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Abstract

Understanding generalization in neural networks is a key question in the theory of machine
learning. PAC-Bayes theory formalizes this question and allows us to empirically compute
upper bounds on the generalization error of specific neural networks, that hold with high
probability. One of the goals of this framework is to eliminate the need for test data, since
the probabilistic guarantees are computed from the train data alone. However, many of these
bounds are loose in that they can only guarantee performance that is much worse than the
network’s performance on test datasets and hence are not yet practically useful.

In this thesis, we study a potential cause of this looseness: the variational approximation
that is most commonly used to estimate PAC-Bayes bounds. We propose a method to
evaluate the accuracy of variational approximations of bounds by comparing them to the true
minimizer of the bound, given by the generalised PAC-Bayes posterior, a Gibbs distribution.

Our approach to estimating this true minimizer of PAC-Bayes bounds consists of three
steps. Firstly, we approximately sample from the target Gibbs distribution using Hamiltonian
Monte Carlo, a Markov chain Monte Carlo technique. Then, we estimate its KL divergence
from the PAC-Bayes prior, which is needed to form the bound. We reduce this task to
estimating the log normalizing constant of the Gibbs distribution, which we achieve via
thermodynamic integration. Our final step is ensuring that our estimate is valid with high
probability.

We apply our method to estimate optimal PAC-Bayes bounds on MNIST and related
datasets and compare these to the bounds supplied by the variational approximation. We
extensively test our estimates with Markov chain convergence diagnostics. Our optimal
bound estimates improve on neural network accuracy guarantees obtained by variational
approximations, in all the setups considered. However, variational approximations approach
our estimates of the optimal bound as model depth is increased. We further find that adding
more data improves the tightness of our optimal bound estimates more than the variational
approximations.
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Chapter 1

Introduction

1.1 Introduction

The empirical success of deep learning has challenged classical statistical learning theory,
and turned research focus towards generalization [Zhang et al., 2017]. PAC-Bayes offers a
framework for studying generalization, using the tools of statistical learning theory.

PAC-Bayes allows us to relate the empirical performance of a model to future expected
performance in terms of a high-probability bound. The main challenge is to produce bounds
that are nonvacuous even in complex settings such as neural networks. The current best
method for obtaining nonvacuous bounds is to train a Bayesian Neural Network (BNN) with
an objective derived from a PAC-Bayes bound. However, the crucial limitation is that the
current bounds are only tight for relatively simple datasets (e.g. MNIST, CIFAR-10) and they
require some part of the data to be used in forming the prior. An explanation for part of the
looseness could lie in the approximations utilized by current methods. Most prominently,
the PAC-Bayes posterior is approximated by a mean-field Gaussian [Dziugaite and Roy,
2017, Perez-Ortiz et al., 2020]. This variational approximation is known to not work well in
general in Bayesian Neural Networks [Foong et al., 2020], and hence may result in loose
approximations of the optimal value of the bound.

Our work is interested in measuring how tight specific PAC-Bayes bounds can be,
compared to those obtained by the mean-field approximation. For many bounds, there exists
a (posterior) probability measure that minimizes the bound. The bound can be estimated in
this measure to obtain an estimate of the optimal, that is, the lowest possible value of the
bound. This problem is interesting since it allows us to simultaneously test the power of
mean-field approximations and the theoretical limit of specific PAC-Bayes bounds.

The mentioned optimal probability measure is a Gibbs distribution, hence only asymptotic
sampling is possible. We use Hamiltonian Monte Carlo (HMC), a Markov chain Monte Carlo
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(MCMC) technique to approximately sample from this distribution and then estimate the
bound. The key steps apart from sampling are estimating the normalizing constant of our
Gibbs posterior and ensuring that the resulting estimate holds with high probability.

Uniting PAC-Bayes and MCMC is a challenging task due to the inherently different
nature of the two fields. In PAC-Bayes, we care about certainty, and the closest to certainty
we can achieve in statistics is claims that hold with high probability. MCMC, on the other
hand, relies on approximations. Although asymptotic convergence theorems exist for MCMC
algorithms, their conditions are difficult, if not practically impossible to establish. However,
we will see that there are claims we can make under reasonable assumptions on our MCMC
samples, which expose some of the limitations of variational approximations and allow us to
obtain tighter PAC-Bayes bounds in the setups we consider.

1.2 Thesis Contributions

The contributions of our thesis are as follows:

• A thorough review of the foundations of the key areas used in this thesis: statistical
learning theory, PAC-Bayes, and Markov chain Monte Carlo methods.

• The development of a method to estimate optimal PAC-Bayes bounds that brings
together tools from PAC-Bayes, Markov chain Monte Carlo and probability theory.

• The application of our method to calculate optimal PAC-Bayes bounds for various
datasets.

• A review of existing approaches related to each aspect of our method uniting separate
areas of literature.

1.3 Thesis Outline

Chapter 2 establishes the background knowledge needed for the rest of this thesis. We begin
by motivating our topic from the angle of generalization. Then we discuss the foundations
of statistical learning theory, PAC-Bayes and PAC-Bayes bound optimization. Lastly, we
introduce Hamiltonian Monte Carlo and discuss tools to test the convergence of Markov
chain Monte Carlo methods.

Chapter 3 discusses our method to calculate PAC-Bayes bounds for optimal Gibbs posteri-
ors. After setting up the task, we provide a theoretical analysis of the gap between optimal
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PAC-Bayes bounds and their variational approximations. Then we describe our method in
the following three steps: (i) sampling from the Gibbs posterior (Section 3.4), (ii) estimating
the KL divergence from the prior (Section 3.5) and (iii) providing a high-probability upper
bound on our estimates (Section 3.6).

Chapter 4 describes our experiments to calculate optimal PAC-Bayes bounds and their re-
sults. We begin with a toy example that visually illustrates the effect of several experimental
choices (Section 4.1) and then move on to test the effect of the key hyperparameters in
our experiments (Section 4.3). In Section 4.4, we test our obtained HMC samples using a
range of convergence diagnostics. Finally, Section 4.5 presents our estimates for optimal
PAC-Bayes bounds.

Chapter 5 discusses works related to each aspect of our method. We present these works in
unifying notation and discuss their connections to our results.





Chapter 2

Background

2.1 Motivation

The underlying motivation of this work is the problem of generalization in neural networks.
In this section, we describe and motivate our research topic from the angle of generalization.

Why care about generalization?

Much of modern machine learning focuses on deep learning, and much of the theory of
machine learning aims to explain the success of deep learning. Generalization has become
the key question in understanding deep learning [Zhang et al., 2017].

A natural approach to studying generalization is to find measures that allow us to predict,
or, put otherwise, explain generalization. Past research has considered optimization-based
measures, such as gradient noise [Jiang et al., 2020, Roberts, 2021, Smith et al., 2021],
the flatness of the loss surface [Jiang et al., 2020, Foret et al., 2021, Ju et al., 2022], and
in this context its information geometry [Kim et al., 2022, Jang et al., 2022]. However,
no definitive answer was found. What is clear, is that a plausible answer needs to com-
bine many fields including optimization, geometry, and information theory. We will see that
PAC-Bayes tackles this question from the angle of statistical learning theory and optimization.

PAC-Bayes as a way to understand generalization. PAC-Bayes theory uses the toolkit of
statistical learning theory to explain generalization. It provides probabilistic guarantees on
the future performance of a predictor based on its current performance.
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What is a PAC-Bayes bound?

When designing a model to predict a certain quantity based on some (train) data, our goal is
to perform well on any test dataset that comes from the same distribution as the train data. In
other words, we wish to keep the empirical error (or some other measure of performance) of
the predictor low on any test dataset. A way to achieve this is to ensure that the expected
value of the error under the data-generating distribution is low, since

Expected error of a predictor ≈ Empirical error of predictor on any test dataset

PAC-Bayes bounds upper bound the expected error1 of a so-called randomized predic-
tor (defined formally in Section 2.2.1). This means that we care about models that are
parametrized by a distribution over their parameters, rather than a single parameter vector.
This allows us to capture the complexity of a model better. A typical PAC-Bayes bound has
the following form.

Expected error ≤ Empirical error + Complexity of the predictor

One can interpret this bound as follows. The “expected error” depends on the error
observed on the train dataset and the extent to which the predictor has overfitted to the
train dataset. The latter is expressed by the “complexity” of the predictor. The bound
guarantees that a model of low complexity that also has low train error will generalize
well. Since we work with randomized predictors, an appropriate notion of complexity is
the KL divergence (defined in Section 2.2.1) between the distribution parametrizing the
randomized predictor, and some reference prior distribution P. This can be interpreted as
the description length of the model, via the bits-back argument [Hinton and van Camp, 1993].

1In the case of randomized predictors, the expectation is taken both over the data generating distribution
and the distribution over the parameters.
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The aim of PAC-Bayes. Studying these bounds has three main motivations:

1. Explaining generalization.
Tight bounds can hint at the ingredients of generalization.

2. Supply loss functions for optimization algorithms.
A PAC-Bayes bound can be directly minimized (in the posterior) to yield stochastic

neural networks with automatic performance guarantees (a “risk certificate”).

3. Self-certified learning.
A tight bound can supply performance guarantees on the test error from the training
data only, thus there is no need to withhold some of the data as test data.

The key step in reaching the above goals is to make the bounds tight, that is, the empirical
value of the bound should be close to the “expected error”. We can empirically measure
tightness by comparing the value of the bound to the test error. A tight bound can be
interpreted as an “explanation of generalization” in the following sense. Any PAC-Bayes
bound gives sufficient conditions for generalization: the terms of the upper bound should
each be small to guarantee a tight risk certificate. A tight bound can also be informally
interpreted as a necessary condition, i.e. it is unlikely that other terms play a role since the
bound is tight. Our work studies how tight can specific PAC-Bayes bounds be, and thus fits
into the line of research on understanding generalization.

Chapter Roadmap

This chapter contains the background needed for our solution. Section 2.2 introduces the
concepts from statistical learning theory, including PAC-Bayes. Section 2.3 provides a
background on Hamiltonian Monte Carlo (HMC) and techniques to test MCMC convergence.
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2.2 Statistical Learning Theory

This section introduces basic concepts from statistical learning theory. In Section 2.2.1,
we introduce our statistical framework. PAC-Bayesian theory was originally introduced to
provide bounds for Bayesian learning algorithms. It was subsequently extended to a wider
range of algorithms termed as generalised Bayesian learning. Section 2.2.2 summarizes and
compares Bayesian learning and generalised Bayesian learning. Finally, Sections 2.2.3, 2.2.4,
2.2.5 and 2.2.5 introduce PAC-Bayes theory and bound estimation.

2.2.1 Setup

This section largely follows Dziugaite [2018] in the order of introducing the relevant concepts.
Let Z be a measurable space and letM1(Z) denote the set of probability measures on Z .
Let D be an unknown distribution D ∈M1(Z) A learning algorithm receives a set of n
samples S = (z1, ...,zn), and we assume that S∼Dn i.i.d. Throughout this thesis, we consider
supervised learning. There, Z takes the form Z =X ×Y , where X ⊂Rd is the space of data
samples, and Y ⊂R is the space of labels. Further, we fix a weight spaceW ⊆Rp containing
all possible weights. Each weight vector w maps to a predictor function hw : X → Y that
assigns a label y ∈ Y to any input x ∈ X . We seek to find a predictor function that minimizes
the risk (expected loss)

L(w) = Ez∼D [l(w,z)] , (2.1)

where l :W×Z→ [0,∞) is a measurable loss function. Since the data-generating distribution
is unknown, L(w) is not observable. Hence in practice, we compute the empirical risk
functional, which depends on our sample set S and is defined as

L̂S(w) =
1
n

n

∑
i=1

l(w,zi).

Randomized predictors

PAC-Bayes bounds will be stated for randomized predictors. Given a data sample x, a
randomized predictor makes a prediction at its label using a random sample of weights w,
drawn from a distribution Q ∈M1(W). We may identify the randomized predictor with its
distribution Q. The risk of a randomized predictor Q is defined via averaging

L(Q) = Ew∼Q[Ez∼D [l(w,z)]]. (2.2)
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The empirical risk of the randomized predictor is given by

L̂S(Q) =
1
n

n

∑
i=1

Ew∼Q [l(w,zi)]]. (2.3)

Loss functions

In PAC-Bayes, we measure model performance in terms of loss functions. In this thesis, we
consider classification tasks only. There, the label set Y is discrete. Let Y = K with |K|= k.
The natural loss function is the 0-1 loss, defined as

l0−1(w,z) = I(y ̸= hw(x)). (2.4)

As this function is not differentiable everywhere, we will use as a surrogate the cross-entropy
loss. To define this, we note that hw(x) determines a probability distribution (p1, ..., pk) on
K.

lCE(w,y) =−
k

∑
i=1

yi log(pi) (2.5)

The cross-entropy loss is bounded from below and unbounded from above. Depending on
which loss function is used, we will use notations LCE(Q), L̂CE

S (Q),L0−1(Q) and L̂0−1
S (Q)

for our risk functionals. We will omit the superscrips when discussing risk functionals in
general.

KL divergence

The notion of KL divergence will be used in the “complexity term” of PAC-Bayes bounds.
Given two probability distributions Q,P ∈M1(W ), we define the Kullback-Leibler (KL)
divergence of Q from P as

DKL(Q||P) =
∫

W
log
Å

dQ
dP

ã
dQ,

whenever dQ
dP , the Radon-Nikodym derivative of Q with respect to P is defined, and DKL(Q||P)=

∞ otherwise. We will also make use of the Bernoulli KL divergence, i.e. for Q = Bern(q)
and P = Bern(p), q, p ∈ [0,1],

DKL(Q||P) := kl(q||p) = q log
Å

q
p

ã
+(1−q) log

Å
1−q
1− p

ã
.
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2.2.2 Bayesian and Generalised Bayesian Learning

PAC-Bayes theory applies to so-called generalized Bayesian learning algorithms. In order
to introduce these, we now recall the setup of Bayesian learning and inference, in order to
contrast it to generalized Bayesian learning.

Bayesian inference is a principled way of incorporating prior beliefs into probabilistic
inference. Given the data, we construct a probability model {Pw : w ∈W}, where the data
generating process is governed by a set of parameters (weights) w ∈ W . The model can
be written as p(z|w) and, when viewed as a function of w, is termed the likelihood. We fix
a prior measure P ∈M1(W ) with density p(w) that represents our knowledge of the true
parameter inW . Then the Bayesian posterior measure Q has density

p(w|S) = p(w,S)∫
p(w,S)dw

.

We will refer to this simply as the posterior. The core to Bayesian inference/learning lies in
the interpretation of the above constituents: the prior captures knowledge about the parameter,
and the likelihood describes our probabilistic model. The posterior then gives the distribution
of the parameters given the data, under the assumption that our model is correct.

However, in machine learning, the emphasis is on prediction, rather than on inference.
We seek to build models that generalise well, that is, give accurate predictions on unseen
(but in-distribution) data, but do not care about the parameters generating those predictions.
Generalised Bayesian learning was developed to turn the focus to prediction [Bissiri et al.,
2016]. Most approaches relax the constraints on the interpretation of the likelihood and the
prior. The likelihood is allowed to be any, perhaps model-agnostic measure of performance.
We will refer to generalised negative log likelihoods as loss functions. Further, the prior is no
longer restricted to incorporate prior knowledge but is viewed as a way to guide predictions.

2.2.3 PAC-Bayes Bounds

PAC-Bayes theory was first introduced in McAllester [1998], as a combination of PAC
and Bayesian correctness theorems. In the PAC-learning framework [Valiant, 1984], the
learner receives some data samples, and its goal is to select a hypothesis such that with
high probability (“probably”), the selected function will have low generalization error
(“approximately correct”). PAC-Bayes is the combination of this framework with Bayesian
learning, where we are constrained to experimental settings consistent with a pre-specified
prior.
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We distinguish two types of PAC-Bayes inequalities: empirical and oracle inequalities,
and consequently, empirical and oracle PAC-Bayes bounds [Alquier, 2023]. In empirical
bounds, the right-hand side is directly computable. Numerically evaluating it for a given
dataset and model (hypothesis), we can obtain a probabilistic guarantee (a risk certificate) for
the future performance of the model. On the other hand, oracle bounds are purely theoretical
objects that allow us to reason about estimators in general. In this thesis, we will exclusively
focus on empirical bounds as our goal is to give numerical generalization guarantees for
neural networks. We now state two common empirical PAC-Bayes bounds.

Some PAC-Bayes bounds

The PAC-Bayes relative entropy bound is given in the following theorem, originally due to
Langford and Seeger [2001] and improved by Maurer [2004].

Theorem 2.2.1. (PAC-Bayes relative entropy bound) Fix a triple (W,Z, l) to stand for a
weight space W ⊂ Rp, an example space Z and a loss function l :W×Z → [0,1]. For
any randomized predictor identified with any distribution Q ∈M1(W), let L(Q) and L̂S(Q)

denote the risk and empirical risk on some set S of n i.i.d. data samples, respectively. Fix
arbitrary δ ∈ (0,1). Then, for any data-free distribution P overW , simultaneously for all
distributions Q overW , we have

P

(
kl(L̂S(Q)||L(Q))≤

DKL(Q||P)+ log 2
√

n
δ

n

)
> 1−δ . (2.6)

Proof. Please find the proof in Maurer [2004] (Theorem 5).

Note on the proofs of PAC-Bayes bounds. PAC-Bayes bounds are derived from concentra-
tion inequalities. The most common tools are Hoeffding’s inequality and the Chernoff bound
[Alquier, 2023].

To compute the bound in Equation 2.6, inversion of the Bernoulli kl is required, hence
this bound cannot directly be used for optimization. Various relaxations have been proposed.
Of particular interest are linear PAC-Bayes bounds. An example is below.

Theorem 2.2.2. (PAC-Bayes λ bound) In the same setup as in Theorem 2.2.1, for any
δ ∈ (0,1) with probability of at least 1− δ over S, simultaneously for all Q ∈ W and
λ ∈ (0,2), we have

L(Q)≤ L̂S(Q)

1− λ

2

+
DKL(Q||P)+ log(2

√
n

δ
)

nλ (1− λ

2 )
. (2.7)
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Proof. (Sketch) This bound is derived from Equation 2.6 using a refined version of Pinsker’s
inequality kl(q||p) ≥ (p−q)2/(2p), which holds for all q < p, and the inequality

√
ab ≤

1
2(λa+ b

λ
), valid for all λ > 0. For a full proof, please refer to Thiemann et al. [2017].

This bound is special in that it holds simultaneously for all λ ∈ (0,2). For many bounds
which include a free parameter λ , this is not the case, and hence grid search over λ requires
adding a penalty term to the bound for each value checked. For details, see Theorem 2.4 in
Alquier [2023]. The PAC-Bayes λ bound can be optimized in both Q and λ in an alternated
fashion, without incurring a penalty term.

As stated in the theorems, PAC-Bayes bounds are given in terms of an arbitrary, but fixed
prior probability measure P. The choice of P affects the tightness of the bound. We now
explain the considerations behind choosing the PAC-Bayes prior.

2.2.4 The PAC-Bayes Prior

The choice of P affects the tightness of the bound most strongly through the “complexity
term” DKL(Q||P). This limits how tight the bound can be made, hence we aim to find a
prior we can reasonably believe to be close to well-performing posteriors, in the KL sense.
The typical choice of prior is a mean-field Gaussian [Dziugaite and Roy, 2017], but Laplace
distributions have also been used in the literature [Perez-Ortiz et al., 2020].

In Bayesian inference and learning, the prior is chosen independently of the data. How-
ever, in many cases a pre-chosen prior may be far from any well-performing posterior,
causing bounds to be loose or even vacuous. As a consequence, the PAC-Bayes community
developed data-dependent priors. In this thesis, our focus will be on data-independent priors,
because these lead to loose bounds even for simple datasets. However, we briefly discuss
data-dependent priors too, as they are a key part of modern PAC-Bayes theory.

Data-independent priors

Data-independent priors are chosen before observing the data. In the typical case of a
mean-field Gaussian prior, the mean and variance parameters need to be selected. For the
former, one may be tempted to initialize the mean at zero, since neural network weights are
typically near zero. However, in Dziugaite and Roy [2017], the authors give an argument
for favoring a random mean initialization. They observe that a zero initialization of the
prior mean preserves the network’s symmetries. They prove that in this case, it is possible
to construct a posterior that incorporates the symmetries and is closer to the prior in KL
divergence. Since computing such a posterior for an exponential number of symmetries is
intractable, the alternative is to break the symmetries by sampling the mean randomly. In
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order to maintain a plausible magnitude, the mean initialization is drawn from a truncated
Gaussian with zero mean and small variance.

The choice of the prior variance is based on two main, contradictory considerations.
On the one hand, when set large, the prior influences the risk less, hence in general, better-
performing (in terms of the risk) PAC-Bayes posteriors can be found. On the other hand,
large variance means that when computing the empirical risk L̂S(Q) = 1

n ∑
n
i=1Ew∼Q[l(w,zi)],

we are sampling in a large radius of the posterior mean, causing many samples to have large
loss.

Data-dependent priors

Data-dependent priors have come into focus when they were used to compute the first non-
vacuous PAC-Bayes bounds on MNIST neural network classifiers [Dziugaite and Roy, 2017].
The main difficulty is that a PAC-Bayes bound is not valid on data that has been used to
build the prior. Many workarounds were proposed, see [Dziugaite and Roy, 2017, 2018,
Perez-Ortiz et al., 2020]. In the most common case, stochastic gradient descent (SGD) is
used to learn the prior mean on a separated subset of the train dataset.

Data-dependent priors can result in remarkably tight bounds, such as 1.4-1.5% on MNIST
[Perez-Ortiz et al., 2020, Lotfi et al., 2022]. However, Lotfi et al. [2022] argues that data-
dependent PAC-Bayes bounds do not explain generalization any further than the prior alone,
since they separate out the process of learning the prior. Lotfi et al. [2022] demonstrates
that using elementary (i.e. non-PAC-Bayes) bounds on a data-dependent prior can result
in performance competitive with that of sophisticated PAC-Bayes bounds. Hence data-
independent bounds are more informative for understanding generalization.

Having discussed the choice of the prior, we now turn to the methods available for
optimizing a PAC-Bayes bound.

2.2.5 Optimizing PAC-Bayes Bounds

Given our prior and model architecture, we wish to select the PAC-Bayes posterior in a way
that the resulting bound is small. Depending on the form of the bound, there may exist an
exact minimizer. We will use (asymptotically exact) samples from this exact minimizer.
The competitor method is to find an approximation to the exact minimizer using variational
inference. We now explain both methods.
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Exact minimisation: Gibbs posteriors

For linear PAC-Bayes bounds, the theoretical minimiser is a Gibbs distribution, also called
Gibbs (generalised) posterior. We state the precise form of the Gibbs posterior corresponding
to the PAC-Bayes λ bound.

Proposition 2.2.1. The minimizer of the PAC-Bayes λ bound over M1(W) (the uncon-
strained set of probability measures overW) is a Gibbs distribution over the weights w with
Radon-Nikodym derivative with respect to a fixed prior P given by

dQ∗
λ

dP
(w) =

e−nλ L̂S(w)

Ew∼P

î
e−nλ L̂S(w)

ó . (2.8)

Proof. Please refer to Corollary 2.3 in Alquier et al. [2016].

We will make use of the unnormalized Gibbs posterior dQ̃∗
λ

dP (w) = e−nλ L̂S(w). The density of
the Gibbs posterior measure is given by

q∗
λ
(w|z) = e−nλ L̂S(w)p(w)

Ew∼P

î
e−nλ L̂S(w)

ó . (2.9)

One way to estimate the optimal PAC-Bayes bound given a prior is to evaluate it in the
optimal Gibbs posterior Q∗

λ
. However, the Gibbs posterior is intractable in practice, only

asymptotic sampling methods are available. This thesis focuses on using Hamiltonian Monte
Carlo (HMC) to simulate from the Gibbs posterior given in Equation 2.8. The basics of this
MCMC technique will be presented in Section 2.3.

Non-exact minimisation: Variational Inference

The most common option for non-exact minimisation of PAC-Bayes bounds is variational
inference. In the case of the PAC-Bayes λ bound, variational inference aims to find the best
approximation to the Gibbs distribution given in Equation 2.8, among a parametrised family
Fθ . The most common choice is to take Fθ to be the set of mean-field Gaussian distributions
with parameter θ = (µ,σ2I). Classical variational inference minimizes the negative ELBO.
However, a more direct way to obtain tight bounds is to minimise the PAC-Bayes bound as
a training objective. Since the prior is also a (mean-field) Gaussian, the KL-divergence is
available analytically, and the empirical risk L̂S(Q) can be approximated using a Monte Carlo
average over exact samples from the Gaussian approximate posterior Q. In what follows, we
will refer to this technique as mean-field variational inference (MFVI).
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A perhaps unusual aspect of this method that is nevertheless consistently used in the
literature is the use of the stochastic gradient descent (SGD) optimizer. This is motivated
by the fact that SGD tends to converge to flat minima [Keskar et al., 2017]. For a mean
µ around a flat (local) minimum w∗, we have the property that Ew∼N (µ,s2)[L(w)]≈ L(w∗)
even for large values of the variance s2 [Alquier, 2023]. This means that we are allowed
a more spread-out posterior while still retaining low loss and thereby keeping term one of
PAC-Bayes bounds low.

Technicalities of the optimisation and risk certificate estimation

We now explain all details of the optimisation process. Our discussion closely follows the
method outlined in Perez-Ortiz et al. [2020]. The key technical steps are (i) making the loss
bounded and (ii) constructing a risk certificate from posterior samples.

PAC-Bayes bounds assume a loss function bounded in [0,1]. However, the cross-entropy
loss (defined in Equation 2.4) is unbounded from above. Hence we transform lCE(w,y) =

∑
k
i=1 yi log(pi) as follows.›lCE(w,y) :=

−∑
k
i=1 yi log(max(pi, pmin))

− log(pmin)
, (2.10)

with some pmin > 0, which now falls into [0,1]. We will take pmin = 10−4. The corresponding
risk functionals will be denoted by L̃CE(Q) and L̃CE

S (Q).
After arriving at a posterior distribution Q either by sampling from the Gibbs posterior or

MFVI, we wish to compute a risk certificate on the error (0-1 loss) L0−1(Q) of the stochastic
predictor given by Q. The transformed cross-entropy loss is only used for sampling. To
compute the risk certificate, we use the PAC-Bayes relative entropy bound (Equation 2.6),
since it is the tightest. To invert the Bernoulli KL, we define

kl−1(x,b) := sup{y ∈ [x,1] : kl(x||y)≤ b}. (2.11)

This can be seen as a proper definition of the inverse Bernoulli KL. Our RC is then

L0−1(Q)≤ kl−1

(
L̂0−1

S (Q),
DKL(Q||P)+ log 2

√
n

δ

n

)
. (2.12)

Finally, the empirical risk L̂0−1
S (Q) can be approximated with Monte-Carlo average (from

either the Gibbs posterior or the Gaussian approximate posterior). Here, we seek more than
an unbiased estimator. In order to produce a valid PAC-Bayes bound estimate, we need an
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upper bound with high probability. One may be tempted to use the Central Limit Theorem
(CLT) to give a confidence interval. However, as we have a finite sample, the obtained
confidence intervals will only be asymptotic. A non-asymptotic bound is supplied by the
following Theorem from Langford and Caruana [2001].

Theorem 2.2.3. Suppose W1,W2, ...,Wm ∼Q are i.i.d., and Q̂m = ∑
m
j=1 δW j is their empirical

distribution. Then for any δ ′ ∈ (0,1) with probability 1−δ ′

L̂S(Q)≤ kl−1
Å

L̂S(Q̂m),
1
m

log(
2
δ ′
)

ã
. (2.13)

Due to a union bound argument, using this bound on L̂0−1
S (Q) will modify the resulting

bound to hold with probability 1− δ − δ ′ only. This completes all the required steps to
compute the bound.

Next, we briefly review the Markov Chain Monte Carlo (MCMC) methods available to
sample from distributions with properties similar to the Gibbs posterior. Our special focus
will be on Hamiltonian Monte Carlo (HMC).

2.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) stands for a class of algorithms for asymptotically exact
sampling from probability distributions. They construct a Markov chain that has the desired
target distribution as its equilibrium distribution, hence one can (asymptotically) obtain a
sample of the desired distribution by recording states from the chain. We wish to use MCMC
methods to sample from a Gibbs distribution. Since the normalizing constant of the Gibbs
distribution is intractable, our method needs to apply to unnormalized densities. Hamiltonian
Monte Carlo is such a method.

2.3.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC, [Duane et al., 1987]) is the “gold standard” for approximate
sampling from complicated distributions such as the (Gibbs) posterior of a neural network
[Izmailov et al., 2021]. It is superior to other MCMC algorithms due to its ability to take
into account the geometry of the target distribution through the use of gradients and thereby
generate better step proposals. This motivates our use of HMC for sampling from the Gibbs
posterior that minimizes the PAC-Bayes λ bound.

HMC originally appeared under the name “Hybrid Monte Carlo” as a unification of
MCMC and molecular dynamics methods [Duane et al., 1987]. Hamiltonian Monte Carlo
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uses the Metropolis–Hastings algorithm, together with a discretized Hamiltonian dynamics
evolution, which proposes a move to a new point in the state space. The Hamiltonian
dynamics evolution is simulated by a leapfrog integrator that updates the parameters and the
momentum of the process. The HMC algorithm is given in Algorithm 1, and the leapfrog
step supplied separately in Algorithm 2 [Izmailov et al., 2021].

Hamiltonian dynamics operates on a p-dimensional position vector w and a p-dimensional
momentum vector, m, and is described by the Hamiltonian, H(w,m). A commonly used
Hamiltonian function is H(w,m) := U(w)+K(m), the sum of the potential energy and
the kinetic energy, respectively. The unnormalized target density, q̃(w) satisfies U(w) =

− log q̃(w). The change of w and m in time is described by Hamilton’s equations

dwi

dt
=

∂H
∂mi

,
dmi

dt
=− ∂H

∂wi
. (2.14)

The three key properties of Hamiltonian dynamics are leveraged in constructing a Markov
chain updates with Metropolis-Hastings. These properties are (i) time reversibility, (ii)
conservation of the Hamiltonian, and (iii) volume preservation.

The proposed state is accepted as the next state of the Markov chain with probability
paccept, given in Algorithm 1. If the proposed state is not accepted, the next state is the same
as the current state. When estimating statistics from the Markov chain, all states are used,
hence those in place a non-accepted proposal are counted multiple times. For more detailed
introductions, see Betancourt [2017] and Brooks et al. [2011a].

We note that HMC is connected to Gibbs distributions2 in the following sense. HMC
formulates the target density q̃(w) as a certain Gibbs distribution. The kinetic energy K(m)

is usually taken to be a bilinear form K(m) = 1
2m⊤M̂−1m, and HMC constructs a Gibbs

distribution of form
e−β (U(w)+K(m)) = q̃(w)β · e−β

1
2 m⊤M̂−1m. (2.15)

In this work, we will use HMC in order to sample from the Gibbs posterior corresponding
to the PAC-Bayes λ bound on neural networks.

2Note that Gibbs distributions are called Boltzmann distributions in the physics literature.
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Algorithm 1 Hamiltonian Monte Carlo
Input: Trajectory length τ , number of burn-in iterations Nburnin, initial parameters winit,
step size ∆, number of samples K, unnormalized posterior log density function
f (w) = log p(z|w)+ log p(w).
Output: Set S of samples w of the parameters.
w← winit; Nleapfrog← τ

∆
;

# Burn-in stage
for i← 1...Nburnin do

m∼N (0, I);
(w,m)← Leapfrog(w,m,∆,Nleapfrog, f );

end for
# Sampling
S← /0;
for i← 1...K do

m∼N (0, I);
(w,m)← Leapfrog(w,m,∆,Nleapfrog, f );
# Metropolis-Hastings correction
paccept←min

¶
1, f (w′)

f (w) · exp(1
2 ||m||

2−||m′||2)
©

;
u∼ Uniform[0,1];
if u≤ paccept then

w← w′;
end if
S← S∪{w};

end for

Algorithm 2 Leapfrog Integration
Input: Parameters w0, initial momentum m0, step size ∆, number of leapfrog steps
Nleapfrog, posterior log density function f (w) = log p(z|w)
Output: New parameters w; new momentum m.
w← w0; m←m0;
for i← 1...Nleapfrog do

m←m+ ∆

2 ·∇ f (w);
w← w+∆ ·m f (w);
m←m+ ∆

2 ∇ f (w);
end for
Leapfrog(w0,m0,∆,Nleapfrog, f )← (w,m)
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2.3.2 MCMC Convergence and Diagnostics

Having introduced HMC, this section discusses statistics commonly used to evaluate the
quality of samples produced by MCMC algorithms, including HMC. This step is crucial for
us in ensuring that the bounds we calculate using HMC samples are valid. Although it is not
possible to prove Markov chain convergence in practical settings, we will use diagnostics to
verify that there are no apparent signs of problematic behavior. We now define these.

Let (X(t))∞
t=1 be a Markov chain on state space A , whose initial distribution equals

its stationary distribution, hence X1,X2, ... are identically distributed. Consider a square-
integrable function f : A →R, whose expected value EPX1

[ f (X1)] we wish to estimate. Note
that square integrability impies Var[ f (X1)]≤ ∞. First, we define the Effective sample size
(ESS), which quantifies the loss of information caused by correlation.

Definition 2.3.1. (Effective Sample Size) The Effective sample size of (X(t))N
t=1 is given by

ESS[ f ] =
N

1+2∑
∞
τ=1 ρ(τ)

, (2.16)

where ρ(τ) = Cor( f (X1), f (X1+τ)) denotes the autocorrelation at lag τ .

The ESS is typically lower than the number of samples, indicating the presence of positive
correlations among the samples. In MCMC, where states are typically positively correlated,
an ESS equaling the number of samples signals uncorrelated samples.

Definition 2.3.2. (MCMC standard error) The MCMC standard error of (X(t))N
t=1 is

MCMC_SE[ f ] =

 
Var[ f (X1)]

ESS[ f ]
. (2.17)

The MCMC SE measures the concentration of a sample mean around the true mean,
in the sense of the Markov chain Central Limit theorem (MCCLT). It requires the above
conditions on the Markov chain, namely (i) stationary chain and (ii) square-integrable f and
states that, for large N, approximately

1
N

N

∑
i=1

f (Xi)∼N (EPX1
[ f (X1)],MCMC_SE[ f ]). (2.18)

Since in practice we don’t have access to ρ(τ) and Var[ f (X1)], we estimate them from our
finite set of samples.

Since ESS requires stationarity to be well-defined, we will also use the R̂ (known also as
potential scale reduction) statistic to check convergence by comparing multiple independent
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Markov chains [Gelman and Rubin, 1992]. R̂ measures how much the variance of the means
between multiple chains exceeds that of identically distributed chains. We have that R̂≥ 1,
where R̂ = 1 means perfect convergence. For more discussion on R̂, please refer to Gelman
and Rubin [1992], and for general discussion on MCMC and convergence diagnostics, see
Jones and Qin [2022] and Brooks et al. [2011b].

Summary. This chapter presented the background required to discuss our method for
estimating optimal PAC-Bayes bounds. We introduced basic concepts in statistical learning
theory, including PAC-Bayes bounds and their optimization. We also discussed MCMC
methods and convergence diagnostics, with special focus on HMC.
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Method

In this chapter, we present the methods used to tackle our goal: approximately sampling from
the optimal Gibbs posterior in order to estimate the tightness gap between the optimal value
of the bound, and estimates obtained by MFVI. We begin by a precise setup of our problem
(Section 3.1). In Section 3.2, we give a simple lower bound for the tightness gap, which is, to
the best of our knowledge, novel. Then, in Section 3.3 we define the specific Gibbs posterior
that minimizes our target PAC-Bayes bound.

Sections 3.4, 3.5, and 3.6 contain our method for estimating PAC-Bayes bounds for the
Gibbs posterior. This will require three major steps: (i) sampling from the Gibbs posterior,
(ii) estimating its KL divergence from the prior P and (iii) computing high-probability upper
bounds to ensure that the bound we put together holds with high probability.

Solution (i) relies on Hamiltonian Monte Carlo and is presented in Section 3.4. The core
technique used for Solution (ii) is thermodynamic integration. We supply an introduction
to the method (Section 3.5.1), and an explanation of its use in our context (Section 3.5.2).
In Section 3.5.3, we present two properties of thermodynamic integration, one of which
was proven by us. For step (iii), we discuss several options for high-probability bounds and
compare them in terms of their assumptions (Section 3.6).

Finally, Section 3.7 summarizes the method and its underlying assumptions.

3.1 Task Setup

To begin our discussion, we first precisely define the objects of interest, namely, the tightness
gap and the PAC-Bayes objective (bound) to be used. Let C :M1(Z)→ R+, Q 7→C(Q)

denote any PAC-Bayes objective.
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Tightness gap: DKL( || )(C1 ∗ + C2∗ )− (C1 ∗ + C2∗ )DKL( || )

Prior

MF Gaussian
posterior

Minimizing
Gibbs
posterior

Fig. 3.1 Illustration of the contours of the expected loss of a stochastic classifier as a function
of the underlying parameter distribution. The red arrow shows a possible optimization
trajectory from the prior. The tightness gap is evaluated by computing a PAC-Bayes bound in
both the optimal Gibbs posterior and the optimal mean-field Gaussian posterior. The bound
shown here is linear.

The tightness gap

We can define the tightness gap as follows.

Definition 3.1.1. The tightness gap between the optimal value of a PAC-Bayes objective and
the optimal mean-field Gaussian approximation is defined as

C(G∗)−C(Q∗), (3.1)

where G∗ = infG is a mean-field GaussianC(G) and Q∗ is the optimal Gibbs posterior correspond-
ing to the PAC-Bayes bound C.

The tightness gap and the underlying relations between the prior, G∗ and Q∗ are illustrated
in Figure 3.1. The figure should be interpreted informally and shows the expected loss of a
stochastic classifier as a function of its underlying parameter distribution. Euclidean distance
between two points of the figure should be understood as the KL divergence from the prior.
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The mean-field Gaussian posterior either achieves higher expected loss, is farther from the
prior than the Gibbs posterior, or both. In the following sections, we will estimate G∗ with
MFVI and Q∗ with HMC.

Used bounds

We will use the following PAC-Bayes bounds. For sampling, we will use the PAC-Bayes λ

bound (recalled below), and for evaluation, we will use both the PAC-Bayes relative entropy
bound (Equation 2.6) and the PAC-Bayes λ bound. Both of these bounds were introduced in
Section 2.2.3. Recall that the PAC-Bayes λ bound is defined for any (posterior) distribution
Q as

C(Q,λ ) :=
L̂S(Q)

1− λ

2

+
DKL(Q || P)+ log(2

√
n/δ )

nλ (1− λ

2 )
. (3.2)

The inequality L(Q)≤C(Q,λ ) holds with probability at least 1−δ uniformly over any Q
and λ ∈ (0,2).

The choice of using this bound for sampling was based on two related considerations.
Firstly, the fact that the bound holds uniformly over λ ∈ (0,2) means that we are allowed to
cross-validate over λ . By controlling all hyperparameters in the bound, this bound is easier
to optimize as an objective function. Secondly, in Perez-Ortiz et al. [2020], the authors find
that optimizing this bound performs close-to best in most experiments. Its competitor is a
bound in quadratic form. To the best of our knowledge, the minimizing Q corresponding to
this bound is not known.

The PAC-Bayes relative entropy bound is tighter than the PAC-Bayes λ bound but is not
convenient to use for sampling, due to needing to invert the Bernoulli kl divergence. Further,
the specific Gibbs posterior given in Section 2.2, Equation 2.8 is only the minimizer of the
PAC-Bayes λ bound, hence we will obtain a valid, but not the optimal risk certificate for the
PAC-Bayes relative entropy bound. We will report risk certificates with both the PAC-Bayes
relative entropy bound and the PAC-Bayes λ bound. For the latter, the Gibbs posterior gives
the optimal risk certificate. We can now formulate our task as follows.

Estimate the tightness gap C(G∗)−C(Q∗), where C is the PAC-Bayes relative entropy
bound and the PAC-Bayes λ bound.

Before proceeding to our solution method, we first examine the object C(G∗)−C(Q∗)
theoretically. It is clear that C(G∗)−C(Q∗) > 0. However, using a result from Large
Deviation Theory, we can supply a stronger lower bound for linear PAC-Bayes bounds. We
state this lower bound next.
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3.2 A Lower Bound on the Tightness Gap

Let us define a generic linear PAC-Bayes bound as

C(Q) := aEw∼Q[r(w)]+bDKL(Q||P)+ c (3.3)

for risk function L̂ : Z → R, fixed prior measure P with density p(w) and any probability
measure Q with density q(w). The PAC-Bayes λ bound is a special case with a = 1/(1− λ

2 ),
b = 1/(nλ (1− λ

2 )) and c = log(2
√

n/δ )/b. We have that

inf
Q

C(Q) =C(Q∗), where q∗(w) =
e−

a
b L̂(w)p(w)

Ew∼P[e−
a
b L̂(w)]

. (3.4)

Proposition 3.2.1. Let G be any distribution such that G ̸= Q∗ and G ̸= P. Then the tightness
gap satisfies

C(G)−C(Q∗)≥ bDKL(G||Q∗).

Proof. The proof can be found in Appendix A.

Note. Substituting b = 1/(nλ (1− λ

2 )), we can see that the lower bound decays with 1
n .

We now turn to explaining our method for estimating C(Q∗).

3.3 The Gibbs Posterior and its Properties

Recall from Section 2.2.5 that the density of the Gibbs posterior measure that minimises the
PAC-Bayes λ bound, when stated in terms of L̃CE

S (w) is,

q∗
λ
(w|z) = e−nλ L̃CE

S (w)p(w)

Ew∼P

î
e−nλ L̃CE

S (w)
ó . (3.5)

We give the Gibbs posterior in terms of L̃CE
S (w) because we can only sample from this form

as we require the risk to be differentiable and bounded. The logarithm of the joint distribution
of w∼ Q∗

λ
and z∼ D is

J(λ ) := log p(w,z) =−λnL̃CE
S (w)+ log p(w). (3.6)

Note that we suppressed the dependence of L̃CE
S (w) on the data z. We will make use of the

following simple fact.
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Proposition 3.3.1. Fix a prior measure P with density p(w) and define a (possibly general-
ized) likelihood p(z|w). For any distribution Q that is dependent on the data z, with density
q(w|z) the following holds

DKL[q(w|z)||p(w)] = Eq [log p(z|w)]− log p(z)+DKL[q(w|z)||p(w|z)], (3.7)

where p(w|z) is the density of the posterior measure with respect to P and p(z|w).

Proof. The proof can be found in Appendix A.

Notice that if the (generalized) likelihood is defined as p(z|w) = e−nλ L̃CE
S (w) and Q = Q∗

λ
,

then DKL[q(w|z)||p(w|z)] = 0 since Q∗
λ

is precisely the (generalized) posterior. In this case,
the equation reads as

DKL(Q∗λ ||P) = EQ∗
λ

î
−nλ L̃CE

S (w)
ó
− logZ, (3.8)

where Z = EP

î
e−nλ L̃CE

S (w)
ó
.

Recall that our end goal is to reliably estimate C(Q∗
λ
,λ ). The PAC-Bayes framework

requires producing an estimate of the bound that holds with probability 1−δ for arbitrary
δ > 0. Since we can only estimate L̃CE

S (Q∗
λ
) and DKL(Q∗λ ||P) from a finite number of

samples, we will need to provide a high-probability upper bound on each of these estimates
in order to control the end probability of the bound.

The first term L̃CE
S (Q∗

λ
) is approximated by drawing samples from Q∗

λ
using HMC

and forming a Monte Carlo average. From Proposition 3.3.1, we see that as long as we
have samples from Q∗

λ
, estimating DKL(Q∗λ ||P) boils down to estimating the log marginal

likelihood logZ. Notice that EQ∗
λ

î
−nλ L̃CE

S (w)
ó
= −nλ L̃CE

S (Q∗
λ
), hence this term cancels

with the first term of the PAC-Bayes λ bound, and the bound becomes a constant multiple of
− logZ. This connection between PAC-Bayes and Bayesian inference has been pointed out
in Germain et al. [2016]. However, this convenient property holds only for linear PAC-Bayes
bounds, and for bounds on the cross-entropy loss LCE as the Gibbs posterior was defined in
terms of this function. In summary, we have the following three objectives.

1. Sample from the Gibbs posterior corresponding to the PAC-Bayes λ bound

2. Estimate DKL(Q∗λ || P) via estimating logZ

3. Obtain high-probability upper bounds on our estimates for L̃CE
S (Q∗

λ
) and

DKL(Q∗λ || P).
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We discuss objective 1 in the next section. Objectives 2 and 3 will be discussed in
Sections 3.5 and 3.6, respectively.

3.4 Step I: Sampling from the Gibbs Posterior

We now explain how we set up HMC. As the target unnormalized density, we will use the log
joint of the Gibbs posterior J(λ ), given in Equation 3.6. The Gibbs posterior depends on the
prior. We use a data-independent prior. The loss function used in the exponent of the Gibbs
density will be the bounded version of the cross-entropy loss, ›lCE(w,z) ∈ [0,1], hence the
risk in the exponent becomes L̃CE

S (w). We will evaluate risk certificates both for L̃CE
S (Q∗

λ
)

and L̂0−1
S (Q∗

λ
). The risk certificate will only be optimal for L̃CE

S (Q∗
λ
), since our Gibbs

posterior uses this risk function. However, we expect our method to give close-to-optimal
risk certificates for L̂0−1

S (Q∗
λ
) too.

We explain the used hyperparameter setups in Section 4.2. We argue for the validity of our
samples using the Effective Sample Size, the MCMC Standard Error and the R̂ diagnostics.
Please find the details in Section 4.4.

Having obtained samples from the Gibbs posterior, the next step is estimating DKL(Q∗λ ||
P) via estimating logZ. An efficient method for estimating log-marginal likelihoods is
thermodynamic integration. This technique gives a lower bound on log marginal likelihoods,
hence an upper bound for DKL(Q∗λ || P) = EQ∗

λ

î
−nλ L̃CE

S (w)
ó
− logZ. We will use this

technique in the next sections.

3.5 Step II: Estimating the KL Divergence

In this section, we describe our method to estimate the KL divergence term in PAC-Bayes
bounds, using thermodynamic integration. We first give a general review of this technique,
before applying it to our problem in Section 3.5.2.

3.5.1 A Primer on Thermodynamic Integration

Thermodynamic integration (TI) is a physics-inspired method that allows us to approximate
intractable normalizing constants of high dimensional distributions [Masrani et al., 2019].
The main insight is to transform the problem into estimating the difference of two log
normalizing constants. Since we are required to estimate logZ, this framework suits our
purposes.
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Consider two probability measures Π1,Π2 ∈ M1(W) with corresponding densities
π1(w),π2(w) and their unnormalized versions

πi(w) =
π̃i(w)

Wi
, Wi =

∫
π̃(w)dw, i ∈ {0,1}. (3.9)

To apply TI, we form a geometric path between π0(w) and π1(w) via a scalar parameter
β ∈ [0,1]:

πβ (w) =
π̃β (w)

Wβ

=
π̃1(w)β π̃0(w)1−β

Wβ

, Wβ =
∫

π̃β (w)dw, β ∈ [0,1]. (3.10)

The central identity of thermodynamic integration is as follows. The right-hand side of
Equation 3.11 is referred to as the thermodynamic integral.

Proposition 3.5.1. Define the potential as Uβ (w) = log π̃β (w) and let U ′
β
(w) := ∂

∂β
Uβ (w).

Then,

log(W1)− log(W0) =
∫ 1

0
Ew∼πβ

î
U ′

β
(w)
ó

dβ . (3.11)

Proof. Please refer to Appendix A in Masrani et al. [2019].

We can now explain how to use TI in our context of estimating DKL(Q∗λ ||P).

3.5.2 Estimating the KL with Thermodynamic Integration

As seen in Section 3.5.1, thermodynamic integration requires defining two probability mea-
sures with unnormalized densities, π̃i(w) and calculates the difference of the log normalizing
constants logW1− logW0. If π̃0 is defined such that W0 = 1, then TI calculates the log
normalizing constant of π̃1. We thus define

π̃0(w) := p(w), π̃1(w) := p(z,w), (3.12)

thus W0 = 1 and W1 =
∫

p(z,w)dw = Z. In TI, we then define the geometric path for
β ∈ [0,1]:

π̃β (w) := p(z,w)β p(w)1−β . (3.13)

Then we have that Uβ (w) = log π̃β (w) = β log p(z,w)+(1−β ) log p(w) and thus

∂

∂β
Uβ (w) = log

p(z,w)

p(w)
= log

e−nλ L̃CE
S (w)p(w)

p(w)
=−nλ L̃CE

S (w). (3.14)
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Then, the thermodynamic integration formula (Equation 3.11 yields the following form for
the log normalizing constant

logZ =
∫ 1

0
Ew∼πβ

[
−nλ L̂S(w)

]
dβ . (3.15)

We will estimate Ew∼πβ

î
−nλ L̃CE

S (w)
ó

with a Monte Carlo average, using samples w∼ πβ .
To sample from each πβ , we can use HMC again to draw from the log joint

log π̃β (w) = β log p(z,w)+(1−β ) log p(w) (3.16)

=−βλnL̃CE
S (w)+β log p(w)+(1−β ) log p(w) (3.17)

=−βλnL̃CE
S (w)+ log p(w). (3.18)

Defining λ̃ = βλ and comparing to Eq 3.6, we see that log π̃β (w) = J(λ̃ ). Hence sampling
from πβ for various β is equivalent to sampling from Q∗

βλ
= Q∗

λ̃
. In principle, we can thus

reuse samples obtained for λ to estimate bounds for βλ too. In our experiments with Gibbs
posteriors, we fix λ = 1 and leave this direction to future work.

We now turn to estimating the integrand and show that calculating the left Riemann sums
and even the trapezium rule guarantees an upper bound.

3.5.3 Properties of the Integrand

In this section, we state our results for the negative log normalizing constant, − logZ for
convenience. A naive strategy for calculating the integrand for logZ is to use a Monte Carlo
average for the integral.

− logZ =
∫ 1

0
Ew∼πβ

î
nλ L̃CE

S (w)
ó

dβ (3.19)

≈ 1
B

B−1

∑
b=0

ï
Ew∼π b

B

î
nλ L̃CE

S (w)
óò

(3.20)

Notice that the right-hand-side in Equation 3.19 is a left Riemann sum (i.e. the inte-
gral is approximated at the left end of each subinterval of [0,1]) on the function w 7→
Ew∼πb/B

î
nλ L̃CE

S (w)
ó
, where each subinterval has length 1

B .
The fact that this quantity upper bounds the KL divergence is established in Masrani

et al. [2019] by showing that the integrand is a decreasing function of β . Let g(β ) =
Ew∼πβ

î
−U ′

β
(w)
ó
=Ew∼πβ

î
nλ L̃CE

S (w)
ó
, our integrand. We notice that U ′

β
(w)=−nλ L̃CE

S (w)
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is independent of β , hence we may abandon the subscript and use notation U ′(w) =

−nλ L̃CE
S (w)). Masrani et al. [2019] show that

Proposition 3.5.2. ∂g(β )
∂β

=−Varw∼πβ
[U ′(w)]≤ 0.

Proof. Please refer to Appendix A in Masrani et al. [2019]. Please note that they define g(β )
to be the negative of our g(β ).

Hence Ew∼πβ
[−U ′(w)] is a monotonically decreasing function, and this shows that

calculating the left sums upper bounds our integral. In fact, we can show more. Below we
show that g(β ) is convex, hence the trapezium rule can also be used to upper bound this
integral.

Proposition 3.5.3. Let g(β ) = Ew∼πβ
[−U ′(w)] = Ew∼πβ

î
nλ L̃CE

S (w)
ó
. Then we have that

∂ 2g(β )
∂β 2 ≥ 0, hence g(β ) is convex.

Proof. The full proof is given in Appendix A.

We offer an intuitive argument for the proofs of Propositions 3.5.2 and 3.5.3. Since
g(β )=Ew∼πβ

î
nλ L̃CE

S (w)
ó

is defined as the expectation of the loss under a Gibbs distribution
with temperature β , by increasing β , the Gibbs density concentrates increasingly around
the minima of the loss landscape. This implies that g(β ) decreases as β increases. Further,
the variance of πβ decreases, and consequently so does Varw∼πβ

î
L̃CE

S (w)
ó
. Thus g′(β ) is

increasing, and hence g(β ) is convex.
The above result implies that the trapezium rule can be used to obtain an estimate of the

integral which is an upper bound, as long as we are able to accurately estimate the values of
the function, Ew∼πβ

î
nλ L̂CE

S

ó
. Using a discretization β1,β2, ...βK on [0, 1], and mk samples

from each πβk
, our estimator for − logZ with the trapezium rule becomes

−‘logZ :=
K−1

∑
k=1

Ä
1

mk
∑

mk
i=1 L̃CE

S (wi,k)
ä
+
Ä

1
mk+1

∑
mk+1
i=1 L̃CE

S (wi,k+1)
ä

βk+1−βk
,wi,k ∼ πβk

. (3.21)

Finally, we estimate the KL divergence as

DKL(Q∗λ ||P)≈−
1

m1

m1

∑
i=1

L̃CE
S (wi,1)−‘logZ (3.22)

However, in the end, we wish to obtain a high-probability bound, and hence we need
to correct for the fact that these estimates are obtained from a finite number of samples wi.
This correction is also required for L̃CE

S (Q∗
λ
)≈ 1

m ∑
m
i=1 L̃CE

S (wi). The correction is done by
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computing a high-probability upper bound for each of these and is explained in the next
section.

3.6 Step III: High-Probability Upper Bounds

We now discuss the third, final step of our method, which is to ensure that the computed
PAC-Bayes risk certificate holds with probability at least 1−δ , for arbitrary δ > 0. How we
achieve this will be different for MFVI and for the Gibbs posterior.

In the case of MFVI, the steps are as follows: (i) we use the kl inversion bound (Theorem
2.2.3 in Section 2.2.5) to upper bound our Monte Carlo estimate for L̃CE

S (Q) with probability
1−δ1, and then (ii) compute the PAC-Bayes bound (risk certificate) with δ2 = 1−δ +δ1,
where we chose δ1 and δ2 such that δ1 + δ2 = δ . This will ensure that the risk certificate
holds with probability at least 1−δ . However, in (i) we used the assumption that our sample
from the approximate posterior is i.i.d., which is required for Theorem 2.2.3.

For the Gibbs posterior (ii) remains the same, but for (i), we cannot directly use Theorem
2.2.3 as our HMC sample is likely not i.i.d. In addition, since our estimate for the KL
divergence is also not exact (based on a finite number of samples), a high-probability upper
bound is required for this term too. There are many options to obtain confidence intervals for
MCMC samples, but there is no perfect choice. We now discuss three options, which will all
be computed in this thesis. In general, the two large categories of bounds are (i) concentration
inequalities and (ii) asymptotic confidence intervals. The former are appealing because
they are non-asymptotic, but their assumptions are very hard to verify for MCMC samples.
Asymptotic confidence intervals are easier to verify, but they only provide a high-probability
bound as n→ ∞. We discuss an option in each category.

The bound requiring independence

The bound most commonly used with MFVI is Theorem 2.2.3. In order to compare our
Gibbs posterior bound to this, we would like to use Theorem 2.2.3. We thus need to argue
for our samples being i.i.d. In Chapter 4.4, we compute R̂ statistics across four chains both
in weight- and function space to argue for convergence to (at least) a mode of the Gibbs
posterior. In order to achieve approximate independence, we thin our chains with rates high
enough to bring the ESS close to the (remaining) sample size. Since this justification is
very informal, we also compare the Gibbs posterior bound to MFVI using other confidence
intervals.
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The asymptotic bound

The Markov chain Central Limit Theorem (MCCLT) provides a confidence interval, but the
conditions of this theorem are very strong. Fortunately, Rosenthal [2017] provide a similar,
but weaker confidence interval that does not require the MCCLT. The assumptions on our
estimator 1

m ∑
m
i=1 L̃CE

S (wi), wi ∼ Q are as follows.

1. O
(1

n

)
variance of the estimator

2. Bias of order smaller than O
Ä

1√
n

ä
3. An estimator σ̂m for the asymptotic variance σ := limm→∞ mVarw∼Q

î
L̃CE

S (w)
ó

that
converges in probability.

Assumptions 1. and 2. are typical in MCMC applications [Rosenthal, 2017]. For assumption
3, we estimate the asymptotic variance using the fact that the MCMC standard error converges
to σ√

m , following one of the suggestions of Rosenthal [2017]. The (one-sided) version on the
confidence interval in Rosenthal [2017] has form

Im,ε =

ñ
0,

1
m

m

∑
i=1

L̂S(wi)+m−
1
2 σ̂m (2α)−

1
2 (1+ ε)

å
with prob. at least 1−α, (3.23)

where m is the number of samples, σ̂m is an estimate of the asymptotic variance, and ε

appears in the proof when formalizing Assumption 3. We take ε = 0.01. Fair comparison to
MFVI demands that we use the classical CLT to obtain an asymptotic confidence interval
in this case. This is valid as both the transformed cross-entropy and the 0− 1 losses are
bounded. The CLT confidence interval has form Iα =

î
0, 1

m ∑
m
i=1 L̂S(wi)+qα

σ̂m√
n

ä
, where qα

is the appropriate quantile of the standard Gaussian distribution1.

The bound under milder assumptions

Given the difficulties in verifying assumptions for MCMC samples, the reader may wonder if
we can give, perhaps looser, estimates for C(Q∗

λ
,λ ) with milder assumptions. Let Q denote

the underlying distribution of our HMC samples, which may not be Gibbs posterior. The
following simple proposition can be used to give a (loose) bound for DKL(Q||P) only requir-
ing that Q is not much further from the Gibbs posterior than the mean-field approximation.
We expect that Q is much closer to the Gibbs posterior than MFVI, hence this is a very mild
assumption.

1Although the population variance is unknown, we decided to use this instead of the Student-t distribution
to ensure comparability to Im,ε , and because we have a large sample size, m = 20,000 across the four chains.
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Proposition 3.6.1. Let P be the prior, and let Q∗
λ

denote the corresponding (Gibbs) posterior
Q∗

λ
∝ e−nλ L̃CE

S (w)p(w). Suppose that we are able to simulate from a distribution Q. Let G
be another distribution (in our case, a Gaussian) such that DKL(Q||Q∗λ )≤ DKL(G||Q∗λ )+
EQ

î
L̃CE

S (w)
ó
. Then,

DKL(Q||P)≤ nλEG

î
L̃CE

S (w)
ó
+DKL(G||P). (3.24)

Proof. The proof van be found in Appendix A.

We can use this estimate to bound the PAC-Bayes λ and PAC-Bayes relative entropy
bounds to obtain an upper bound on C(Q,λ ), which we denote by CUB(Q,λ ). For this,
we need an estimate for L̃CE

S (Q), for which we use the kl inverse bound (Theorem 2.2.3).
It can be shown easily that we have CUB(Q,λ ) ≥C(G,λ ) if we use the λ bound and the
cross-entropy loss. However, we are most interested in risk certificates in terms of accuracy.
For the 0−1 loss, our upper bound on the λ bound becomes

L0-1(Q)≤
L̂0-1

S (Q)

1− λ

2

+
DKL(G||P)+ log(2

√
n/δ )

nλ (1− λ

2 )
+

L̃CE
S (G)

1− λ

2

. (3.25)

This can result in CUB(Q,λ ) ≤C(G,λ ) if Q has lower 0− 1 loss than G. The difference
between this and the true λ bound on L0-1(Q) is precisely DKL(G||Q∗λ )−DKL(Q||Q∗λ )+
L̃CE

S (Q). We will use this bound for a sanity check on our results. If our computed value for
C(Q,λ ) is much higher than this bound, then we likely overestimated the true value, even if
our bound is smaller than the one with MFVI. If, on the contrary, our estimate is much lower
than this upper bound, that means that either DKL(G||Q∗λ )−DKL(Q||Q∗λ )+ L̃CE

S (Q) is high
or our chains did not even manage to achieve DKL(Q||Q∗λ )≤ DKL(G||Q∗λ )+ L̃CE

S (Q).
Having obtained high-probability upper bounds on our estimates for both terms of PAC-

Bayes bounds, both the PAC-Bayes relative entropy bound and the λ bound can now be
computed. In the next, final section of the present chapter, we briefly summarize our method
together with the assumptions required at each step.

3.7 Summary of Method and Assumptions

In summary, our method for estimating PAC-Bayes bounds for the Gibbs posterior consists
of the following steps.
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1. Drawing (approximate) samples from the Gibbs posterior Q∗
λ

using HMC

2. Estimating L̂S(Q∗λ ) as L̂S(Q∗λ )≈
1
m ∑

m
i=1 L̂S(wi), wi ∼ Q∗

λ
using L̂S = L̃CE

S , L̂0-1
S

3. Estimating DKL(Q∗λ ||P) using thermodynamic integration.

(a) Sampling from Q∗
λβ

for several β ∈ [0,1]

(b) Estimating L̂S(Q∗λβ
) as in Step 2

(c) Estimating the thermodynamic integral with the trapezium rule, i.e.

−‘logZ :=
K−1

∑
k=1

Ä
1

mk
∑

mk
i=1 L̃CE

S (wi,k)
ä
+
Ä

1
mk+1

∑
mk+1
i=1 L̃CE

S (wi,k+1)
ä

βk+1−βk
,wi,k∼ πβk

(d) Estimating DKL(Q∗λ ||P) as

DKL(Q∗λ ||P)≈−
1

m1

m1

∑
i=1

L̃CE
S (wi,1)−‘logZ

4. Constructing a high-probability upper bound on each
1

mk
∑

mk
i=1 L̂S(wik), wik ∼ Q∗

λβk
to ensure that our estimates are high-probability

upper bounds for L̂S(Q∗λ ) and DKL(Q∗λ ||P).

5. Computing the two PAC-Bayes bounds using the upper bounds from Step 4.

We now recall the assumptions required by our method. Assume that the true distribution
we are sampling from is Q. Ideally, for Steps 2, 3 to supply accurate results, the Markov
chain Central Limit Theorem is required, i.e. that our chain converges in function space.
However, since PAC-Bayes bounds can be computed for any Q, we do not need to require
the MCCLT to compute the bound for Q. Hence the only assumptions we have are those in
our high-probability upper bounds.

The high-probability bounds of Step 4 have been chosen to have assumptions on varying
strength levels, allowing the reader to choose according to their taste. The bound based
on Theorem 2.2.3 requires that w ∼ Q are i.i.d. The confidence interval from Rosenthal
[2017] required conditions on the order of the bias and variance of our estimators for
Ew∼Q[L̂S(w)] and an estimate for the asymptotic variance that converges in probability.
These two bounds additionally require DKL(Q||Q∗λ ) to be small so that the approximation in
Step 3d that neglects term DKL(Q||Q∗λ ) is reasonably accurate. The third bound only requires
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DKL(Q||P)≤ DKL(G||P)+EQ

î
L̃CE

S (w)
ó

for a mean-field Gaussian approximate posterior
we are comparing to.

We emphasize that in Step 3c, the approximation of − logZ via the trapezium rule sup-
plies an upper bound. Hence possible violations of our assumptions may be (partly) masked
by this approximation.

Summary. In this chapter, we presented our method to estimate optimal PAC-Bayes bounds.
We also proved simple results including (i) a lower bound on the tightness gap, (ii) the
convexity of the thermodynamic integral, and (iii) a bound under mild assumptions we will
use as a “sanity check” on our estimates. In the next chapter, we apply our method to compute
(close-to) optimal PAC-Bayes bounds and compare these to MFVI.



Chapter 4

Experiments and Results

Chapter Roadmap

In this chapter, we apply our method for estimating optimal PAC-Bayes bounds on the
MNIST dataset and some of its variations. As the first step of our method, sampling with
HMC is challenging to implement, we first gain some intuition on HMC and Gibbs posteriors
with some small experiments. Section 4.1 provides a two-dimensional toy example, where
we can visualize Gibbs-like posteriors. In Section 4.2, we provide our experimental setup.
Then, in Section 4.3, we explore some calibration choices for HMC and the prior variance.
In Section 4.4, we assess our HMC samples with the diagnostics measures introduced in
Section 2.3.2, before presenting our RC estimates in Section 4.5.

4.1 A Motivating Toy Example

We begin by illustrating the benefits of approximating posteriors with HMC instead of MFVI
with a toy example. We consider the task of inferring a parameter w ∈ [15,55]× [0,40] using
a prior p(w) some risk function (generalised negative log likelihood) R : [15,55]× [0,40]→
[0,1], w 7→ R(w). The parameter w may govern the generation of some data source. However,
as we seek to visualize the model in two dimensions, we consider the data fixed and only
treat the risk as a function of w. Note that generalised Bayesian inference is model-free,
hence we do not require an explicit data modelling setup.

In order to illustrate the multi-modality typical of Gibbs posteriors, we construct a two-
dimensional surface with multiple local minima. Taking inspiration from [Kim et al., 2022],
we define R(w) as the negative log-mixture of four KL-divergence-driven energy models.
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Specifically, we define the risk as

R(w) =
− log(α1e−E1/β 2

1 +E +α2e−E2/β 2
2 +E +α3e−E3/β 2

3 +E +α4e−E4/β 2
4 +E +E)−0.1218

1.6592
,

where Ei =
(w0−µi)

2+w2
1

2s2
i

− 1
2 + logsi− log(|w1|), i ∈ {1,2,3,4} and E is the element-wise

maximum of the Ei. We chose the numerical constants in order to ensure that R(w) ∈ [0,1].
We also set

(µ1,µ2,µ3,µ4) = (32,20,48,32),

(s1,s2,s3,s4) = (8.5,3.5,4.5,2.3),

(α1,α2,α3,α4) = (0.75,0.5,0.5,0.3),

(β1,β2,β3,β4) = (1.9,1.6,1.6,1.6).

The resulting surface has three local minima.
We wish to visualize the effect of some of our future experimental choices on this

toy problem. We focus on (i) the effect of the prior variance on multi-modality, (ii) the
comparison of the generalised posterior with the PAC-Bayes objectives, and finally (iii) a
comparison between the result of running HMC and MFVI on this problem.

The results of (i) are given in Figure 4.1. The multi-modality of the risk is only reserved
at the highest prior variance setup (bottom row). Figure 4.2 carries out (ii). This comparison
is important, since the use of the PAC-Bayes objectives as loss functions, including the ELBO
can be motivated by the fact that their corresponding surface “looks” similar to that of the
true (generalised) posterior. Hence (successful) optimization of the PAC-Bayes objective
using MFVI will result in an approximate posterior over w that matches the high-probability
regions of the (generalised) posterior.

In Figure 4.3, we illustrate the advantages of using HMC instead of MFVI to describe
the true (generalised) posterior (iii). The underlying prior distribution is a Gaussian p(w) :=
N(w; [36,10]⊤,2000 · I). As we treat our data fixed, during both generation of the HMC
samples and optimization of a mean-field approximate posterior, the only variable is w. For
HMC, the unnormalized log joint is defined as J(w) :=−R(w)+ log p(w). A single HMC
chain was generated, starting from [32,20]⊤. The same point was used to initialize the mean
of the approximate posterior, while its covariance matrix was initialized to 3 · I.

HMC was run for 500 iterations after a burn-in phase of 100 iterations. We used 10
leapfrog steps with step-size 2.0. The described setup resulted in an acceptance probability
of 58%. The generated samples are shown in green in Figure 4.3. MFVI was run for 1000
iterations with a learning rate of 0.01. The KL divergence term was scaled by 0.005. This
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Fig. 4.1 Illustration of the effect of the prior variance on the posterior corresponding to a multi-
modal generalised likelihood. The left panels show the risk R(w) together with the contours
of a Gaussian prior with mean [36,10] and isotropic covariance c · I for c ∈ {3,200,2000},
where I is the two-dimensional identity matrix. The middle panels show the generalised
likelihood with the same priors, while the right panels show the joint, which is proportional to
the generalised posterior. Only the largest covariances, 2000 · I preserved the multi-modality
of the risk function.
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Fig. 4.2 Comparison of the generalised posterior with a generic linear PAC-Bayes objective
(also equivalent to the ELBO for generalized likelihood). The left panel shows the contours
of the joint distribution (proportional to the generalised posterior), while the right shows the
surface of the PAC-Bayes objective. The surfaces look similar, which confirms the validity
of using the PAC-Bayes objective to reach good approximate posteriors with MFVI.
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Fig. 4.3 Comparison of using HMC and MFVI to describe the posterior surface. The left
panel shows the risk, while the right one shows the surface of the joint (proportional to the
generalised posterior). The prior was taken to be a Gaussian N(w; [36,10]⊤,2000 · I) The
HMC chain and the mean-field Gaussian approximate mean was initialized at the purple star
[32,20]⊤. The HMC chain explores the high-probability regions of the posterior including
the three modes, while the mean-field Gaussian approximate posterior only attempts to fit
onto one of them.
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was necessary in order to balance the magnitudes of the risk and the KL divergence term and
avoid instability. The contours of the end posterior are shown in yellow and orange.

The inability of the Gaussian posterior to capture the multi-modal structure is clearly
shown. HMC, on the other hand, explores the whole surface, allowing us to store information
from around all three modes. Despite the multi-modality, the surface is relatively flat, hence
our HMC samples cover the high-probability region evenly, with some concentration around
the modes.

4.2 Experimental Setup

The previous section investigated the effect of experimental choices in a toy problem. We
now leverage those findings in our experiments using neural networks. This section outlines
the common setup of our experiments including datasets, architectures, and hyperparameters.

Datasets

Or two key consideration in selecting our datasets were

• Efficiency. Complicated datasets require large models, but it is challenging to use
HMC with very large model dimensions. Accurate marginal likelihood estimation is
intractable in very high dimensions. In addition, the size of the dataset impacts the
time required to run HMC.

• Relevance to the Deep Learning community. Small datasets that can be learned
without using neural networks are of less interest to the deep learning community. The
simplest dataset for which PAC-Bayes bounds are commonly calculated is MNIST.

Based on these considerations, we chose to work with the following datasets, all of which
are versions of MNIST.

• (Full) MNIST. The regular MNIST dataset with 60,000 train and 10,000 test datapoints.

• Binary MNIST. We mapped the labels of MNIST to binary using the map y 7→ y mod 2.

• 14×14 MNIST. We reduced the size of each MNIST image from 28×28 to 14×14
by removing every second pixel. The characters remain identifiable.

To test the effect of the dataset size, we also experiment with using only half of the
60,000 training datapoints in each of the datasets above. For each dataset, we use the training
data to sample from the Gibbs posterior. The risk certificates are also evaluated in the training
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Dataset Architecture # params

Binary MNIST 784 20 - 2 15742
14×14 MNIST 196 128 128 10 43018
MNIST 784 128 128 10 118282

Table 4.1 Our neural network architectures. The input dimension of each layer is shown,
together with the final output dimension.

data, as is customary in PAC-Bayes [Perez-Ortiz et al., 2020]. The test data is only used to
check the validity of our bounds by comparing them to the test error (which they must upper
bound).

Architectures

We use simple Multi-Layer Perceptron (MLP) architectures in our sampling experiments.
Due to the scalability limits of marginal likelihood estimation, the number of parameters are
kept small. The architectures along with the corresponding number of parameters are given
in Table 4.1.

Although MLPs may seem too limited and not parameter-efficient, their use is motivated
by the trade-off between how complex our model is and the amount of time it takes to
generate samples. Small CNN architectures were trialed, but sampling was unreasonably
slow with them. Further, we do not wish to compete with the state-of-the-art in producing
tight risk certificates. We only aim to compare (our estimate for) the optimal bound to the
bounds obtained by MFVI. This comparison is interesting for any deep learning model on
MNIST.

Hyperparameters

We first discuss the hyperparameters related to the prior. We initialize the prior means
randomly from a truncated Gaussian distribution of mean 0 and separate variance for each
layer, given by 1√

nin
, where nin is the input dimensionality of the layer. The constants of

the truncation are ±2 standard deviations. The prior covariance is set to 0.03 · I, matching
Perez-Ortiz et al. [2020]. We use the cross-entropy loss as our generalized likelihood function,
in the transformed version (defined in Section 2.2.5, Equation 2.10), with pmin = 10−4. This
ensures that our loss is bounded.

We now explain the hyperparameters used with MFVI. As optimizer, we used SGD
with learning rate 0.005 and momentum 0.95 and train for 150 epochs. The motivations for
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Fig. 4.4 HMC sample traces for a single chain without burn-in (50), for various β values.
The black lines show the mean of each chain. The dataset is Binary MNIST - Half.

choosing SGD were discussed in Section 2.2.5. Since our objective function, the λ bound
allows for cross-validation in λ , we optimize for this parameter while training and initialize
it to 1. Following Perez-Ortiz et al. [2020], we use SGD with the same learning rate and
momentum. This results in very small decrease in λ , at most 0.02 across our experiments.
We have run initial experiments with higher learning rates for λ , but these resulted in looser
risk certificates using the PAC-Bayes relative entropy bound.

We choose our risk certificate to hold with probability 1− δ with δ = 0.05. We will
use δ1 = 0.025 to upper bound 1

m ∑
m
i=1 LS(wi), wi ∼ Q and then δ2 = 0.025 to compute

bounds. This will ensure a risk certificate that holds with probability 0.95, via a union bound
argument.

Next, we discuss the hyperparameters for HMC. We use full-batch HMC to sample from
Gibbs posteriors of form ∝ e−β L̃CE

S (w)p(w) for β ∈ (0,1). We run HMC with Metropolis-
Hastings correction. We use constant step-sizes for the discretization of Hamiltonian dynam-
ics, which we calibrate individually by testing the values {2,3,4,5,6,7,8,9,10,20,30}×
10−3 for each dataset and β . The step-sizes were chosen from this set by running HMC for
around 100 sampling iterations for each step size, targeting the ideal acceptance probability
for HMC given by 0.65 [Beskos et al., 2010]. Longer trial runs were not possible due to
computational constraints. Lower step sizes were found suitable for higher β values. In
every experiment, we use a trajectory length of 1.5. The authors of Izmailov et al. [2021]
recommend a trajectory length of at least πσprior

2 , which is approximately 0.27 in our case, but
we choose higher than this in order to allow for more leapfrog steps. The chosen step-sizes
resulted in leapfrog steps between 50 and 750. The difference in leapfrog steps is motivated
by the fact that for lower β values, the generalized posterior is more similar to the prior and
hence is easier to sample from. Each chain was run for 5000 iterations including a burn-in
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Dataset Discretization for β ∈ [0,1]

Binary MNIST 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0, 8, 0.9, 1.0
14×14 MNIST 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0, 8, 0.9, 1.0
MNIST 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0

Table 4.2 Discretization values of β ∈ [0, 1] for our datasets.

of 50 iterations. A low burn-in was chosen since we observed that the chains converge very
quickly in function space (L̃CE

S (w)). To support this choice, Figure 4.4 shows burned-in
chains for the Binary MNIST - Half dataset for various values of β . To be able to test the
convergence of the chains, we run four chains started from independent seeds for each β .

Depending on the size of the dataset, the interval [0,1] was discretized to 7 or 12 values.
The exact discretizations are reported in Table 4.2. We note that our discretizations are slightly
denser near 0, which is where we lose the most with the trapezium rule approximation. There
are also some more principled ways to select a good discretization, see for example Huber
[2015]. Assuming a discretization of size K, we need to set K +1 δ values (one for term one
of the PAC-Bayes bound, K−1 for the KL divergence estimate, and one for computing the
bound). The δ values corresponding to the KL divergence term are set to 0.01/(K−1) and
the others to 0.02, making a total of 0.05, consistent with MFVI.

4.3 Introductory Experiments

In this section, we test the effect of the prior variance and the HMC step-size on the quality
of the samples produced.

Effect of the prior variance

We experiment with 10 prior variance parameters linearly spaced between 0.03 (used in
Perez-Ortiz et al. [2020] and in our subsequent experiments) and 1.0. Figure 4.5 shows the
results. The train cross-entropy, 0−1, and test 0−1 losses all tend to decrease as the variance
is increased. The only exception is s2 = 0.89. This exception may show that high prior
variances can reinforce regions of the likelihood landscape that have problematic structures,
making it harder for our Markov chain to explore the posterior. A smaller variance with an
appropriate mean may be a more suitable choice.
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Fig. 4.5 Effect of the variance of the prior on the train cross-entropy loss 1
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(right). The dataset used was the 30,000 samples from Binary MNIST, and the architecture
was a one hidden layer MLP with 20 hidden units.
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Fig. 4.6 Top row: effect of the HMC step size on the train cross-entropy loss 1
m ∑

m
i=1 L̂CE

S (wi)

(left), the train 0−1 loss 1
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(right). Bottom row: effect of the HMC step size on the acceptance probability (left), the
mean Effective Sample Size (middle) and the mean MCMC Standard Error (right). The
dataset used was the 30,000 samples from Binary MNIST, and the architecture was a one-
hidden-layer MLP with 20 hidden units.
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Effect of the HMC step size

In this experiment, we tested 10 step size lengths between 0.003 and 0.01 on 30,000 images
selected from Binary MNIST, using our small, 1-hidden-layer architecture with 20 hidden
units. We report the mean train cross-entropy, train 0−1 and test 0−1 losses in the top row
of Figure 4.6, and the acceptance probability, ESS and MCMC SE in the bottom row.

The quality of the samples drop as the step size is increased from 0.005, as shown by the
diagnostics. Results for step sizes of 0.07 and 0.08 were not reported as in these chains, no
samples were accepted. It is also visible that the well-behaving step sizes produced acceptance
probabilities over 0.7 and ESS values over 2000 (with a burn-in of 50). This illustrates that
very high acceptance probabilities (e.g. above 0.8) can lead to good performance according
to these most common metrics. This is contrary to the behavior of simpler MCMC methods,
where too high acceptance results in poor exploration of the posterior and very low ESS
values.

4.4 HMC Diagnostics

This section presents diagnostic results for all the HMC samples that will be used to compute
the PAC-Bayes bound. Figures 4.7, 4.8, 4.9 4.10, 4.11 and 4.12 show our diagnostics for
each dataset, respectively. Each figure is structured as follows. The top row (a) shows
the acceptance probabilities of the Metropolis-Hastings step of HMC. We also report ESS,
MCMC SE and R̂ statistics, which as computed in function space, for L̃CE

S (w). This is
because we estimate expectations in function space. Values are reported for each β in our
discretization, and the burn-in phase was not included. Figures (b) and (c) show histograms
for R̂ for each β . The histograms in (b) are computed in weight space, while in (c), R̂ is
evaluated on the test softmax predictions of the samples.

We make the following observations. The target acceptance probability of 0.65 was
not always achieved on average. On Binary MNIST, acceptance probabilities were higher,
around 70− 80%. In these cases, increasing the step-size resulted in unstable behaviour,
with an acceptance probability close to 0. We have observed the same phenomenon in
our introductory experiments on HMC learning rates (Figure 4.6). We followed the usual
recommendation for these cases, which is to keep the step-size slightly lower than the highest
stable value [Betancourt, 2017]. On 14×14 MNIST, acceptance probabilities were roughly
as desired. However, the MNIST experiments resulted in some acceptance probabilities below
0.4. In these cases, the ideal step-size is likely smaller. However, for MNIST, decreasing
the step-size would have meant the largest increase in running time: from 5 to 12 hours for
a single chain (5000 samples) for β = 1. Furthermore, running short chains with smaller
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step-sizes showed very similar values for the train and test losses. Hence a decision was
made to use larger step-sizes to be able to produce a longer chain.

The ESS values are relatively high, almost always retaining at least 5000 out of the 19800
samples (burn-in removed) across the four chains. The MCMC SE values are also low. The
sudden decrease as β is increased is explained by the fact that the true variance of the Gibbs
posterior decreases as β increases, since the posterior becomes more concentrated around
the minima of the loss landscape. All R̂ statistics are very small, showing that our chains are
approximately stationary. This finding motivates our use of the kl inversion bound (Theorem
2.2.3) which required an identically distributed sample.

Following Izmailov et al. [2021], in Figure 4.13, we supply expected calibration error
(ECE) estimates averaged over all estimates for a given β . ECE measures model calibration
by quantifying how well a model’s output pseudo-probabilities match the true (observed)
probabilities [Naeini et al., 2015]. We observe low ECE values implying that our samples
correspond to well-calibrated models.
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Fig. 4.7 HMC diagnostic plots for the Binary MNIST - Half dataset.
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Fig. 4.8 HMC diagnostic plots for the Binary MNIST - Full dataset.
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Fig. 4.9 HMC diagnostic plots for the 14×14 MNIST - Half dataset.
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Fig. 4.10 HMC diagnostic plots for the 14×14 MNIST - Full dataset.
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Fig. 4.11 HMC diagnostic plots for the MNIST - Half dataset.
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Fig. 4.12 HMC diagnostic plots for the MNIST - Full dataset.
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Fig. 4.13 Mean expected calibration error (ECE) values for each β ∈ [0,1]. The ECEs were
averaged over all samples from all four chains.
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Setup Train stats Test stats
RC with
rel. entropy bound

RC with λ bound

Method Dataset Model ›CE 0-1 KL/n ›CE 0-1 ›CE 0-1 ›CE 0-1 λ

Gibbs p. Binary Half 1L 0.0166 0.0562 0.0205 0.0166 0.0561 0.0706 0.1342 0.0915 0.1820 1.0
MFVI Binary Half 1L 0.0265 0.0924 0.0106 0.0281 0.0982 0.0703 0.1600 0.0934 0.2385 0.99
Gibbs p. Binary 1L 0.0122 0.0404 0.0195 0.0125 0.0415 0.0598 0.1080 0.0777 0.1435 1.0
MFVI Binary 1L 0.0270 0.0960 0.0105 0.0272 0.0928 0.0707 0.1640 0.0941 0.2452 0.99
Gibbs p. 14×14 Half 2L 0.0335 0.0954 0.0477 0.0361 0.1010 0.1410 0.2376 0.1888 0.3273 1.0
MFVI 14×14 Half 2L 0.0481 0.1348 0.0148 0.0481 0.1319 0.1238 0.2449 0.1710 0.3595 0.99
Gibbs p. 14×14 2L 0.0246 0.0695 0.0381 0.0259 0.0723 0.1118 0.1855 0.1484 0.2507 1.0
MFVI 14×14 2L 0.0463 0.1389 0.0140 0.0460 0.1313 0.1194 0.2379 0.1631 0.3597 0.98
Gibbs p. MNIST Half 2L 0.0324 0.0898 0.0428 0.0365 0.0970 0.1347 0.2248 0.1792 0.3091 1.0
MFVI MNIST Half 2L 0.0430 0.1256 0.0199 0.0437 0.1264 0.1176 0.2302 0.1570 0.3387 0.99
Gibbs p. MNIST 2L 0.0233 0.0653 0.0334 0.0253 0.0691 0.1065 0.1759 0.1401 0.2381 1.0
MFVI MNIST 2L 0.0423 0.1236 0.0196 0.0419 0.1200 0.1172 0.2287 0.1556 0.3342 0.99

Table 4.3 Training and test set metrics and risk certificate estimates using the kl inversion
bound (Theorem 2.2.3) to ensure risk certificates hold with probability at least 0.95. Train
loss refers to the transformed cross-entropy loss (›CE). Risk certificates are compared for the
approximate Gibbs posterior samples and MFVI for all datasets. Bold numbers indicate the
tighter certificate out of the Gibbs and MFVI ones for the same dataset. Models in the three
dataset categories have 15742,43018, and 118282 parameters, respectively (twice this many
for MFVI).

4.5 Bound Calculation Results

In this section, we present and discuss the results of our risk certificate calculation. Table 4.3
contains training and test statistics, as well as RCs computed using the PAC-Bayes relative
entropy and λ bounds. The 0.95 probability is enforced using the kl inverse bound (Theorem
2.2.3). To ensure approximate independence, the bounds in this table were calculated on
a thinned version of the Gibbs samples, which ensured that the ESS of the thinned sample
is close to the remaining sample size. This resulted in retaining 1000-3000 samples out of
19800, depending on the dataset. For comparison, MFVI was also evaluated using the same
amount of (exact) Gaussian samples.

We first observe that there are no bound violations, i.e. the test loss/error is always
smaller than the corresponding RC. Further, the RCs for MFVI and the Gibbs posterior have
the same magnitude. This suggests that there are no apparent problems with our estimates.
Next, we compare our RCs to RCs obtained with different high-probability bounds from
Section 3.6. This allows us to further assess the plausibility of our results.
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Setup RC with rel. entropy bound RC with λ bound

Method Dataset Model
kl inverse asymptotic kl inverse asymptotic›CE 0-1 ›CE 0-1 ›CE 0-1 ›CE 0-1

Gibbs p. Binary Half 1L 0.0706 0.1342 0.0511 0.1065 0.0915 0.1820 0.0663 0.1428
MFVI Binary Half 1L 0.0703 0.1600 0.0581 0.1426 0.0934 0.2385 0.0756 0.2090
Gibbs p. Binary 1L 0.0598 0.1080 0.0315 0.0702 0.0777 0.1435 0.0402 0.0969
MFVI Binary 1L 0.0707 0.1640 0.0580 0.1452 0.0941 0.2452 0.0756 0.2136
Gibbs p. 14×14 Half 2L 0.1410 0.1888 0.0946 0.1805 0.1888 0.3273 0.1237 0.2481
MFVI 14×14 Half 2L 0.1238 0.2449 0.0947 0.2059 0.1710 0.3595 0.1263 0.3070
Gibbs p. 14×14 2L 0.1118 0.1855 0.0702 0.1335 0.1484 0.2507 0.0910 0.1810
MFVI 14×14 2L 0.1196 0.2379 0.0906 0.1991 0.1631 0.3597 0.1194 0.2930
Gibbs p. MNIST Half 2L 0.1347 0.2248 0.0935 0.1740 0.1792 0.3091 0.1223 0.2377
MFVI MNIST Half 2L 0.1176 0.2302 0.0966 0.2025 0.1570 0.3387 0.1263 0.2911
Gibbs p. MNIST 2L 0.1065 0.1759 0.0673 0.1269 0.1401 0.2381 0.0872 0.1714
MFVI MNIST 2L 0.1010 0.2070 0.0947 0.1987 0.1317 0.2977 0.1226 0.2822

Table 4.4 Comparison of risk certificates using the kl inversion bound (Theorem 2.2.3)
and the asymptotic bound [Rosenthal, 2017]. Train loss refers to the transformed cross-
entropy loss (›CE). Risk certificates are estimated to hold with probability at least 0.95. Risk
certificates are compared for the approximate Gibbs posterior samples and MFVI for all
datasets. Bold numbers indicate the tighter certificate out of the Gibbs and MFVI ones for
the same dataset. Models in the three dataset categories have 15742,43018, and 118282
parameters, respectively (twice this many for MFVI).

Dataset RC with rel. entropy bound RC with λ bound
Binary Half 0.1417 0.1877
Binary 0.1184 0.1566
14×14 Half 0.2324 0.3180
14×14 0.1920 0.2600
MNIST Half 0.2247 0.3068
MNIST 0.1880 0.2553

Table 4.5 Risk certificates for the 0−1 loss using the approximate Gibbs posterior samples.
RCs were calculated using the “sanity check” bound with mild assumptions and were
calibrated to hold with probability at least 0.95. Only 0−1 RC-s are reported since it does
not make sense to calculate this bound for cross-entropy loss.
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4.5.1 Comparison of High-probability Bounds

In Table 4.4, we compare RCs computed with two different confidence intervals needed to
guarantee that our RCs hold with probability at least 0.95. The kl inversion bound (Theorem
4.3) and the asymptotic bound (from Rosenthal [2017]) is compared using both MFVI and
(approximate) Gibbs posterior samples. For the asymptotic bound, 19800 samples were used
since this does not require independence. The asymptotic bound gives lower risk certificates,
which is explained by the fact that (i) more samples were used, and (ii) that this interval only
guarantees a probability of 0.95 as the number of samples tends to infinity.

For readers skeptical about assumptions, Table 4.5 contains 0− 1 loss RCs for the
underlying distribution our HMC samples come from, Q (not necessarily the Gibbs posterior),
requiring the sole assumption that DKL(Q||Q∗λ )≤DKL(G||Q∗λ )+EQ

î
nλ L̃CE

S (w)
ó

to estimate
the KL. We use the kl inversion bound to upper bound our estimate for the risk. We do not
show these RCs for the cross-entropy loss as these are not smaller than the corresponding
MFVI RCs, by construction. We can see that these RCs almost always fall within 1% of the
kl inverse bounds. Hence our kl inverse RCs are likely not lower bounds of the true 95%
confidence bound. Our asymptotic estimates are always significantly smaller. This sanity
check shows strong support for our kl inverse bounds, hence in the rest of this section, we
use these bounds as RC estimates.

Having supported their validity, our estimates allow us to assess hypotheses on RCs and
their variational approximations. We interpret our results in Question-Answer (Q & A) style.

4.5.2 Interpretation of Results - Q & A

Q1: How much better is the Gibbs posterior than MFVI?

A1: Interestingly, the computed RCs for L̃CE
S (Q) (›CE) are almost always better for MFVI

than for the approximate Gibbs posterior samples, despite the Gibbs posterior being the
minimizer of the λ bound. However, the RC-s on the 0− 1 losses show considerable
improvement with respect to MFVI, especially for Binary MNIST. This discrepancy in
cross-entropy and 0−1 losses may indicate that we have considerably overestimated the true
KL divergence term. Since our KL divergences are small compared to the 0−1 losses, they
affect the 0−1 RCs less. We are mainly interested in 0−1 RCs, hence this is not a problem
for us.
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Model #params
Train stats Test stats Best RC›CE 0-1 KL/n ›CE 0-1 ›CE 0-1

Perez-Ortiz et al. [2020], MLP 2×1.2M 0.0277 0.0951 0.1383 0.0268 0.0921 0.2033 0.3155
Perez-Ortiz et al. [2020], CNN 2×1.2M 0.0157 0.0535 0.1039 0.0143 0.0513 0.1453 0.2165
ours (MFVI), MLP 2×118k 0.0419 0.1236 0.0196 0.0419 0.1200 0.1172 0.2287
ours (Gibbs p.), MLP 118k 0.0233 0.0653 0.0334 0.0253 0.0691 0.1065 0.1759

Table 4.6 Comparison of our (full) MNIST RC results to Perez-Ortiz et al. [2020]. Full
MNIST classification is the only shared task. Please note that Perez-Ortiz et al. [2020]
uses 200,000 samples from the approximate posterior, while we used ≈ 2000 to ensure that
the Gibbs samples are approximately independent. The PAC-Bayes bound used for RC
computation was the PAC-Bayes relative entropy bound.

Q2: How does the tightness gap change as the data size and /or model size is increased?

A2: The gap between the 0− 1 RCs for the Gibbs posterior and MFVI increases as the
amount of train data is increased. MFVI gives similar RCs in both cases while Gibbs RCs
improve by 3−7% when the amount of data is increased. This is reasonable since Gibbs
posteriors concentrate more around minima of the loss as n is increased. However, our results
show that MFVI is not able to utilize the extra data very well.

When increasing model size, the gap between the 0−1 RCs decreases as we move from
Binary MNIST to 14× 14 MNIST and remains roughly the same as we move to MNIST.
This supports the hypothesis of variational approximations become more accurate as model
depth is increased.

Q3: Does the size of the architecture affect the RC on a fixed dataset?

A3: We compare our results to Perez-Ortiz et al. [2020] in Table 4.6. Surprisingly, even
with much fewer samples (≈ 2000 compared to 200,000) we obtain better RCs both for
cross-entropy and 0−1 loss. The only difference in the MFVI experiments between Perez-
Ortiz et al. [2020] and us is the size of the architecture: our MLPs have a magnitude fewer
parameters. The main contributor to the difference in RCs is the KL divergence per datapoint
term, which is higher in Perez-Ortiz et al. [2020]. A possible explanation for this phenomenon
is as follows. Since the number of datapoints is given, a smaller architecture allows for
more variation per parameter while keeping the same KL/n value and hence can explore
better trade-offs between loss and KL terms. Hence it can be beneficial to consider small
architectures.
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Q4: How good can data-independent bounds be?

A4: Our results show that data-independent bounds may hold more promise than what most
of the current literature assumes. Although the data-independent prior does constrain the
bound through DKL(Q||P), they can be made smaller than as reported in previous litera-
ture: our improvement was 17.6% (with the Gibbs posterior) error compared to 21.7% in
Perez-Ortiz et al. [2020]. It is likely that better-chosen architectures could achieve even
better RCs. As Lotfi et al. [2022] suggests, bounds based on data-independent priors explain
generalization better, hence their study should not be neglected.

Summary. In this chapter, we presented our RC estimates for the Gibbs posterior. As
preparation, we investigated properties of the Gibbs posterior and HMC via small experiments.
We then assessed our HMC samples using various diagnostics. We argued for the validity of
our RC estimates by comparing to RCs obtained with other high-probability bounds. We
then used our RC estimates to discuss hypotheses in PAC-Bayes. Our Gibbs RC estimate
always improved on MFVI in 0−1 loss. The tightness gap between MFVI and Gibbs RCs
was found largest for Binary MNIST - Full. In general, it was found that the tightness gap
increases with dataset size and decreases as network depth is increased. Finally, comparing
to Perez-Ortiz et al. [2020], we demonstrated the benefits of using small architectures and
argued for data-independent priors.





Chapter 5

Related Works

Chapter Roadmap

Having presented our results in the previous chapter, we now discuss works related to each
aspect of our method. We first explain how our topic fits into the current PAC-Bayes literature,
before turning to the main threads of related work: (i) tightness PAC-Bayes bounds, (ii)
evaluating MFVI, (iii) MCMC for neural networks and (iv) literature on high-probability
bounds. For a rough categorization of most of the mentioned works, see Table 5.1.

5.1 Recent Developments and Trends in PAC-Bayes

Since the establishment of non-vacuous PAC-Bayes bounds for over-parametrized neural
networks [Dziugaite and Roy, 2017], the main focus of the literature has been to (empirically)
achieve the tightest bounds possible. To this end, there has been a lot of work on data-
dependent priors, which are considered to be the only route to produce tight bounds [Dziugaite
and Roy, 2018, Dziugaite et al., 2021]. Currently, the tightest empirical bounds exist for
compressed models [Lotfi et al., 2022], and were achieved using a bound that upper-bounds
the KL divergence with the compressed size of the model [Zhou et al., 2019]. Table 5.2
shows the current state-of-the-art on typical deep learning datasets.

Another thread of current research is concerned with extending the applicability of PAC-
Bayes beyond its usual assumptions and to a variety of models. The two key assumptions
of the PAC-Bayes framework are a bounded risk (loss) function and i.i.d. data. To relax
the former, PAC-Bayes bounds have been developed for unbounded losses [Haddouche
et al., 2021] and heavy-tailed losses [Haddouche and Guedj, 2023a, Rodriguez Gálvez et al.,
2023]. There also exist some bounds for non i.i.d. data [Ralaivola et al., 2009]. Recently,
PAC-Bayes bounds have been formulated in terms of the Wasserstein distance (instead of the
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PAC-Bayes Bayesian Deep Learning
MCMC Dziugaite and Roy [2018] (SGLD) Izmailov et al. [2021]

comparison
Alquier et al. [2016]
Our work

Foong et al. [2020]
Farquhar et al. [2020]

MFVI
Pitas [2020]
Perez-Ortiz et al. [2020] Most BNN papers

Table 5.1 Comparison of recent works in the PAC-Bayes and Bayesian Deep Learning com-
munities, focusing on MFVI, MCMC and their comparison. Blue shows mainly theoretical
works, red shows mainly empirical works, while green shows work with significant theoreti-
cal and empirical components.

MNIST CIFAR-10 CIFAR-100 ImageNet

Data-independent 11.6 58.2 94.6 93.5
Data-dependent 1.4 16.6 44.4 40.9

Table 5.2 State of the art in empirical PAC-Bayes bounds. All bounds were obtained for
compressed models, in Lotfi et al. [2022].

KL divergence), which is easier to estimate [Haddouche and Guedj, 2023b, Viallard et al.,
2023]. Finally, PAC-Bayes bounds have been developed recently to provide reconstruction
guarantees for generative models, such as VAEs [Chérief-Abdellatif et al., 2022] and GANs
[Mbacke et al., 2023].

In comparison, our work goes back to considering smaller neural network models on
MNIST and its simplified versions only. This is necessary to be able to (approximately)
sample from the Gibbs posterior and for (generalized) marginal likelihood estimation. Our
main interest is to empirically evaluate the accuracy of MFVI compared to the optimal
bound, and not to obtain even tighter generalization bounds. However, as a byproduct, we do
obtained tighter risk certificates than those of MFVI on the small models considered.

5.2 Tightness of PAC-Bayes Bounds

Perez-Ortiz et al. [2020] is a recent contribution to achieving tight empirical PAC-Bayes
bounds in a general setting (i.e. non-compressed models). The authors compare MFVI on
several training objectives derived from PAC-Bayes bounds, including the PAC-Bayes λ

bound (Equation 3.2). As explained in Section 2.2.5, we follow their approach in optimizing
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PAC-Bayes objective for MFVI.

Foong et al. [2021] shares our interest in the tightness limits of PAC-Bayes. However, they
consider the small data regime (30-60 datapoints), arguing that this regime benefits most
from eliminating the need for test data with a PAC-Bayes risk certificate. Their setting also
differs from ours in that they study the tightness limits of the whole PAC-Bayes framework,
not those of a specific bound. They do this by considering a theorem from Germain et al.
[2009], that unites many PAC-Bayes bounds in a general form.

Theorem 5.2.1. (Generic PAC-Bayes theorem) Fix P ∈M1(W), l ∈ [0,1], δ ∈ (0,1) and ∆

a proper1, convex and lower semicontinuous2 function ∆ : [0,1]2→ R∪{+∞}. Then,

P
Å
(∀Q) ∆(L̂S(Q),L(Q))≤ 1

n

ï
DKL(Q||P)+ log

I∆(n)
δ

òã
≥ 1−δ , (5.1)

where I∆(n) := supr∈[0,1]∑
n
k=0
(n

k

)
rk(1− r)n−ken∆(k/n,r).

We note that our PAC-Bayes relative entropy bound (Equation 2.6) is almost equivalent
to this with ∆(q, p) = kl(q, p), and the difference is a slight loosening with an upper bound
on I∆(n).

This generic bound can be optimized in the function ∆, giving us a way to compare
many PAC-Bayes bounds and also characterize the limits of this general form of PAC-Bayes
bounds. Among their findings, the most relevant to us is the following. When ∆ is chosen
independently of the dataset, they lower bound the tightest possible bound in ∆ and find that
this lower bound coincides with the PAC-Bayes relative entropy bound without the log(2

√
n)

term.
This finding supports our choice to use the PAC-Bayes relative entropy bound to compute

our risk certificates from the Gibbs posterior samples. We note, however, that the tightness of
a PAC-Bayes bound in general does not guarantee that the bound can be used efficiently for
empirical risk certificate computation. In the context of exact minimization, the optimizing
posterior may not exist or have a suitable form, and for MFVI, the bound may not be a good
objective for optimization. This is why, most of the time, linear PAC-Bayes bounds are used
as PAC-Bayes objectives.

The authors also compare PAC-Bayes bounds to test set bounds in a synthetic 1D
classification experiment and find that their PAC-Bayes cannot be made competitive with

1A proper convex function ∆ is a convex function on R∪ {∞} with a non-empty domain X such that
f (x)< ∞ for some x ∈ X .

2∆ is lower semicontinuous if ∆(x)≤ liminf
k→∞

∆(xk) for all sequences xk→ x [Bertsekas, 2009].
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their best test set bound. This shows that we have more powerful techniques in the small data
regime, hence PAC-Bayes should be used for larger datasets.

5.3 Evaluating MFVI

This section collects works that aim to evaluate MFVI, both in the Bayesian deep learning
and PAC-Bayes communities.

5.3.1 In Bayesian Deep Learning

A debate on the accuracy of MFVI arose from the works of Foong et al. [2020] and Farquhar
et al. [2020]. Both study the performance of MFVI in function space, that is, the performance
of the approximate posterior predictive. This setting is relevant for us since PAC-Bayes
bounds involve functions of L̂S(Q) and DKL(Q||P). The former is an object in function space,
and the latter, in itself, has nothing to do with the true posterior. Hence an approximate
posterior Q that is far from the true posterior but performs well in function space could in
principle have a tight risk certificate.

Foong et al. [2020] study single-hidden-layer neural networks and identify the following
limitation of mean-field Gaussian approximate posteriors in function space. Their predictive
cannot represent in-between uncertainty, that is, higher uncertainty between well-separated
regions of low uncertainty. This is because the variance on any line segment in the input
space is bounded by the maximum of the variance at its endpoints. However, they show
empirically that exact inference does not suffer from this problem, showing that MFVI
fails to capture this property. For deeper BNNs of at least two hidden layers, they prove a
universality result for their mean and variance functions but find experimentally (using small
BNNs of multiple hidden layers) that optimization does not necessarily discover these sets of
optimal parameters.

Farquhar et al. [2020], in contrast, study deep neural networks of at least two hidden layers.
In this setting, they provide a stronger universality result than in Foong et al. [2020], proving
the closeness of the MFVI predictive to the true predictive in distribution, rather than in the
first two moments as in Foong et al. [2020]. In their experiments on the “two moons” dataset,
they compare full-covariance approximate posteriors to mean-field ones via (i) comparing
their Wasserstein distance from the true posterior, computed using HMC samples and (ii)
comparing their KL divergence directly. They find that errors quickly diminish as depth is
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increased, with six layers being enough for negligible error. Their larger-scale experiments
on CIFAR-100 and ImageNet using structured covariances [Maddox et al., 2019] and MFVI
also suggest that MFVI performs well in deep models.

The above articles together identify the limitations of MFVI as a function of the data size
and model depth. The picture seems simple: for small datasets and shallow networks, MFVI
approximates the true posterior poorly, but performs well in deep networks.

The above is relevant to our context in the following way. We study small neural networks
(one or two hidden layers), where, by the above, MFVI is less accurate3. Thus, we can “win”
more by using the optimal PAC-Bayes posterior. Interestingly, based on the universality
results, the “line” between poor and good performance seems to be at two hidden layers.
This is in accordance with our results: we also observed a drop in the tightness gap as model
depth was increased. However, we used separate datasets for the different depths, hence
verifying this hypothesis in our setting requires further experiments.

5.3.2 In PAC-Bayes

We now discuss related works assessing the performance of MFVI in providing approximate
posteriors with tight generalization guarantees.

Alquier et al. [2016] is the closest to our work. They study the concentration of Gibbs poste-
riors and of their Gaussian approximations. Recall that the goal in statistical learning theory is
to find the best possible predictor, which is the one that satisfies w̄= arg infw∈WEz∼D[L(w,z)].
Let us denote L(w̄) by L̄. When we form a randomized predictor (e.g. any posterior Q) after
observing a data sample S, we want this randomized predictor to converge to a distribution
that concentrates around L̄ with low variance (as the number of data samples tends to infinity).
The contribution of Alquier et al. [2016] is proving in certain settings that the best Gaussian
variational approximation to the Gibbs posterior, G∗

λ
has the same rate of convergence to L̄

as the Gibbs posterior.
They achieve this using oracle bounds (briefly discussed in Section 2.2.5) on the true risks

L(Q∗
λ
) and L(G∗

λ
) of the optimal Gibbs posterior Q∗

λ
and its best variational approximation

G∗
λ

, respectively. Their key result is a characterization of the difference between the two
upper bounds. They supply a general result and then specify their theorem to common task
settings of which the closest to us is binary linear classification. We only discuss our specific
result and refer the reader to Alquier et al. [2016] for the assumptions required. Roughly,
these require conditions on the boundedness of the risk and the data-generating distribution.

3Although by all means insightful, the exact theorems in the above works may not be directly applicable to
our PAC-Bayes setting as our setting constrains the negative log (pseudo) likelihood to be bounded.
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Let F denote the set of mean-field Gaussians. The authors upper bound the right-hand side of
their oracle bounds and thus show that the Gibbs posterior and its variational approximation
have the same rate of convergence to L̄, given below.

Theorem 5.3.1. Let L̄ = infw∈WL(w) and G∗
λ

and Q∗
λ

denote the optimal mean-field Gaus-
sian approximate posterior and the Gibbs posterior, respectively, for some data sample S.
Then, for any ε > 0, with probability at least 1− ε , simultaneously,

L(Q∗
λ
)

L(G∗
λ
)

´
≤ L̄+

…
d
n

log
Ä

4ne2
ä
+

c√
n
+

…
d

4n3 +
2log

(2
ε

)
√

nd
, (5.2)

where d is the data dimensionality and the number of model parameters, i.e. X =W = Rd

(in this setup of binary linear classification).

We now discuss the implications of this result to our setting. We compute empirical
PAC-Bayes bounds, which upper bound the true risks L(Q∗

λ
) and L(G∗

λ
). The above theorem

studies how powerful the true risks are at the two different posteriors (Gibbs and Gaussian),
and the finding that they are similar suggests that their corresponding empirical PAC-Bayes
bounds could in principle be made comparably small. However, our setting bears the
following differences:

1. We perform nonlinear classification, since we use MLPs with nonlinear activation
functions. The above result is only proven for binary linear classification.

2. The mean-field Gaussian found via MFVI optimization may not be the optimal mean-
field Gaussian, i.e. argminMF GaussiansDKL(G||Q∗λ ). In particular, the theorem requires
the approximate posterior mean to be w̄.

To expand on point 2, we note that gradient-based optimizers tend to converge to local
minima, hence in practice, MFVI will likely only supply a good, but non-optimal posterior
mean. However, as discussed in Section 5.3.1, in the context of MFVI in Bayesian deep
learning, this result may hint at the hypothesis that variational approximations to PAC-Bayes
bounds become accurate as the data and/or model size is increased to infinity4. In our
experiments, we observed a decrease of the tightness gap as model size was increased, but
not when dataset size was increased.

4For readers interested in the implications of this in Bayesian deep learning, we note that the above
theorems are only valid under bounded losses, and the negative log likelihood used in Bayesian deep learning is
unbounded. For a study of the topic in the classical Bayesian setting, see Alquier and Ridgway [2020].
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Pitas [2020] considers the general method of Dziugaite and Roy [2017] for computing
nonvacuous PAC-Bayes bounds with MFVI. The author studies the significance of many
steps in the method in achieving nonvacuity, using a bound from Catoni [2007]. The posterior
mean is kept fixed at a minimum of the loss landscape. The main finding is that the effect
of the optimization of the posterior covariance in MFVI is minimal compared to using an
isotropic posterior covariance with a pre-specified parameter. The author argues that the key
step in ensuring nonvacuity is setting the prior mean to a random initialization instead of zero
(see more discussion in Section 2.2.4). The author also derives theoretical optimal values for
general Gaussian covariance, which do not result in a valid bound, but (at least informally),
characterize the limits of MFVI. The optimal covariance is then approximated with a K-FAC
Laplace approximation, which improves the bounds significantly compared to the optimal
(invalid) diagonal covariance. It is argued that this demonstrates an inherent limitation of the
mean-field covariance structure.

After discussing the literature around MFVI, we now sketch the related work around our
method.

5.4 MCMC for Neural Networks

In this section, we describe the MCMC algorithms that are typically used to sample from a
neural network posterior.

The most important algorithm for us is HMC. HMC was first used for neural networks in
Neal [1996]. More recent studies allowed us to scale up HMC sampling to large architectures
[Wenzel et al., 2020, Izmailov et al., 2021]. In particular, Izmailov et al. [2021] use ResNet-
20 [He et al., 2016] networks with 105 leapfrog steps in their large-scale experiments using
hundreds of TPUs. Since HMC requires careful calibration of the stepsize and trajectory
length, automatic approaches were developed, the most popular being the No-U-Turn Sampler
(NUTS) [Homan and Gelman, 2014].

Two key limitations of full-batch MCMC methods, such as HMC, are that they scale
poorly to (i) high-dimensional distributions and (ii) large datasets. To mitigate the high-
dimensionality issue, reversible-jump MCMC methods can be used (also known as trans-
dimensional MCMC) [Green, 1995]. In these algorithms, the dimension of the parameter
space can vary between iterates of the Markov chain, hence we avoid sampling from very
high dimensional spaces. Transdimensional algorithms have been used in for Gibbs posterior
sampling in non-neural network PAC-Bayes tasks [Guedj and Alquier, 2013, Guedj and
Robbiano, 2018, Li et al., 2018].
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To mitigate the large datasets issue, batch MCMC methods have been developed. They
introduce a trade-off between computational speed-up and accuracy. Among them are
stochastic gradient-based methods, which are derived from discrete-time approximations
to continuous-time diffusion processes [Nemeth and Fearnhead, 2019]. Stochastic gradient
HMC uses second-order Langevin dynamics with a friction term, which mitigates the problem
of noisy gradients [Chen et al., 2014]. Arguably, the most popular stuchastic gradient MCMC
method is Stochastic Gradient Langevin Dynamics (SGLD) [Welling and Teh, 2011], which
combines characteristics of stochastic gradient descent, Robbins–Monro optimization and
Langevin dynamics.

5.5 (Generalised) Marginal Likelihood and KL Estimation

In our method, we made the choice to reduce KL estimation to generalized log marginal
likelihood estimation, via Theorem 3.3.1. Hence, we now discuss alternative methods for
computing the log of the normalizing constant of a Gibbs posterior5, Z = Ew∼P[e−λ L̂S(w)].

Interestingly, most methods involve the tempering of the generalized likelihood,
Ä

e−λ L̂S(w)
äβ

,
and they require us to sample from the corresponding (tempered) Gibbs posterior.

Our used method, thermodynamic integration, directly estimates logZ. It is also possible
to first estimate Z, and then use the logarithm to give a high-probability lower bound on logZ
using Markov’s inequality, as long as Ẑ is an unbiased estimator of Z [Grosse et al., 2015]:

P(log Ẑ > logZ +b)< e−b. (5.3)

From this, we obtain a high-probability upper bound on − logZ. Methods that take this
route include annealed importance sampling (AIS), the paired-product estimator, sequen-
tial Monte Carlo, and nested sampling methods [Neal, 2001, Huber, 2015, Moral et al.,
2006, Buchner, 2023]. We note the following interesting connection of the first two meth-
ods to thermodynamic integration. They all approximate the area under the integrand
β 7→ Ew∼πβ

î
nλ L̃CE

S (w)
ó

for each random sample from the function, at (w1,w2, ...,wm) ∼
πβ1×πβ2...×πβm . However, thermodynamic integration averages these random areas imme-
diately to estimate the area below β 7→Ew∼πβ

î
nλ L̃CE

S (w)
ó
, while AIS and the paired-product

estimator average the individual random areas in exponential space before taking the loga-
rithm. AIS and the paired-product estimator differ in that AIS calculates these random areas
using the left sums on the random function estimates, whereas the paired-product estimator
uses the trapezium rule.

5Some works in the mathematics and physics literature refer to this as the log partition function.
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Since each method can be used together with HMC, these techniques are all viable
alternatives to our method, with the added convenience of the high-probability upper bound
on − logZ. In our method, we chose to give high-probability bounds for each individual
expectation Ew∼πβ

î
nλ L̃CE

S (w)
ó
, so that we use the same bound for both L̂S(Q) and the KL

divergence term.
Finally, we note that there exist works that estimate KL divergences directly from samples,

see for example Zhao and Lai [2020] and Ghimire et al. [2021].

5.6 High-probability Bounds

As mentioned, the two main categories are concentration inequalities and asymptotic bounds.
In the context of PAC-Bayes, the former are more desirable but are harder to establish for
MCMC methods. Concentration inequalities for general Markov chains usually involve
some spectral property of the Markov chain, most often the (absolute) spectral gap [Fan
et al., 2021], which quantifies the convergence speed of the chain to its stationary distribution
[Rudolf, 2012]. These error bounds are usually quite complicated and involve the estimation
of spectral quantities from the samples. Out of asymptotic error bounds, the most simple ones
we are aware of are either based on the MCCLT, or on the weaker assumptions of Rosenthal
[2017]. We used the latter method to obtain asymptotic error bounds on our estimates.

In the next, final section, we discuss a piece of past research that attempts to carry out a
very similar task to ours, and compare it to our approach.

5.7 Estimating a PAC-Bayes Bound in the Gibbs Posterior

Dziugaite and Roy [2018] is the closest to our work in that they attempt to estimate a
PAC-Bayes bound in a Gibbs posterior but in the context of data-dependent priors. Their goal
is to use a Gaussian prior, where the mean parameter depends on the data sample. This mean
parameter is chosen to be the mean of the Gibbs posterior of a simple Gaussian prior. They
use SGLD to sample from this Gibbs posterior and choose the resulting mean as the mean of
their Gaussian prior, which thus becomes data-dependent. They justify this by the fact that
SGLD optimization results in a (mean) vector that is close to an approximately differentially
private vector. This property allows them to use the resulting mean in their data-dependent
prior and obtain valid bounds by slightly loosening the PAC-Bayes relative entropy bound
(Theorem 2.6) to account for the approximation to differential privacy. For a background in
differential privacy, please refer to Dwork [2006].
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This piece of research is also the only source we are aware of, that attempts to estimate
the negative log normalizing constant/marginal likelihood − logZ =− logEw∼P[eλ L̂S(w)] in
order to compute PAC-Bayes bounds with the Gibbs posterior. They propose the simple log Ẑ
upper-bound we discussed above in Equation 5.3. Their estimator for Z, Ẑ is a simple Monte
Carlo average using samples from their data-dependent prior P. Their bound is as follows.

− logEw∼P

î
eλ L̂S(w)

ó
=− logEw∼P

ñ
1
m

m

∑
i=1

e−λ L̂S(wi)

ô
≤ Ew∼P

ñ
− log

Ç
1
m

m

∑
i=1

e−λ L̂S(wi)

åô
The authors observe that their bound is very loose in practice. This is expected since they
don’t use any tempering. Compared to AIS and the paired-product estimator, they estimate
the random areas with a single rectangle that is the left sum with β = 0,1. Even with a
data-dependent prior, this can be a very crude approximation. We only estimate expectations
under tempered Gibbs posteriors, not Gaussians and hence obtain tighter bounds on the KL
divergence.

Summary. The present chapter brought together areas of literature related to our method.
We presented and compared approaches to obtain tight PAC-Bayes bounds, debates around
the effectivity of MFVI, and alternatives to each step of our method. Our discussion touched
on some of the many connections between results in these largely separate communities,
which, the author hopes, illustrates the beauty of this area.



Chapter 6

Conclusion

6.1 Discussion

In this thesis, we have attempted to add to our understanding of generalization in neural net-
works, by studying generalization guarantees (risk certificates) in the PAC-Bayes framework.
Existing methods for calculating PAC-Bayes risk certificates involve various approximations,
and an evaluation of the strength of these is much needed in the literature. Therefore, our cen-
tral question was the effect of one of the most prominent approximation steps: approximating
the optimal value of PAC-Bayes bounds using mean-field Gaussians.

We have proposed a method to estimate the optimal value of a specific PAC-Bayes
bound, the PAC-Bayes λ bound. Our approach brings together MCMC techniques, marginal
likelihood estimation, and elements of probability theory. We have applied our method to
small neural networks on versions of the MNIST dataset. Our optimal bound estimates
improve on some existing risk certificates for model accuracy, but the values we guarantee
under reasonable assumptions are often close to the MFVI approximations. We have found
that the gap is largest for small models and that adding more data tightens our optimal bound
estimates more than their MFVI approximations.

Limitations The chief limitation of our method lies in the task: PAC-Bayes bound esti-
mates are valid under assumptions that are not possible to completely verify for MCMC
samples. The alternative could be a theoretical treatment, but this becomes very challenging
for complex (classification) tasks. Hence most of what is possible are empirical estimates
accompanied by robust diagnostics. To achieve this, we make claims under different sets
of assumptions of varying strength. There are many ways to further refine and improve our
methods, which we discuss next.
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6.2 Future Work

There following future directions can be investigated.

Improving sampling and diagnostics Since HMC is challenging to calibrate, automatic
approaches, such as NUTS could be used to guarantee more robust performance [Homan
and Gelman, 2014]. The evaluation of the obtained samples could also be extended by
adding new tests and statistics, or potentially developing convergence diagnostics specifically
for tempered Gibbs posteriors. An option for this could be to estimate the derivative of
β → Ew∼πβ

î
L̃CE

S (w)
ó

and compare to the (estimated) negative variance which it should be
equal to (Proposition 3.5.2).

Improving KL estimation The choice of discretization for β ∈ [0,1] could be automated,
for example as in Huber [2015].

Experiments on additional datasets and models Given that we found that the tightness
gap is larger for smaller neural networks, it would be interesting to calculate tightness gaps
on even smaller models and datasets. In addition, under a fixed model size, we futher test the
effect of the number of layers and other architectural elements on the optimal risk certificate,
possibly enabling us to validate hypotheses about architecture design.

Achieving tighter estimates on optimal PAC-Bayes bounds Although this was not our
primary interest, our Gibbs posterior-based risk certificates could be made tighter in various
ways. More parameter-efficient architectures could be considered, which likely produce a
better trade-off between model accuracy and loss surface dimensionality. In particular, CNNs
could be a good choice. In addition, data-dependent priors and cross-validation in λ could
be implemented.

Incorporating convergence properties into PAC-Bayes bounds To reach full control on
the accuracy of estimates of PAC-Bayes bounds in the Gibbs posterior, novel PAC-Bayes
bounds could be developed that account for the convergence behavior of the underlying
MCMC algorithm via the presence of MCMC statistics (see a related approach in Dziugaite
and Roy [2018] for SGLD). In particular, it would be most useful to estimate DKL(Q||Q∗)
from a chain. However, we think that this is a challenging area of research.
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Appendix A

Proofs

Proposition 3.3.1. Fix a prior measure P with density p(w) and define a (possibly general-
ized) likelihood p(z|w). For any distribution Q that is dependent on the data z, with density
q(w|z) the following holds

DKL[q(w|z)||p(w)] = Eq [log p(z|w)]− log p(z)+DKL[q(w|z)||p(w|z)], (3.7)

where p(w|z) is the density of the posterior measure with respect to P and p(z|w).

Proof. we can write the ELBO in two ways:

Eq

ï
log

p(z,w)

q(w|z)

ò
= Eq

ï
log

p(w)p(z|w)

q(w|z)

ò
= Eq

ï
log

p(z)p(w|z)
q(w|z)

ò
(A.1)

We can expand both terms as:

Eq [log p(z|w)]+Eq

ï
log

p(w)

q(w|z)

ò
= Eq [log p(z)]+Eq

ï
log

p(w|z)
q(w|z)

ò
, (A.2)

which we can rewrite as

Eq [log p(z|w)]−Eq

ï
log

q(w|z)
p(w)

ò
= Eq [log p(z)]−Eq

ï
log

q(w|z)
p(w|z)

ò
. (A.3)

We can now rewrite this as KL divergences and notice that p(z) is independent of w, hence

Eq [log p(z|w)]−DKL[q(w|z)||p(w)] = log p(z)−DKL[q(w|z)||p(w|z)]. (A.4)
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We can reorder this as:

DKL[q(w|z)||p(w)] = Eq [log p(z|w)]− log p(z)+DKL[q(w|z)||p(w|z)]. (A.5)

Proposition 3.2.1. Let G be any distribution such that G ̸= Q∗ and G ̸= P. Then the tightness
gap satisfies

C(G)−C(Q∗)≥ bDKL(G||Q∗).

Proof. The proof mostly follows the proof of the Pythagorean inequality for the KL diver-
gence. See Theorem 11.6.1 in Cover and Thomas [2006]. For Equation A.6 to hold, we
require the existence of a convex set S ⊂M1(W) such that Q∗,G ∈ S and P /∈ S. Since
G ̸= P, such a set clearly exists. Since Q∗ is the unique minimizer of C(Q), by defining
Pλ := λG+(1−λ )Q∗ ∈ S for λ ∈ [0,1], we have that

0≤ d
dλ

C(Pλ )
∣∣∣
λ=0+

(A.6)

=
d

dλ

[
aEPλ

[L̂(w)]+bDKL(Pλ ||P)
]∣∣∣

λ=0+
(A.7)

=
d

dλ

[
a
[
λEG[L̂(w)]+(1−λ )EQ∗[L̂(w)]

]
+bDKL(Pλ ||P)

]∣∣∣
λ=0+

(A.8)

= a
[
EG[L̂(w)]−EQ∗[L̂(w)]

]
+b

∫
[G(w)−Q∗(w)] log

pλ (w)

p(w)

∣∣∣
λ=0+

(A.9)

+b
∫ pλ (w)p(w)

pλ (w)

g(w)−q∗(w)

p(w)
dw
∣∣∣
λ=0+

(A.10)

= a
[
EG[L̂(w)]−Eq∗[L̂(w)]

]
+b

∫
g(w) log

q∗(w)

p(w)

g(w)

g(w)
dw−bDKL(Q∗||P) (A.11)

= a
[
EG[L̂(w)]−EQ∗[L̂(w)]

]
+bDKL(G||P)−bDKL(G||Q∗)−bDKL(Q∗||P). (A.12)

Rearranging, we obtain
C(G)−C(Q∗)≥ bDKL(G||Q∗). (A.13)

In the slightly patological case when G = P, since DKL(G||P) = 0, we obtain a simple bound

a[EP[L̂(w)]−EQ∗[L̂(w)]]≥ b[DKL(P||Q∗)+DKL(Q∗||P)] = 2b JSD(P||Q∗). (A.14)
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Proposition 3.6.1. Let P be the prior, and let Q∗
λ

denote the corresponding (Gibbs) posterior
Q∗

λ
∝ e−nλ L̃CE

S (w)p(w). Suppose that we are able to simulate from a distribution Q. Let G
be another distribution (in our case, a Gaussian) such that DKL(Q||Q∗λ )≤ DKL(G||Q∗λ )+
EQ

î
L̃CE

S (w)
ó
. Then,

DKL(Q||P)≤ nλEG

î
L̃CE

S (w)
ó
+DKL(G||P). (3.24)

Proof. We use Proposition 3.3.1 with P having density p(w), G having density q(w|z) and
Q∗

λ
having density p(w|z) and Z = EP

î
e−nλ L̃CE

S (w)
ó

being the marginal likelihood. We get

DKL(G||P) =−nλEG

î
L̃CE

S (w)
ó
− logZ +DKL(G||Q∗λ ). (A.15)

Reordering this, we obtain an estimate for − logZ:

− logZ = DKL(G||P)−DKL(G||Q∗λ )+nλEG

î
L̃CE

S (w)
ó
. (A.16)

This estimate can be used to calculate DKL(Q||P), invoking Proposition 3.3.1 again.

DKL(Q||P) =−nλEQ

î
L̃CE

S (w)
ó
+nλEG

î
L̃CE

S (w)
ó
+DKL(G||P)

+
(
DKL(Q||Q∗λ )−DKL(G||Q∗λ )

) (A.17)

Since we assumed that DKL(Q||Q∗λ )≤ DKL(G||Q∗λ ), the last term is negative. By ignoring it,
we thus obtain an upper bound on DKL(Q||P).
We note that for G≡ P, Equation A.15 becomes Jensen’s inequality for the function − log,
i.e.,

− logEG

[
e−nλ L̃CE

S (w)
]
≤−EG

[
log
(

e−nλ L̃CE
S (w)

)]
. (A.18)
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Proposition 3.5.3. Let g(β ) = Ew∼πβ
[−U ′(w)] = Ew∼πβ

î
nλ L̃CE

S (w)
ó
. Then we have that

∂ 2g(β )
∂β 2 ≥ 0, hence g(β ) is convex.

Proof. We make use of the fact that ∂

∂β
Ew∼πβ

[−U ′(w)] = −Varw∼πβ
[U ′(w)], proved in

Masrani et al. [2019] (note that they define g(β ) to be the negative of our g(β ), hence the
two statements differ by a minus sign). Plugging this in and expanding the variance, we
obtain

∂ 2g(β )
∂β 2 =

∂ 2

∂β 2Ew∼πβ

[
−U ′(w)

]
(A.19)

=− ∂

∂β

î
Ew∼πβ

î
(U ′(w))2

ó
−Ew∼πβ

[
U ′(w)

]2ó (A.20)

=− ∂

∂β
Ew∼πβ

î
(U ′(w))2

ó
+2Ew∼πβ

[
U ′(w)

] ∂

∂β
Ew∼πβ

[
U ′(w)

]
(A.21)

= A+B. (A.22)

For B we can use the above, i.e.

B = 2Ew∼πβ

[
U ′(w)

]
Varw∼πβ

[
U ′(w)

]
(A.23)

= 2Ew∼πβ

[
U ′(w)

]
Ew∼πβ

î
(U ′(w))2

ó
−2Ew∼πβ

[
U ′(w)

]3
. (A.24)

For A, note that U ′(w) is independent of β , hence we can directly plug into equation (30) in
Masrani et al. [2019], noting that we have an extra U ′(w) term and we need the negative of
their expression:

A =
∫
(U ′(w))2

πβ (w)Ew∼πβ (w)

[
U ′(w)

]
dw−

∫
(U ′(w))3

πβ (w)dw (A.25)

= Ew∼πβ

[
U ′(w)

]
Ew∼πβ

î
(U ′(w))2

ó
−Ew∼πβ

î
(U ′(w))3

ó
. (A.26)

Hence A+B is

A+B =−2Ew∼πβ

[
U ′(w)

]3−Ew∼πβ

î
(U ′(w))3

ó
+3Ew∼πβ

[
U ′(w)

]
Ew∼πβ

î
(U ′(w))2

ó
.

(A.27)

Since U ′(w) =−nλ L̂S(w), it is negative. The function x 7→ x3 is concave on (−∞,0), while
the function x 7→ x2 is convex. Hence Jensen’s inequality gives:

Ew∼πβ

[
U ′(w)

]3 ≥ Ew∼πβ

î
(U ′(w))3

ó
(A.28)
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Ew∼πβ

[
U ′(w)

]2 ≤ Ew∼πβ

î
(U ′(w))2

ó
. (A.29)

Thus,

A+B =
∂ 2g(β )

∂β 2 ≥ 3
î
−Ew∼πβ

[
U ′(w)

]3
+Ew∼πβ

[
U ′(w)

]
Ew∼πβ

[
U ′(w)

]2ó (A.30)

= 3
î
−Ew∼πβ

[
U ′(w)

]3
+Ew∼πβ

[
U ′(w)

]3ó
= 0, (A.31)

thus g(β ) is convex.
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