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Abstract

Large Language Models (LLMs) are capable of generating well-written text and have the
potential to be very useful in real-world applications. For example, if we can trust them
to reliably produce output of high quality, they might be useful in legal matters. In this
work, I look at one such use case, and evaluate whether LLMs are able to reliably produce
high-quality output for a specific task that is more complex than what has typically been
considered prior to this work. I introduce a number of methodologies, and consider several
LLMs for solving the task. In particular, I explore whether a smaller, fine-tuned LLM can
compete with a larger pre-trained LLM. I also introduce a new dataset for the task, as well as
my own method for evaluation. The main conclusion of the dissertation is that the larger LLM
I considered, produced outputs of better quality than any smaller model I tested. However,
none of the LLMs I considered were able to produce reliable outputs of high quality.
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Chapter 1

Introduction

1.1 Motivation

Language is an important part of human life, as it is our main way to communicate with each
other. We use language to express our thoughts, ideas, and even emotions. Language is also
a crucial component in important life moments, including job interviews, conflict resolution,
and possibly courtroom presentations. A person who struggles with expressing themselves
well, in writing or orally, might experience bias against them in a courtroom. One example
of a situation where this is a challenge is if a person pleads guilty to an offense, and is asked
to make a plea in mitigation. Such a plea should contain information about the crime and the
defendant, and if performed correctly, it can result in a milder sentence. Many people choose
to perform such a plea by themselves instead of seeking counsel. This could be because of
financial reasons, or because they wish to speak directly to the judge (GOV.UK, b). Because
of this, people who don’t have the means to pay a defense attorney to help them write a plea
in mitigation, or who are not as skilled in expressing themselves in the correct manner, can
end up receiving a harder sentence than someone with a more fortunate background in the
same situation. This work aims to address this issue by looking at the possibility of making
good representation in court accessible to everyone. As a tool to achieve this, we look to
Large Language Models (LLMs).

LLMs are models that use AI to perform different natural language tasks such as in-
terpreting and generating text. Using deep learning, LLMs can perform different types of
text analysis, summarisation, translation, and text generation. They are able to generate
well-written text which is difficult to distinguish from human-written text, and they might
therefore be suitable for the task of helping people write courtroom statements (Brown et al.,
2020).
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1.2 Primary goals

The overall purpose of this project is not to build a usable product, but rather to evaluate
whether or not LLMs can be helpful in generating good pleas in mitigation, in a reliable
manner. There are two main goals for this work:

1 Can we reliably produce useful statements that can be read in court as pleas in mitiga-
tion? To explore this, I will use the best LLM available.

2 I want to explore and compare different setups for this task, including different config-
urations and both larger, pre-trained models and smaller, fine-tuned models.

1.3 Contributions

This work has made several contributions.

First, I have looked at whether a state-of-the-art LLM can perform reliably on the
complex task of creating a plea in mitigation. My conclusion on this is that it cannot
yet perform reliably on this task by using the methods I have tested.

Second, I have made a new dataset containing in full, 281 statements for pleas in
mitigation, with different types of annotations that state whether each statement satisfies
one out of the multiple criteria I want all statements to satisfy.

I have evaluated a total of 16 different setups on the task of creating a plea in mitigation.
The setups use different methods as well as different LLMs.

I have observed that the fine-tuned smaller models could not compete in performance
compared to the larger pre-trained state-of-the-art model.

1.4 Dissertation overview

The remainder of the dissertation will be structured in the following way:

Chapter 2 will present an overview of related literature and required background informa-
tion. It will begin by providing further information on how to write a good plea in
mitigation and discuss trends in relevant Task-Oriented Dialogue literature. I will then
present the main methods that inspired the framework I used, as well as the LLMs
I have used in these methods. Lastly, I will briefly discuss methods for fine-tuning
LLMs.
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Chapter 3 presents the methodology we have created for our new task. It will further discuss
how I have used information and methods from the background to create a system
suitable for my particular task.

Chapter 4 contains a description of the preparation of my experiments. I will introduce my
new dataset, discuss how prompt engineering was done, and talk about how I have
evaluated my results.

Chapter 5 presents the results of this dissertation. It contains information about how I have
fine-tuned the smaller LLM, and results of the performance of all the configurations I
have looked at.

Chapter 6 further discusses the results from Chapter 5 from a taller viewpoint, and suggests
ideas for further work. This chapter also contains a conclusion of the full work.



Chapter 2

Background

This chapter will introduce necessary background material for the project. It will not be
a complete guide on all related previous work, but rather a summary of trends, presenting
knowledge necessary to understand this thesis. I begin by discussing the task at hand: writing
a plea in mitigation, before looking at some technical details and challenges in the Task-
Oriented Dialogue (TOD) literature. I will continue by presenting the main inspiration for my
project: the methods of self-critique and Constitutional AI (Bai et al., 2022; Saunders et al.,
2022). I will then discuss the models used to perform self-critique (Section 2.4), and how I
will fine-tune some of them: using Quantized Low-Rank Adaption (QLoRA) in Section 2.5.

2.1 A plea in mitigation

A plea in mitigation is held in a UK court to explain personal circumstances and plead for
leniency in sentencing.

When a person has committed a crime in the UK, and decided to plead guilty, they
are usually called into a courtroom to be sentenced. To limit the scope of this project, I
have only focused on smaller, less serious offenses, which are typically judged in a UK
Magistrates’ court. What typically happens next, is that a defense attorney will read out a
statement to plead for leniency in the sentencing of the defendant. But often, people choose
to self-represent instead of using a lawyer. In this case, the defendant does not need to argue
about technical criminal details, but there is still some specific information that should be
included in their plea.

Mitigating factors are aspects of the offense, or personal circumstances, that indicate
a less serious crime, and can therefore result in a lesser sentence if properly explained
to the court (Judiciary of England and Wales, 2020). Great provocation, mental illness
or disability, age, and playing a minor role in the offense, are factors that indicate lower
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culpability (Sentencing Council, a). However, genuine remorse, cooperation with authorities
and admissions to the police are also mitigating circumstances that will always count in
favor of the defendant. There also exists additional mitigating factors such as proof of good
character, determination or demonstration of steps taken to address an addiction or offending
behaviour, voluntarily compensating victims, no previous relevant convictions, or being the
sole or primary carer for some dependent relative (Sentencing Council, 2014, 2019). These
factors will only count in favor of a reduced sentence if they are relevant to the offense being
heard, but they will never influence sentencing in a negative way. Pleading guilty is in itself
perhaps the most important factor in reducing a sentence, as it can lead to a reduction by up
to one-third of the standard sentencing guidelines (Sentencing Council, 2017).

Some law practitioners give out advice on how to write a good statement when self-
representing and pleading guilty. They generally advise having good structure in the plea,
explaining the situation, and taking full responsibility for the offense that has been committed
(Hayler; Motor Lawyers Ltd). It is also inferred that any suffering as a direct result of
the crime, or an explanation of why the crime will not happen again, might be considered
mitigating when self-representing (Hayler).

In order to achieve a good pleading statement, it is important that our LMs are able to
faithfully represent the information they receive about the defendant, and that they can adhere
to a number of principles that define a good statement.

2.2 Trends in TOD literature

TOD systems are computer systems that communicate with a user and assist them in achieving
a specific goal or perform a task, as described by the user.

How these assisting systems are built, have changed a lot since they first appeared. Early
approaches of TOD typically used a rule-based system to assist the user, aiming to give
an illusion that the system understood the input (Weizenbaum, 1966). Not long after, the
final goal was split into a series of subtasks: language understanding, dialogue reasoning,
task reasoning and language generation (Smith and Hipp, 1994). This introduced a pipeline
architecture where all components needed good systems on their own to achieve some
intermediate goal, and then an overall architecture would tie the subsystems together (Young
et al., 2013). One main downside to this approach is errors propagating from one component
through the architecture and into the final output. With the breakthrough of neural networks
around 2012 in Computer Vision, NLP researchers found that an end-to-end neural network
architecture might be a better solution (Wen et al., 2016). Using neural networks, it is easier
to optimise for the final goal instead of each subtask, due to backpropagation. Hosseini-Asl
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et al. (2020) achieved state-of-the-art results by using a single transformer-based causal LLM,
GPT-2 (Radford et al., 2019), to generate all outputs. But still, these systems typically depend
on a separate task-specific database, and up until now, the tasks studied are limited. The
MultiWOZ dataset has become a standard TOD benchmark, but it only considers relatively
simple domains like making recommendations for restaurants and trains (Budzianowski et al.,
2018).

In this work, I have looked at a more complex task than booking restaurants or hotels:
writing a plea in mitigation. This can be viewed as a more complex task, because it requires
the output to consider and adhere to more principles and guidelines than traditional TOD
tasks. A promising newer technique called ’self-critique’ might help in solving this more
complex task.

2.3 Self-critique

The idea of providing a LM with a critique in natural language, in order to improve an
answer, is not entirely new. In 2021, Zhao et al. showed that LMs can understand natural
language critiques, and they were able to alter model predictions to show less bias tendencies
in underspecified settings by using such natural language critiques (Zhao et al., 2021). But
this study used a set of human-generated critiques and did not achieve good generalisation.

The concept of self-critique was introduced by Saunders et al. (2022). They discovered
that LMs can assist humans in detecting flaws in human- or computer-generated text by
generating viable critiques themselves. Given a question and an answer, the LM could output
whether the answer contained flaws, and provide a helpful natural language critique to the
question-answer pair. By giving that same model the initial question, answer, and critique, it
was able to output a new and improved answer (Saunders et al., 2022). This is the basis of
self-critique.

Bai et al. (2022) took the idea one step further by not limiting the LM-generated cri-
tiques to just assisting humans, but allowing them to work recursively on their own. Their
objective was to make some final outputs as helpful and harmless as possible, and they used
self-critique to ensure harmless responses. To achieve this, they created another framework:
Constitutional AI.

Constitutional AI is used in combination with self-critique, and is a structured way to
guide the critiques and revisions we ask for. Bai et al. (2022) use an instruction-tuned LM,
and instruct it to critique and revise its own responses in natural language. The instructions
are randomly chosen from a list of what they call principles, which all together form a consti-
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tution (Bai et al., 2022). In practice, the constitution is a set of rules (principles) that they
want the final output to abide by. Each principle consists of a way to ask the LM to critique
an output: a critique request (CR), and a way to ask the model to revise an output, given that
critique: a revision request (RR). One response can be critiqued and rewritten multiple times
since the original output and the revised output should be in the same form. In that way, the
output can be critiqued by different principles, until we reach a satisfactory output (Bai et al.,
2022). In the end, they fine-tuned the original LM on the initial questions and revised outputs.

It is possible to further build on the ideas of self-critique and Constitutional AI. Bai et al.
(2022) introduces RLAIF (Reinforcement Learning from AI Feedback), which is used to
further enhance performance and create a preference model they use for further fine-tuning
and evaluation. Another recent paper further developed the original ideas, using self-critique
and reinforcement learning (Akyürek et al., 2023). They used a different LM to perform the
base task and revisions, and to critique outputs. In that way, they could use any LM for the
base task, and a different LM to fine-tune for the critiques (Akyürek et al., 2023).

Previous work typically look at tasks that use critiques to achieve one single goal, for
example harmlessness in Bai et al. (2022), and for example to alphabetically sort a list
of words in Akyürek et al. (2023). This work will take one step forwards by considering
principles and critiques that have a separate goal for each principle, and each such goal
might also be more complex than the goals previously considered. For example, evaluating if
a response is harmless, intuitively seems like an easier task than deciding if a response is
completely faithful to its input.

Self-critique and Constitutional AI have also been used to fine-tune LLMs. Claude 2
uses Constitutional AI to ensure harmless and helpful responses from the model at all times,
and GPT-4 uses a technique similar to self-critique to ensure responses in line with human
ethics (Anthropic, 2023; OpenAI, 2023). More specifically, GPT-4 uses Ruse-Based Reward
Models (RBRMs): zero-shot GPT-4 classifiers, to determine whether a response is evasive,
contains undesired information, or contains the correct type of information: the RBRMs
provide a critique. They use these critiques to update a reward signal used to fine-tune the
model (OpenAI, 2023).

Self-critique and Constitutional AI are both methods that depend on LLMs. The LLMs
write initial responses, critiques, and revisions, and swapping to a different LLM can com-
pletely change any output. It is therefore important to choose with care which LLM to
use.
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2.4 Causal LMs

A LM is a model that assigns a probability to a word or sequence of words, based on
words and sequences of words it has already seen (Jelinek, 1998). A causal LM auto-
regressively assigns a probability to the next token (word-piece), given the preceding tokens:
p(t1:N) = p(t1)∏

N
i=2 p(ti|t1,..., i−1).

OpenAI has been a leading operator in well-performing LLMs with their introduction of
Generative Pre-trained Transformers (GPTs). GPT-3, and its later improvements GPT-3.5
and ChatGPT have caused headlines even in mainstream media. GPT-3 showed that LLMs
provide excellent answers on many tasks, given only a description of their task (zero-shot), or
a few examples of the task (few-shot) (Brown et al., 2020). GPT-3.5 Turbo further developed
GPT-3 and was optimized for dialogue (OpenAI). Also, a finetuned version of GPT-3.5:
ChatGPT, was made available online as an easy-to-use chatbot. This caused headlines, as
people were amazed by the chatbot’s ability to generate good, human-like answers to their
questions about a wide range of topics (Roose, 2022; Tonkin, 2022). Other researchers have
also noted ChatGPT’s good performance when responding to natural language zero-shot
prompts, but still make the remark that a model fine-tuned on a given task, often performs
better than ChatGPT (Qin et al., 2023).

GPT-4 is the newest addition to OpenAI’s GPT models. GPT-4 has achieved state-of-the-
art results and human-level performance on many benchmarks, and is fine-tuned using RLHF
to make sure its responses align with the user’s intent (OpenAI, 2023).

PaLM 2 and Claude 2 are examples of other LLMs, and they are perhaps the ones closest
to GPT-4 in performance. PaLM 2 achieves results competitive to GPT-4 on reasoning tasks,
but is beaten by GPT-4 on other benchmarks (Anil et al., 2023; OpenAI, 2023). Claude 2
beats GPT-4 on subjects such as maths and law, but cannot compete on other benchmarks
(Anthropic, 2023).

LLaMA (Large Language Model Meta AI) is a family of smaller LLMs that are open to
the research community. It has achieved similar performance with 13B parameters, as GPT-3
has with its 175B parameters (Brown et al., 2020; Touvron et al., 2023). LLaMA does, like
GPT-3 and GPT-4, use a transformer-based architecture (Vaswani et al., 2017), but it was
trained using a very high data-to-parameter ratio. This way, even their small models with 7B
and 13B parameters, show good zero-shot and few-shot ability, sometimes comparable to
GPT-3 (Touvron et al., 2023).
Stanford released Alpaca as a fine-tuned model based on the 7B and 13B LLaMA models. It
was fine-tuned on an instruction-following dataset, and it is said to have a similar performance
to GPT-3.5 (Taori et al., 2023).
Not much later, another fine-tuned version of LLaMA was released: Vicuna. This model
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comes in two sizes: 7B and 13B. The 13B version is said to outperform Alpaca13B and
LLaMA13B in over 90% of asked questions, according to evaluation done by GPT-4 (Chiang
et al., 2023).

In this work, I will compare the performance of writing a plea in mitigation using a large
non-tuned LM and a smaller LM that has been fine-tuned on either human- or machine-
generated data.

2.5 LoRA and QLoRA

One cannot expect a general LM to perform outstandingly well on any specific task it has
never encountered before: that is why we often want to fine-tune models. But training and
storing LLMs is expensive.

Traditional transfer learning techniques tried to resolve these issues by either freezing
weights in some layers and tuning others, or adding new layers of weights to the original
model and only train these new layers. In this way, you would need less space to store new
versions of a model, and you have fewer parameters to tune. But in practice, this has not
achieved the same results as fine-tuning the full model (Hu et al., 2021).

Low-Rank Adaption (LoRA), introduced a new way to fine-tune which required few
added parameters, but could still perform as well as fine-tuning a full model (Hu et al., 2021).
The idea of LoRA is based on the work by Aghajanyan et al. (2020) who empirically showed
that pre-trained models normally have a very low intrinsic dimension. It might therefore be a
reasonable hypothesis by Hu et al. (2021) that the updates to the weight matrices when tuning,
also have a low intrinsic rank. If a pre-trained model has weights Wp, and the fine-tuned
model has weights Wf t , we can express the update matrix as ∆W : Wf t =Wp +∆W . If it is
the case that ∆W ∈ Rn x m has low intrinsic rank, then we can decompose it into two much
smaller matrices: ∆W = BA, where B ∈ Rn x r, A ∈ Rr x m. By setting r in the dimension of
these matrices, and therefore also limiting their rank, we get a weight representation with
far fewer parameters. Then we can tune A and B instead of the larger ∆W , which means we
can tune far fewer parameters. Hu et al. (2021) does this to attention weights in all layers,
and keep other weights frozen. This further limits the number of new parameters we get
with fine-tuning, and saves space as there is no need to keep track of the frozen parameters’
optimizer states. Another benefit with LoRA is its ability to cancel out inference latency,
because we can simply add BA to Wp once, and run inference using these new weights every
time.
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Quantized Low-Rank Adaption (QLoRA) is a further development of LoRA (Dettmers
et al., 2023). Dettmers et al. (2023) introduce e.g. further quantization: reducing the weights
in the pre-trained LLM to 4-bit precision, and they attach the LoRA adapters discussed above
to every layer of the network (not only attention). The result of these developments is even
smaller memory requirements and more stable fine-tuning results that are at least as good as
full fine-tuning (Dettmers et al., 2023).

This chapter has introduced the concepts of a plea in mitigation and mitigating factors. It
has also introduced some basic building blocks such as TOD, self-critique, Constitutional
AI, some causal LLMs, and QLoRA. I have discussed how these building blocks have been
used in research so far, and the next chapter will explain how I build on this background and
create a methodology appropriate for my own task.



Chapter 3

Methodology

This chapter explains the methodology I have used. I will first explain how the background
material relates to and will be used in this work. I will then introduce the different components
of the methods, and explain how it all connects together. Finally, I will present how I have
defined a good plea in mitigation, in contrast to the general guidelines.

3.1 Overview

I will start by giving an overview of how I have chosen and put together the building blocks
introduced in the background.

The main task I have looked at in this work, is writing a statement for a plea in mitigation
based on an input story provided by the user. Examples of such input stories are provided in
Appendix A.1.1, and examples of final statements are provided in Appendix A.1.2. From the
general guidelines in Section 2.1, I have made a set of principles I want all plea statements to
satisfy (Figure 3.6), and a general framework that allows any defendant to input their details,
and get back a plea in mitigation that we want to satisfy these principles. I have focused
on simple offenses that are not too serious and therefore are adjudicated in the Magistrates’
court and not the Crown court in the UK (GOV.UK, a).

My methodology is based on self-critique and Constitutional AI. I have not followed
extensions like RLAIF from Bai et al. (2022), but rather focused on how far I can get with
traditional fine-tuning. I have however followed the modification introduced by Akyürek
et al. (2023): using a separate model to produce critiques. An overview of the system is
provided in Figure 3.1. The basic setup uses two LLMs that have separate roles: one Writer
and one Critiquer. The Writer is used to generate and revise a statement for a plea in
mitigation, whereas the Critiquer is used to critique these statements, based on the different
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Fig. 3.1 The Critiquer LM is used to decide whether a Critiquing Principle is broken or not,
provided an input story and a statement. The colors pink and green indicate that I have used,
respectively, the LMMs GPT-4 and Vicuna13 for this task. If the Critiquer decides that a
principle is broken, the Writer rewrites the statement to better satisfy that principle. If the
principle is not broken, I move on to the next principle. I reach an approved statement when
all principles are satisfied, but I can also choose to stop before this happens. Please note how
the thin lines indicate output/input to a LLM, whereas the thicker lines guide you through the
overall flow of the setup: the self-critique loop. I have called this setup Answer-Refine.

principles. The Writer is a larger model that I have not tuned, while the Critiquer is the
main component that I vary in different configurations, varying between a smaller LLM, a
smaller, fine-tuned LLM, and a larger non-tuner LLM.

. I have also followed the example of Akyürek et al. (2023) by doing evaluation on what
I actually care about: the final output.

Concerning the choice of LLMs, I aimed at models that are naturally good at responding
to natural language inquiries. I have chosen GPT-4 as a representation of "the best avail-
able LLM today" (OpenAI, 2023). I made this decision because GPT-4 is fine-tuned to
have responses better aligned with the user’s intent, and seems to be more versatile than its
competitors Palm 2 and Claude 2 (Anil et al., 2023; Anthropic, 2023). Claude 2 has expert
knowledge about analysing legal documents, but I have not used legal analysis in my task,
although it is related to law (Anthropic, 2023). I have not found a comparative analysis
of Palm 2 and GPT-4 relevant to my instruction following task, and as GPT-4 seems to be
the more versatile model I have made this my model of choice. However GPT-4 is quite
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expensive, and I only gained access to GPT-4 with a few weeks left of this project (OpenAI).
I have therefore used a mix of GPT-4 and GPT-3.5-Turbo in this work: GPT-3.5-Turbo is
used as the Writer: for general writing and revising, and GPT-4 is used as a Critiquer:
for task-specific critiques of a statement.
It is interesting to also look at how a smaller model can compare to the large and expensive
GPT-4. This is in part because we imagine that if a product for this task is ever released, it is
likely to come from a charity or low-budget organisation that wants to help people write pleas
in mitigation. It is then likely that they would want to use these smaller, cheaper models. It
is also interesting to see whether a smaller, fine-tuned model can achieve on-par or better
results than a state-of-the-art LLM, which I cannot fine-tune. I have chosen to use Vicuna13
as the smaller LLM (as a Critiquer), and I have compared its performance both fine-tuned
and out-of-the-box to GPT-4 (Chiang et al., 2023).

There is a reason why I have used GPT-3.5 Turbo as the Writer, instead of using the
same model for writing and critiquing. I want the produced statement to expand the input
story into a well-written, full statement. I observed that the smaller model Vicuna13B
sometimes used phrases from the input that was not very well-written, it generally seemed
a bit fragmented, and consistently produced shorter statements than GPT-3.5 Turbo. Both
Vicuna13 and GPT-3.5 Turbo had issues with altering details from their original input stories
or adding false information, but GPT-3.5 Turbo was superior in terms of language and length.
An example of this can be found in Figure A.4 in the Appendix. Our opinion is that by
choosing a LLM that produces longer and more well-written answers, I have a better chance
of achieving a good, well-written final statement. It seems like an easier task to get a LLM to
remove specific parts of a statement, than it is to tell a smaller LLM to expand a statement
and use better language. This is the reason why I used GPT-3.5 Turbo as the Writer. Then
the focus of this work will be to generate good critiques and finetune the Critiquer, similar
to Akyürek et al. (2023), only with the specific purpose of generating pleas in mitigation
which satisfy the guidelines for this (as mentioned in Section 2.3).

I have used QLoRA to fine-tune Vicuna13, as this seemed to have a similar performance
to LoRA, but be more efficient.

3.2 Setups

I will now introduce the different approaches I used to get a final statement for a plea in
mitigation (just referred to as a statement from now on). I start by introducing the most basic
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setups that don’t use any type of self-critique, and gradually increase the overall complexity
and involvement of machine-generated critiques.

3.2.1 Baselines without use of machine-generated critiques

The most simple setups will function as baselines. Using the below-defined general prin-
ciples to get an initial statement, as shown in Figure 3.2a, is the simplest way I generate a
statement. Providing GPT-3.5 Turbo: my Writer, with the general principles, an input story
(describing the offense and mitigating factors) and a request to generate a plea in mitigation,
I get an initial statement out. (More about input stories in Section 4.1.) I call this my initial
setup.

(a) First step of our method: creating an initial
statement. I provide the LLM I have used for
writing (Writer LM) with an input story (ex-
plaining the offense) and the general principles I
want the output to follow, as discussed in Section
3.3. The blue color of the Writer indicates that
I have used GPT-3.5 Turbo as my Writer.

(b) Direct Refinement (DR) of the statement. I
now introduce some human-written Revision
Requests (RRs). Each such RR will prompt the
Writer to revise the statement such that it will
better satisfy a specific principle after the revi-
sion. I can loop through revising the statement
with different RRs any desirable amount of times.

Fig. 3.2 The most basic versions of our method. Neither of these makes use of any machine-
generated critiques.

Taking it one step further, I revise the initial statement with some human-written Revision
Requests (RRs), as shown in Figure 3.2b. I call this setup Direct Refinement (DR), following
the terminology in Akyürek et al. (2023); Bai et al. (2022). Following Constitutional AI as
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in Bai et al. (2022), each RR corresponds to one principle that I want my final statement to
adhere to. One example of a RR is:

Rewrite the statement above on the given critique, such that the statement adheres to the age
rule ’mention the defendant’s age only if it is outside of the interval 30-79’. Rewrite using
only information about the defendant and their case from the input story. Do not make up
information: even if you think that would improve the answer.

The last part is a general prompt I found helpful to add to all RRs, and only the first part is
principle-specific. In addition to the RR, I use a general prompt to ask GPT-3.5 Turbo to
perform a revision: You will revise parts of a statement, based on a revision request. Only
rewrite parts of the statement to comply with the revision request, and leave the rest of the
statement as it was. You may want to delete a paragraph, or add a new one. This prompt
will change a bit for different setups, depending on what type of input is given to the Writer
for revision. Prompts will be further discussed in Section 4.2.

After providing my Writer with the general principles (described below in Section 3.3),
I observe that the initial statement often satisfies many of the general principles. There is
no need to ask the Writer to fix something that is never really broken. Therefore, I define
Critiquing Principles as a subset of the general principles. The Critiquing Principles consist
of principles that I observed to be broken from time to time, either in the initial statement
or after a few revisions. I ended up reducing from 19 general principles to 13 Critiquing
Principles. I have used the Critiquing Principles as a base to form requests for revision (RRs),
critiques (CRs), and explanations (ERs), similar to Bai et al. (2022). The information in the
general and Critiquing principles, mainly come from the general guidelines discussed in
Section 2.1, whereas the actual wording of both the general and Critiquing principles is
something I have devised myself, mainly by using techniques described in Section 4.2. My
Critiquing Principles are shown in Figure 3.3.

3.2.2 Answer-Refine setup

I will now introduce the first setup that uses machine-generated critiques.
The easiest extension from DR is to only rewrite a statement if the current critiquing principle
is broken (Figure 3.1). This becomes the first task we use a Critiquer LM for. The
Critiquer is the part of the setup I rotated: using GPT-4 or Vicuna. As in Constitutional AI,
I have randomly drawn a Critiquing Principle to assess the statement on. The Critiquer is
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Fig. 3.3 My Critiquing Principles

provided with a Critique Request (CR): asking if the specific principle is satisfied or not. If
the principle is broken, the Writer is given the RR belonging to the same principle as the CR
when asked to revise.
For example, the CR corresponding to the RR shown above is:

Does the statement break the rule ’only mention the defendant’s age if it is outside of the
interval 30-79’? Make sure to think carefully about what is said in the input story VS what is
said in the statement.

Again, only the first part is principle-specific, and the last part is something I found helpful to
add to all CRs. To get the Critiquer to provide a critique, I also use a prompt to let it know
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what kind of output I want, as I did with the RRs. Such details can be found in Appendix
A.1.3.
After a statement has been revised based on a principle, the revised statement is sent back
to the Critiquer, which decides if the same principle is still broken, or if it has now been
satisfied. The statement is revised until the current principle is satisfied, and then, I move on
to the next random Critiquing Principle.
This setup is shown in Figure 3.1, and I have called it Answer-Refine. We can choose to do
specifically one, or more, iterations through all the Critiquing Principles, or to stop when all
principles are considered to be satisfied.

3.2.3 Answer setup and Answer-Explain setup

A slight expansion of Answer-Refine, is adding an explanation to why a principle is broken
or not, and sending this information to the Writer for revision. This explanation can either
be provided by the Writer (Figure 3.4a), or it can be done by the Critiquer at the same
time as deciding if a principle is broken or not (Figure 3.4b). I call these setups Answer and
Answer-Explain, respectively. If done by the Critiquer (Answer-Explain setup), I prompt
the Critiquer with the same CR as in Answer-Refine, but change the part specifying how
I want the output to look, to include an explanation (details found in Appendix A.1.3). If
the explanation is provided by the Writer (Answer setup), I prompt the Critiquer with
the same CR as in Answer-Refine, and then prompt GPT-3.5 Turbo with an Explanation
Request (ER), corresponding to the same Critiquing Principle as the CR. For example, the ER
corresponding to the CR, RR examples shown above (3.2.1, 3.2.2), is:

How old is the defendant according to the input story? Does the statement say how old the
defendant is? Answer this part separately first. The rule ’only state the defendant’s age if it
is outside of the interval 30-79’ IS broken: explain why.

I also send in a prompt specifying what kind of output I want. Together, the corresponding CR,
ER, RR constitute one full principle in what would be the constitution used in Constitutional
AI.
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(a) Answer-setup. The Critiquer decides if a principle is broken or not. If the principle is
broken, we get a different model to provide an explanation for why it thinks that principle is
broken. Here, we use the same LM for writing, revision, and providing this explanation. The
explanation is used as input to do revision.

(b) Answer-Explain setup. The Critiquer decides if a principle is broken or not, and also
provides an explanation of why it came to this answer. This explanation and answer is fed to the
Writer for revision if the principle appears to be broken.

Fig. 3.4 The Writer receives an explanation of why a principle is broken.
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3.2.4 Discuss setup

Fig. 3.5 Discuss-setup. The Critiquer does not provide a specific answer to whether the
current principle is broken or not. Instead, it provides a discussion of that principle, that
is used for revision. The loop must be stopped: after one or multiple loops through the
critiquing principles.

An alternative to providing the revision Writer with a clear critique and explanation
of a principle as in Section 3.2.3, is to provide the Writer with a general discussion of the
principle produced by the Critiquer, that does not say whether the principle is broken or not
(Figure 3.5). This is somewhat similar to the DR setup because the statement is always revised
for each Critiquing Principle, and we have to stop after a number of loops through. But in
this Discussion setup, the Critiquer provides the Writer with additional information for
the revision: a discussion. The discussion itself should contain quotes relevant to the current
principle being evaluated, from the input story and statement at hand. It should then discuss
whether there are any discrepancies between the input story and statement, or if there are
other note-worthy things about the input story or statement that could contribute to deciding
whether the principle is broken or not. To elicit this response, I prompt the Critiquer with
the same CR as previous setups, but add a prefix to the prompt that describes the style I want
the output to have. Using this setup, the Writer is given specific parts of the statement to
revise, and more context about what it should revise there. This will give the Writer more
information for revision than in the DR case, and the method will rely less on the Critiquer
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providing the correct answer for whether a principle is broken or not: since the statement
is always revised. However, the Critiquer must present relevant quotes and provide a
discussion good enough to be useful to the Writer. I call this setup Discuss.

3.3 Criteria for a good plea in mitigation

Based on sentencing guidelines and advice from legal professionals discussed in Section
2.1, I have devised a set of general principles I want the finished plea in mitigation to hold
(Hayler; Motor Lawyers Ltd; Sentencing Council, a, 2014, 2017, 2019). In addition to what
was discussed in Section 2.1, the general principles include some points to avoid common
mistakes made by GPT-3.5 Turbo. For example, I want to avoid the statement referring
to its input; adding untrue information; or emphasizing that the defendant is representing
themselves: the judge already knows that the defendant is self-representing, so it is redundant
for the statement to mention this fact. I end up with the general principles shown in Figure
3.6

There are a few things worth noting about these principles.
Firstly, I have added a point about the desired length of the statement. It is important that
the statement is long enough to properly explain the offense and the defendant’s personal
circumstances. The input to the model is typically quite short, so I want the output to expand
the information it gets in, without adding false information. The initial statement (Figure
3.2a), often contains some information that is not supported by the input story, and that
should therefore be removed in later versions of the statement. Because some information
will be removed, it seems reasonable that the initial statement should be even longer than the
length of the desired final statement. I have therefore chosen to say that the initial statement
should be at least four times as long as the input.
Secondly, there are two added points about not exaggerating emotions such as remorse. This
is in contrast to the guidelines in Section 2.1, which state that genuine remorse is a mitigating
factor. Because of this, one could argue that the output should always aim to show genuine
remorse. But because of ethical considerations, we have chosen to aim for a statement that
reflects the emotions portrayed in the input story. Without any mention of which emotions to
portray in the output, GPT-3.5 Turbo tends to always add some feeling of deep remorse to the
statement. This is why I have added two points specifically about not exaggerating emotions.
Lastly, I have defined mitigating age as younger than 30 and older than 79. The sentencing
guidelines mention age as a mitigating factor when it affects the defendant’s responsibility
in the offense or if the defendant’s youth implies that the defendant is immature, but they
provide no specific numbers (Sentencing Council, a, 2019). This implies that they in fact
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Fig. 3.6 My general principles.

have no hard limit on youth or old age, but I have tried to set a reasonable limit to ease
working with and evaluating this principle for a LM. In 2017, it was argued in a case in the
UK that a sentence given to a man 81 years of age failed to properly consider his age as a
mitigating factor (Doughty Street Chambers). I have therefore included 81 as an age with
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mitigating weight and set the lower bound for old age to 79. The United Nations views youth
as ages 15 to 24 but points out that this is no clear definition, and that other institutions use
other ages (United Nations). I chose to round this up to 30. Then all together, my mitigating
ages are up to 30 and older than 79.

This chapter has talked about how I have used background material to create a methodol-
ogy for creating a plea in mitigation that satisfies several criteria. The chapter has introduced
six different setups, namely Initial, Direct Refinement, Answer-Refine, Answer, Answer-
Explain, and Discussion.



Chapter 4

Data, Prompt Engineering and
Evaluation Method

This section will present additional details regarding the experimental setup. I will start by
describing how I have made a new dataset containing pairs of input stories and statements
and labeled it for whether Critiquing Principles are broken for these pairs. I will then discuss
how I have generated the prompts given to the LLMs. Finally, I will describe how I have
done evaluation of the experiments.

4.1 Data

I am not aware of any dataset containing statements for pleas in mitigation, so I have made
a new dataset for my task. The data consists of 15 input stories, 281 statements, and 281
corresponding binary labels. This was later split into separate sets for training and validation.
I will now describe each component of the dataset I have created.

4.1.1 Input stories

I chose to use input in the form of a story to send to the model, rather than some form of
questionnaire. The thought behind this is that using the framework should feel more like
a conversation with a chatbot than using a tool that should automatically provide you with
your perfect statement. (More about this topic in Chapter 6).

The input stories are meant to be examples of what a defendant might write to a LLM
when they want help with writing a plea in mitigation. Each story should contain all necessary
information that our methods need to write a good statement: details about the crime, the
defendant, and all the defendant’s mitigating factors. The active elicitation of this information
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is however beyond the scope of this work, and is left for future work to look into (see Chapter
6). I have tried to make the input stories realistic and included a variety of different offenses,
including some of the most common offenses in the UK (Sentencing Council, b). We have
chosen to limit the scope to only look at cases where the defendant is pleading guilty for a
single offense. In addition to varying the crime the defendant is charged with, I have varied
the mitigating factors present in the case, and how these factors are presented (clearly or
indirectly). All input stories are provided in Appendix A.1.1.

Language is also an important part of an input story, as a LLM is sensitive to language.
We believe that using a tool for assistance in writing a plea in mitigation will be most useful
to someone who lacks legal expertise, and who might struggle with writing good texts in
general. I can therefore not expect the input stories to be very well-written, and I have tried to
mimic this by using a quite unprofessional but still varied tone and language in the different
stories.

I have made a total of 15 input stories. Ten of these will be used for evaluation, in the
experiments in the next chapter, and the other five are used for training. I want the training set
to include examples of principles being "broken both ways" in order to ensure some diversity
and hopefully make the set more general. Most principles can be broken in two ways, for
example, the principle concerning a defendant’s character is broken, both if a statement
includes character-building information that is untrue, and if the statement fails to mention
character-building information from the input story that is relevant. To achieve such diversity
in breaking principles in the training dataset, I have based all input stories in the dataset on
the 5 basis training stories, but some data points have added or subtracted information in the
input story.

4.1.2 Statements

One input story has many different possible statements that can satisfy all the general and
Critiquing Principles: one input does not have a specific target. This is the reason why we
don’t want to train a model to go from an input story to some optimal final statement. Instead,
we want to go from an input story to a good statement that satisfies our principles, but we
don’t want to constrain the statement more than that. To get there, we use self-critique and
Constitutional AI to critique and revise the statement until it is the way we want. What we
need is therefore good critiques, that tell us when and possibly why a principle is broken.
Because we will start with statements that are not perfect, and gradually move to better
versions, the training dataset needs to mimic this. This is why the statements in my dataset
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are not necessarily great from the start. Rather, they are examples of initial statements
generated as in Figure 3.2a, and revised statements that have been rewritten one or multiple
times, from different principles. In this way, the statements in the dataset should represent
statements that the Critiquer will later be asked to critique, so when I train the Critiquer
on this dataset, I am training it on data similar to what it will see at inference.

4.1.3 Labeling

One data point consists of one statement, the input story from which it was generated, one of
the Critiquing Principles, and a binary label indicating if that principle is broken or not for
the specific story-statement pair. In this way, one story-statement pair can result in multiple
data points because different principles are labeled. The dataset consists of some unique
story-statement pairs, some pairs that all principles have been evaluated on, and other pairs
that only some principles have been evaluated on. Because of this, it is not the case that every
sample consists of a unique input story-statement pair.

Manual annotations

Labeling of data points was initially done manually. These labels have not been checked
by anyone else, so there might be occasional mistakes in labeling. Also, it is not always
clear whether a principle is broken or not. For example, the Critiquing Principle concerning
not overemphasizing emotions: how different should the emotional tone be, or what does it
take to sufficiently change the emotional tone in order to break the principle? I chose to be
relatively accepting and did, for example, not count an extension from ’feeling remorseful’
to ’feeling extremely remorseful’ as overemphasizing. I did try to keep a firm line for this,
but other labelers might assign different labels. Figure 4.1 shows the distribution I ended up
with, concerning how many times each principle got a broken and satisfied label. We can
observe that there is approximately the same number of broken and satisfied principles. More
specifically, 149 input story-statement pairs were labeled as satisfying a principle, and 132
story-statement pairs were labeled as breaking a principle. This will hopefully help prevent
any biased against answering yes or no. I can however see a difference per principle, in
the distribution of broken or satisfied annotations (Figure 4.1). For example, the principles
concerning "irrelevant" information and previous criminal "record" have a larger proportion
of "not broken" annotations, whereas the principle concerning making "amends" has a larger
proportion of "broken" annotations. This imbalance is not ideal. There is also a difference in
how many samples there are of each principle, which might not be ideal.
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Fig. 4.1 Distribution of data over the Critiquing Principles. Each bar corresponds to one
Critiquing Principle as labeled on the x-axis. The red part of the bar shows how many
samples in the dataset were labeled as breaking that principle. The green part of each bar
shows how many samples in the dataset were labeled as satisfying that principle.

Using GPT-4

As discussed in section 3.2 I want the Critiquer to be able to answer whether a principle
is satisfied, explain that answer, and provide a discussion about the principle. My manual
annotations provide data that can be used to learn to answer whether a principle is satisfied
or not, but they cannot be used to learn explanations or discussions. It would take a lot of
time to make such data manually, so I have used GPT-4 to create a dataset of explanations
and discussions. In addition to this, I have made binary labels using GPT-4, for comparison
with my own labeled data.

I have used GPT-4 to generate data for answers, explanations and discussion. By just
asking GPT-4 to answer whether a principle is satisfied or not, I observed quite different
labels than my annotations: only 50% were the same, on 20 random samples from the training
data. By asking GPT-4 to first provide an explanation and then giving an answer, the answers
on the same 20 samples matched my annotations on 75% of the samples. Going through
GPT-4’s explanations and answers, it does seem to catch small mistakes I made in my dataset,
but it also misclassified some samples. This improved performance is likely a consequence
of allowing the model to reason before giving it’s final answer, as in Chain-Of-Thought
prompting (Wei et al., 2022). Because it seems like the best answers come from generating
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an explanation first, I have used these answers as binary labels for a dataset in the same form
as my manual annotations.
The data containing explanations (and answers) will be used to train Vicuna13 for an Answer-
Explain setup as shown in Figure 3.4b, and the data containing discussion will be used in a
Discussion setup shown in Figure 3.5. To create the dataset for discussion, I prompt GPT-4 to
pull out relevant quotes from the input story and statement, and discuss the relevant principle
based on the quotes, without specifically answering whether the principle is satisfied or not.
After inspection of some samples, it seems to do a good job at extracting relevant quotes,
but sometimes provides an answer rather than a discussion. The data containing only binary
annotations will be used to train Vicuna for both the Answer-Revision setup and the Answer
setup. I will then have separate models trained on the binary annotations GPT-4 made, and
the ones I made.

4.2 Prompt Engineering

Language is important in the input stories, but also in all other prompts we pass to the LMs.
The phrasing and contents of a prompt are essential in many important parts of the framework,
like CRs, ERs, and RRs. I have done discrete prompt engineering, and not looked at continuous
prompt tuning (Li and Liang, 2021).

This work does not aim to study prompt engineering, so even though it is an important
part of my work, it has not been my main focus. I have spent time to see that my models
seem to have an understanding of what my prompts ask or want, but I have not sought to
optimise any of them. Therefore, when I say here that a prompt "seemed to work", I mean
that the model seemed to understand what I wanted to achieve or look at with the prompt:
not necessarily that it provided the correct answer. An example of this can be found in the
Appendix (Figure A.14).

There is a jungle of tips and tricks for prompt engineering available online, but I have
mainly stuck to established well-researched methods. However, prompt engineering seems
to require a bit of creativity as well, so the final prompts have also been affected by trial and
error. Appendix A.1.3 contains most of the prompts I have used in this work.

In general, empirical research by Mishra et al. (2021) shows that reframing a prompt to
use low-level words that don’t require much background knowledge and breaking down a
task into simpler subtasks, can improve the response from a LLM. They also pointed out
that using bullet points for descriptive attributes can lead to a boost in performance. I have
followed these tips by in general trying to formulate my prompts as easy and efficiently as
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possible, being straight-to-the-point with what I want. My language in the prompts is nor-
mally quite basic, and for words that might require some more knowledge to fully understand,
I provide examples of what that word can mean (e.g. exemplifying self-improvement). The
only exception to this is when I ask GPT-3.5 Turbo to generate an initial statement for a plea
in mitigation. GPT-3.5 Turbo seems to have sufficient background knowledge about what a
plea in mitigation is, because it has no trouble writing a statement in the correct format. Our
task is already split into simpler tasks in most setups, by splitting the question "Does this
statement break any principles?" into the simpler question "Does this statement break this
specific principle?". I also found it useful to split some of the CRs into sub-questions before
asking the Critiquer to answer the full question (but all in the same prompt). For example
in the CR concerning age:
If the statement mentions the defendant’s age: is that age either in the interval 30-79, or
is the age different to the age mentioned in the input story? If the defendant’s age is not
mentioned in the statement: is the defendant’s age less than 30 or older than 79 according to
the input story?
This was helpful when using GPT-4 as my Critiquer, but seemed to make the smaller LLM
Vicuna a bit confused (Figure A.15). In general, I observed that Vicuna and GPT-4 benefitted
from different types of prompts. It was also noted in e.g. Kojima et al. (2022) that prompts
that work well for very large LMs don’t necessarily work well for smaller LLMs. The general
trend I observed was that Vicuna needed concise, shorter prompts, whereas GPT-4 benefited
from more elaborate prompts that allowed me to be more specific. Because of this difference,
I devised one set of CRs I used when my Critiquer was GPT-4, and another set of CRs for
when Vicuna was the Critiquer.
Another conscious choice to improve my prompts, was to enter my descriptive general
principles as a list with bullet points, and to use bullet points in the automatic evaluation of a
statement (see Section 4.3). This all led to prompts where the output seemed to better match
my intentions.

Chain-Of-Thought (COT) prompting has been shown to improve the output for LLMs on
complex tasks (Wei et al., 2022). It works simply by adding a phrase like "Let’s think step
by step" at the end of a prompt. This helps the model reason about the task, and it has been
shown that a model is more likely to end up with the correct answer because of it (Kojima
et al., 2022). COT prompting allows the model to first generate relevant information about
its task, that might not be clearly stated in the original prompt. The model might then draw
intermediate conclusions before it provides a final answer to the question.
I have used COT prompting with "Let’s think step by step" in my ERs, where I want exactly
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the type of answer that a COT prompt typically provides: a step-by-step explanation leading
to a final answer.
But I have also used the idea behind COT prompting other places. Firstly, for the Answer-
Explanation setup (3.4b), I ask the model to think about the question step-by-step, and
provide its final answer at the end of the response. This seemed to achieve better final
answers than asking for the answer first, and an explanation later, as I also noted when
generating GPT-4 data in Section 4.1.3. Secondly, I prompt the discussion output in the
Discussion-setup (Figure 3.5) to also think step by step, and include relevant quotes. The idea
behind this, is that it could work similarly to a COT prompt, just without the final answer. In
this way, the Writer would have an easier job in determining first if the principle is broken,
and second why/where it is broken.
However, as Kojima et al. (2022) mentioned, COT prompting does not have the same positive
effect on smaller models. I did not observe any harm by including it in the Answer-Explain
setup (Figure 3.4b), but also did not see a positive effect from it when using Vicuna.

A challenge that arose with all models, was a confusion about what is stated in the state-
ment compared to what is stated in the input story. The story and statement are separated in
the input by "###", which is a standard separation token for Vicuna, and is also recommended
as a separation token for GPT-3 models (Shieh, 2023). But the models still appeared to be a
bit confused. Adding the sentence "Make sure to think carefully about what is said in the
input story VS what is said in the statement." seemed to improve the problem, but I still
observed instances of confusion between content in the input story and the statement.

Most of the prompts I used can be found in Appendix A.1.

4.3 Evaluation method

The main objective of this work is to get good final statements for a plea in mitigation. I
therefore want to do evaluation on the final statements when using the different models and
setups described so far.

Akyürek et al. (2023) evaluated the final output, and used the average of some standard
metrics: ROUGE -1, -2, and -L to compute evaluation scores for the final output (Lin and
Och, 2004). To use such standard metrics for evaluation, you compare the model output to
the target output. Because there is a very large set of optimal statements for a given input
story, and this set is highly varied, simplistic metrics like ROUGE will likely not be able to
capture the important nuances that decide if the principles I want to enforce are satisfied or
broken. It does therefore make more sense to have some sort of evaluation where I penalize
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the statement for each Critiquing Principle that is broken in the final statement. This would
be very tedious to do by hand, as I have later evaluated a total of 530 statements. I have
instead made an automatic evaluation system using GPT-4.

The GPT-4 auto evaluation takes in an input story and a statement, and is given a list of
assertions corresponding to each Critiquing Principle. It is then asked to go through each
assertion and decide if the story-statement pair satisfies or breaks each principle. The exact
formulation of these assertions can be seen in the Appendix (Figure A.12).
To see how well this automatic evaluation might perform at inference time, I tested it on
20 random samples from the training data. Each sample was tested on all 13 Critiquing
Principles, resulting in a total of 260 tested principles for this small initial evaluation. For
each broken principle, I added one penalty point to the current story-statement pair. Com-
pared to my annotations, the evaluation done by GPT-4 was typically very close to mine.
50% of the story-statement pairs were given the same number of penalties as I assigned
to them, and 45% of the pairs were only 1 penalty point away from my annotations. This
means that there was only one sample where the auto evaluation was further away from my
annotations, at which point it assigned 2 penalty points less to the story-statement pair than
what I assigned. I have considered this to be good enough that I can use it as an indication
of the true quality of the statements, even if it is slightly noisy. A closer look at which
principles are considered broken showed that the automatic evaluation usually catches the
same principles as my annotations, but it does sometimes mix up which principles are broken.
The most common principles it failed to classify as broken were "amends" (5 times), and the
principle concerning "self-improvement and prevention of future crime" (4 times). The most
common principles it falsely identified as broken were the principles concerning "emotions",
"character", and "hallucination" (3 times each).
The test samples from the dataset ranged from one to six penalty points according to my
annotations, and from one to seven in the evaluation done by GPT-4. The maximum number
of penalty points possible to get is 13, due to the 13 Critiquing Principles. To ensure relatively
consistent results, I used a very low temperature in GPT-4. I also attempted to use GPT-3.5
Turbo for this automatic evaluation, but I observed worse results both with respect to the
number of penalties and which principles were broken, so I did not investigate further.

In this chapter, I have discussed some properties of my dataset and how it was generated.
Most importantly, each sample in the dataset consists of an input story, a statement, and
a label. There are different types of labels, but they all say something about whether the
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input story-statement pair seems to satisfy or break a specific Critiquing Principle. There are
three types of labels: binary yes/no, yes/no labels with an explanation, and a pure discussion
without a yes/no answer. The chapter has also described how I have generated the prompts I
have used, as well as the evaluation method I have used to evaluate statements. The most
important thing to note here is that I assign each statement a score between 0-13, where a
higher score indicates a worse statement.



Chapter 5

Results

This chapter will show the results of using the methodologies presented in Section 3.2.

5.1 Fine-tuning Vicuna

I will begin by discussing the fine-tuning of Vicuna13. For all fine-tuning I have consistently
used a validation set size of 50 (randomly picked samples from the dataset, but using the
same seed every time), and constant LoRA hyperparameters r=8, α=16, dropout=0.05, as
these seem to be recommended in the Vicuna GitHub repository (Zheng et al., 2023). Also
following the recommended default in this repository, I only applied LoRA weights to the
query and value vectors in the attention layers.

In both the setups Answer-Refine (3.1), and Answer (3.4a), the task of the Critiquer is
precisely the same: provide a yes/no answer to whether a principle is broken or not. Hence,
the two setups use the exact same Critiquer (either GPT-4 or Vicuna). For Vicuna, the
model was trained on data with binary labels (yes or no). I had two possible datasets for
this: my own annotations, and GPT-4 annotations (as discussed in Section 4.1). I trained one
model on my annotations, and another model on GPT-4’s annotations. The training curves
are shown in Figure 5.1.
For the Answer-Explain setup, the Critiquer needs to provide both an explanation and
an answer, so I trained on the GPT-4 data providing this. The Discussion setup needs the
Critiquer to provide discussions, so I trained on the dataset where GPT-4 has provided
discussions. The training curves for Vicuna used for Answer-Explain and Discuss are shown
in Figure 5.2.
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Fig. 5.1 Training curves for the training set and validation set, training Vicuna13 on data with
yes/no answers. The top plot is training on my annotations, and the bottom plot is training on
GPT-4’s annotations.

I tested a variety of hyperparameters, but achieved the lowest loss on the validation set
with the following hyperparameters:
Vicuna13 trained on my yes/no annotations: learning rate = 8e-4, linear lr scheduler, 5
warmup steps, epochs=3, batch size = 1, 4 gradient accumulation steps.
Vicuna13 trained on GPT-4’s yes/no annotations: learning rate = 8e-4, linear lr scheduler, 5
warmup steps, epochs=5, batch size = 1, 4 gradient accumulation steps.
Vicuna13 trained on GPT-4’s explanation+yes/no: learning rate = 8e-5, linear lr scheduler, 5
warmup steps, epochs=6, batch size = 1, 4 gradient accumulation steps.
Vicuna13 trained on GPT-4’s discussion: learning rate = 8e-5, linear lr scheduler, 5 warmup
steps, epochs=6, batch size = 1, 4 gradient accumulation steps.
I trained using the HuggingFace Trainer, with the standard Cross-Entropy loss, and Adam
optimizer. As we can see from Figure 5.1 and 5.2, the loss goes down on both the training set
and validation set, so the models are learning something. Validation loss and training loss are
relatively similar and the validation loss does not increase, so there is no sign of overfitting.
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Fig. 5.2 Training curves for the training set and validation set, training Vicuna13 on data
with explanations + yes/no answers (top plot), and training on data with only discussions
(bottom plot).

5.2 Basic evaluation of all setups

First, I have tested all setups by doing inference and evaluation on 20 samples: 2 times for
each of the ten test input stories, for each setup. Each setup ran one loop through all principles
before I evaluated the resulting statement (except for the Initial setup where there are no
revisions). I also chose to allow a maximum of three revisions per principle per loop for the
setups that require the Critiquer to say that a principle is satisfied before moving on to the
next principle. This was because I observed that some setups got "stuck" on one principle,
claiming it was not satisfied, possibly giving an irrelevant reason. When the revision did not
revise what triggered the response from the Critiquer, this led to very long, unnecessary
sequences of revisions that often appeared to do more harm than good to the statement. I
have used this limit for all evaluations in this work.

Table 5.1 shows the results of this evaluation. The rows in Table 5.1 represents different
LLMs used as the Critiquer, and the columns represent the different setups from section
3.2. The numbers show the Average number of penalties given to the Critiquer-setup
combination, with the Standard Error (SE) shown inside the parentheses.

I have chosen to use the average number of penalties, as well as the Standard Error (SE)
of the penalties, to discuss these results. The SE tells how accurate the estimation of the
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Table 5.1 This table shows results for all combinations of setup and Critiquer model
(untuned / trained on the different datasets from 4.1). The subscript next to Vicuna indicates
if the Critiquer was trained on annotations made by me or by GPT-4. The numbers show the
Average number of penalties given to the Critiquer-setup combination, with the Standard
Error (SE) shown inside the parentheses. The bold numbers indicate the configurations I
have investigated further.

Critiquer
Setup

Answer-Rewrite Answer Answer-Explain Discuss

GPT-4 2.6 (0.43) 2.45 (0.42) 1.7 (0.37) 2.35 (0.34)
Vicuna13 3.4 (0.25) 2.65 (0.39) 3.1 (0.39) 2.75 (0.39)
Vicuna13GPT4 2.9 (0.36) 3.05 (0.49) 2.85 (0.43) 3.45 (0.43)
Vicuna13mine 2.7 (0.32) 2.75 (0.45)

Initial DR

None 3.35 (0.36) 2.35 (0.26)

mean is, considering I have only evaluated some samples from a possibly infinitely large
population of statements. I have chosen to say that two estimated mean values are relatively
far away if the interval of one mean±SE does not contain the other mean. 1 If this is the case,
it is reasonable to assume that the one mean is in fact lower or higher than the other. If this is
not the case, I cannot conclude with anything other than that the means are probably quite
similar.

The best-performing configuration in Table 5.1 is the GPT-4 Critiquer using the
Answer-Explain setup, by a quite large margin (larger than 1SE). The marginally worst
configuration is the fine-tuned Vicuna trained on discussion data. All configurations have
achieved a mean number of penalties in the range of 1.7 to 3.45.

Comparing the results of Vicuna to its fine-tuned versions, I note that there does not
seem to be much improvement. I know from the learning curves presented above that the
fine-tuned models have indeed learned something, as the validation loss decreases, but this
learning did not make a significant impact on the final results. There are several possible
reasons for this. Firstly, because the validation- and training datasets consist of the same
number of limited input stories, and statements, whereas the input stories and statements I
test on are different. Therefore, the reduced loss on the validation set I observed in Figure

1For a normal distribution with independent samples drawn from it, I could have used the SE to make a
confidence interval for each mean (typically ±1.96 SE), but since this is not the case for my samples, I have
not done that here. Looking at ±2 SE, no results in Table 5.1 are that far from all other means, so I use ±1SE
instead.
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Fig. 5.3 Two examples of bad discussions provided by the fine-tuned Vicuna13. It shows
two examples of relevant sections in a statement, and the critique Vicuna provided for the
statement is shown below. Both examples are based on Jack Palmer’s input story. The
top example shows that the statement adds untrue information by claiming Jack has done
voluntary work, and the critique below fails to include that as a relevant quote, and concludes
that the statement does not add untrue information.
The bottom example is somewhat similar, showing that the statement says that the defendant
has a clean record with the exception of a speeding ticket. However, the discussion provided
by Vicuna fails to pick out the relevant quote, and ends up with the conclusion that the
statement implies that the defendant does not have a clean record.
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5.1 might be more strongly correlated to the reduction in loss on the training set than what
it would be for the test samples. I can therefore not expect a performance gain as strong as
indicated by the validation set. Secondly, the Standard Errors are high, so it is still possible
that the fine-tuned models are better than the original Vicuna.
Thirdly, Gudibande et al. (2023) claim that training smaller LLMs on data generated from
larger LLMs will mostly make the smaller model learn the style of the output from the larger
model, but not increase factual accuracy. This coincides with some of my observations:
Vicuna trained on Discussions seems to learn the appropriate form of extracting quotes from
the input story and statement, followed by a discussion, but the actual quotes picked, are
sometimes irrelevant. Two examples of this are shown in Figure 5.3. This is comparable to
what Gudibande et al. (2023) speaks of as factual accuracy, and is a possible reason why
Vicuna tuned on discussion data from GPT-4 appears to have a higher value for mean number
of penalty points: more than 1SE above the estimated mean value of the original Vicuna.
Gudibande et al. (2023) also noted that fine-tuning sometimes could worsen performance.

The Answer-Explain setup has a slightly lower mean than the original Vicuna, but cannot
be assumed to have an improved performance. In this setup, I rely on a yes/no answer in the
critique to be able to decide if the statement should be revised or not. Vicuna sometimes fails
to provide this format, as exemplified in Figure 5.4. When this happens, I have chosen to
interpret this as a principle not being broken, to not risk sending an explanation of why a
principle is satisfied into revision. The Vicuna tuned on explanation-answer data (including
the word yes or no), has fewer instances of producing answers in an unwanted format. But
from my observations, the quality of the explanations themselves seems similar to those of
the original Vicuna. This also coincides with observations from Gudibande et al. (2023), as
tuning Vicuna here has led to an improvement in the style of the answer, but maybe not the
factual quality. The improved style might slightly improve the overall performance of the
configuration, but without better quality in the explanation, this is a possible explanation for
why this configuration did not achieve results more similar to GPT-4 on Answer-Explain.

Overall, I note that all average numbers of penalties (±1 SE) are above 1 and below 4
(see Table 5.1). Out of 13 possible penalties, this is not very high, but it is also not very close
to 0. To do further analysis, I have picked out a subset of the configurations to perform more
inference and evaluation on. These configurations are those marked in bold in Table 5.1.
The configurations are chosen because I want to do further comparison of how the methods
have or have not improved on the baselines: Initial and DR. I also want to further explore the
configuration that appears to be the best one overall: GPT-4 on Answer-Explain. In addition,
I want to compare the different Critiquers on the same setup. For this, I have chosen the
setup where using GPT-4 and an untuned Vicuna had the closest number of average penalties,



5.3 Further analysis 38

Fig. 5.4 Two examples of Vicuna producing answers in an unwanted format in the Answer-
Explain setup (not starting or ending with yes or no).

as this is where I had most hope of Vicuna being as good as or possibly better than GPT-4:
this is at the Answer setup. To further investigate this, I will consider all four configurations
for the Answer-setup.

5.3 Further analysis

Now considering my seven chosen configurations, I have evaluated these on 50 samples in
Table 5.2 and 5.3. In Table 5.2, each column represents a configuration (combination of setup
and Critiquer). In particular, it shows my two baseline setups, and the best-performing
configuration: GPT-4 Critiquer using Answer-Explain. Each row in the table corresponds
to one input story, except for the bottom row which shows statistics over all input stories
combined. In addition to looking at the updated estimated mean and SE of the configurations,
I look at statistics for each input story. In particular, I look at the mean number of penalties
and the difference between the highest and lowest number of penalties scored for each input
story in each setup.

From Table 5.2, I note that the best configuration achieves an average number of penalty
points of 1.56, and the worst performing configuration has an average of 3.38.
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Table 5.2 Shows the two baseline setups: Initial and Direct Refinement, compared to
what appeared to be the best performing configuration in Table 5.1: GPT-4 and Answer-
Explain. Each configuration is evaluated over 50 samples: five times for each input story.
The table shows the mean number of penalties given to each input story for each setup,
and the difference between the highest and lowest scoring penalties for that input story and
configuration. The bottom part shows the mean number of penalties and SE over all input
stories, for that configuration.

Input story
Initial50 DR50 GPT−4 AE50

mean diff mean diff mean diff

Jack 5.8 2 2.8 5 1.0 3
Charlotte 4.0 2 2.8 3 1.8 2
Robert 3.8 6 3.0 2 2.0 5
Aleksander 3.8 4 2.8 2 2.0 2
David 3.8 1 3.2 1 0.4 1
Paul 3.4 3 3.0 2 2.0 2
Olivia 3.2 5 2.4 4 1.0 4
Melissa 3.0 6 1.6 2 2.2 4
Lauren 2.2 5 2.0 3 2.2 3
Chloe 0.8 3 2.4 3 1.0 3

mean SE mean SE mean SE

3.38 0.27 2.6 0.17 1.56 0.20

Looking at the Initial column, I see that some input stories seem to be more difficult to make
initial statements for than others. The average number of penalties given to each story’s initial
statement ranges from 5.8 to 0.8, as an average of five on each story. This difference between
difficult/easy stories causes uncertainty around the mean value, especially in the Initial setup.
Looking at the difference between what seems to be the most difficult input story: Jack
Palmer, and the easiest input story: Chloe Mills, there are some clear differences (all input
stories are provided in Appendix A.1.1). Jack’s story does not include many mitigating
factors, and even though he has a clear record, the factor is complicated by a speeding ticket.
Chloe’s story, on the other hand, includes several mitigating factors, as well as a longer
description of the crime. This indicates that it’s easier to produce good statements for input
stories that provide more information and more mitigating factors. By qualitative inspection,
this appears to be the case because without much information, the Writer tends to invent
untrue mitigating factors, resulting in multiple broken principles. There is also variance
in how many penalties are given to the same story, using the same setup. This also causes
a higher SE, and shows that the Initial setup does not reliably produce statements of any
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quality.
Secondly I look at the DR setup. Here, the highest average penalty for a story is 3.2: lower
than for the initial setup. There seems to be less separation between "difficult" and "easy"
input stories, resulting in a lower SE than for the initial setup. However, there is still variation
between the number of penalties given the final statement for each run on the same input story,
although this variation appears to be slightly lower than in the Initial setup. Combined, this
causes the overall SE for DR to be much lower than for the Initial setup. The mean number of
penalties per statement is also lower, providing more confidence to the hypothesis that the DR
setup provides better statements than the initial setup. Hence, the Revision Requests (RRs)
appear to be a helpful part of the setup.
Third, I look at using GPT-4 as a Critiquer in the Answer-Explain setup. Notice that the
number of penalties is reduced to a maximum of 2.2 for all input stories. This indicates that
this configuration does equally well on most input stories, independent of how “difficult”
they may be. There is still variance in the number of penalties given to each story using the
same setup, varying at most with 5 penalty points for Robert’s input story. So even though
this configuration on average provides relatively good statements, it is not 100% reliable.
GPT-4 using Answer-Explain achieves an average of 1.56 penalty points per statement,
and a relatively low SE of 0.2, meaning the true average is quite likely to be below 2. This
also means that the average number of penalties for GPT-4 on Answer-explain is further than
5 Standard Errors away from the DR setup, indicating that this is a significant improvement.
Overall, it seems like the DR setup improves the initial statements, but the GPT-4 Answer-
Explain configuration improves the initial statements the most. After evaluating 50 samples
on these three configurations, they are all separated by far more than ±1SE, which implies
that the methodology used indeed makes a difference on the final statements.

Table 5.3 shows the evaluation done on the remaining four setups I decided to further
investigate. The columns represent different Critiquers used in the Answer setup, and each
row corresponds to one input story (except for the bottom row which shows statistics over
all input stories combined). Also in this Table, I consider the metrics of mean number of
penalty points per input story and for each configuration overall; the Standard Error for each
configuration; and the difference in penalty points between the highest and lowest scoring
run for each input story in each configuration. The table shows that GPT-4 achieves the best
performance in the Answer setup, with a mean of 2.2 penalty points. The fine-tuned Vicuna
models have the worst mean values at 3.14 and 3.16 penalty points per statement.

First, I look at using GPT-4 as the Critiquer in the answer setup. I note that this
configuration seems to do better at the same input stories that the Initial setup seemed to think
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Table 5.3 Comparing different Critiquer models in the Answer-setup. All configurations
have been evaluated on 50 samples: five samples for each input story. As Table 5.2, I show
the mean number of penalties given to statements for each input story for each configuration
and the difference between the highest and lowest penalties given to that input story and
configuration. The bottom line shows the updated mean number of penalties, and the SE, for
each configuration over all input stories.

Input story
GPT−4 A50 Vicuna A50 Vicuna Amine 50 Vicuna AGPT−4 50

mean diff mean diff mean diff mean diff

Jack 3.6 3 4.2 3 2.8 2 5.8 3
Charlotte 2.6 3 2.4 4 3.6 3 3.4 3
Robert 3.2 4 3.2 6 4.2 6 3.2 5
Aleksander 3.4 1 3.6 2 4.4 3 1.8 3
David 0.8 1 2.2 5 2.8 6 2.6 3
Paul 4.2 4 3.6 2 2.2 3 4.6 3
Olivia 1.0 2 3.4 6 4.0 5 2.0 4
Melissa 0.0 0 3.2 3 4.4 4 2.6 5
Lauren 1.0 2 1.4 3 0.8 2 2.2 4
Chloe 1.4 4 3.4 4 2.2 5 3.4 2

mean SE mean SE mean SE mean SE

2.20 0.33 3.06 0.24 3.14 0.27 3.16 0.25
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were "easy". One reason for this might be that the GPT-4 Critiquer in this Answer-setup
does very little to no revision of the initial statements. On average, this GPT-4 configuration
answers that a principle is broken 1.44 times during one loop through all principles. With so
few revisions, it is not a surprise that the results are quite similar. In contrast, GPT-4 using
the Answer-Explain setup rewrites a statement on average 3.86 times in one loop through
all statements. Despite the low number of revisions, GPT-4 on this Answer setup achieves a
mean number of penalties of 2.2. It is more than 1SE better than the DR setup, which revises
13 times. This indicates that there is a lot of value in the explanations given to the Writer
before revision, and that more revisions do not always result in a better final statement. The
configuration gets a quite high SE, as a result of variance in penalties both between input
stories and between runs of the same input story.
Second, I look at Vicuna and it’s fine-tuned versions. The mean number of penalties is very
similar for the original and fine-tuned versions. One possible explanation for this is that the
Critiquer component in the Answer setup is not very significant. The difference between
using GPT-4 versus the original Vicuna is much smaller here compared to the Answer-Explain
setup, implying that the critique in the Answer setup might not be of as much significance.
Because of this, even though the yes/no answers in the fine-tuned versions of Vicuna might
be better than the original, this will not automatically result in a lower average number of
penalty points. However, some of this smaller gap between the Critiquers might also be
because GPT-4 benefits from Chain-Of-Thought (COT) prompting in the Answer-Explain
setup, and not in the Answer setup. A smaller model like Vicuna13 does likely not benefit
from COT prompting at any point (Kojima et al., 2022). But the fine-tuned models have
learned something, as we again can see from Figure 5.1. Part of what it has learnt is the
form of the desired output: only "yes" or "no". The original Vicuna model often answers
yes or no first, but continues to try to add more words after that, as seen in Figure 5.5. The
fine-tuned models don’t do much of this: they almost always answer only yes or no, as seen
in the training data. This again relates to the claim by Gudibande et al. (2023) that small
models like Vicuna don’t necessarily learn factual accuracy from fine-tuning, but more so the
desired style of the output. Perhaps this is also related to the difficulty of the task to be done,
which even state-of-the-art GPT-4 is not perfect on.

Overall, none of these Answer configurations are close to the performance of GPT-4
using Answer-Explain. The Answer-setup configurations also show variance between runs
using the same configuration and input story, but generally achieve higher penalties from the
automatic evaluation (Section 4.3).



5.3 Further analysis 43

Fig. 5.5 This is an example showing that Vicuna often answers more than only "yes" or "no"
as a critique in the Answer-setup.

To better visualize the results in this section, the average number of penalties given to the
two baselines (Initial, DR), the best configuration (GPT-4 using Answer-Explain), and the
best configuration using Vicuna (Answer, non-tuned) are shown in Figure 5.6. Looking at
this Figure, it is clear to see that GPT-4 Answer-Explain is the superior setup on most input
stories, and performs quite evenly over the input stories. Vicuna Answer and DR also usually
improve on the initial statements, but the improvement is not as clear for Vicuna Answer.

Another general observation worth mentioning, is the faults of the Writer. In this work,
I have focused on improving the Critiquer of the methods, but in doing so, I have also
observed the performance of the Writer. One challenge I had, was getting the Writer
to do revision only where it was told to revise. Sometimes, the revision would change a
part of a statement that did not need to change, resulting in breaking a principle that was
not initially broken. Another challenge was to get good explanations from the Explanation
Requests (ERs). From time to time, the explanations could contradict the decision of the
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Fig. 5.6 Average number of penalties given to different input stories (on the x-axis) and a
selection of configurations (colors). Most configurations improve on the Initial setup.

Critiquer that a principle is broken, and instead argue for why it is not broken. Other times,
the explanations did not correctly identify what caused a principle to be broken, or claim that
something was stated in the input story or statement, even if that was not true. Tuning my
input prompts (Section 4.2) helped in reducing the size of these issues, but they also occurred
sometimes after prompt tuning.

This chapter has shown results of evaluating the setups introduced in Section 3.2. Gen-
erally, it has shown that GPT-4 appears to be the best model for the Critiquer in all
configurations I tried. The fine-tuning of Vicuna mostly led to better models in some respect
(style of output), but this did not always result in lower penalty scores. Most configurations
improved on the initial statement, and GPT-4 in the Answer-Explain setup showed the most
improvement.



Chapter 6

Discussion and Future work

In this chapter I will further discuss some of the results from Section 5.3 by looking at it
from a higher level. I will then discuss the potential of further research on the task of writing
a plea in mitigation. Lastly, I will give a brief conclusion on this work.

The best configuration in Section 5 achieved an average of 1.56 penalty points for a final
statement. Even though this is a big improvement compared to some baselines, it is still not
below 1, which could have possibly been considered low enough to be reliable in this setting.
Even the best configuration achieved a quite varied number of penalty points from the same
input, further adding to the conclusion that the best method is still not reliable enough to
deploy.

Although I cannot conclude that these methods are reliable yet, they show promise that
they can become reliable in the future. One thing is that using a different Writer to explain,
revise and produce an initial statement might have led to improved overall performance.
Perhaps for example GPT-4 would be able to better perform these tasks. Another thing that
might positively influence this method is trying more different setups. For example, I did
not try to do multiple loops of each configuration or to loop until total satisfaction. It is also
worth considering that new LLMs are released at a rapid pace, and a new model might have
qualities more suitable to this task than the models I have used here. In addition, as with most
data-driven problems these days, the results might have been better if there existed more
high-quality data, or just more data in general. Then, there is a chance that the fine-tuning of
Vicuna would have given better results.

I have used the autoevaluation method described in Section 4.3 to attain the results.
Because this evaluation is not 100% accurate, my results are not 100% accurate either. If
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results at some point seem good enough to deploy, they should first be evaluated in a better
way, and in cooperation with legal professionals.

There are however multiple things to consider before something like this could be de-
ployed. We see a chatbot as a possible destination for this task, where a user can input their
details, and the chatbot can suggest a reliable plea in mitigation based on the user’s input. I
have assumed that my input stories contain all relevant information about a defendant and
their case. However, in a conversation with a chatbot, someone who is not familiar with the
law is unlikely to know what sort of information they need to include. The chatbot would
therefore need to do knowledge elicitation in order to find out what information is possibly
missing from the input, and ask the user to provide this input before suggesting a statement.
If such a chatbot is released, it has the potential to help many people get access to potentially
free legal aid, but there are probably also other consequences of releasing such a chatbot, so
there would need to be a rigorous ethical evaluation before ever deploying it.

In this work, I have looked at the task of writing a statement for a plea in mitigation. I
have defined a set of principles that a statement should satisfy, and introduced several new
methodologies explaining how one might achieve a statement satisfying such principles. I
have introduced a new dataset containing statements, input stories and labels connected to
different principles, and made an automatic evaluation strategy of statements. I have also
evaluated 16 different configurations on the task, and discussed why some configurations
perform better than others. Fine-tuning a smaller model did not work as well as using a
pre-trained larger LM. The best-performing configuration used GPT-4 to explain why a
statement was breaking or not breaking a specific principle. I achieved an average on 1.56
penalty points per statement using this configuration, but I didn’t consider this to be good
enough, or reliable enough for deployment. Finally, I have discussed how one can build on
this work, doing further research on this task.
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Osman Ramadan, and Milica Gašić. Multiwoz–a large-scale multi-domain wizard-of-oz
dataset for task-oriented dialogue modelling. arXiv preprint arXiv:1810.00278, 2018.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March
2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Doughty Street Chambers. Criminal appeals bulletin: Sentencing – advanced age of the
offender as a mitigating factor. Available at: https://doughty-street-chambers.newsweaver.
com/Appeals/wstmt18w3ba?a=1&p=1623589&t=174031 (Accessed: June 28 2023).

GOV.UK. Criminal courts. a. Available at: https://www.gov.uk/courts.

GOV.UK. b. Available at: https://www.gov.uk/represent-yourself-in-court (Accessed: 4
August 2023).

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu, Pieter Abbeel,
Sergey Levine, and Dawn Song. The false promise of imitating proprietary llms, 2023.

Rod Hayler. Representing yourself in the magistrates’ court. Old Bailey Solicitors. Avail-
able at: https://www.oblaw.co.uk/how-to-represent-yourself-in-the-magistrates-court-2/
(Accessed: 23 July 2023).

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher.
A simple language model for task-oriented dialogue. Advances in Neural Information
Processing Systems, 33:20179–20191, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Frederick Jelinek. Statistical methods for speech recognition. MIT press, 1998.

Judiciary of England and Wales. How are sentences decided? July
2020. Available at: https://www.judiciary.uk/wp-content/uploads/2020/07/
sentencing-guide-accessibilty-check-July-2020-1.pdf (Accessed: 23 July 2023).

https://lmsys.org/blog/2023-03-30-vicuna/
https://doughty-street-chambers.newsweaver.com/Appeals/wstmt18w3ba?a=1&p=1623589&t=174031
https://doughty-street-chambers.newsweaver.com/Appeals/wstmt18w3ba?a=1&p=1623589&t=174031
https://www.gov.uk/courts
https://www.gov.uk/represent-yourself-in-court
https://www.oblaw.co.uk/how-to-represent-yourself-in-the-magistrates-court-2/
https://www.judiciary.uk/wp-content/uploads/2020/07/sentencing-guide-accessibilty-check-July-2020-1.pdf
https://www.judiciary.uk/wp-content/uploads/2020/07/sentencing-guide-accessibilty-check-July-2020-1.pdf


References 49

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199–22213, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

Chin-Yew Lin and Franz Och. Looking for a few good metrics: Rouge and its evaluation.
2004. URL https://api.semanticscholar.org/CorpusID:55156862.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi.
Reframing instructional prompts to gptk’s language. arXiv preprint arXiv:2109.07830,
2021.

Motor Lawyers Ltd. Plea of mitigation. Available at: https://www.singlejusticeprocedure.co.
uk/plea-mitigation.html (Accessed: 23 July 2023).

OpenAI. Pricing. Available at: https://openai.com/pricing (Accessed: 23 July 2023).

OpenAI. Gpt-4 technical report, 2023.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
Yang. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint
arXiv:2302.06476, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Kevin Roose. The brilliance and weirdness of chatgpt. The New York Times, 5 December 2022.
Available at: https://www.nytimes.com/2022/12/05/technology/chatgpt-ai-twitter.html
(Accessed: July 31 2023).

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward,
and Jan Leike. Self-critiquing models for assisting human evaluators. arXiv preprint
arXiv:2206.05802, 2022.

Sentencing Council. Aggravating and mitigating factors. a. Available
at: https://www.sentencingcouncil.org.uk/explanatory-material/magistrates-court/item/
aggravating-and-mitigating-factors/ (Accessed: 23 July 2023).

Sentencing Council. Common offences. b. Availabel at: https://www.sentencingcouncil.org.
uk/outlines/ (Accessed: 9 August 2023).

Sentencing Council. Corporate offenders: fraud, bribery and money laundering.
2014. Available at: https://www.sentencingcouncil.org.uk/offences/magistrates-court/
item/corporate-offenders-fraud-bribery-and-money-laundering/ (Accessed: 23 July 2023).

Sentencing Council. Reduction in sentence for a guilty plea - first
hearing on or after 1 june 2017. 2017. Available at: https://
www.sentencingcouncil.org.uk/overarching-guides/magistrates-court/item/
reduction-in-sentence-for-a-guilty-plea-first-hearing-on-or-after-1-june-2017/ (Accessed:
23 July 2023).

https://api.semanticscholar.org/CorpusID:55156862
https://www.singlejusticeprocedure.co.uk/plea-mitigation.html
https://www.singlejusticeprocedure.co.uk/plea-mitigation.html
https://openai.com/pricing
https://www.nytimes.com/2022/12/05/technology/chatgpt-ai-twitter.html
https://www.sentencingcouncil.org.uk/explanatory- material/magistrates-court/item/aggravating-and-mitigating-factors/
https://www.sentencingcouncil.org.uk/explanatory- material/magistrates-court/item/aggravating-and-mitigating-factors/
https://www.sentencingcouncil.org.uk/outlines/
https://www.sentencingcouncil.org.uk/outlines/
https://www.sentencingcouncil.org.uk/offences/magistrates-court/item/corporate-offenders-fraud-bribery-and-money-laundering/
https://www.sentencingcouncil.org.uk/offences/magistrates-court/item/corporate-offenders-fraud-bribery-and-money-laundering/
https://www.sentencingcouncil.org.uk/overarching-guides/magistrates-court/item/reduction-in-sentence-for-a-guilty-plea-first-hearing-on-or-after-1-june-2017/
https://www.sentencingcouncil.org.uk/overarching-guides/magistrates-court/item/reduction-in-sentence-for-a-guilty-plea-first-hearing-on-or-after-1-june-2017/
https://www.sentencingcouncil.org.uk/overarching-guides/magistrates-court/item/reduction-in-sentence-for-a-guilty-plea-first-hearing-on-or-after-1-june-2017/


References 50

Sentencing Council. General guideline: overarching principles. 2019. Avail-
able at: https://www.sentencingcouncil.org.uk/overarching-guides/magistrates-court/item/
general-guideline-overarching-principles/ (Accessed: 23 July 2023).

Jessica Shieh. Best practices for prompt engineering with openai
api. OpenAI, 2023. Available at: https://help.openai.com/en/articles/
6654000-best-practices-for-prompt-engineering-with-openai-api (Accessed: Au-
gust 15 2023).

Ronnie W Smith and D Richard Hipp. Spoken natural language dialog systems: A practical
approach. Oxford University Press, USA, 1994.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

Sam Tonkin. What is chatgpt? everything you need to know about the
new ai chatbot that garnered more than one million users in its first week
thanks to its eerily human-like responses. The New York Times, 9 Decem-
ber 2022. Available at: https://www.dailymail.co.uk/sciencetech/article-11521261/
What-ChatGPT-need-know-Elon-Musks-new-AI-chatbot.html (Accessed: July 31 2023).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

United Nations. Youth. Available at: https://www.un.org/en/global-issues/youth (Accessed:
June 28 2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Eric J. Wang. Alpaca-lora. https://github.com/tloen/alpaca-lora, 2023. (Accessed: 15 July
2023).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:24824–24837, 2022.

Joseph Weizenbaum. Eliza—a computer program for the study of natural language commu-
nication between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M Rojas-Barahona,
Pei-Hao Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-
oriented dialogue system. arXiv preprint arXiv:1604.04562, 2016.
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Appendix A

A.1 Data and Prompts

A.1.1 Input stories
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Fig. A.1 The five input stories used to generate training data.
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Fig. A.2 First five input stories used for evaluation.
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Fig. A.3 Last five input stories used for evaluation.
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A.1.2 Example statements

Fig. A.4 A textual example showing why I chose to use GPT-3.5 Turbo (blue statement) as a
general Writer, and not Vicuna13 (green answer). The statement produced with GPT-3.5
Turbo has a better flow of content and is generally written in a better manner.
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Fig. A.5 An example of a statement receiving 0 penalty points from the auto-evaluation.
Based on the Chloe input story.

Fig. A.6 An example of a statement receiving 3 penalty points from the auto-evaluation. Based
on the Lauren input story. The blue highlights indicate which principles were considered
broken here.
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Fig. A.7 An example of a statement receiving 6 penalty points from the auto-evaluation. Based
on the Robert input story. The blue highlights indicate which principles were considered
broken here. The additional penalty points are due to information about the defendant that
the statement failed to mention.
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A.1.3 Input to LLMs

Fig. A.8 Critique Requests passed into the GPT-4 Critiquer. Bold words in this image
highlight what the CR concerns
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Fig. A.9 Critique Requests passed into the Vicuna Critiquers.
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Fig. A.10 Explanation Requests (used in the Writer).
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Fig. A.11 All Revision Requests.
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Fig. A.12 Input to the automatic evaluation of statements done by GPT-4.
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Fig. A.13 More example prompts used in different setup. This figure contains a description
of where each prompt is used, followed by the actual prompt, and an occasional note about it.
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A.1.4 Critiquer responses

Fig. A.14 An example of what I would call a successful prompt with an incorrect answer.
Vicuna properly discusses the question and gives a good explanation, hence the prompt seems
to have done its job. However, it arrives at the wrong answer. The explanation states that the
input story about Ronald Smith indicates regret, but this is false.

Fig. A.15 An example of how Vicuna can get confused by longer prompts. Here, it does not
answer a question about the defendant’s age properly.
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