were replaced with generic identifiers "the defendant" and "the victim", respectively. The
documents averaged 3357 tokens.

Out of the eighteen variables, thirteen, which occurred five or more times in the docu-
ments, were used for evaluation. These variables cover non-trivial information about the
victim, the defendant, and the crime or case. The victim-focused variables include their sex,
employment status, pregnancy status, and whether they were considered vulnerable. The
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variables covering the defendant include prior convictions, remorse, and whether their age
was considered a mitigating factor. The remaining variables, which do not strictly fall under
the previous two categories, include evidence of physical abuse, domestic abuse, instance
of emotional abuse, the premeditation of the crime, and whether the crime was sexually
motivated.

In every document, the victim sex is noted, either through pronouns or gender-specific
words. Some information might be explicitly stated, inferred through other facts, or not
mentioned at all. Most variables require complex reasoning through implied statements by
the judge or from the descriptions of the crime.

The sentencing remarks dataset comprises 19 documents with 13 distinct variables,
resulting in a total of 189 non-abstain and 58 abstain data points. This dataset provides a
good setting to test the ability of LLMs to comprehend non-trivial information.

3.1.2 Court Transcripts

For the analysis of information extraction in a multi-speaker setting, transcripts of UK
court proceedings were used as the document of choice. Although transcripts of UK court
proceedings are not available to the general public and cannot be used for public research,
their format is known. To overcome this limitation, GPT-4 (OpenAI, 2023b) was used
to produce synthetic court transcripts based on the information present in real sentencing
remarks, as modern LLMs have shown to be capable of producing human-like text (Hu et al.,
2023). Although synthetic text has limitations, it is expected that approaches which do not
work here will also be ineffective with the more challenging real data.

I established the following criteria for the generated documents:

1. Size: The generated transcripts should be at least a few pages long, totaling at least
a few thousand words and thus exceeding the context window (the number of tokens
in the generated sequence, including the prompt) of most commonly available LLMs,
thus, facilitating the need for splitting the text, mimicking the process of extracting
from real, lengthy transcripts. For reference, the Vicuna models were trained on a
context length of 2048 tokens (approximately 1500 words).

2. Multi-turn dialogue: The transcripts should consist of multi-turn dialogue, including
speakers addressing someone, raising questions and answering them.

3. Multiple variable values: The documents should contain instances of multiple differ-
ent values applying to the same variable, including some speakers indicating different
values to the same variable, i.e. giving contradicting statements.
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4. Stage structure: The transcript should follow a predefined stage structure, starting
with opening remarks by the prosecutor and the defense (counsel), followed by a series
of cross-examinations of different witnesses, and end with closing remarks by the
counsel. This structure, with additional stages, is found in real court transcripts, and
also facilitates the inclusion of competing narratives.

The chat completion model of GPT-4 was used to generate the transcripts, which consists
of three types of messages: system, user, and assistant. While the user and assistant messages
work the same way as described for Vicuna in Section 2.3.4, the system message allows
us to preconfigure the model so that it adheres to a certain tone, style or task in its future
responses (OpenAI, 2023a). In this case, the system message contained a description of the
task, and outlined the structure that the transcript should follow. Specific variable values
were included by providing a list of these variables as statements in the system message,
such as "the victim was unemployed". Additionally, the real sentencing remarks are provided
in the system message for better context.

Generating a transcript with the desired length using a single model response is challeng-
ing due to the model’s tendency to produce compact responses. Instructing the model to
produce longer responses did result in slightly longer generations, but not enough to meet the
needs of the project. Similarly, instructing the model to generate text of a defined word count
would result in generations significantly below the requested word length. To overcome this,
an iterative approach is employed. The model is prompted to generate the transcript of a
single stage, and the responses are concatenated to produce the full transcript. This iterative
approach allows better control over the length of the transcript, and over the content of the
transcript.

To ensure variation in variable values across speakers, a subset of variables that can
logically take different values in the text is established, such as premeditation, remorse,
vulnerability of the victim, emotional abuse, and defendant’s age as a mitigating factor. For
each witness, two of these variables were randomly sampled, and the model was instructed
to include the information during the examination by the prosecutor and defense, with each
counsel taking opposing values.

To ensure a logically consistent document, the model has to take into account its previous
generations. However, the available model has a context length limit of 8000 tokens, which is
not sufficient to include previous generated stages. To address this, an iterative summarization
approach is implemented. The system message and the opening remarks are included in
every generation, and after generating a pair of witness examinations, the model is requested
to summarize them. These summarizations replace the longer generations in the message
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history, circumventing the limited context length problem while ensuring that the model sees
the essential information.

Using this approach, five transcripts were generated, with an average of 5592 tokens. A
single data point is defined as the tuple (document, variable, value, speaker), representing a
speaker indicating a distinct variable value in a document. The transcripts were manually
annotated to identify the variable values each speaker produces, resulting in a total of 171
non-abstain data points. The annotation revealed occasional issues with the synthetic data,
including repeating sentences in the opening and closing remarks, and instances of logical
incoherence. Nevertheless, the synthetic dataset is a good starting point for analyzing the
challenges that would be faced in information extraction from real court transcripts.

3.2 Information Extraction

3.2.1 Approach

In order to extend ELICIT with the capability of using LLMs for information extraction, a
new labelling function had to be created, which would take the document text and variable
name as input, and return a set of candidate extractions as the output. Each extraction should
contain the identified variable value and a corresponding confidence score.

3.2.2 Passage Retrieval

The first challenge faced was the issue of large document length, which exceeded the context
length of most modern LLMs. To address this, the approach of splitting the text into smaller
passages was taken. Subsequently, extraction on the n most relevant ones identified by the
passage retrieval part is performed. This technique, visualized in Figure 3.1, is a standard
approach in IE and QA systems over long documents or multiple documents (Choi et al.,
2017; Izacard and Grave, 2021; Xu et al., 2011).

D passages
Document

n relevant
passages

Passage Retrieval
k extractions

Value Labelling (passage, value,
confidence score)

Fig. 3.1 High-level overview of the extraction process for the LLM-enhanced system. For
each variable, the document is split into D passages, which are provided to retrieval system.
The passage retrieval system returns n most relevant ones, which are fed to the value labelling
part. It assigns a confidence score to each variable value for the passage, and top k extractions,
based on confidence, are shown to the user.
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In the project, experimentation was conducted with two passage retrieval methods,
described in the following subsections. The first approach involved storing embedded
passages in a vector index and querying them to identify the n most relevant ones. The
second approach used an LLM in a Yes/No question format to identify whether the passage
contains the relevant information.

Vector Index

In this approach to passage retrieval, semantic search is performed across all passages from
a single document. The all-mpnet-base-v2 pre-trained model from SentenceTransformers,
which has shown strong performance in semantic search (Reimers and Gurevych, 2019), was
used to generate vector embeddings of the individual passages.

The Chroma vector index (Huber, 2022) was utilized for storing these embeddings and
performing the similarity search. This eliminates the need for recomputing the embeddings of
a single document. Additionally, a vector index allows relevant passages to be retrieved using
efficient approximate nearest neighbour search for high-dimensional vector data (Malkov
and Yashunin, 2018).

The LangChain Python package (Chase, 2022) was employed, providing a simple inter-
face for storing and querying passages, and directly supporting Chroma and other popular
vector indices. All embedded passages from the documents are stored in a single index, with
the document name assigned as metadata. During the search, filtering is applied to only
include passages from the relevant document, removing the overhead of creating multiple
indices for every new document and creating the possibility of performing extractions across
a set of documents in the future. The queries are statements describing each variable, which
the user defines in an information schema, for example, the statement "the relationship
between the victim and the defendant" for the "relationship" variable.

The embedding vectors are stored as 768-dimensional L2-normalized vectors. The
squared L2 (Euclidean) distance is used as the distance metric between the query and passage
embeddings. The following formula was used to convert it into a cosine similarity score:

similarity = 1− distance
2

(3.1)

LLM-Based Retrieval

In this method, for each passage, a binary classification approach is adopted. The LLM is
presented with the passage and asked whether the context includes information about the
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specified variable. The prompt template (the user message in Vicuna), as shown in the left of
Figure 3.2, is used, with a sample prompt visualized in the right of the figure.

The context is an excerpt from a legal
document. Does it contain discussions
about or indications to {information}? Yes
or no.

Context:
{context}

The context is an excerpt from a legal document.
Does it contain discussions about or indications
to the premeditation of the crime? Yes or no.

Context:
6. Text messages sent by you and internet
searches done on your mobile phone reveal a
degree of premeditation. the victim had two
hospital admissions prior to her death when
you claimed that she had suffered fits.

Fig. 3.2 Prompt template (left) and example prompt (right) for the LLM-based passage
retriever. The {information} tag is replaced with the description of the variable from the
information schema, as described in Section 3.2.2, while the {context} tag is replaced with
the passage.

Preliminary experiments indicated that the majority of answers start with a "Yes" or "No",
thus, decoding is unnecessary, and it is sufficient to check the conditional probability of the
completion being "Yes" or "No", given the prompt.

This is accomplished by concatenating the answer to the prompt and completing a single
forward pass, which yields the logits for each token in the vocabulary at each sequence
position. The logits, representing the unnormalized score for each token in the vocabulary,
are passed through a softmax function. This results in the (log) probability distribution over
the entire vocabulary at that sequence position, given the previous tokens. The conditional
probability of the answer given the prompt is obtained by summing the log probabilities of
the answer tokens and applying an exponential:

P(answer|prompt) = P(yN+1:N+T+1|y1:N) = exp

(
N+T+1

∑
i=N+1

logP(yi|y1:i−1)

)
(3.2)

where N is the number of tokens in the prompt, T is the number of tokens in the answer, and
yi denotes the token at the i-th position in the sequence.

Using a baseline model in this manner leads to some probability mass being lost to other
generations, which have the same meaning but do not start with a "Yes" or "No", for example,
the sequence "The answer is Yes". The conditional probabilities of the next token being
"Yes" or "No" are used and normalized as follows:

P(Yes) =
P(label = Yes|prompt)

P(label = Yes|prompt)+P(label = No|prompt)
(3.3)
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The normalized conditional probability of "Yes" is used as the confidence score of the
passage retrieval component, and the top n highest scoring passages are retrieved.

3.2.3 Value Labelling

The retrieved passages are taken as input to the value labelling component with the objective
of producing a set of extracted variable values with respective confidence scores. This is
a multi-class classification problem, but with the aim of using a single model and with the
ability to have an arbitrary number of possible variable values.

In the prompt to the LLM, given in Figure 3.3, the task is first described, which is to
identify the most suitable variable value (referred to as ’label’) based on the context (the
candidate passage) and questions from the question schema. The latter are provided as
additional context to the model, helping it align better with the specific task. This reduces
potential confusion during classification. For example, in the classification of the ’victim
sex’ variable, the questions are "what sex was the victim?", "was the victim a male?". These
questions guide the model to identify the sex of the victim specifically, thus reducing the
chance of misclassification.

The context is an excerpt from a legal document. Identify the
label based on the provided context and questions.
Return the label 'unclear' if the text does not provide enough
information to identify a label.
Your response should be in the following format:
Label: '<identified label>'

Here is an example of the task.

Input:
Labels: 'premeditated', 'not premeditated'
Questions: 'was the crime planned?', 'was there any
premeditation?'
Context:
In your favour is your good character save for the three cannabis
matters; your record of
continuous employment; the lack of any significant
premeditation; and (to a limited
extent only for the reasons I have already expressed) that you
may not have intended to
kill her. Additionally, there were no previous indications that you
harboured violent
intentions towards your sister.

Output:
Label: 'not premeditated'

Identify the label for the following context:
Labels: {labels}
Questions: {questions}
Context:
{context}

The context is an excerpt from a legal document. Identify the label
based on the provided context and questions.
Return the label 'unclear' if the text does not provide enough
information to identify a label.
Your response should be in the following format:
Label: '<identified label>'

Here is an example of the task.

Input:
Labels: 'premeditated', 'not premeditated'
Questions: 'was the crime planned?', 'was there any premeditation?'
Context:
In your favour is your good character save for the three cannabis
matters; your record of
continuous employment; the lack of any significant premeditation;
and (to a limited
extent only for the reasons I have already expressed) that you may
not have intended to
kill her. Additionally, there were no previous indications that you
harboured violent
intentions towards your sister.

Output:
Label: 'not premeditated'

Identify the label for the following context:
Labels: 'mitigate', 'not mitigate'
Questions: 'was age a mitigating factor?'
Context:
20. Your age and relatively good character afford you mitigation.
Having seen you give
evidence and from all that I have heard about you during the trial, I
consider that you
are immature. 

Fig. 3.3 Prompt template (left) and example prompt (right) for the value labelling model. A
detailed explanation is given in Section 3.2.3.



24 Methodology

Additionally, the model is instructed to return the label "unclear", if the context does not
contain sufficient information to make a decision. This acts a safeguard noting the fact that
the passage retrieval system is not perfect and may return some irrelevant passages. Thus, the
model does not need to make a decision between two incorrect values. The "unclear" label is
also used to handle situations where the variable in question is mentioned, but a definitive
value is not provided. For example, the sentence "We have yet to determine if the victim was
pregnant." mentions the victim’s pregnancy, but does not give a clear answer, and thus fits
the "unclear" label.

The label "unclear" is not returned to the user as an extraction, but is employed to indicate
uncertainty and remove some probability mass from the other variable values during model
inference.

Finally, the prompt also contains the response format and a single example of the task.
Both of these are used to focus more probability onto the exact possible labels, while the
example also improves the model’s understanding of the task, as prompts including in-context
examples have shown to produce better results in LLMs Brown et al. (2020).

For the labelling, the conditional probability of each of the variable values, including
"unclear", being the completion to the prompt is computed, as is done in Section 3.2.2.
The probabilities are also normalized as some probability mass is distributed to alternative
completions. This is formalized, for a label x, as:

P(label = x) =
P(label = x|prompt)

∑
y∈labels

P(label = y|prompt)
(3.4)

This process results in a set of variable values with confidence scores for each retrieved
passage. The overall confidence score of the end-to-end extraction system is the product
of the passage retrieval confidence score and the value labelling confidence score. Finally,
the Top-k highest-scoring passage-value pairs for each variable are presented to the user for
validation.

3.3 Source Attribution

In this section, the process of extending ELICIT to assign source information to extracted
variables when there are multiple speakers present, is described. While the primary focus of
the project lies in dialogue, the methods and design choices described in this section hold
the potential for future extension to other types of attributions, such as indirect quotations or
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direct quotations in a non-dialogue context. The modified objective of the extraction process
is to correctly identify the variable values given by a speaker.

The primary design choice lies in the placement of the source attribution component
within the system. Three possible scenarios have been identified:

1. Integration of the source attribution as a final step after value labelling.

2. Incorporation of the source attribution within the passage retrieval process.

3. Embedding of the source attribution into the value labelling component.

3.3.1 Source Attribution as the Final Component

When source attribution is considered as the final step in the system, the component would
receive the extracted passage-value pairs, and the approach taken would involve instructing
the LLM to identify the speaker who provided evidence for a specific value.

The advantage of this approach is that the source attribution part would remain decoupled
from the passage retrieval and value labelling parts, and thus could be improved independently
through prompt engineering or fine-tuning. It would also be compatible with other labelling
functions since it only requires an assigned variable value and a context.

However, this approach is limited in that not all possible speaker-value combinations
can be extracted. If there are multiple speakers giving the same value in a passage, the
model would have to choose between them, considering the task is formed as a multi-class
classification one. If the LLM is used in a multi-label classification fashion, where multiple
speakers can be identified for a single value, issues arise with getting the output in an
expected format, as well, as getting a representative confidence score, which is speaker-
specific. Furthermore, if there are multiples speakers giving different values in the same
passage, the value labelling part will have distribute the probability to each of the values, or
even give most of the probability mass to the "unclear" label. Hence, the score would not be
reflective of the confidence of a single speaker giving a single value.

3.3.2 Source Attribution in Passage Retrieval

An alternative approach could be the incorporation of source attribution into the passage
retrieval segment, allowing only those passages to be retrieved where the speaker gives some
indication of the variable. Assuming that a list of speakers for the passage is available, it is
necessary to determine the relevance of the passage for each speaker. This would involve
modifying the LLM-based passage retriever’s prompt to incorporate speaker information, for
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instance, "Based on the context, are there discussions or indications given by the {speaker}
about {variable}?".

With this methodology, only passages where the speaker discusses the specific variable
are provided to the value labelling segment. However, this approach precludes the use of
the designed strategy for value labelling without additional speaker context. For example,
in a passage containing two speakers indicating differing variable values, the modified
passage retrieval system would identify the passage as relevant for both speakers. However,
providing the passage to the value labelling segment would pose a challenge for the model in
identifying the correct value, given the absence of a distinct value for the passage. Therefore,
this approach would also necessitate a modification to the value labelling segment, which
would lead to two systems facing more complex tasks, and thus, likely a larger decrease in
performance.

3.3.3 Source Attribution in Value Labelling

The final candidate approach is to include source attribution as part of the value labelling
phase. Given a set of speakers present in the passage, the model would be prompted to
identify the variable value, based on each specific speaker or, in other words, according
to that speaker’s point of view. This approach has several advantages over the previously
outlined methods.

Firstly, it enables the capture of all values identified by a single speaker, since it performs
labelling per-speaker, and not per-variable first. As a result, the confidence score is also
reflective of assigning a distinct variable value to a distinct speaker. In contrast to the previous
two methods, the case where multiple speakers give the same or different values in a single
passage can be handled, and the speaker-value pairs extracted separately.

The only disadvantage of this method is that the model will be prompted for speakers
that are irrelevant, i.e. who do not give any indication to any of the variable values. This is
due to the fact that labelling is performed for every speaker appearing in the passage, and
will have no information if that speaker discusses that variable.

3.3.4 Implementation

Taking into account all of the advantages and disadvantages of the proposed approaches, the
decision was made to include the source attribution in the value labelling stage, as it best
aligns with the objective of correctly identifying the variable values given by a speaker, and
is expected to result in the smallest decrease in performance compared to the single-speaker
approach.
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The implementation of this involves two main modifications to the single-speaker scenario.
The first modification is the extension of the passage retrieval component to store the speakers
present in each passage.

The context is an excerpt from a legal document. Identify the
label based on the provided questions and the information
provided by the specified speaker in the context.
Return the label 'unclear' if the speaker does not provide
enough information to identify a label.
Your response should be in the following format:
Label: '<identified label>'

Here is an example of the task.

Input:
Labels: 'premeditated', 'not premeditated'
Questions: 'was the crime planned?', 'was there any
premeditation?'
Context:
Prosecutor: Text messages sent by the defendant and internet
searches done on her mobile phone prove
premeditation. Would you agree?
First Witness: No, I would not. She could have been searching
for anything.
Speaker: 'Prosecutor'

Output:
Label: 'premeditated'

Input:
Labels: 'remorse', 'no remorse', 'unclear'
Questions: 'was the defendant remorseful?', 'remorse?'
Context:
Defense: Would you say that the defendant showed remorse for
her actions?
First Witness: I would say so, yes.
Defense: Why is that?
First Witness: She was crying when she was arrested.
Speaker: 'First Witness'

Output:
Label: 'remorse'

Identify the label for the following context and specified speaker:
Labels: {labels}
Questions: {questions}
Context:
{context}
Speaker: '{speaker}'

The context is an excerpt from a legal document. Identify the label
based on the provided questions and the information provided by the
specified speaker in the context.
Return the label 'unclear' if the speaker does not provide enough
information to identify a label.
Your response should be in the following format:
Label: '<identified label>'

Here is an example of the task.

Input:
Labels: 'premeditated', 'not premeditated'
Questions: 'was the crime planned?', 'was there any premeditation?'
Context:
Prosecutor: Text messages sent by the defendant and internet searches
done on her mobile phone prove
premeditation. Would you agree?
First Witness: No, I would not. She could have been searching for
anything.
Speaker: 'Prosecutor'

Output:
Label: 'premeditated'

Input:
Labels: 'remorse', 'no remorse', 'unclear'
Questions: 'was the defendant remorseful?', 'remorse?'
Context:
Defense: Would you say that the defendant showed remorse for her
actions?
First Witness: I would say so, yes.
Defense: Why is that?
First Witness: She was crying when she was arrested.
Speaker: 'First Witness'

Output:
Label: 'remorse'

Identify the label for the following context and specified speaker:
Labels: 'male', 'female'
Questions: 'what sex was the victim?', 'was the victim a male?', 'was the
victim a female?'
Context:
Defense: Good morning, First Witness.
First Witness: Good morning.
Defense: You mentioned earlier that the victim was a close friend of
yours. Can you tell us more about her personality?
First Witness: She was a very strong, independent woman. She was
always doing things her own way, and she didn't let anyone stop her.
Speaker: 'First Witness'

Fig. 3.4 Prompt template (left) and example prompt (right) for the value labelling based on
the specified speaker. The prompt is a modified version of the prompt in Figure 3.3, but
instructs the model to assign the value based on a specific speaker’s point of view.

With every passage, the dialogue tag pattern matching is run to identify the speakers in
it. If no dialogue tags are present, a check is performed to see if a speaker was assigned to
the previous chunk. If it was, this suggests that a single speaker’s speech was split into two
passages, and thus the same speaker is assigned. If the previous chunk did not have a speaker
assigned to it, then it means that the passage does not contain direct speech, and it is assigned
the default speaker (narrator, or first person case).
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In the passage retriever, all relevant passages for each speaker in the document are
gathered. In both the vector index and the LLM-based approach this is done by only
searching the passages which have been assigned the specific speaker. This results in a
mapping of "speaker" to "relevant passages". This mapping is then used to executed the
value labelling for each speaker’s relevant passages.

In situations where only a single speaker is present in a passage, the prompt described in
Section 3.2.3 is used. If there are multiple speakers in a passage, a modified prompt template,
given in Figure 3.4, is used. The prompt is designed for the new task of identifying a variable
value based on information from a specific speaker. The format of the prompt is similar to
the prompt in Figure 3.3, with the addition of the speaker as part of the input and instructions
to identify the label based on it.

The probabilities of each variable value are computed and normalized as described in
Section 3.2.3. The Top-k passage-value pairs for each speaker and variable are presented to
the user for validation.

3.4 Fine-tuning

The task of obtaining a complete supervised dataset for full fine-tuning and evaluation in
this project’s setup is practically infeasible. The documents are very long, containing many
passages when split up, and each of these passages would need to be manually labelled for
every single variable. However, the human validation component in ELICIT yields a smaller
supervised dataset, which can be used for fine-tuning to achieve two goals: improving
performance on unseen documents, and presenting new extractions in already analyzed
documents.

A single human validation run gives two types of information for each passage shown
to the user - whether its relevant for that variable, and if the assigned value is correct for
the passage and speaker. This data can be used to further improve the LLM-based passage
retriever and value labelling components through fine-tuning.

In order to evaluate the impact of fine-tuning on unseen documents, four documents are
held for testing in the sentencing remarks dataset, and two in the court transcripts dataset.
The remaining data samples are split into training and validations sets using an 80-20 ratio.
Stratified sampling was applied to ensure the proportions of variables and variable values were
consistent across the training and validation sets. Hyperparameter tuning was accomplished
using a grid search to find the configuration resulting in the lowest validation loss.

After a single human validation run, there are some variables which had to be abstained,
since the presented passages did not contain relevant or sufficient information. While some
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of these are true abstain data points, the rest represent imperfect recall and the potential
for further improvement. Therefore, the models are fine-tuned on the full set of extractions
presented to the user, keeping 20% of the samples as validation data for early stopping,
and the extraction is re-run again with the fine-tuned models. The human validator then
validates the previously abstained variables with new extractions presented. This is expected
to improve recall, and it also creates the opportunity to iteratively improve the model with
newly validated data used as training examples.

The model fine-tuning is accomplished using Low-Rank Adaptation (LoRA), as intro-
duced in Section 2.3.5. A result of this method is that only a small fraction of parameters
are trainable, resulting in a small LoRA adapter containing the weight differences, which
can be applied to the base model. The cross-entropy loss function was used with the input
(prompt) tokens masked, which means that they were ignored when computing the loss and
the model was only trained on the output tokens. This was done, since the model is used in
a sequence-to-sequence fashion, where the objective is to maximise the probability of the
output sequence given the input sequence:

θ
∗
seq2seq = argmax p(yN+1:N+T+1|y0:N ;θ) (3.5)

where yi is the i-th token, N is the length of the prompt, and T is the length of the completion.
This is in contrast to the default auto-regressive objective of maximising the probability of
the next token given the previous tokens:

θ
∗
AR = argmax p(y0;θ)

N

∏
i=1

p(yi|y0:i−1;θ) (3.6)

3.5 Metrics

This section is dedicated to discussing the metrics used in the project to assess the perfor-
mance of the different parts of the system. These metrics can be categorized into two distinct
groups: end-to-end metrics and supervised dataset metrics.

3.5.1 End-to-End Metrics

End-to-end metrics are employed to evaluate the performance of the full information extrac-
tion system, which includes human validation. They are computed using a manually labelled
gold standard for a set of documents. These metrics are used to compare the LLM-extended
system against the earlier version of ELICIT, and also to compare between different configu-
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rations of the components, such as the different passage retrievers, and the base model versus
fine-tuned model.

Precision

Precision, as defined in Equation 3.7, measures how many non-abstain predictions were
correct. The precision is largely determined by the human validator, hence the system is
expected to have near-perfect precision. The only instance where losses in precision may
appear are when the passages provided to the user are misleading, and do not contain the full
context.

Precision =
True Positives

True Positives+False Positives
=

Correct Non-Abstain Predictions
Total Non-Abstain Predictions

(3.7)

Recall

Recall, as defined in Equation 3.8, measures how many of the true non-abstain samples
were identified by the system. Assuming a near perfect ability by the human validator to
identify the correct variable value given a relevant passage, the recall is largely determined
by the capability of the automated component to retrieve a relevant passage and label it
accurately. The Top-k parameter, that is, the number of extractions shown to the human
validator, controls the trade-off between recall and time-efficiency. A large Top-k will require
the user to scan through many extractions, increasing the likelihood of identifying the correct
value, but consuming more time in the process. The objective of the project is to enhance the
recall of system by improving the automated component.

Recall =
True Positives

True Positives+False Negatives
=

Correct Non-Abstain Predictions
Total Non-Abstain Data Points

(3.8)

3.5.2 Supervised Dataset Metrics

The supervised metrics are a set of metrics used to evaluate the individual components of the
system, specifically to compare the fine-tuned models against the base models. As explained
in Section 3.4, a single extraction run with human validation results in labelled datasets of
passages and values. Despite being imbalanced, containing significantly more irrelevant
passages, these datasets represent a true use case of doing extraction with the system and
improving it through human validation and fine-tuning.
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Receiver Operating Curve and Area Under the Receiver Operating Curve

The Receiver Operating Characteristic (ROC) curve is used to represent the performance of a
model in a binary classification task. It is a plot of the true positive rate (recall) in the y-axis
against the false positive rate in the x-axis at different classification thresholds applied to the
model’s predicted probability for the positive class.

The ROC curve is employed in the passage retriever analysis, since it is a binary classifi-
cation task - a passage is labeled as relevant or not. The ROC curve gives us an insight into
the performance of the retriever at various thresholds.

The Area Under the ROC curve (ROC-AUC) gives an aggregate measure of the classifier’s
overall performance. It quantifies the probability that a randomly chosen true positive sample
will be ranked higher, i.e. have a higher confidence score, than a randomly chosen true
negative sample (Hanley and McNeil, 1982). This aligns with the passage retrieval task,
where the top-n passages based on their confidence scores are retrieved, thus the aim is for
the classifier to rank the true positives higher than the true negatives.

Precision-Recall Curve and Average Precision

The Precision-Recall (PR) curve illustrates the effectiveness of the binary classifier predic-
tions. It is a plot of the precision (y-axis) against recall (x-axis) at varying classification
thresholds. In the context of passage retrieval, the precision measures how many of the
retrieved passages are truly relevant, while the recall measures how many of the true relevant
passages are retrieved. The PR curve better reflects a classifier’s performance in heavily
imbalanced datasets than the ROC curve (Davis and Goadrich, 2006; Saito and Rehmsmeier,
2015), since the precision is not skewed by a large number of negative samples present in the
dataset, whereas the ROC curve treats both false negative and false positives equally.

The Average Precision (AP) is a summary of the PR curve, which measures the average
precision across all recall levels, and is commonly used for classification tasks with imbal-
anced datasets (Sofaer et al., 2019). In theory, it is computed as the integral of the PR curve,
but in practice the following formula is used:

AP =
1

∑
N
i=1 rel(i)

N

∑
i=1

(P(i)× rel(i)) (3.9)

The term P(i) is the precision at cut-off level i (only including the top-i results), while
the term rel(i) is the relevance score for a result at position i, with 1 if the result is relevant,
and 0 otherwise.
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AP is also employed to evaluate the value labelling system. The computation of AP
is reflective of the use case of ELICIT. In the value labelling part, each passage receives
a confidence score for each non-abstain (or non-"unclear") value. The Top-k of these are
shown to the user for human validation. The objective is to ensure that most of these results
(passage-value pairs) have the correct value assigned to them. Therefore, AP is used in the
same way as in the binary case, by assigning rel(i) to 1 if the result is assigned the correct
value, and in P(i) computing the amount of correct results present in the result set with
cut-off i.

Normalized Discounted Cumulative Gain

The Normalized Discounted Cumulative Gain (nDCG), commonly used in information
retrieval tasks, evaluates the quality of retrieved results by taking into account their relative
scores or ranking. It is used according to the assumption that relevant results should appear
higher in the results list. In the project, this metric is utilized to assess the effectiveness
of the passage retrieval task, where the objective is to assign higher relevance scores to
truly relevant passages. Similarly, in the value labelling task, the aim is to place the correct
variable value assignments higher according to their confidence score. Both objectives aim
to improve the recall of the end-to-end system for smaller Top-k settings, showing fewer but
relevant extractions to the human validator. The nDCG score is computed using the same
approach as AP, but with the following formula:

nDCGp =
DCGp

IDCGp
DCGp =

p

∑
i=1

rel(i)
log2(i+1)

(3.10)

where the parameter p defines the number of results under consideration, while rel(i)
is the relevance score as in Equation 3.5.2. The score is normalized by dividing the score
with the ideal DCG score (IDCG), which, in this context, represents the scenario where all
correct documents or values appear at the top of the result list. This normalization enables
the comparison of different queries, which, in this task, corresponds to different variables.

The nDCG score is related to AP as both take into account the order of the presented
results. However, the former emphasizes placing the correct results at the top of the list,
whereas the latter focuses on maximising the number of correct results in the list. Thus,
in the passage retrieval system, AP is a better indicator of performance, given the goal of
providing the value labelling part with the maximum amount of truly relevant passages.
Conversely, in the value labelling part, the focus is on displaying the correct extraction to the
human validator as high as possible in the results list, making nDCG a better indicator of
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its effectiveness. Both metrics are presented for the two tasks to provide a comprehensive
performance evaluation.





Chapter 4

Results and Discussion

In this chapter, I present and discuss the outcomes of several experiments conducted using our
LLM-enhanced information extraction system on the sentencing remarks and court transcripts
datasets. Both sections follow a structured analysis of individual components - the passage
retriever and value labeller. This is followed by the evaluation of end-to-end performance and
recalibration. In Section 4.2, I also address limitations related to speaker-specific information
extraction, and how fine-tuning impacts overall performance.

4.1 Sentencing Remarks Dataset

4.1.1 End-to-end Performance

In this section, the results from using ELICIT with all previous labelling functions, referred
to as ELICIT-1.0, are compared to the results from LLM-enhanced ELICIT with the vector
index passage retriever (ELICIT-VI), and the LLM-based passage retriever (ELICIT-LLM).

In the human validation step, the validator is presented with the Top-k extractions to
validate if the assigned label is correct based on the passage presented. If none of the
extractions are valid, then the variable is assigned the "abstain" value.

It is important to consider that the end-to-end results are validator specific, since the
human validator determines if the extraction contains sufficient information to be assigned a
specific label. Nevertheless, they are sufficient to highlight the differences in performance
between the different configurations. In this project, I validated the extractions, however, in
the future, a more comprehensive analysis should be accomplished with multiple different
validators.

As detailed in Section 3.5.1, precision is primarily determined by the human validator,
with losses potentially occurring if the presented passage is misleading. The difference in
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Fig. 4.1 Top-3 weighted precision on the complete sentencing remarks dataset.

observed precision between different systems is not substantial, as seen in Figure 4.1, nor
does it provide a significant edge for any system. Typically, precision losses result from the
validator indicating a negative value, for example "no physical abuse", when the true value
was "abstain".

The recalls of the three configurations are compared in Figure 4.2 for Top-1 and Top-3.
The recall is weighted by per-class support to avoid skewing results due to imbalanced
class distributions. In Top-3, ELICIT-VI performs better or equally than ELICIT-1.0 in six
variables, while ELICIT-LLM outperforms ELICIT-1.0 in seven out of thirteen variables.
When we look at the recall averaged across all variables, both LLM-enhanced systems
outperform ELICIT-1.0, by 0.06 and 0.11, respectively.

Using Top-1 reduces the recall for the LLM configurations by approximately 0.2, as
seen in Table 4.1, suggesting a weaker automated performance. A performance drop is also
observed with ELICIT-1.0, but it is less significant, only by 0.13. The difference in Top-1
between the LLM-enhanced systems and ELICIT-1.0 is less noticeable, by only 0.02.

Table 4.1 Top-1 and Top-3 mean recall across all variables for different configurations on the
complete sentencing remarks dataset.

Configuration
Recall

Top-1 Top-3

ELICIT-1.0 0.3426 0.4769
ELICIT-VI 0.3685 0.5397
ELICIT-LLM 0.3687 0.5892
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Fig. 4.2 Top-1 and Top-3 weighted recall on the complete sentencing remarks dataset.

4.1.2 Fine-tuned Performance on Unseen Documents

In this part, the performance of the passage retriever and value labeller with fine-tuning is
analyzed. Both components are fine-tuned using a supervised dataset, which was created
by validating the extractions of 15 out of the 19 sentencing remarks with a Top-3 setting,
resulting in 585 extractions. The components are evaluated on the remaining 4 sentencing
remarks (156 extractions). The fine-tuning details for this task are presented in Appendix A.1.

Passage Retriever

The different retrievers were tested in a binary classification manner to determine if the
passage is relevant or not, as labeled by the human validator (the user of ELICIT). For the
Vector Index retriever, the relevance scores between the query and passages were calculated
as is described in Section 3.2.2. The ROC and PR curves, given in Figure 4.3, computed
across all variables together, showcase the general classification capacity of our classifier.
The ROC curve and ROC-AUC score demonstrate that the base model retriever struggles
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Fig. 4.3 ROC and Precision-Recall curves for different passage retrievers on supervised
sentencing remarks data.

with this task, performing worse than random guessing1. Despite this, the fine-tuned model
excels, even surpassing the embedding model, in terms of ROC-AUC.

The PR curve displays a similar performance trend, with the fine-tuned model performing
the best, resulting in higher precision over all recall levels. Both metrics indicate the
improvement of the retrievers’ ability to classify relevant from irrelevant passages when the
model is fine-tuned on validated data, even when most of the samples are negative.

The nDCG score and Average Precision (AP) are utilized to evaluate how well the
retrievers rank the passages by relevance for each variable. While ROC and PR are computed

1The classification decision could be reversed in this case. This was tested and did not lead to better
performance in other metrics due to the imbalanced dataset.
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Fig. 4.4 Per-variable nDCG score for different passage retrievers on supervised sentencing
remarks data.

for all predictions in the supervised dataset, these are computed per-variable by considering
the predictions of each variable separately2. In terms of these ranking scores, as illustrated in
Figures 4.4 and 4.5, fine-tuning enhances or equals the performance in all variables except
for "Victim Domestic Abuse".

The fine-tuned model has the highest score in 7 out of the 11 variables3, indicating strong
overall performance. When the scores are averaged across variables, the fine-tuned retriever
has lower nDCG and AP than the vector index retriever. This outcome is a result of the
fine-tuned model marginally improving in most variables and surpassing the vector index,
but it performs significantly worse in a few variables, most notably in "Victim Pregnancy".
No notable correlation was found between the number of positive training samples for a
variable and its corresponding scores. Overall, these results indicate that the passage retriever
responds positively to fine-tuning from a relatively small amount of human validated data,
and it is anticipated to perform even better with more validation. Increasing the Top-k setting
during the validation of the first few documents could be a viable solution.

Value Labeller

In the value labelling task, the nDCG score increases in six variables, and slightly decreases
in five for the fine-tuned model compared to the base model, as given in Figure 4.6. Overall,
the nDCG score is higher by 0.07 on average across all variables4. Due to the model being
more likely to label variables as “unclear”, and the prevalence of it in our dataset, another
model was trained with the non-"unclear" data points oversampled to match the number of

2The PR-AUC in Figure 4.3 is equivalent to AP computed for all predictions.
3Variables which did not have positive samples were removed when computing nDCG and AP.
4Uniform averaging is used when computing the average across all variables, i.e. each variable has equal

weighting.
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Fig. 4.5 Per-variable Average Precision for different passage retrievers on supervised test
sentencing remarks data.

"unclear" samples for each variable. This led to a better overall performance in terms of
nDCG, outperforming the base model in six variables, and the regularly fine-tuned model
in seven. Averaged across all variables, the nDCG is higher by 0.124 than the base model.
This shows that when dealing with an imbalanced dataset, the model benefits from seeing the
positive samples more frequently, and thus results in better ranking capabilities.

The nDCG score evaluates the ability of the model to place the correct predictions higher.
As the fine-tuned models result in higher nDCG, this is expected to transfer to stronger
performance in smaller Top-k settings, as the quality of extractions returned will be better.

In terms of AP, visualized in Figure 4.7, both fine-tuned models displayed improvements
in seven variables. On average, the standard fine-tuned model achieved an AP score higher by
approximately 0.13, while the model trained on oversampled minority data showed a larger
improvement of 0.18. AP summarizes the precision of the models at various recall levels,
thus, this together with the nDCG scores signifies the strength of the fine-tuned automated
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Fig. 4.6 Per-variable nDCG score for different value labellers on supervised test sentencing
remarks data.
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Fig. 4.7 Per-variable Average Precision for different value labellers on supervised test
sentencing remarks data.

component of ELICIT, and suggests that using human validated data is expected to result in
better value labelling on unseen documents.

End-to-end Performance

Since the supervised dataset was created from a single human-validation run, it means that
the components were evaluated only on a fraction of the passages from the documents.
By running a complete extraction process using fine-tuned models, we can see how the
system operates when presented with full unseen documents. As given in Table 4.2, for
Top-3, ELICIT-1.0 performs worse than ELICIT-VI, but slightly better than ELICIT-LLM.
However, fine-tuning resulted in a significant improvement for the LLM-enhanced systems,
with FT-ELICIT-VI improving by 0.09, while FT-ELICIT-LLM improved by 0.084, resulting
in a higher recall than ELICIT-1.0. Overall, for Top-3, FT-ELICIT-VI has the highest recall,
consistent with the stronger per-variable nDCG and AP scores of the vector index retriever.

An important observation is the enhanced performance in Top-1, which is the most
restrictive setting, requiring the best performance from the automated components in a
narrow recall window. FT-ELICIT-VI only improves by 0.04 from its base configuration,
while FT-ELICIT-LLM improves by close to 0.15, even showing better performance than
FT-ELICIT-VI. The difference in these two configurations indicates the differing performance
of the passage retrievers for small Top-k settings. FT-ELICIT-LLM performs better in Top-1,
which suggests that the LLM-based retriever is better at positioning the most relevant passage
at the top, however, in Top-3, FT-ELICIT-VI achieves the highest recall, meaning that it
places better passages at the second and third position. As more and better-quality data are
used for training, it is expected that FT-ELICIT-LLM would surpass FT-ELICIT-VI across a
wider Top-k range.
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Table 4.2 Top-1 and Top-3 recall on unseen sentencing remarks for different configurations.
"FT" refers to fine-tuned configurations.

Configuration
Recall

Top-1 Top-3

ELICIT-1.0 0.3141 0.4231
ELICIT-VI 0.3397 0.4744
ELICIT-LLM 0.2500 0.4038
FT-ELICIT-VI 0.3782 0.5641
FT-ELICIT-LLM 0.3974 0.4872

In conclusion, these results demonstrate the strength of using human validated data from
extractions on other documents to fine-tune both the passage retriever and the value labeller.
They both learn to position the most relevant passages and values at the top of the result list
and can extract information better from unseen documents.

4.1.3 Fine-tuning for Recalibration

After the model is fine-tuned using labeled data from a single human validation run, the
extraction process could be run again to identify new potential extractions from previously
abstained variables. This potential improvement in the LLM-enhanced system primarily
originates from two sources: the fine-tuned LLM passage retriever returning more relevant
passages; and the fine-tuned value labeller assigning values with a greater accuracy and
confidence. As illustrated in Figure 4.8, the performance of the fine-tuned ELICIT-LLM
system showcases discernible improvements. Specifically, out of 13 variables, enhancements
were observed in 10, increasing the average recall by 0.097 to 0.687. Conversely, ELICIT-VI
exhibited a slightly smaller increase by 0.06, attributable mainly to the enhancement in the
value labeller alone.

Overall, these results showcase the significance of human-validated data as an invaluable
information source for the models. Using this data not only improves the performance on
already extracted documents but also enhances the extraction of previously unseen ones
through fine-tuning the models.
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Fig. 4.8 Improvement in recall for ELICIT-LLM and ELICIT-VI from recalibration using
fine-tuning on extracted sentencing remarks.

4.2 Court Transcripts Dataset

4.2.1 Performance on Unseen Documents

In this part, the passage retriever and value labeller were fine-tuned on validated Top-3
extractions of 3 out of 5 court transcripts, resulting in 663 extractions. The remaining
transcripts form the test set containing 485 extractions. The fine-tuning details for this task
are presented in Appendix A.2.

Passage Retriever

Transcripts of court proceedings have a known dialogue structure containing speaker tags,
and featuring questions followed by answers. This inherent structure provides contextual
cues that aid passage retrievers in assessing the passage relevance. In contrast, sentencing
remarks lack these cues and contain more nuanced and indirect language.

These differences manifest in the performance of passage retrievers on unseen human
validated court transcript passages. The ROC curve, presented in Figure 4.9, demonstrates
better performance across all passage retrievers compared to the sentencing remarks dataset
in Figure 4.3. The fine-tuned retriever emerges as the best with an ROC-AUC of 0.91. In
comparison, the base retriever and vector index achieve scores of 0.65 and 0.70, respectively.

While ROC evaluates the general performance of the binary classifier, the Precision-
Recall suggest how the model performs considering class imbalance. The retriever, fine-tuned
on user-validated extractions from court transcripts, shows strong performance with an AUC-
PR of 0.70, while the lower scores for the base and vector index retriever suggest them
struggling with the minority class. The AUC-PR achieved by the retrievers on the court
transcripts is similar as on the sentencing remarks, hence, the difference in AUC-ROC might
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Fig. 4.9 ROC and Precision-Recall curves for different passage retrievers on supervised court
transcript data.

be due to its sensitivity to class imbalanced. The court transcripts dataset contained fewer
positive samples, specifically 16%, compared to 25% in the sentencing remarks.

Evaluation using nDCG and AP reveals similar trends. In terms of nDCG, which focuses
on how well the retriever positions relevant passages at the top of the results list, the fine-
tuned retriever achieves the highest mean score of 0.85, improving from the base model’s
score of 0.66, and ahead of the vector index score of 0.79. In terms of AP, which measures
precision across varying recall levels, the fine-tuned retriever leads again with a mean score
of 0.74, while the vector index and base model score 0.63 and 0.46, respectively.

The improvements in nDCG and AP across all variables, as seen in Figures 4.10 and
4.11, highlight the fine-tuned retriever’s effectiveness on court transcripts. Furthermore, it
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Fig. 4.10 Per-variable nDCG score for different passage retrievers on supervised test court
transcript data.
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Fig. 4.11 Per-variable Average Precision for different passage retrievers on supervised test
court transcript data.

showcases better performance across most variables compared to the vector index. These
results indicate the model’s successful learning from human-validated data, resulting in
superior ranking and precision capabilities on unseen court transcript documents.

Value Labeller

The value labelling component, used for dialogue texts, is responsible for assigning variable
values to passages based on specific speakers. If a speaker does not provide a value, it is
instructed to assign the "unclear" value. The evaluation of nDCG and AP follows the same
approach as in the sentencing remarks scenario, by comparing every non-zero probability
non-”unclear” prediction with the correct label. As in Section 4.1.2, the model is fine-tuned
with two approaches: using the complete imbalanced training set, and with oversampling the
minority values for each variable.

In terms of nDCG, the labeller improves significantly from fine-tuning. On average,
the regular fine-tuned model shows an improvement of 0.21, while the oversampled model
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Fig. 4.12 Per-variable nDCG score for different value labellers on supervised test court
transcript data.

improves by 0.13. Furthermore, as illustrated in Figure 4.12, the regular fine-tuned model
improves over the base model in 10 out of 12 variables, while the oversampled model
improves in 11. Notably, the increases in the regular fine-tuned model are more significant,
surpassing the oversampled model’s nDCG scores in all 10 of the improved variables.

With AP, as given in Figure 4.13, the same trends are apparent, with the regularly
fine-tuned model resulting in higher mean AP, and improving in 9 variables over the base
model.

The presented results outline the significant benefits of fine-tuning when dealing with
the complexity of speaker-based labelling. This fine-tuning results in an improved value
labeller, which more effectively places correct values at the top of the result list, and with
greater confidence. Interestingly, it was also observed that contrary to the performance on
sentencing remarks, oversampling the minority classes does not lead to better performance
than using the full imbalanced dataset.
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Fig. 4.13 Per-variable Average Precision for different value labellers on supervised test court
transcript data.
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Table 4.3 Top-1 and Top-3 recall results on unseen court transcripts for different configu-
rations. "Per-variable" is obtained by taking the mean of the weighted recalls across all
variables. "Total" is obtained by computing the recall considering all data points equally.

Configuration
Per-variable Total

Top-1 Top-3 Top-1 Top-3

ELICIT-VI 0.4815 0.5858 0.5172 0.6724
ELICIT-LLM 0.3321 0.4595 0.4310 0.6207
FT-ELICIT-VI 0.5545 0.6494 0.6207 0.7759
FT-ELICIT-LLM 0.6390 0.7386 0.7586 0.8621

End-to-end Performance

The evaluation of the passage retriever and value labeller on the human validated supervised
dataset serves as a proxy for the true end-to-end performance. This subsection focuses on the
evaluation of the different configurations with base and fine-tuned models to determine if the
performance improvements in the supervised dataset transfer to improvements on complete
unseen transcripts with the human validation element.

As discussed in Section 4.1.2, precision is predominantly determined by the human
validator rather than the automated component. Consequently, no significant differences in
precision between various configurations were observed.

The mean recall results, given in Table 4.3, align with the trends identified in the evalu-
ations on the supervised dataset. Among the base model configurations, the system using
the vector index passage retriever (ELICIT-VI) performs better due to the better retrieving
capabilities using the embedding model compared to the LLM (ELICIT-LLM).

With fine-tuning, the model with both LLM components (FT-ELICIT-LLM) achieves the
highest recall. Notably, it improves from its base model by a more significant margin (0.31
in Top-1 and 0.28 in Top-3, per-variable) than FT-ELICIT-VI (0.07 in Top-1 and 0.06 in
Top-3, per-variable), indicating that the majority of the recall gain comes from the fine-tuned
passage retriever.

4.2.2 Fine-tuning for Recalibration

Fine-tuning the models with a complete human validation dataset (consisting of all five
transcripts) and running extraction again to find new potential extractions results in similar
trends as in previous tasks. As expected, the full LLM-enhanced system benefits significantly
from fine-tuning due to the improvement of the value labeller and passage retriever, resulting
in a mean improvement in recall of 0.12 per-variable and in total, as given in Table 4.4.
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Fig. 4.14 Per-variable recall for different configurations on the unseen court transcripts with
Top-3. FT-ELICIT-LLM outperforms its base configuration in 11 out of 12 variables, and
achieves the highest overall recall in 10 variables.

Table 4.4 Improvement in mean total and per-variable recall on unseen court transcripts from
recalibration through fine-tuning.

Configuration
Per-variable Total

Original Improved Original Improved

ELICIT-VI 0.5245 0.5828 0.5945 0.6667
ELICIT-LLM 0.5088 0.6290 0.5882 0.7059

Conversely, the configuration using the vector index passage retriever improves by 0.06
per-variable and 0.07 across all data points. The recalibrated ELICIT-LLM results in the
highest overall recall, and it also improves in more variables (eight versus ELICIT-VI’s five),
as visualized in Figure 4.15.
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Fig. 4.15 Improvement in recall for ELICIT-LLM and ELICIT-VI from recalibration using
fine-tuning on extracted court transcripts.
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4.2.3 Recall and Shown Extractions

With the objective of finding every variable value indicated by a speaker, the number of
extractions shown to the user can quickly increase and become cumbersome. Specifically,
for a single document, the number of extractions shown the user is the product of the number
of speakers, the number of variables, and k (in Top-k). While the user defines the number of
variables and k, the speaker count is inherent to the document. A limitation of this is that any
speaker which appears in the transcript will have extractions associated with it, even though
in reality, they might not have given a relevant value. To avoid showing the user unnecessary
extractions, a good automated component is essential.

This part details how for the same recall, fine-tuned configurations require fewer extrac-
tions be shown to the user, and how the fine-tuned labeller better separates relevant from
irrelevant speakers for given passages.

Figure 4.16 illustrates the mean recall against the number of extractions shown to the
user from a Top-3 validation run on the unseen court transcripts. The maximum number of
extractions shown to the user is 448, when all top 3 extractions are shown for each speaker
and variable combination. As fewer examples are shown to the user, based on their confidence
scores, a logarithmic decrease in recall is observed across all configurations. This logarithmic
trend signifies that, for equivalent recall levels, more efficient systems need a significantly
smaller number of displayed extractions.
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Fig. 4.16 Recall against number of shown extractions in a Top-3 run on unseen court
transcripts. FT-ELICIT-LLM reaches the top recall level of ELICIT-LLM (achieved at 404
extractions) with just 120 extractions; of ELICIT-VI (achieved at 396) with 142; and of
FT-ELICIT-VI (achieved at 259) with 191 extractions.
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This outlined setup can be conceptualized as a global Top-k setting, which is applied
across the entire extraction set rather than per variable. Thus, users can save manual extraction
time while only marginally compromising on recall. This also indicates the benefits of fine-
tuning on human-validated data, and as the models are trained on more data, they will require
fewer extractions to be shown to the user.

In the analysis of unseen court transcripts, certain passages are repeatedly presented
as part of extractions attributed to different speakers, however, not all of the speakers are
relevant for the specific variable. An important part of our system is for the automated
component to assign a lower confidence or rank for extractions associated with irrelevant
speakers compared to those with relevant speakers.

To quantify this disparity in ranking, a comparative approach is employed by measuring
the difference in rankings5 between relevant and irrelevant speaker extractions for identical
passage-variable pairs, which were presented to the user for validation. This evaluation
focuses on the configuration using the vector index passage retriever, enabling the isolation
of the value labeller’s performance.

It was found that FT-ELICIT-VI ranked the extractions of the relevant speaker on average
31.23 positions higher than the irrelevant one’s, while ELICIT-VI only separated them by
9.18 positions. This suggests that fine-tuning improves the model’s ability in differentiating
relevant from irrelevant speakers for an identical passage and variable.

A specific example of this is the “Justice” speaker, which in the unseen transcripts only
has procedural speech, not giving any valuable information. Thus, any extraction associated
with it should be deemed irrelevant. However, the "Justice" dialogue tag appears in essential
passages, such as the counsel’s opening or closing remarks, which are full of important
information. The value labeller is required to distinguish that the information in these
passages is not associated with the "Justice" speaker, resulting in low confidence extractions.
The distribution of per-variable rankings for each "Justice" extraction — where each is ranked
compared to other extractions of the same variable — is depicted in Figure 4.17 for ELICIT-
VI and FT-ELICIT-VI. Notably, both configurations effectively rank these extractions with
low priority. However, the fine-tuned system displays a more favorable outcome, with a
higher mean rank and reduced variance compared to the base configuration.

5The difference in rankings is used, since the confidence scores among various configurations are not
calibrated, making them unreliable for comparison.
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Fig. 4.17 Per-variable ranking distribution of extractions attributed to the "Justice" speaker.





Chapter 5

Conclusions

In this project I delved into the analysis and evaluation of utilizing LLMs for the extraction
of structured information from long unstructured documents, specifically in the legal domain,
focusing on sentencing remarks and court transcripts. This chapter presents a recap of the
project, highlights the key findings, and proposes promising future research directions.

5.1 Project Recap

The primary objective of this project was to extend the capabilities of ELICIT by integrating
the use of LLMs. The study focused on two particular tasks with distinct datasets: the
extraction of single corresponding variable values from sentencing remarks, and the novel
task of extracting speaker-specific variable values from court transcripts.

To overcome the challenges associated with the length of the documents, the approach of
splitting the documents into smaller passages was taken. This resulted in the development
and analysis of two separate components: (a) the passage retriever, which identifies relevant
passages, and (b) the value labeller, which assigns variable values to these passages. The
subsequent evaluation of these components led to a comprehensive investigation of how
LLMs perform in the task of IE, the impact of the individual components to the overall
performance, and how human validated data gathered through the use of ELICIT could be
utilized for fine-tuning.

5.2 Key Findings

The evaluation on sentencing remarks and court trancripts, in supervised data and end-to-end
settings, led to several key findings.
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A comparative analysis of two passage retrievers — a vector index using the ’all-mpnet-
base-v2’ embedding model, and the Vicuna-13B LLM, which was prompted to identify if the
passage is relevant or not — revealed that the LLM-based retriever initially underperformed
but significantly improved from fine-tuning with human-validated data. In the case of court
transcripts, the LLM-based retriever even outperformed the embedding model in both the
supervised and end-to-end setting. A possible explanation for this is that the fine-tuned model
aligns with the particular task and user, whereas the embedding model relies on semantic
information and might result in misalignment.

The value labeller was designed as an LLM prompted to classify passages into the
variable values based on the specific speaker. Fine-tuning this component led to improved
ranking capabilities, which in turn resulted in better overall recall of the system. In the
case of sentencing remarks, addressing data imbalance in human-validated data through
oversampling the minority classes resulted in significant improvements. In court transcripts,
fine-tuning notably improved the separation of values attributed in the same passages to
relevant and irrelevant speakers.

The observations from the analysis of the separate components translated into the full
end-to-end setting. Fine-tuned configurations, especially ones using the LLM-based retriever,
resulted in better overall recall compared to base model configurations and the current
ELICIT system. Additionally, the passage retriever was identified as the main factor in the
overall performance of the LLM-enhanced ELICIT, with fine-tuning leading to substantial
improvements in recall.

The final observation of the project was that the fine-tuned LLM systems resulted in
increased efficiency in the human-in-the-loop format. Due to their enhanced automated
performance, they required significantly fewer extractions shown to the user to achieve the
same recall, thereby reducing potential human validation efforts.

5.3 Limitations

The main limitations of the project are the following:

1. The approach of splitting the document and doing extraction on smaller passages
means that the system cannot extract information which spans multiple passages, and
is limited to information which is contained in a single passage.

2. The project did not consider the processing time of the LLM-based passage retriever,
which results in longer processing times, as the model is prompted for every passage.
However, this can be done off-line before presenting the results to the human validator.
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3. The court transcripts used are semi-synthetic; thus it is unclear how the shift to real
data would affect the results.

4. The embedding model used in the vector index was not fine-tuned on human-validated
data.

5. The project did not have access to long-context models, which could have been used
as a baseline.

5.4 Future Directions

This study into the application of LLMs for legal information extraction in the legal domains
opens up potential avenues for future research. The new task of speaker-centric information
extraction is of great promise. It was demonstrated that the base model struggles to distinguish
information based on the speaker, with the fine-tuned model performing marginally better.
Thus, the burden of validating if the specified speaker provided the information still falls
on the human validator. Alternative approaches through prompt engineering or fine-tuning
could be explored for potential improvement.

Drawing inspiration from the success of using human-validated data for supervised fine-
tuning, the application of Reinforcement Learning from Human Feedback (RLHF) (Bai et al.,
2022; Ouyang et al., 2022) for fine-tuning presents an interesting path for improving passage
retrieval and value labelling based on human preferences. Particularly in passage retrieval,
the imperfect recall indicates that there are passages, which are relevant but the user does
not get to validate. If these passages differ significantly from the ones being retrieved and
validated, standard fine-tuning might not solve this. However, RLHF could help address this
issue through the exploration of the RL agent.

While this project predominantly focused on the broader aspects of the IE process using
LLMs, namely passage retrieval, value labelling, and fine-tuning, future investigations could
be done into improving the prompts used, for example, by exploring the use of LLMs for
designing prompts (Zhou et al., 2023).

Another area of future exploration lies in alternative strategies for dealing with long
documents. The use of memory transformers (Bulatov et al., 2023) could be explored to
overcome the limited context length of the LLMs and enable the extraction system to be
more context-aware.

Lastly, given the sensitivity of legal data, additional effort should be given into the
examination of potential biases inherent in the system, as well as potential mitigation
strategies (Nozza et al., 2021, 2022).
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Appendix A

Fine-tuning Details

A.1 Sentencing Remarks

A.1.1 Passage Retriever

Table A.1 Optimal hyperparameters of the Vicuna-13B passage retriever fine-tuned on
user-validated sentencing remarks extractions.

Type No. of Training Samples No. of Validation Samples Batch Size Learning Rate

Regular 467 117 32 0.0012
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Fig. A.1 Training and validation loss of the Vicuna-13B passage retriever fine-tuned on
user-validated sentencing remarks extractions.
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A.1.2 Value Labellers

Table A.2 Optimal hyperparameters of the Vicuna-13B value labellers fine-tuned on user-
validated sentencing remarks extractions.

Parameter Regular Minority Oversampled

No. of Training Samples 467 926
No. of Validation Samples 117 117
Batch Size 8 16
Learning Rate 0.0006 0.00008
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Fig. A.2 Training and validation losses of Vicuna-13B value labellers fine-tuned on regular
user-validated sentencing remarks extractions, and with minority classes oversampled.
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A.2 Court Transcripts

A.2.1 Passage Retriever

Table A.3 Optimal hyperparameters of the Vicuna-13B passage retriever fine-tuned on
user-validated court transcript extractions.

Type No. of Training Samples No. of Validation Samples Batch Size Learning Rate

Regular 424 113 32 0.0012
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Fig. A.3 Training and validation loss of the Vicuna-13B passage retriever fine-tuned on
user-validated court transcript extractions.
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A.2.2 Value Labellers

Table A.4 Optimal hyperparameters of the Vicuna-13B value labellers fine-tuned on user-
validated court transcript extractions.

Parameter Regular Minority Oversampled

No. of Training Samples 520 878
No. of Validation Samples 138 138
Batch Size 32 16
Learning Rate 0.0006 0.00008
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Fig. A.4 Training and validation losses of Vicuna-13B value labellers fine-tuned on regular
user-validated court transcript extractions, and with minority classes oversampled.
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