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Abstract

Mechanistic interpretability is a field that aims to explain the behaviour of trained neural
networks by studying their learnt parameters. As most of this line of work is laborious
and difficult to scale to deep networks, we aim to investigate an automatic approach to
interpretability using meta-models - networks designed to process the weights of other
neural networks, referred to as base-models, as input. Because collecting labelled data for
interpretability is expensive, the goal of this thesis is to test a self-supervised pre-training
procedure and evaluate if it is useful for downstream tasks related to interpretability. To
gauge the potential of meta-models for interpretability, we instead explore their performance
on easier tasks related to predicting base-models’ properties.

Towards this end, we train a transformer-based meta-model on tasks related to predicting
hyperparameters and the performance of base-models, as well as on a newly introduced
task titled ’dropped class classification’, related to predicting properties of training data
distributions, based solely on neural network weights. It was shown that the meta-model can
be used to predict these tasks, with different levels of success.

Finally, we develop a self-supervised pre-training procedure titled ’masked weight mod-
elling’, a task similar to masked language modelling, adapted for neural network weights
as inputs. The usefulness of pre-training for downstream performance was found to be
task- and data-dependent. A performance improvement was observed for almost all hy-
perparameter prediction and performance prediction tasks, as well as for one version of
the newly-introduced dropped class classification task, but the performance declined for
the easier version of dropped class classification task, which relies strongly on inductive
biases in the last base-model layer. The benefits of pre-training are the most apparent when
using smaller training datasets for downstream task prediction, as well as for tasks prone to
overfitting. In that sense, the pre-training procedure was found to have a regularisation effect.
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Chapter 1

Introduction

Mechanistic interpretability is a field that aims to explain the behaviour of trained neural
networks by studying their learnt parameters to uncover human-interpretable algorithms they
are executing. The research in this field seeks to explain the decisions neural networks make
in terms of their internal components, often by specifically focusing on individual features
and circuits - computational subgraphs that perform a certain function in a network. (Meng
et al., 2022; Olah et al., 2020; Olsson et al., 2022; Wang et al., 2022).

Because most of this line of work relies on human labour (Räuker et al., 2023), it is
not easily scalable to deep models. Instead, most current work focuses on toy models
(Elhage et al., 2022) - networks with smaller feature spaces that are easier to probe and
analyse manually. The exception to this is a recent work by Lieberum et al. (2023), but
they only study a single simple mechanism (attributing letters to known answers in multiple
choice question answering). Some progress regarding the automation of the circuit extraction
process has recently been made by Conmy et al. (2023). However, their approach still
requires the researcher to observe a specific behaviour the model is displaying and to choose
the level of granularity at which it should be investigated. Multiple works propose a search
for task-related subnetworks on the level of individual weights1, with algorithms that rely
on weight masking to uncover which parts are important for pre-defined tasks of interest
(Csordás et al., 2020; Wortsman et al., 2020).

The motivation for this project is to test a deep-learning approach to interpretability using
meta-models - networks that take the weights of other networks as input. These input
networks are referred to as base-models throughout this thesis. A direct way to train a meta-
model for interpretability is a supervised approach, using data from human interpretability
researchers. For example, the network could learn to predict an interpretable computational
graph from a circuit extracted from the trained base-model.

1Note that through this work we use ’weights’ to refer to both weights and biases of the neural network.
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As collecting the data for a direct approach is expensive, this project will test if it is
useful to pre-train the meta-model on a weight-modelling task. We hypothesise that weight
modelling is a hard enough problem, and can capture the information about the base-model
that is needed for interpretability.

We propose a pre-training method based on weight masking, inspired by the above-
mentioned techniques used to search for sub-networks that perform specific functions.
Specifically, we use a pre-training task similar to masked language modelling (Devlin
et al., 2018), applied on a chunked and tokenized vector of neural network weights.

As the data needed for interpretability is not accessible, this work will focus on a set of
easier tasks. Specifically, we highlight the meta-model’s performance on: hyperparameter
prediction (Eilertsen et al., 2020; Schürholt et al., 2021), predicting base-model performance
metrics (Schürholt et al., 2021; Unterthiner et al., 2020), and predicting properties of the
training data. This is meant to indicate the potential of the meta-model in understanding
neural network weights. Hyperparameter prediction implies having latent knowledge about
the training procedure while predicting parameters of the training data involves understanding
features - a necessary condition for interpretability. In that sense, if the meta-model did
not perform well on these tasks, it would have been unlikely for it to be capable of harder
interpretability tasks. Otherwise, their success hints at potential applications in real-world
interpretability, which are left to be explored in future work.

1.1 Contributions

The main contributions of this project are as follows:

1. Performance Analysis of the Meta-Model: We showcase the proposed meta-model’s
performance when trained directly for predicting trained base-models’ properties.
These tasks are used as easier benchmarks, to gauge the potential of the meta-model
for interpretability.

• We establish new baselines in predicting base-model performance metrics and
hyperparameters on existing datasets (Section 3.3).

• We introduce a novel task, dropped class classification, meant to showcase the
ability of the meta-model to predict the properties of the base-model’s training
data (Section 3.4).

• We are first to investigate the effect of permutation augmentations (Schürholt
et al., 2021) in direct, supervised meta-model training (Section 3.6).
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2. Introduction of Masked Weight Modelling: A self-supervised pre-training procedure
similar to masked language modelling but tailored for neural network weights as model
input.

• We show that the learning process is non-trivial, first collapsing into a simplified
prediction close to data mean, before generalising to a more useful prediction.
We measure the retention in the performance of the base-model after the recon-
struction of its masked parts. Although the base-model’s performance noticeably
declines, it is better retained than that of simple baselines based on replacing
masked chunks with zero vectors, mean values or random predictions (Section
4.2).

• We conduct an initial investigation into some components of the pre-training
procedure: permutation augmentations, the way the base-model weights are split
into input tokens for the meta-model, and the effect of using different masking
probabilities (Section 4.4).

3. Evaluation of Pre-Training Efficacy: We assess whether our masked weight mod-
elling pre-training technique improves the meta-model’s performance on different
downstream tasks. The results vary depending on the task, and are especially promiss-
ing for small datasets prone to overfitting in direct meta-model training (Section 4.3).

1.2 Thesis Overview

This thesis is organised into five chapters, starting from this introduction.
Chapter 2: We provide essential background on meta-models, tasks and datasets they

are trained on in related literature, as well as the self-supervised training methods pertinent
to our pre-training objective.

Chapter 3: The first main experimental section. We detail the meta-model’s architecture
and explain how we train it in a supervised fashion to predict different parameters of the
input base-models. We include results from two known datasets and introduce a new task to
assess the meta-model’s ability to recognize attributes of the base-models’ training data.

Chapter 4 The second main experimental section. This chapter introduces the ’masked
weight modelling’ pre-training method. The focus is on evaluating its performance and
determining if this pre-training can improve the meta-model’s performance on downstream
tasks, in comparison to the results of Chapter 3.

Chapter 5: Concludes the thesis by summarizing our findings and suggesting future
research directions.



Chapter 2

Background

This chapter presents the necessary theoretical background and key conclusions from related
work utilised in this thesis. In Section 2.1 we discuss the related work on meta-models with
transformer architecture, which we adopt in this thesis, along with the details about processing
neural weights as meta-model inputs. In Section 2.2 we introduce model zoos as datasets
on which meta-models are trained. In Section 2.3 we categorise potential downstream tasks,
derived from related work, that are used to evaluate the meta-models. Section 2.4 introduces
self-supervised training methods related to the pre-training procedure used in this thesis.
Additionally, Section 2.5 contains an overview of applications of meta-models within the
literature, as well as mentions of similar models which may inspire future research directions.

2.1 Meta-Models

We define meta-models as networks that process weights of other networks as their input.
We refer to these input networks as base-models. Optionally, the meta-model can also access
the architecture A of the base-model, rendering it a function of both M(W,A ). Recent
literature has shown that meta-models can be successfully employed to process the weights
of base-models to achieve various tasks. In this section, we outline the related work that
utilises transformer-based meta-models, along with special consideration for weight-space
encodings. These insights will guide the implementation of the meta-model adopted in this
thesis.

2.1.1 Transformer Meta-Models

In this work we utilise a meta-model of a transformer architecture, driven by the success of
transformer-based meta-models in recent literature. In particular, such models have been
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shown to work well in representation learning tasks on sets of base-model weights. Schürholt
et al. (2021) show that a transformer-based autoencoder outperforms a fully-connected feed-
forward network. In all cases, they use a symmetric encoder and decoder and project the
hyper-representations into a lower dimensional space, in comparison to NN weight-space
dimensions. Similarly, Peebles et al. (2022) use a version of GPT-2 architecture as a diffusion
model.

The suspected advantage of transformers lies in their potential to process long-range
connections, making them ideal candidates for managing the weights of deep neural networks.
Another important feature of these networks is the potential to separately learn spatial
information. Both Schürholt et al. (2021) and Peebles et al. (2022) employ learnt positional
encodings (Dosovitskiy et al., 2020). This feature can aid the meta-model in learning the
structure of the base-model even without smarter weight-space encodings that consider
network architecture.

One important aspect to note is that this model architecture does not inherently accom-
modate the architecture of base-models. Therefore, the meta-model itself is reduced to the
function of weights only M = M(W ). Thus, some of the important information about the
architecture A can be encoded through input weight-space representations.

2.1.2 Weight Space Representation

Since transformer-based models do not natively handle graph inputs, base-models need to
be represented differently. Related work predominantly forsakes the information about
base-model architecture and uses flattened vectors of weights.

Following Eilertsen et al. (2020), neural weight spaces of convolutional neural networks
are encoded in the following way:

• For each convolutional layer and its kernels Hi, for i = 1..K, and a bias vector b:
θ = vec(H1)||vec(H2)||...||vec(HK)||b.

• For each linear layer with weights H and bias vector b: θ = vec(H)||b.

• For N layers in the CNN: W = θ1||θ2||...||θN .

Here, || is a concatenation operator, while vec()̇ function flattens the matrix into a vector.
Similar generalisations can be made for other types of networks. For example, the encoding
of a multi-head attention module would be a concatenation of query, key, value and output
projection matrices.

Importantly, this simple representation includes limited spatial information about neural
weight space, as it only preserves the ordering between the layers. Transformer-based
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approaches improve this through previously mentioned positional encodings and smarter use
of input tokenisation.

Schürholt et al. (2021) compare individual weight tokenisation to joining all weights
connected to a single neuron or kernel into a single token, concluding that better performance
and reduced memory overhead could be achieved with joint tokenisations.

Peebles et al. (2022) employ layer-wise tokenisation, reporting that it was beneficial to
chunk bigger layers into multiple tokens. The layer-wise tokenisation approach can be
connected to the observations made by both Unterthiner et al. (2020) and Eilertsen et al.
(2020) who reported that strong performance on their respective prediction tasks can be
achieved using methods that harness per-layer statistics.

Although improved, layer-wise weight representations still do not encompass important
information about base-model architecture and neural weight space symmetries. Therefore,
this is left to be introduced by other means.

2.1.3 Weight Space Permutation Equivariance

Because of intrinsic representations of fully connected neural networks and weight-space
symmetries, the same function can be represented with multiple permutations of the same set
of weights. Namely, for a single layer of neurons, permuting the rows of the input weight
matrix and columns of the output weight matrix in the same way, preserves the exact function
of the network (Hecht-Nielsen, 1990). For permutation matrix P, weight matrices W, bias
vectors b, activations a and activation function σ in layer l:

zl+1 = Wl+1
σ(Wlal−1 +bl)+bl+1 = Wl+1(Pl)T

σ(PlWlal−1 +Plbl)+bl+1 (2.1)

The same equation holds for the channel dimensions in convolutional neural networks.
Navon et al. (2023) propose a specialised new architecture that relies on symmetries in

NN weight space, implemented through pooling, broadcasting and fully connected layers. It
is shown to outperform previous approaches on a simple downstream task, but it is currently
adapted only for MLP networks. Instead, since we are interested in models that can be easily
generalised to different architectures, we employ the same approach as other papers which
use transformer-based meta-models.

If neither the meta-model, nor the encoding of the base-model weights handle this
permutation equivariance, it needs to be represented in the dataset for meta-model training.
For that reason, Schürholt et al. (2021) introduce permutation augmentation of neural-network
weight representations.
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The same augmentation is used by Peebles et al. (2022) and Schürholt et al. (2022a), who
both report that it is crucial in preventing overfitting in their weight modelling tasks.

A different approach is taken by Navon et al. (2023) who design DWSNets, networks
that natively handle weight-space symmetries of MLPs. Although they show that their
architecture outperforms augmentation-based approaches on examples of representation
learning tasks, it is tailored to specific MLP architecture, and the authors report that the
DWSNets are sensitive to the initialisation scheme.

We also use permutation augmentations to embed weight-space symmetries into the
dataset in sections 3.6 and 4.4.1. The architecture-based approach is outside of the scope of
this thesis.

2.2 Model Zoos

A model zoo refers to a collection of independently trained neural networks. Every model
in the zoo Mi is a network with architecture Ai, which is trained using hyperparameters λi

to model data from a dataset Di (sampled from some data-generating distribution D(x,y)).
Formally, neural network weights originate from a stochastic training process which depends
on a radnom seed r:

Wi = P(Ai,Di,λi,ri) (2.2)

In a standard training procedure, randomness is reflected in weight initialisation, ordering
of batches during training, and application of dropout accross different training iterations.
Once trained, the model represents a function Ai(·|Wi). Therefore, the model zoo can be
represented as a set of tuples {(Wi,Ai,Di,λi) | i = 1,2, . . . ,N}. Generally, all arguments of
the training process, including random seeds, can be varied in one zoo.

This definition includes large libraries of pre-trained state-of-the-art models. However,
this thesis focuses on model zoos generated specifically for neural weight space analysis,
designed with special consideration for diversity and correlation between networks. Also note
that this definition does not include datasets of neural network arhitectures, like DeepNets
dataset used by Knyazev et al. (2021), but only sets of pre-trained neural network weights
with parameters used for their generation.

In this section, we discuss properties of model zoos used in work mentioned in sections
2.1 and 2.3. This discussion is important for interpreting meta-model training results and
recognising potential disadvantages of used model zoos.

The majority of model zoos in relevant papers use contain MLP and CNN architectures.
Some larger zoos include models of ResNet architecture (Jiang et al., 2018; Schürholt et al.,
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2022b). We are unaware of zoos with transformer models in existing literature. All zoos
utilised in this work consist of small convolutional neural networks.

Parameters used to generate a model zoo directly impact the diversity and correlation
among models, thus influencing what can be predicted from their weights. The use of
different random seeds in model zoo generation is a particularly important characteristic
discussed in literature. Unterthiner et al. (2020) purposefully create model zoos with a
fixed random seed. They argue that using the same hyperparameter configurations with
different random seeds results in models that are similar to each other, and warn that using
the same hyperparameters in training and test splits, may lead to data leakage and unrelible
evaluation. Schürholt et al. (2021) confirm that varying only the random seed while fixing
hyperparameters results in high correlation between simple statistics of the weights presented
by Unterthiner et al. (2020) and model performance.

However, by fixing a random seed, along with a fixed dataset D and architecture A used
throughtout the model zoo, the mapping λ

P−→ W becomes deterministic, and is therefore
an easier task to consider. Indeed, Schürholt et al. (2021) show that sharing random seeds
between configurations reduces the variance between the models using the same activation
function and the same initialization method, resulting in easier-to-predict cathegorical hyper-
parameters (even with linear classification directly from the weight-space). Moreover, fixing
random seeds corresponds to all models in the zoo being optimised from the same point in
the weight-space, which is not reflective of real-world networks.

Additionally, while considering correlations within the model zoo, it should be noted
that Schürholt et al. (2021) use multiple available checkpoints from the same base-model
training run. This introduces correlations in the dataset even using a single random seed per
hyperparameter configuration.

We use two of the publicly available zoos trained on MNIST dataset (LeCun et al. (2010))
:

1. MNIST-HYP zoo was introduced by Unterthiner et al. (2020), and used by Schürholt
et al. (2021) for their meta-model evaluation. It contains 9 checkpoints from 30000
separate training runs, each performed with a unique set of hyperparameters λ . The
networks are of fixed architecture A - a convolutional neural network with 4970
parameters in total. This zoo does not vary random seeds r used for initialisation of
their training procedure, which makes the hyperparameter prediction task easier than
in real-world scenario. We use this zoo in Section 3.3.1 in order to contrast our training
and evaluation approach with results presented by Schürholt et al. (2021) who use a
similar meta-model architecture.
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2. MNIST-HYP-10-RAND zoo was introduced by Schürholt et al. (2022b). It also
contains models of a fixed architecture A - with 2464 parameters. It varies both
hyperparameters and initialisation seeds, with 10 seeds being randomly sampled for
each hyperparameter configuration. Since the training process is stochastic in this
case, hyperparameter prediction tasks should be harder to perform (Schürholt et al.,
2021). We use this dataset in the main pre-training experiments, and evaluation of its
effectiveness. Additionally, we use it to provide baselines for pre-training in Section
3.3. The only benchmark that exists for this dataset are the predictions with linear
models, on top of weights themselves or layer-wise weight statistics.

Besides these zoos, we introduce a new model zoo in Section 3.4, which varies random
seeds and uses different subsets of classes from a training image dataset. While some existing
works explore the connection between model weights W and hyperparameters λ , this new
model zoo will also allow us to consider the connection between W and the data generating
process D(x,y).

We leave the exploration of model zoos that vary all four components of the data generat-
ing process for further research.

2.3 Predicting Neural Network Properties from Weights

As mentioned in Chapter 1, instead of using the inaccessible and more expensive inter-
pretability data, we focus on a set of easier tasks related to predicting the properties of
neural networks and their training procedures. These tasks are related to interpretability
in a broader sense of the word, as they aim to reveal some aspects of the learning process
behind the base-models, but not the actual algorithms they are executing. However, within
the context of this thesis, they showcase the ability of the meta-models to predict some
underlying characteristics of the base-models, by ’understanding’ their weights. This can
present a predictor of the potential meta-models have for real interpretability tasks.

This section is meant to give an overview of types of tasks in relevant literature which are
discussed in terms of predicting model properties from weights. Formally, we discuss these
tasks in terms of learning different mappings from a pre-defined model zoo {(Wi,Ai,Di,λi) |
i = 1,2, . . . ,N}, as introduced in Section 2.2.

2.3.1 Model performance

Using a single instance from a trained model zoo, (W,A ,D,λ ), a function A (·,W ) : X −→ Y
models the training dataset D = (X1,Y1), ...(XK,YK).
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Test accuracy. The expected accuracy of the model trained for classification is given by
Eacc = E(x,y)∼D(X ,Y )[⊮(A(x,W ) = y)]. The mapping (W,A ) −→ Eacc is unique and can be
estimated using a meta-model (Unterthiner et al., 2020), by estimating the expected accuracy
with the test set accuracy. Unterthiner et al. (2020) show that the test accuracy of a trained NN
can be predicted with high accuracy using simple statistics of NN weights. The predictions
based on the statistics of the last layer achieve an R2 score of more than 0.98 for CNNs trained
on multiple different image datasets. Schürholt et al. (2021) confirm that good performance
can be achieved even with simple linear probing of weight statistics.

Generalisation gap. The difference between expected accuracy and the accuracy estimate
calculated on the training set defines a generalisation gap: GGap=Eacc− 1

K ∑
K
i=1[⊮(A(Xi,W )=

Yi)]. This task is again estimated by replacing Eacc with the test set accuracy. Both Yak et al.
(2019) and Jiang et al. (2018) predict generalisation gap from NN activations, extracted from
forward passes of the training set. According to the results presented by Schürholt et al.
(2021), the generalisation gap is consistently a harder task to predict than the test accuracy
alone, across all of their model-zoos.

OOD predictions. By fixing a different data-generating process D∗(X ,Y ), we can consider
the same metrics in terms of out-of-distribution (OOD) performance. Because of implicit
biases learnt from the training data D, we can test if the meta-model can order the networks
in the model zoo according to their performance on D∗(X ,Y ). Unterthiner et al. (2020) also
show that the predictors are able to rank networks based on OOD accuracy. Schürholt et al.
(2021) expands on this by predicting the OOD generalisation gap, and shows that it is a
harder task.

2.3.2 Hyperparameters

Given a model zoo as defined in Section 2.2, meta-models can also be trained to perform a
reversed mapping: (W |A )−→ λ .

As already mentioned in Section 2.2, with a fixed dataset used for base-model training,
fixed architecture, and a fixed random seed, mapping (λ |A )−→W is deterministic. However,
reverse mapping is not necessarily easy to learn because training with different sets of hyper-
parameters can converge to the same minimum during the optimisation process, rendering
similar final weights.

Eilertsen et al. (2020) show that NN weights could be used to successfully classify some
of the properties of model training, including batch size, initialisation method, optimiser and
activation function used. Schürholt et al. (2021) use neural-network representations extracted
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from their meta-model to predict: training epoch, learning rate, dropout, l2 regularisation
coefficient, training data fraction1, optimiser, activation function and initialisation scheme.
The last three have been shown to be easier tasks in the deterministic version of the dataset.

2.3.3 Training dataset properties

There are not many relevant works that try to predict properties of the data generating
distribution D(X ,Y ) from weights. In one example, Eilertsen et al. (2020) successfully
classify which image dataset was used for base-model training, as well as if the training
included augmentations (with an accuracy of around 80%).

In terms of research related to interpretability, we argue that this group of tasks is the
most interesting. While previously presented tasks uncover characteristics of the training
process itself, predicting training data properties is more closely related to the function the
base-model is performing. Intuitively, some tasks related to the training dataset can require
finding and understanding features that the base-model is searching for.

With this in mind, we define a new, relatively simple task, and present it in Section 3.4.
Furthermore, this branch of tasks stays largely unexplored.

2.4 Self-supervised learning

Self-supervised learning is a learning paradigm which leverages the data itself, or its parts,
to create labels for a supervised training objective. This allows the network to learn the
structure of the data in a task-agnostic manner.

In this section, we describe methods related to our pre-training procedure adopted in
Section 4. For a more comprehensive view of self-supervised learning, we refer the reader
to recent work by Balestriero et al. (2023).

2.4.1 Masked Data Modelling

Masked Language Modelling (MLM) is a learning objective introduced by Devlin et al.
(2018), who applied it to a large transformer language model named BERT. It is a successful
pre-training procedure in natural language processing and has been shown to generate useful
representations for different downstream tasks.

In language modelling, the input sequence can be represented as a sequence of discrete
tokens S = {t1, ...tN}. In each step of the MLM training procedure, a random subset of

1Changing training data fraction does not modify the data-generating distribution D(X ,Y ), which is why we
classify it under hyperparameter prediction tasks.
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tokens T ⊂ S is chosen to be masked, and replaced by a special token [MASK]. The training
objective is to reconstruct the masked tokens based on remaining unmasked part of the input:

L (θ) = ∑
i∈T

logP(ti|S\T ;θ) (2.3)

where θ represents model parameters, and S\T the set of unmasked tokens. Contrastively
to traditional sequence modelling methods, the predictions are made based on the whole
context vector.

Although language modelling relies on a finite vocabulary size that allows to transform
the input sentences into vectors of discrete tokens, similar approaches have been applied in
other domains. Bao et al. (2021) apply BERT pretraining on a Masked Image Modelling
task by using an autoencoder to learn discrete representatins of image paches, which they use
as tokens. On the other hand, Xie et al. (2022) and He et al. (2022) show a simplified versions
of the algorithm which outperforms previously proposed complex tokenisation. They frame
masked image patch reconstruction as a regression task and train it directly with MSE loss.

While BERT usually uses masked ratios of 10−20%, He et al. (2022) found that high
ratios improve representation learning capabilities in masked image modelling. Optimal
performance on downstream fine-tuning and linear probing was reached when masking 75%
of patches.

2.4.2 Contrastive Learning

Contrastive learning is an SSL training procedure which originates from similarity learning
- a supervised training approach to learning distances between data samples by projecting
similar examples to vectors that are close to each other in representation space. This is
reflected in the ideas of contrastive loss (Hadsell et al. (2006)) and triplet loss (Schroff et al.
(2015)) as objective functions. Using a contrastive loss entails training a network to minimise
the distance between similar pairs of images, and maximise it for dissimilar pairs. On the
other hand, triplet loss requires the distance of negative pairs to be greater than that of positive
pairs by a pre-defined margin.

While supervised similarity learning uses labels or fixed transformations to arive at
positive and negative examples, contrastive learning entails using different data augmentations
as positive examples, and treating all other pairs as negative examples, regardless of the class
membership (Balestriero et al., 2023; Sohn, 2016).

Schürholt et al. (2021) have shown that representation learning of NN weights using an
autoencoder benefits from a contrastive component in the loss. A similar approach would
represent a valuable extension to the work presented in this thesis.
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2.5 Related Work

In this section, we provide additional information about meta-model applications in the
literature and relate them to related neural networks that are not classified as meta-models
according to our definition.

2.5.1 Applications of Meta-Models

The proposed applications of models capable of processing NN weight spaces are diverse.
While some of the related work comments on the understanding of neural weight spaces
(Eilertsen et al., 2020), other works apply meta-models for optimisation (Peebles et al., 2022;
Schürholt et al., 2022a). Moreover, wider interest in Implicit Neural Representations (INRs,
Sitzmann et al. (2020)), neural networks trained to be effective parametrisations of different
types of input signals (for example images as in work by Sitzmann et al. (2020), or 3D
structures as Park et al. (2019)), motivated additional research in processing NNs as inputs to
another model.

The focus of existing bodies of work can be roughly classified into two classes:

1. supervised approach, i.e. directly predicting base-model properties from weights, and

2. self-supervised approach, i.e. learning weight space representations.

The first set of applications represents meta-models that are directly trained for regression
or classification tasks of interest, in a supervised fashion, given trained base-model weights as
their input. For example, Eilertsen et al. (2020) train a meta-model to classify base-models
based on hyperparameters used for their training. They demonstrate that their 1D-CNN-based
model outperforms predictions based on simple weight statistics. Unterthiner et al. (2020)
use a simple deep NN to regress base-model accuracy. Navon et al. (2023) primarily test
their model on MLPs trained as INR networks. They show that they can recover properties
of functions and images that the input MLP base-models represent, using their novel meta-
model. In one of their experiments, they show good performance of their model on the task
of predicting the generalisation gap, using a small set of MLPs trained for classification on
MNIST (LeCun et al. (2010)).

Proposed methods for learning weight-space representations are more diverse and cover
different generative approaches. Schürholt et al. (2021) use a bottleneck-autoencoder and
train it using a combination of reconstruction and contrastive learning. Similarly, De Luigi
et al. (2023) use encoder-decoder architecture to retrieve the compressed representations
of input INRs trained to represent 3D shapes. Peebles et al. (2022) train a diffusion model
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to predict the next model checkpoint given previous weights, previous loss, and loss at the
target checkpoint. Navon et al. (2023) also show that they can learn useful representations of
INR models using contrastive learning.

These generative methods are utilised for different tasks. The extracted weight space
representations of Schürholt et al. (2021) are evaluated using a hyperparameter prediction task,
using simple linear probing. Using the same meta-model, Schürholt et al. (2022a) suggest
using weight-space modelling capabilities for weight initialisation for transfer learning.
De Luigi et al. (2023) evaluate the retrieved representations on a series of tasks related to
underlying 3D shapes their base-networks represented. Peebles et al. (2022) utilise their
meta-model as an optimiser.

In this thesis, we combine the self-supervised and fully-supervised pipelines by inves-
tigating if the self-supervised method for learning weight representations can be used as
pre-training for the set of downstream tasks of interest. We first set the baseline performance
by training the meta-model on downstream tasks directly, and then compare it with the
performance of the meta-model initialised from the pre-training procedure.

2.5.2 Networks related to Meta-Models

The defining characteristics of a network defined in this work as a meta-model is the fact
that they are processing pre-trained base-model weights. This means that a meta-model is
supposed to discern certain characteristics of the base-model without accessing its training
data. This important property differentiates meta-models from similar neural networks
mentioned in the literature.

In contrast, hypernetworks are neural networks trained to predict the parameters of
another model, given the base-network architecture and its training data. These models are
trained together with the base-network to optimise the downstream task of interest (Ha et al.,
2016; Zhmoginov et al., 2022).

Recent advancements in hypernetworks could propose a solution to the problem of
meta-models handling different base-models architectures. Knyazev et al. (2021) utilise
a graph-hypernetwork to predict the weights of different network types, including more
complicated transformer and ResNet architectures. The input network is represented as a
computational graph, with nodes encoding operation type (convolution, attention etc.) and
weight dimensions, while edges are represented as an adjacency matrix of layer connections,
allowing them to encode residual layers. They expand on this in the following work (Knyazev
et al., 2023) by using a Graphormer architecture - a transformer with a modified attention
mechanism which processes edges in a computational graph, making it possible to generalise
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to different architectures. Although outside of the scope of this thesis, we believe that
adopting a similar architecture as a meta-model is a valuable step in future research.

Another important distinction should be made between meta-modelling approaches and
methods that utilise neuron activations (Dalal et al., 2023; Yak et al., 2019). While these are
valuable, this thesis focuses on a dataset-agnostic view of interpreting neural networks and
their parameters.



Chapter 3

Experiments: Direct Meta-Model
Training

Given our interest in exploring the meta-model’s capabilities for interpretability-related tasks,
establishing a baseline is crucial. In this chapter, we present the results of direct meta-
model training-Later, in Section 4.3, we investigate whether the self-supervised pre-training
procedure we introduce enhances this performance.

We describe the meta-model architecture in Section 3.1, and define the direct training
objective in Section 3.2. In Section 3.3, we set the baselines on a series of hyperparameter
and performance prediction tasks. Additionally, in Section 3.4 we introduce a new task meant
to demonstrate the meta-model’s ability to predict properties of the base model’s training
data.

In Section 3.5 we explore one component of the meta-model architecture in more detail.
Unless the opposite is stated, we utilise permutation augmentations proposed by Schürholt

et al. (2021), and defined in Section 2.1.3. This is especially significant with small amounts
of training data. In Section 3.6, we show the effect of using this augmentation in direct
meta-model training.

3.1 Meta-Model Architecture

Motivated by the success of transformer-based models on neural weight modelling tasks, as
described in Section 2.1, we adopted a transformer-encoder architecture for our meta-model.
This design is similar to the Vision Transformer (ViT) by Dosovitskiy et al. (2020). The full
meta-model architecture is shown in figure 3.1.



3.1 Meta-Model Architecture 17

Fig. 3.1 Meta-model architecture used in supervised training. The base-model weights
are divided into equal-sized chunks, which are embedded using a linear layer. Transformer
encoder architecture is the same as in ViT (Dosovitskiy et al. (2020)), with layer normalisation
before MHA; (a) main meta-model architecture, additional [CLS] token is used only with
classifier aggregation; (b) transformer encoder with L layers; (c) types of ’aggregation’ that
join the output sequence into a single output vector

As presented in the figure 3.1, the input weight vector is divided into chunks, which
are used as input to the meta-model. Similarly to Peebles et al. (2022), we implement
layer-wise chunking. Weights from each layer of the base-model are flattened separately,
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and subsequently divided into pieces of some pre-defined maximal size. Smaller chunks are
padded with zeros. Also relying on work by Peebles et al. (2022), we use a simple linear
layer to project input weight chunks into tokens of the attention-module hidden size.

We use the same transformer block as Dosovitskiy et al. (2020), with additional layer
normalisation at the output - as used originally by Vaswani et al. (2017). We optionally apply
dropout after both multi-head attention and the dense block. In all experiments except in
Section 3.3.1, we use a linear layer with a widening factor 4, and GeLU activation function
(Hendrycks and Gimpel, 2016) in the dense block. The architecture in Section 3.3.1 is
modified to match the original baseline, as discussed within that section.

To perform downstream classification or regression, we project the output from the
transformer network with three different aggregations:

1. classifier aggregation takes the output of the first token, as in the Vision Transformer
(Dosovitskiy et al. (2020)); note that we use an additional classification token in this
case, although we found that the performance does not degrade without it,

2. average pooling aggregation,

3. concatenation of all sequence outputs.

In Section 3.3.1, to match the baseline architecture, we use the classifier aggregation with an
additional linear layer. In other experiments, we use concatenation as a default option. We
discuss these aggregation choices and their implications further in 3.5.

The weights of the transformer module are initialised with a variant of variance scaling
with a scheme scale = 2

L , where L is the number of transformer blocks. This initialisation is
introduced by Radford et al. (2019) in the GPT-2 architecture and is meant to account for the
effect of accumulation on the residual path.

We use learnt positional embeddings, initialised from a truncated normal distribution
with a standard deviation of 0.02. This potentially provides a way of preserving structural
information about the base-model architecture, especially for single-architecture model-zoos
which are explored in this thesis.

3.2 Direct training objective

As defined in Section 2.2, a model zoo represents a collection of trained neural network
models characterized by their weights, architecture, dataset, and hyperparameters used in
their training. Given a model zoo {(Wi,Ai,Di,λi) | i = 1,2, . . . ,N} our goal is to train the
meta-model to infer base-model properties using Wi and A⟩.
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Following the categorisation of property prediction tasks described in Section 2.3, our
tasks of interest include:

• performance metrics - accuracy and generalisation gap,

• a subset of varied hyperparameters λi,

• varied properties of the image datasets Di,

The exact set of tasks is presented together with the experiments for each model zoo. The
meta-model is trained separately for each task.

Given base-model weights W and known model architecture A (optionally incorporated
through weight chunking), we train the meta-model using:

• Cross-entropy loss for classification-centric predictions:

Lcls =−
N

∑
i=1

yi log(p(yi|xi,Wi,A i))+(1− yi) log(1− p(yi|xi,Wi,A i)) (3.1)

• Mean squared error (MSE) for regression-based tasks:

Lreg =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.2)

where yi is the target label, p(yi|xi,Wi,A i) is predicted probability (for classification), ŷi is
predicted value (for regression), and N is the number of models in the training part of the
model zoo split.

Furthermore, regression is evaluated through R2 score on the test set, while we report
on test accuracies for classification tasks. The R2 score measures the proportion of variance
explained by the model, i.e. mathematically:

R2 = 1−
SSpred

SStot
(3.3)

where SSpred is a sum of squares of residuals, and SStot is a sum of square differences between
observed variables and the mean value.
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3.3 Outperforming Downstream Task Prediction Bench-
marks

In this section, we present the results of direct meta-model training on existing model zoos.
We show that direct training yields good performance on downstream tasks of interest and
outperforms previously established simple benchmarks. Part of the results presented here is
used as a baseline in section 4, to evaluate how the pre-training affects the meta-models’s
performance.

3.3.1 Comparison With Other Natural Baselines: MNIST-HYP Dataset

We demonstrate that direct meta-model training outperforms the benchmarks based on
probing pre-learnt weight representations. This evidence supports our direct training
approach and the subsequent pre-training-fine-tuning pipeline, contrasting with Schürholt
et al. (2021), who evaluate their self-supervised training procedure based on the quality
of extracted weight representations. Although insightful, their evaluation does not directly
address the implications of pre-training on meta-models’ capabilities for downstream tasks
of interest, which is our central aim. Hence, our analysis adopts a task-oriented evaluation,
aligning with our research question.

To underscore the superiority of direct training over mere probing of learnt representations
— justifying its use as our baseline — we benchmark the outcomes of direct meta-model
training for hyperparameter and model-performance prediction tasks on the MNIST-HYP
dataset (mentioned in Section 2.2) against the referent results provided by Schürholt et al.
(2021). To offer a fair comparison with their work, we train the meta-model of the same
architecture as the encoder part of the network used in their paper. Therefore, as mentioned
in Section 3.1, we use an additional classification token, classifier sequence aggregation
method, and an additional linear layer that projects transformer output to latent dimension
1200. This projection is followed by a single linear layer for classification, which is trained
together with the rest of the meta-model.

We match all architecture parameters to their official implementation, using 4 attention
layers, with 4 attention heads in each, the embedding size in attention layers of 512, with
a widening to size 1000 in the dense portion of the transformer block. Like in their im-
plementation, we use the Leaky ReLU activation function in these experiments. We also
use a maximum chunk size of 800 weights, but chunk the weights layer-wise rather than
neuron-wise.
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Following Schürholt et al. (2021), we use all checkpoints, with 70% of them used for
training, and 15% each for validation and testing, ensuring that all checkpoints from the
same training run belong to the same part of the split.

We use batch size 500 for all downstream tasks and train for 75 epochs. We use Adam
(Kingma and Ba (2014)) optimiser, with a learning rate 0.00003 and weight decay with
coefficient 0.0002. Note that the hyperparameters were not tuned separately for optimal
performance for each task.

In these experiments, because of the large dataset size, we do not use permutation
augmentations, conversely to other experiments in this thesis. It should be noted that this
could lead to more noticeable overfitting, and results that do not depict the maximum meta-
model performance on the chosen set of tasks. However, because of the very large dataset
size and limited variability in the data stemming from the use of fixed random seeds during
model zoo creation, this augmentation is not crucial for attaining satisfactory downstream
prediction outcomes.

We present the test results in table 3.1.

Table 3.1 Direct meta-model training for hyperparameter and base-model-performance
prediction tasks on MNIST-HYP dataset (Unterthiner et al. (2020)). This is juxtaposed with
three baseline methods from Schürholt et al. (2021): direct linear probing of model weights
W ; linear probing of weight space statistics S(W ) described by Unterthiner et al. (2020); and
linear probing of weight space representations extracted from an autoencoder. Notably, the
architecture of this autoencoder mirrors that of our meta-model.

Direct meta-model training Baseline results*

Task Test R2 score Test accuracy W S(W ) Representations

Epoch 0.634 - 0.258 0.332 0.500
Accuracy 0.9918 - 0.747 0.815 0.949

Learning Rate 0.574 - 0.293 0.343 0.371
Dropout 0.601 - 0.125 0.165 0.201
L2 Regularisation 0.526 - 0.285 0.192 0.358
Training Data Fraction 0.371 - 0.038 0.078 0.159

Activation Function - 0.899 0.886 0.811 0.887
Initialisation Method - 0.954 0.946 0.720 0.887
Optimiser - 0.997 0.767 0.654 0.664

*As baselines, we cite the results of Schürholt et al. (2021), without running their experiments

We observe improved results in all downstream tasks. The most significant improvement
can be seen for hyperparameter regression tasks. The easier, classification tasks, which
perform well even with linear classification from the weight space display less drastic
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improvement. This is a feature of a model zoo which uses a single random seed for base-
model training, which makes these hyperparameters easy to predict even by probing weight
vectors directly.

While we do consider these results valuable, showing the improvement that arises from
direct meta-model training, this comparison should be viewed with caution. The differences
between the two implementations include the use of augmentations in their work, and layer-
wise instead of neuron-wise weight tokenisation. Because we expect these modifications to
only further improve our training results, we believe that the conclusions still hold.

These results demonstrate the capacity of our meta-model for downstream task prediction,
and justify using direct meta-model training as a baseline. However, this model-zoo lacking
the variability in initialisation seeds, makes some of the presented problems easier to predict.
For this reason, we do not use this zoo in pre-training evaluation, but utilise the baselines
from the next section.

3.3.2 Model Zoo With Variable Seed: MNIST-HYP-10-RAND Dataset

As discussed in Section 2.2, introducing randomness in base-model initialisation seeds yields
a stochastic data-generating process, and potentially makes the classification tasks harder to
predict on the resulting dataset. To consider this, we present the results of our meta-model
on MNIST-HYP-10-RAND made available by Schürholt et al. (2022b).

In this thesis, we use two distinct subsets of the MNIST-HYP-10-RAND dataset. The
larger subset comprises 6000 training samples, 1000 validation samples, and 500 test samples.
The smaller subset is non-overlapping and contains 500 training samples, 500 validation
samples and 500 test samples. Because of the way it is used, we will refer to the smaller
dataset as the fine-tuning dataset. This data selection is meant to be emblematic of real-world
situations: with large amounts of unlabelled data accompanied by smaller, labelled training
sets. We retain the original training-validation-test split of the dataset, and split each into
two parts. Because one of the downstream tasks is epoch prediction, we chose to include
5 uniformly sampled checkpoints from each training run. The checkpoints from the same
training run are always in the same part of the split.

We have devised two distinct training and evaluation pipelines used later in chapter 4. In
this section, we provide the baseline performance of meta-model training for both, but the
purpose of this experiment design is to evaluate the pre-training procedure more thoroughly.

• In the first pipeline, we integrate both datasets, resulting in a combined set with 6500
training examples (retaining the split from the original subsets). The purpose of this
pipeline is to assess the benefits of pre-training, where we make sure that both pre-
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trained and randomly initialised meta-models are exposed to the same amount of data.
Therefore, these experiments can illuminate the intrinsic advantages of the pre-training
process.

• The second pipeline involves self-supervised pre-training on the larger dataset followed
by direct meta-model training using only the fine-tuning dataset. This is employed to
evaluate if the potential benefits of pre-training are more noticeable for small datasets.
The choice to not include the samples already used in pre-training in the subsequent
fine-tuning experiments is made to eliminate any effects of data leakage and to derive
more generalised conclusions.

We train the meta-model with 5 transformer blocks, each with 16 attention heads, and
attention size 256. The chunk size is fixed to 8. We use batch size 32 in all experiments.
We fine-tune the training hyperparameters for each of the tasks, by selecting the ones which
yield the best validation performance (minimal loss). The resulting hyperparameter list is
available in appendix A.1.

The experiments on the fine-tuning dataset are always run for 150 epochs, while we use
50 epochs for the full dataset. Accounting for possible overfitting, we evaluate the test set
performance using the epoch with minimal validation loss.

It should be noted that the best validation performance for the activation function predic-
tion task was obtained for a set of hyperparameters that does lead to noticeable overfitting.
However, we stress once again that the hyperparameters were chosen to minimise the vali-
dation loss at its best epoch, and further experiments with stronger regularisation could not
outperform the presented results.

The test results on both subsets are shown in table 3.2.

Table 3.2 Direct meta-model training for hyperparameter and base-model-performance
prediction tasks on MNIST-HYP-10-RAND dataset (Schürholt et al. (2022b)), for two
dataset sizes: full dataset with 6500 training samples, and a fine-tuning dataset with 500
training samples.

6500-samples training data 500-samples training data
Task Test R2 score Test accuracy Test R2 score Test accuracy

Epoch 0.2348 - 0.1009 -
Accuracy 0.9597 - 0.8809 -
Generalisation Gap 0.7981 - 0.3934 -

Activation Function - 0.8281 - 0.7299
Initialisation Method - 0.6321 - 0.6562
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The accuracy prediction task yielded the best results, whereas epoch prediction proved
the most challenging for our meta-model in this setting. Noticeably, the results for activation
function and initialisation method prediction are lower than on the MNIST-HYP dataset
discussed earlier. This is expected not only because of the dataset size but also the usage of
variable initialisation seeds, which resulted in a more challenging model zoo.

We use the presented results as a baseline for pre-training evaluation in Section 4.3.2.

3.4 Dropped Class Classification Task

We introduce a new task titled dropped class classification, aiming to demonstrate the ability
of a meta-model to form conclusions about the training data distributions based on the
resulting weights of the trained models. Arguably, this line of work is more related to
interpretability than hyperparameter prediction, as it requires insight into the logic behind
the base-model predictions, as opposed to understanding the training procedure itself. We
show the capabilities of the proposed meta-model in tackling this objective.

3.4.1 Task definition

We train a model zoo M encompassing M convolutional neural networks. This zoo is
trained on an image dataset I consisting of N distinct classes {c1,c2, ...cN}.

Each network in the zoo, CNNi, i ∈ 1..M is trained to perform image classification into
N − 1 classes. Specifically, for each network CNNi, we randomly (uniformly across all
classes) select a class cik ∈ {c1,c2, ...cN} to be excluded during training. We therefore train
CNNi on a subset of I containing remaining N −1 classes, Ik = I \ cik .

Given the resulting set of neural network weights, the goal of the ’dropped class classifi-
cation task’ is to predict, for each CNNi, which class cik was omitted during training. We
experiment with two settings of the task: the easier experiment, where the classes are always
ordered in the same way (with a single class being dropped from this ordering), and the
harder setting - where we randomly permute the last layer of the network, so that 9 remaining
classes cannot be distinguished based on the ordering of its inductive biases.

3.4.2 Model Zoo Generation

We train a model zoo on images from MNIST LeCun et al. (2010) dataset. In each iteration
of a zoo-generating process, we uniformly sample a class to be dropped from training images.
We scale loaded images to a range of [0,1] and do not use additional augmentations.



3.4 Dropped Class Classification Task 25

The resulting model zoo contains 7500 small CNNs. Out of these, 23 models are
discarded because of failed training or poor classification accuracy, leaving 7477 models
in the zoo. The base-model architecture consists of three convolutional layers followed by
average pooling and two linear layers and has 2043 parameters in total. The exact architecture
is presented in table 3.3.

Table 3.3 Model architecture used in dropped class classification model zoo

Layer Component Parameter Value
Conv 1 input channels 1

output channels 8
kernel size 5

stride 1
padding 0

Max Pooling kernel size 2
Max Pooling stride 2

Conv 2 input channels 8
output channels 6

kernel size 5
stride 1

padding 0
Max Pooling kernel size 2

Max Pooling stride 2
Conv 3 input channels 6

output channels 4
kernel size 2

stride 1
padding 0

Max Pooling kernel size 2
Max Pooling stride 1

Linear 1 input channels 16
output channels 20

Linear 2 input channels 20
output channels 9

Total Parameters 2043

For simplicity, we keep the majority of hyperparameters fixed and vary only initialisation
seeds, weight decay, dropout and batch size. Categorical hyperparameters are always kept
the same: we use Leaky ReLU activation function, Adam optimiser (Kingma and Ba (2014))
and default weight initialisation schemes in Haiku (Xavier initialisation (Glorot and Bengio,
2010) for linear and convolutional layers). The batch size was either 32 or 64. Weight decay
was sampled logarithmically in range [10−4,10−2] and dropout uniformly in range [0,0.5].
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Fig. 3.2 Visualisation of characteristics of generated dropped-class classification model zoo
for 1000 data trained networks, each trained on 9 out of 10 MNIST (LeCun et al. (2010))
classes. (a) Two-dimensional UMAP dimensionality reduction (McInnes et al. (2018));
different colours represent different subsets of MNIST classes; (b) Test accuracy distribution
in the last training epoch.

(a) UMAP dimensionality reduction (b) Test accuracy distribution

It should be noted that the chosen method of model-zoo generation leaves space for
further improvements. As mentioned in Section 2.2, the setting with varying random seeds
and fixed hyperparameters might result in a simplified version of the problem in which
simple weight statistics become highly correlated with the resulting performance of the
model. However, since the target variable is categorical, the reasoning behind this decision
was spreading out potential clusters that might exist in the data. To show this, in figure 3.2a
we visualise the UMAP dimensionality reduction of 1000 samples from the trained model
zoo. We leave the exploration of the effect of varied hyperparameters for this task for further
research.

We only use a single checkpoint per training run, making sure that the training set
for dropped class classification consists only of well-trained networks. We visualise the
distribution of test set accuracies of our trained zoo in figure 3.2b.

3.4.3 Experimental Details

Similarly to Section 3.3.2, we divided the created model zoo into two subsets. The larger
subset, referenced later in chapter 4, comprises 4500 training samples, 500 validation
samples, and 477 test samples. Meanwhile, the smaller, non-overlapping fine-tuning set has
500 samples in each of these categories (note that we do not decrease validation and test
sizes to reduce the noise in evaluation metrics).
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We provide baseline results for the full dataset (preserving the same training-validation-
test split) and the fine-tuning dataset. Both will be used in pre-training evaluation in Section
4.3.1. On both datasets, we train the meta-model on both variants of the task described in the
previous section: the easier variant with MNIST classes always retaining the same order in
the base-model classifier output layer, and the harder task with randomly permuted ordering
of classes.

We train a meta-model with 3 transformer blocks, with 16 attention heads in each multi-
head attention, and attention size 256. Weights are chunked layer-wise with chunk size 8
and we apply permutation augmentations on the training set, with a new permutation used in
each training epoch.

The meta-model is trained with an Adam optimiser, using a learning rate of 0.0002 and
batch size 32. For the easier task, we use weight decay of 0.0001 and no dropout, while
a weight decay of 0.002 and dropout of 0.05 are applied for the harder-task training. We
evaluate the results in the epoch with the best validation loss.

3.4.4 Results

We provide baseline results of direct meta-model training for dropped class classification
tasks. In the first set of experiments, we train the meta-model on the full model zoo - with a
training set consisting of 5000 models. The training curves are presented in figure 3.3, while
table 3.4 shows the final test accuracies for both versions of the task.

Fig. 3.3 Learning curves for direct meta-model training for dropped-class classification tasks.
(a) The easier version with image classes in a fixed order in the base-models; (b) The harder
version with randomly permuted class order

(a) Easy dropped class classification task (b) Hard dropped class classification task

The meta-model easily identifies the missing class in the example with the fixed class
order, achieving the accuracy of 93.75% on the test set. However, the performance on the
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Table 3.4 Test results for dropped class classification tasks. An easy task involves using a
fixed class order in the base-model output layer, while this layer is randomly permuted in the
hard task.

Task Test accuracy

Easy dropped class classification 0.9375
Hard dropped class classification 0.3780

more realistic problem, with permuted class order, drastically declines. The stark difference
between the results achieved on these two tasks signalises that the meta-model likely leverages
the predictable pattern of inductive biases in the last base-model layer to infer the missing
class in the easier setup. Randomly permuting the last layer, therefore, makes the task more
challenging, as it is perhaps forcing the meta-model to discern more complex relationships
within the weights.

Additionally, we provide results of meta-model training for dropped class classification
tasks on the fine-tuning dataset, with 500 samples in the training set. These results are
provided purely as a baseline for the pre-training procedure, utilised in Section 4.3.1, as
they will be used to evaluate if the pre-training improves the meta-model performance on a
smaller dataset.

Learning curves are shown in figure 3.4.

Fig. 3.4 Learning curves for direct meta-model training for dropped-class classification tasks,
on a small fine-tuning dataset with 500 base-models in the training dataset. (a) The easier
version with image classes in a fixed order in the base-models; (b) The harder version with
randomly permuted class order

(a) Easy dropped class classification task (b) Hard dropped class classification task

While the results show clear overfitting on this smaller dataset, further experimentation
with higher regularisation hyperparameters led to lower validation performance. The test
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accuracy is evaluated using a checkpoint from the epoch with the best validation loss, and
the results are presented in table 3.5.

Table 3.5 Baseline test results of direct meta-model training for dropped class classification
task, using a small dataset with 500 training samples. The easy task involves using a fixed
class order in the base-model output layer, while this layer is randomly permuted in the hard
task.

Task Test accuracy

Easy dropped class classification 0.6354
Hard dropped class classification 0.2083

3.5 Types of aggregation

We explore three different ways to combine the sequence output from the transformer-
encoder part of the meta-model, into a single vector, before applying the last classification or
regression layer to it. As in figure 3.1, the three types of operations used here are:

1. classifier aggregation - we add a classification token and only use its output for
downstream task prediction;

2. average pooling aggregation - we pool the output sequence across the sequence dimen-
sion, to retrieve the output of equal size as a single token;

3. concatenation aggregation - we concatenate all output tokens and use a linear layer to
produce the output.

We train a meta-model with 4 transformer blocks, with 16 attention heads and attention
size 256, on the full Dropped-Class-Classification model zoo introduced in Section 3.4. The
chunk size is set to 64, a small enough number to retain the expressivity of the meta-model,
but large enough to not represent a considerable information bottleneck for average pooling
or classification token. With this chunk size, we apply layer-wise weight chunking resulting
in 38 input chunks. The hyperparameters for models with the three aggregation types are
tuned separately for the best validation performance. We use a learning rate of 0.00002 and
weight decay of 0.0001 for concatenation aggregation, and a learning rate of 0.0005 with
weight decay of 0.0002 for the other two methods.

The resulting learning curves are shown in figure 3.5.
In this setting, concatenation noticeably outperforms the other two methods, which ex-

hibit overfitting even for the best hyperparameters found. Further increase in regularisation
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Fig. 3.5 Comparison of meta-model training results with different types of operations that
aggregate output sequence from a transformer block into a single vector. Concatenation
outperforms the other methods.

(a) Training and validation losses (b) Validation accuracy

hyperparameters resulted in lower validation accuracy. This result is not surprising, con-
sidering the information bottleneck that the limited chunk size creates for the other two
methods.

We should note that using concatenation has two negative implications: it results in a
significantly larger number of parameters and is hard to adapt to multi-architecture zoos. We
find that the first condition is not limiting in our case because we use only small base-models
in this thesis. However, in order to apply the meta-model to a real-world case, this factor is
very restrictive. On the other hand, average pooling and concatenation appear more difficult
to train well, especially with smaller chunk sizes.

Despite the disadvantages, we chose to perform experiments in other sections of the
thesis using concatenation aggregation. The reason for that is twofold: empirically easier
hyperparameter tuning that avoids overfitting on smaller model zoos, and the possibility
to explore small chunk sizes in the pre-training procedure without creating an information
bottleneck in downstream training.

To extend this method to model zoos with multiple base-model architectures, we would
need to adopt one of the approaches which produces output of a fixed size. As a potential
improvement, a learned aggregation method, such as a 1D convolution, can be applied. A
similar method could potentially mitigate the deficiencies of the presented aggregations.
However, further analysis of this issue is not analysed in this thesis.
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3.6 The effect of permutation augmentation

In this section, we show the effect of using permutation augmentations (Section 2.1.3) on the
direct meta-model training process. We demonstrate this by comparing five configurations
for meta-model training, namely training on a dataset:

1. with a fixed number of trained base-networks N
10 = 500, without augmentations

2. with a fixed number of trained base-networks N = 5000, without augmentations

3. with N
10 = 500 trained base-networks, and its 10 augmentations

4. with N
10 = 500 trained base-networks, and using new permutation in each epoch (i.e.

the meta-model does not see the same input twice)

5. with N = 5000 trained base-networks, and using new permutation in each epoch.

For all examples, we use the Dropped-Class-Classification model zoo introduced in Section
3.4.

The meta-model used in this section has 4 transformer layers, with 16 attention heads,
and attention size 256. Weight chunking is done with a chunk size of 8. The models are
trained with Adam optimiser, learning rate of 0.0001 and weight decay coefficient of 0.0001.
We use batch size 32 and train all configurations for the fixed number of steps (batches). The
resulting learning curves are shown in figure 3.6

Fig. 3.6 Learning curves showing the impact of permutation augmentation on direct meta-
model training

(a) Training loss (b) Validation loss
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The meta-model is prone to overfitting on small training datasets. This is especially
apparent with the small dataset of 500 networks, in comparison with augmented versions of
it.

On the other hand, while introducing augmentations improves overfitting, by comparing
the results of training on datasets of the same total size (two datasets of size 5000, and two
’infinite’ datasets), we can conclude that adding new networks contributes more to the meta-
model performance than the equal number of augmented networks. Since the augmentation
process is significantly cheaper than training new base-models, it is still beneficial and allows
us to experiment with relatively small model zoos. The training with the model zoo of 5000
networks and their permutations generalises well on the validation set.

3.7 Summary

In this chapter, we have tested the performance of meta-models trained directly for down-
stream tasks of interest. We have shown that direct meta-model training achieves superior
results compared to probing pre-learnt representations of neural-network weights, thus moti-
vating our task-oriented pre-training evaluation approach. We have set the baseline results for
meta-model training on two datasets: MNIST-HYP-10-RAND model zoo, and a model zoo
that we train for dropped class classification tasks. Additionally, we have shown that concate-
nation works the best as the method for aggregating sequence outputs from a transformer to
train it for downstream tasks. Finally, we have demonstrated the effectiveness of permutation
augmentations to ensure good generalisation in direct meta-model training, although they are
less effective than using the same number of independent data samples.



Chapter 4

Experiments: Masked Weight Modelling
Pre-Training Procedure

In this chapter, we introduce the masked weight modelling pre-training procedure and explore
its effectiveness in enhancing the meta-model’s capability in downstream task prediction.

Firstly, in Section 4.1 we explain the masked weight modelling task, the way we adapt
the meta-model architecture for it (Section 4.1.1), and how the meta-model is later fine-tuned
for downstream tasks (Section 4.1.2). Some experimental details are presented in Section
4.1.3.

We perform experiments in this section on two model zoos: our Dropped-Class-Classification
zoo, and the MNIST-HYP-10-RAND zoo. In Section 4.2, we evaluate the pre-training proce-
dure itself for both zoos. Then, in Section 4.3, using the pre-training procedure to initialise
the meta-models, we train them for relevant downstream tasks on both model zoos and
compare the resulting performance with the baselines set in Chapter 3.

Furthermore, in Section 4.4 we investigate how different components affect the pre-
training process.

4.1 Method

In this section, we present the masked weight modelling pre-training task, including the
meta-model architecture, weight tokenisation and training objective. Furthermore, we explain
how the pre-trained weights are utilised in fine-tuning for the downstream tasks of interest.
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4.1.1 Masked Weight Modelling Task

The pre-training method is illustrated in figure 4.1. Similarly to the method explained in
Section 3, we divide the base-model weight vector into chunks, creating the input sequence.
As a pre-training procedure, we randomly mask some of the input chunks, and train the
meta-model to reconstruct the masked parts.

Fig. 4.1 An illustration of a masked weight modelling pre-training procedure, using a
transformer-encoder meta-model

Weight chunking. We compare three types of weight chunking:

• Flattening the whole vector of weights together and dividing it into equal-size weight
chunks, while only the last chunk is padded to match the chosen chunk size;

• Layer-wise weight chunking, with each layer being flattened and divided into chunks
separately, as explained in section 3. This is used as a default weight chunking option
for downstream training;
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• Layer-wise weight chunking with additional one-hot encoded indicators for layer
type (in our case linear or convolutional). This method adds information about the
base-model architecture.

More detailed discussion and experiments are presented in section 4.4.2,

Masking. We mask weight chunks randomly and uniformly, by masking each chunk with
some pre-defined probability pmask. We replace masked portions of the network with zero
vectors, and add a binary indicator to each input chunk, to signify the masking - with 1 for
masked parts, and 0 for others. Since each chunk is tokenized with a linear layer, this is
equivalent to a learnt masked embedding.

Architecture. Same as in section 3.1, we use the transformer encoder meta-model architec-
ture with learnt positional encodings. The model takes in both the masked and the unmasked
input weight chunks and outputs the sequence of the same length. We apply a linear layer to
the output sequence to project the tokens back to the original weight vector dimension and
weight scale.

Pre-training learning objective. We train the meta-model to directly reconstruct the
masked chunks, given the whole masked input. The loss is calculated only on the masked
parts of the output. We frame this as a regression task and use MSE loss over masked parts
of the prediction:

Lmasked MSE =
∥M⊙ (Y− Ŷ)∥2

2

∑M
(4.1)

where Y is a 3D target vector of dimensions (batch size,number of chunks,chunk size, and
Ŷ is the meta-model output prediction. Matrix M is a binary matrix of the same dimension,
with ones for all weights in masked chunks, excluding the added mask indicator. Symbol ⊙
represents the Hademard product, while ∑M returns the total number of masked weights. In
our experiments, the loss is instead normalised by the number of masked chunks. Since the
chunk size is equal between layers and different experiments, this is treated as equivalent.

Layer-wise loss normalisation (LWLN) correction. In contrast to other sources of data
(text or images), the noise is not uniformly distributed across the base-model weight vector.
According to the observations made by Schürholt et al. (2022a) in a similar weight-modelling
task, this could cause reconstruction performance in some layers to drop significantly. Fol-
lowing their solution, to mitigate this, we implement layer-wise loss normalisation:
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LLWLN =
1
C

L

∑
l=1

∥Ml ⊙ (Yl − Ŷl)∥2
2

σ2
l

(4.2)

where σ2
l represents the average variance of layer l, Ml represents a binary mask for weights,

Yl targets, and Ŷl meta-model predictions for the same layer of the base-model. Constant
C = ∑

L
l=1

1
σ2

l
∑Ml scales the loss to match the order of the original Lmasked MSE.

It should be noted that if the weight chunking method contains added indicators, they are
excluded from the binary mask, and the loss is calculated only for the reconstruction of the
original base-model weights.

4.1.2 Fine-tuning for downstream tasks

To test the effect the pre-training procedure has on downstream performance, we replace the
effective ’unembedding layer’ of the meta-model, with a new classification/regression head.
This new part of the network matches aggregation methods introduced in 3.1, and tested
in section 3.5. Here, we chose to replace not only the linear output layer but also the last
transformer block.

To match dimensions and utilise the weights of the linear encoding layer of the meta-
model, input weight chunks are preprocessed in the same way as in the respective training
procedure, and an additional zero indicator is added to show that no chunks are masked.

We fine-tune the whole meta-model, without freezing input layers. Note that since we
fine-tune on a model-zoo with models of the same architecture as in the pre-training dataset,
the learnt positional encodings are also transferred successfully between these two training
stages.

4.1.3 Experimental details

We perform experiments on two model zoos: our Dropped-Class-Classification zoo, and
MNIST-HYP-10-RAND dataset from Schürholt et al. (2022b), and compare them to baselines
set in Section 3, matching the baseline architecture:

• In experiments on the Dropped-Class-Classification zoo, we train a meta-model with
4 transformer blocks, each with 16 attention heads and an attention size of 256. In
fine-tuning experiments on the same zoo, we use a meta-model with 3 transformer
blocks, as the last transformer block and linear layer are replaced by concatenation and
a joint linear output layer.
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• In experiments on MNIST-HYP-10-RAND model zoo, we pre-train the meta-model
with 5 transformer blocks, 4 of which are kept when fine-tuning for downstream tasks.
One transformer block has the same dimensions as for the Dropped-Class-Classification
zoo, with 16 attention heads and an attention size of 256.

The input weights are chunked layer-wise (except in section 4.4.2) with chunk size 8 and
we use a masking probability of 0.2 (except in section 4.4.3).

The pre-training for both model zoos is performed with batch size 32, and no regularisa-
tion. We use a learning rate of 0.0001 for experiments on Dropped-Class-Classification zoo,
and 0.0005 for experiments on MNIST-HYP-10-RAND.

In all sections except for 4.4.1, we apply permutation augmentations (introduced in
section 2.1.3) in each training epoch. Because the number of possible permutations is large,
it is unlikely that the meta-model ever sees the same training example twice. We show that
this ability is crucial for pre-training performance.

4.2 Pre-training results

In this section, we evaluate the pre-training performance of meta-models trained on both
model zoos, without delving into its impact on downstream tasks.

4.2.1 Dropped-Class-Classification Zoo

This section focuses on assessing the masked weight modelling pre-training procedure’s per-
formance for the Dropped-Class-Classification model zoo. Figure 4.2 displays the retrieved
learning curves.

We calculate the R2 score for the predicted masked chunks. After training presented in
figure 4.2, the test set reconstruction R2 score was 0.5266, signifying a meaningful prediction,
better than the mean. It should be noted the training does not appear to converge at this point.
However, due to the 24-hour training duration, we did not explore potential performance
improvements from extended training.

Noticeably, the loss curves display two training regiments: in the first phase the meta-
model learns to predict small values, close to the expected mean. After around 80 training
epochs, a notable ’drop’ in the loss function occurs, signifying that the meta-model predictions
began to align more with the data’s variability. Extensive hyperparameter sweeps have not
managed to recover the same performance without the appearance of this ’drop’ in the loss.

During our preliminary experiments, with larger weight chunk sizes, we noticed that the
scale of larger layers is learnt more easily, while the predictions for smaller layers stay close
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Fig. 4.2 MSE loss with layer-wise loss normalisation for masked weight modelling pre-
training procedure on Dropped-Class-Classification model zoo

to the mean value longer. This was one of the observations that motivated the usage of small
chunk sizes in further work.

Another important observation is the lack of overfitting, despite not using any regulari-
sation methods. This suggests that the input data is diverse, and the meta-model’s current
capacity might be the bottleneck for the pre-training performance.

To quantify the pre-training performance in a more meaningful way, we compare the
performance of the base-models after their masked weights are reconstructed using the
meta-model’s predictions, on its original image set (MNIST without one of the classes). In
figure 4.3 we visualise the average test set classification accuracy of the reconstructed model,
and contrast it with the average accuracy achieved by the original models before masking,
and with the accuracy achieved by replacing masked parts of the model with some simple
baselines:

• zero vectors,

• mean values of weights in that weight chunk for all base-models in the training split of
the model zoo,

• randomly generated values (from a Gaussian distribution), and

• vectors sampled from a multivariate Gaussian distribution knowing the mean and the
variance of the weights in the same position in the model zoo.
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Fig. 4.3 Average base-model performance on its training data after masked weights are
reconstructed, for Dropped-Class-Classification zoo. The results are benchmarked against
different baselines: (a) substituting masked weights with zero vectors, (b) replacing with
mean values from the model zoo, (c) using random Gaussian values, (d) sampling from a
multivariate Gaussian based on model zoo weight metrics, (e) reconstructing masked weights
using meta-model predictions, and (f) using original weights before masking.

Although the base-models reconstructed from meta-model predictions display signif-
icantly better performance than any of the networks reconstructed from relevant simple
baselines, it should be noted that the performance of the original base-model achieves signifi-
cantly higher values. The classification accuracy on the original image data decreases from
94% on average to only 68.4% for classification into 9 MNIST classes.

Before the ’drop’ in the loss curves, the meta-model’s performance closely resembled a
simple mean prediction, while it drastically improves afterwards. Based on the loss curves,
we suspect that it would improve further with longer training.

4.2.2 MNIST-HYP-10-RAND Model Zoo

In this section, we evaluate the pre-training performance of a meta-model trained on the
MNIST-HYP-10-RAND model zoo. The loss curves are presented in figure 4.4. Although it
is not clear if the meta-model has converged at this point in the training process, because this
training run lasted 48h, we refrained from further exploration.

Similarly to the previous section, the meta-model first converges to a regiment akin to
predicting the mean of the masked chunks, and starts modelling variance in the data only after
the ’drop’ in the loss function. With extensive hyperparameter tuning, the same performance
could not be recovered without this ’drop’.
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Fig. 4.4 MSE loss with layer-wise loss normalisation for masked weight modelling pre-
training procedure on MNIST-HYP-10-RAND zoo (Schürholt et al., 2022b)

The reconstruction performance of the meta-model is significantly lower on this model
zoo, with R2 score of 0.1986 on the training, and only 0.1302 on the test set. Additionally,
figure 4.5 contrasts the average classification accuracy of base-models on MNIST data post-
reconstruction by the meta-model, against its original performance and that derived from
simple baselines. A similar decrease in pre-training performance is observed.

We suspect that the decline in pre-training performance in comparison with the Dropped-
Class-Classification zoo stems from higher variability in the data, resulting from multiple
variable hyperparameters used in model zoo creation. As reported by Schürholt et al. (2022b),
this leads to a more diverse distribution of neural network weights, which could render the
pre-training task harder.

Another potential reason for worse pre-training performance on the MNIST-HYP-10-
RAND dataset is the utilisation of poorly trained networks. As the mean accuracy of the
original base-models, prior to masking, on MNIST classification is only 78.51%, we suspect
that the meta-model is struggling to extract useful information from the poorly trained
networks. In particular, the model zoo contains a non-negligible number of base-models
with an accuracy of just above 10%, which are a prominent source of the noise. Because one
of the target downstream tasks we consider is accuracy prediction, these networks were not
filtered out from the zoo.

In comparison with other neural weight modelling tasks, such as representation learning
explored by Schürholt et al. (2021), we believe that this kind of variability has a higher effect
on the masked weight modelling task. Intuitively, in this instance, the meta-model needs to
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Fig. 4.5 Average base-model performance on its training data after masked weights are
reconstructed, for MNIST-HYP-1-RAND zoo (Schürholt et al., 2022b), benchmarked against
different baselines: (a) substituting masked weights with zero vectors, (b) replacing with
mean values from the model zoo, (c) using random Gaussian values, (d) sampling from a
multivariate Gaussian based on model zoo weight metrics, (e) reconstructing masked weights
using meta-model predictions, and (f) using original weights before masking.

learn to predict if the input base-model is well-trained, from partial input, and to propose a
set of weights to replace the masked parts accordingly.

4.3 The effect on downstream tasks prediction

In this section, we test whether pre-trained meta-models outperform the baselines set in
Chapter 3 on chosen downstream tasks. We find that the results vary depending on the task,
but some improvement is evident for the majority of the tasks, especially when trained on
small datasets.

4.3.1 Dropped-Class-Classification Zoo

Here, we test whether a pre-trained meta-model performs better at the dropped class classifica-
tion tasks, in comparison to the baselines presented in section 3.4.4. The results are evaluated
for both tasks (the easier variant with fixed MNIST class order, and the harder variant with
randomly permuted class order), and with both dataset sizes as presented baselines.

We adopt the same meta-model architecture and fine-tune the pre-trained meta-model
using the same hyperparameters as in direct meta-model training.
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Figure 4.6 shows the validation accuracies for all experimental settings. Full loss compar-
ison is available in appendix B.1

Fig. 4.6 A comparison of meta-models initialised from scratch and initialised from the
pre-training procedure, trained on dropped class classification tasks. The experiments are
done on the full dataset, and a small fine-tuning dataset containing only examples unseen in
pre-training. The results are shown for: 1. easier task - with fixed class order in base-model
output layer; 2. harder task - with randomly permuted class order in base-model output layer

(a) Easy task variant, full dataset (b) Easy task variant, fine-tuning dataset

(c) Hard task variant, full dataset (d) Hard task variant, fine-tuning dataset

We evaluate the test set performance using the checkpoint with the best validation loss
and present the results in table 4.1.

The effect of pre-training is not the same for these two tasks: it diminishes performance
on the easier task and improves it on the harder one. This can signalise that the pre-training
method does not uniformly capture relevant features for different downstream tasks.
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Table 4.1 The comparison of performances of the meta-model trained on Dropped-Class-
Classification model zoo with and without the masked weight modelling pre-training proce-
dure. The table presents test set accuracy for two versions of the task: the easy version with
fixed order of classes in base-models’ output layers and the harder version with randomly
permuted class order. Both are presented for two subsets of the model zoo: the full dataset
which includes samples used in pre-training, and a separate small fine-tuning dataset.

Full dataset Small fine-tuning set
Task Baseline Pre-trained Baseline Pre-trained

Easy dropped class classification 0.9375 0.8447 0.6354 0.4583

Hard dropped class classification 0.3780 0.4004 0.2083 0.3020

• It was already discussed that the good performance on the easier task likely stems from
the meta-model leveraging the inductive biases from the last layer of the base-model.
If the pre-training procedure enhances the meta-model’s generalisation capabilities, it
might reduce the reliance on these biases - thus leading to a decrease in performance
on a task that finds them useful.

• As the baseline meta-model training for the harder task showed overfitting, it benefits
from better generalisation. In this case, pre-training acts as a form of regularisation.

These results show that pre-training efficacy is highly task-dependent, and indicate that it
might have a regularisation effect.

4.3.2 MNIST-HYP-10-RAND Model Zoo

We assess whether pre-training improves meta-model performance on downstream tasks on
the MNIST-HYP-10-RAND dataset, in comparison with baselines set in Section 3.3.2.

We adopt the hyperparameters optimised in Section 3.3.2, without adjusting them for
fine-tuning, and run the experiments for two subsets of MNIST-HYP-10-RAND dataset: the
full dataset, and a small fine-tuning dataset without models used in the pre-training stage.

Figure 4.7 presents the validation R2 score for regression tasks, and validation accuracy
for classification tasks. The full comparison of training and validation losses is available in
appendix A.2.

We retrieve the meta-model weights in the epoch with the lowest validation loss and
evaluate its performance on the test set. The resulting comparison of meta-model performance
with and without pre-training is shown in table 4.2.

Across all experiments, the pre-training procedure improves performance, especially in
early supervised training. Test set performance evaluation confirms this observation, showing
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Fig. 4.7 A comparison of meta-models initialised from scratch and from the pre-training
procedure, trained for downstream tasks on MNIST-HYP-10-RAND zoo (Schürholt et al.,
2022b). The experiments are done on the full dataset, and a small fine-tuning dataset
containing only examples unseen in pre-training. The results are presented for 5 differ-
ent downstream tasks. We plot validation R2 score for regression tasks and accuracy for
classification tasks.

(a) Test accuracy prediction, full dataset (b) Test accuracy prediction, fine-tuning dataset

Table 4.2 The comparison of performances of the meta-model trained on MNIST-HYP-10-
RAND model zoo (Schürholt et al. (2022b)) with and without the masked weight modelling
pre-training procedure. The table presents the test set R2 score for regression tasks (epoch,
accuracy and generalisation gap) and test set accuracy for classification tasks (activation
function and initialisation method). Both are presented for two subsets of the model zoo: the
full dataset, and a small fine-tuning dataset containing only examples unseen in pre-training.

Full dataset Small fine-tuning set
Task Baseline Pre-trained Baseline Pre-trained

Epoch 0.2348 0.3574 0.1009 0.1041
Accuracy 0.9597 0.9780 0.8809 0.9519
Generalisation Gap 0.7981 0.8286 0.3934 0.6878

Activation Function 0.8281 0.8374 0.7299 0.7812
Initialisation Method 0.6321 0.7216 0.6562 0.6292
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(c) Generalisation gap, full dataset (d) Generalisation gap, fine-tuning dataset

(e) Training epoch, full dataset (f) Training epoch, fine-tuning dataset

(g) Activation function, full dataset (h) Activation function, fine-tuning dataset

higher test set metrics for the pre-trained meta-model, for all tasks but the initialisation
method prediction on the fine-tuning dataset.

However, although the pre-trained models display initially better prediction, the trends
observed in convergence vary between tasks and dataset sizes:
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(i) Initialisation method, full dataset (j) Initialisation method, fine-tuning dataset

• Test accuracy and generalisation gap predictions display a similar behaviour. While
the training on the fine-tuning datasets displays long-term benefits from pre-training,
the performance on the full dataset attenuates over time. This potentially indicates that
although the pre-training provides a useful basis for the downstream tasks, the biggest
advantage for well-tuned downstream tasks arises from the amount of processed data.

• The results on training epoch prediction on the full dataset manifests the same trend
of initially better performance of the pre-trained meta-model. However, since the
training has not converged in the presented 50 epochs, it is not clear if the same
convergence to a similar level would arise with longer training. The experiments on
the fine-tuning dataset show convergence to a similar value, however, the meta-model
exhibits particularly poor performance on this task.

• In activation function prediction the pre-trained meta-model consistently outperforms
the model initialised from scratch. Recall that the meta-model initially overfits to
the training data for this downstream task. This is a compelling indicator that the
pre-training might have a regularisation effect on downstream performance, similar to
what was noticed in section 4.3.1.

• The initialisation method also displays initially better performance with pre-training,
but predictions for the pre-trained and meta-model initialised from scratch reach a
similar validation set performance over time.

There are two main sources of limitations in these results:

• Notably, the pre-training on this dataset did not reach impressive performance, as
presented in section 4.2.2. Despite this, meta-models initialised from it do display
performance improvement on downstream tasks. This signalises that the metrics used
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in the pre-training might not capture the broader utility or latent features the model has
learnt, which are useful for downstream tasks. In this light, it is unclear how further
improvement in pre-training performance might influence its efficacy for downstream
tasks of interest.

• The hyper-parameters were not separately adjusted for fine-tuning, with this specific
meta-model initialisation. Because of this, future experiments could further optimise
given results, potentially leading to improved performance of the pre-trained meta-
model.

These results indicate that while the pre-training could enhance the meta-model’s perfor-
mance in some downstream tasks, especially in the initial phase of the supervised training,
its efficacy is very data- and task-dependent. Most notably, test accuracy and generalisation
gap prediction show improvement from exposure to more data through pre-training, while
the benefits fade if pre-training and fine-tuning are conducted with the same dataset. Similar
to the results presented in the previous section, the results on activation function prediction
indicate that pre-training acts as a form of regularisation if the original direct meta-model
training overfits to the training data.

4.4 Pre-training ablations

In this section, we explore the effect of different components of the pre-training pipeline.
All experiments performed on MNIST-HYP-10-RAND zoo (Schürholt et al. (2022b)). We
train the meta-model with 5 transformer layers, each with 16 attention heads and attention
size 256. In all training runs in this section, we use the learning rate of 0.0005, batch size
32, and no regularisation. Unless stated otherwise, we use layer-wise chunking and masking
probability of 0.2.

4.4.1 Permutation Augmentations in Pre-Training

In this section, we test how the permutation augmentations, introduced in section 2.1.3, affect
the effectiveness of the pre-training procedure. All other parameters of the training are fixed
between the two runs, set to default values from section 4.2.2. The resulting learning curves
are shown in figure 4.8.

Similarly to previous work by Schürholt et al. (2021) and Peebles et al. (2022), we
observe that permutation augmentations enable generalisation. In contrast, the pre-training
easily overfits to training dataset without it.
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Fig. 4.8 Learning curves for masked weight modelling pre-training with and without permu-
tation augmentations

Fig. 4.9 Training set loss Fig. 4.10 Validation set loss

Importantly, both training procedures, with and without permutation augmentations, learn
a similar mapping at first. However, this simple prediction has limited capacity to capture the
variance in the data. This ability emerges after the ’drop’ in the loss function, manifested in
figure 4.8 around epoch 170. The training run without augmentations diverges significantly
earlier.

It should be noted, however, that the presented training run was not tuned for learning
without augmentations. In a less rigorous investigation, we could not find the hyperparameters
that lead to the same ’drop’ in the loss function without the use of augmentations.

4.4.2 Weight encodings

We investigate if adding information about base-model architecture through weight vector
chunking and encoding benefits the pre-training. We compare three types of weight
chunking:

• Flattening. All weights of the base-model are flattened into a single vector. The whole
vector is divided into equal-sized weight chunks, and only the last token is padded to
match this dimension. The benefit of this method is its simplicity. However, this does
allow a single token to contain information about weights from multiple layers, which
may yield the task more challenging for the meta-model.

• Layer-wise chunking. We apply layer-wise base-model weights flattening. Here, we
process weights Wl and biases bl of layer l separately. Each flattened vector is padded
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to the appropriate dimension and divided into equal-sized chunks. We hypothesise
that the separation of the layers makes learning to extract patterns from base-model
weights through masked weight modelling an easier feat. One potential disadvantage
of this approach, which becomes especially prominent with larger weight chunks, is
the addition of large zero paddings, particularly in chunks that contain bias vectors.

• Layer-wise chunking with indicators. This method is almost the same as the second
one, with the addition of one-hot encodings representing layer type. These encodings
are added to each chunk. In our work, since all model zoos we use contain only
linear and convolutional layers, these encodings are two-dimensional. However, this
is easily extendable to other architectures (such as attention layers). Additionally, we
add another binary indicator to the end of each chunk to signalize the end of a layer.
Adding these encodings allows the meta-model to process different types of layers in
different ways.

Since we do not mask these indicators with the rest of the token during the pre-training
procedure, this method is equivalent to using four different learnable masked tokens:
two for linear layer chunks and two for convolutional layer chunks, depending if the
chunk is the last one in that layer.

All parameters of the training run except chunking type are kept on the default values
from Section 4.2.2. Input chunk size is fixed, and consists of 8 base-model weights. This
dimension is low enough to not produce large zero paddings for any of the weight encoding
configurations. It additionally allows the meta-model to learn more dense positional informa-
tion. Intuitively, this should enhance its capabilities to utilise permutation augmentations and
architecture information further.

In figure 4.11 we show learning curves for all three weight encoding methods.
In these experiments, flattening the whole set of weights together before dividing them

into tokens yielded the highest loss. This could indicate that the simplistic nature of this
encoding might make it harder for the meta-model to capture the trends in base-model
weights.

On the other hand, the two layer-wise methods arrive at a similar validation performance,
although using indicators appears to lead to reaching the ’drop’ in the loss values faster. Since
these training runs are constrained to a single-architecture model zoo, we could explain the
similarities between them by the meta-model being able to learn the same information through
learnt positional encodings, even without additional indicators. However, we expect this
change to be more important in training on model zoos with multiple different architectures.
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Fig. 4.11 Comparing different weight encoding configurations for pre-training on MNIST-
HYP-10-RAND model zoo: 1. chunking a full flattened vector of base-model weights, 2.
layer-wise weight chunking, and 3. layer-wise chunking with layer-type indicators

(a) Training set losses (b) Validation set losses

It is important to acknowledge that the training has not yet converged fully. Because
of this, it is challenging to predict which method would ultimately achieve the best results,
especially considering the steeper trend in the run with the flattened weight vector.

Another limitation of the current experiment is the fact that hyperparameters were not
individually tuned for each weight encoding method, but are fixed on the best values for
layer-wise chunking without indicators. However, because no regularization was applied
during these experiments, and yet, no overfitting was observed across all three encoding
methods, and we use the same chunk size and masking probability in all experiments, we do
not expect to get a significant improvement in performance from more careful hyperparameter
adjustment.

A more thorough investigation, possibly on multi-architecture model zoos, might reveal
the full advantages of layer-wise encoding and indicators.

4.4.3 Masking probabilities

We test how changing masking probabilities the pre-training performance. To test this we
train a meta-model using the same hyperparameter configuration as in section 4.2.2, with
layer-wise weight-chunking, and permutation augmentations used in each experiment.

Figure 4.12 shows the pre-training losses for different masking probabilities. The losses
are, as previously mentioned in section 4.1, normalised by the number of masked chunks,
which brings them to the same scale and makes them comparable.
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Fig. 4.12 MSE loss with layer-wise loss normalisation for different masking probabilities
used in masked weight modelling pre-training on MNIST-HYP-10-RAND zoo (Schürholt
et al., 2022b)

(a) Training set losses (b) Validation set losses

In the initial experiments, both training and validation losses are lower for higher masking
probabilities, and the losses exhibit an earlier ’drop’. A noticeable difference in loss values
emerges only after the ’drop’, which could be explained by all models converging into the
simplified ’mean prediction regiment’ first, as explained in section 4.2.

Although the reason for this behaviour cannot be inferred from these experiments alone,
a potential explanation could be that higher masking is acting like an augmentation method,
forcing the meta-model to learn more robust and generalisable features, similarly to erasing
augmentation applied in work by Schürholt et al. (2021), which was shown to improve the
representation learning performance in their work.

Further experimentation is necessary to determine if this trend continues for higher
masking probabilities or plateaus. Additionally, it would be beneficial to evaluate the
downstream performance of meta-models pre-trained with different masking probabilities.

Another limitation of these results that should be considered is the fact that hyperparame-
ters were fixed during all experiments, and their interaction with masking probability was
not explored.

4.5 Summary

In this chapter, we have investigated the masked weight modelling pre-training procedure
on two model zoos: MNIST-HYP-10-RAND zoo, and our zoo trained for dropped class
classification. We have shown that pre-training exhibits two modes, initially collapsing into
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a simplistic prediction close to the mean, and later suddenly starting to generalise better to
variance in the data, displaying a ’drop’ in the loss function.

While the pre-training performance is much better on the Dropped-Class-Classification
zoo, this is not the only indicator for downstream capabilities. We have found that the
efficacy of pre-training is very task-dependent. The performance in the harder variant of
the dropped class classification task improved, while the easier task exhibited a noticeable
decline in performance after pre-training. We suspect that the reason for this is a significant
reliance on the inductive biases in the last layer of the base-model, which decreases with
higher generalisation through pre-training. Although the pre-training itself does not exhibit
high performance, in most experiments on MNIST-HYP-10-RAND zoo, the meta-model
initialised from pre-training demonstrates faster convergence, and improved performance
on downstream tasks, especially with small downstream-task datasets. The benefits from
pre-training decrease for larger amounts of fine-tuning data.

Some observations point towards a regularisation-like nature of this pre-training, with
the meta-model showing a significant improvement for tasks which exhibit overfitting in the
original direct-training experiments.

A preliminary investigation confirms that using permutation augmentations is crucial for
achieving generalisation in pre-training, and indicates potential benefits from higher masking
probabilities and layer-wise chunking.



Chapter 5

Conclusions

In this thesis, we have tested a transformer-based meta-model on a series of tasks related
to predicting base-models’ performance metrics, hyperparameters used in their training,
and properties of their training-data, to gauge the potential the meta-models have for
interpretability-related tasks. Subsequently, we have developed a self-supervised pre-training
procedure titled ’masked weight modelling’, a pandan to masked language modelling task
applied on vectors of neural network weights. The main research objective addressed in this
thesis is to investigate if this self-supervised pre-training can enhance the performance of
meta-models in downstream training.

In Chapter 3 we have set the baselines against which we compare the meta-model’s
performance with pre-training. We have trained the meta-model to predict chosen hyperpa-
rameters, as well as performance metrics (test accuracy and generalisation gap) from input
weights. Additionally, we train a new model zoo for a task that allows us to explore the
potential of the meta-model to infer properties of the base-model’s training data. We argue
that this line of tasks is more connected to interpretability, as it requires insight into the logic
behind the base-model predictions, as opposed to only understanding the parameters of the
training procedure itself. The new task called dropped class classification denotes training
the meta-model to predict which of 10 known classes was not used for training of input
9-fold classifier networks. When the ordering of classes in the last base-model layer is not
fixed, this proves to be a challenging problem.

In Chapter 4, we have introduced the masked weight modelling task and evaluated its
performance on two model zoos: MNIST-HYP-10-RAND model zoo (Schürholt et al.,
2022b), and our model zoo focusing on dropped class classification. Achieving reasonable
pre-training performance required long training times, as training displays an intriguing two-
phase behaviour, where it is struggling to capture variance in the data at first. We have found
the efficacy of pre-training to be task-dependent. A performance improvement is observed
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for almost all tasks on MNIST-HYP-10-RAND zoo, while it hinders the performance on a
simple version of dropped class classification task, with a fixed order of classes in the last
base-model layer. There are indications that pre-training has a regularisation effect on tasks
that originally displayed overfitting for direct meta-model training, and it is more useful for
small datasets.

Additionally, we have confirmed that using permutation augmentations is crucial for
achieving generalisation in pre-training, and it improves the performance of direct meta-
model training, although displaying lesser effect than new, original data. Initial experiments
show that masked weight modelling pre-training might benefit from higher masking proba-
bilities, and layer-wise weight chunking.

5.1 Future Work

Although our results show the potential of the masked weight modelling pre-training proce-
dure, a more in-depth investigation is warranted:

• Because of time constrictions, pre-training was not conducted until convergence. As
the relationship between pre-training performance and its effectiveness for downstream
performance is not predictable from our experiments, the potential that a longer training
would bring is not completely clear.

• As preliminary results showed that the pre-training might benefit from higher masking
probabilities, this research direction can be further explored, joint with the evaluation
of the downstream performance of meta-models trained in such a way. It was already
established that optimal masking probabilities in masked data modelling tasks vary
depending on the type of data - with a probability of 0.15 used in BERT (Devlin
et al., 2018), and probabilities as high as 0.75 being the optimal choice images (He
et al., 2022). This result would give a useful insight into the masked weight modelling
pre-training. Additionally, it should be verified that our observation holds for other
model zoos.

Apart from improving the current pre-training, another research direction includes in-
corporating a contrastive component into the pre-training objective. This is motivated by
the observations of Schürholt et al. (2021), who reported that incorporating the contrastive
component in their representation learning objective led to significant benefits in downstream
performance. Since our pre-training objective is different, we cannot predict if a similar
conclusion would hold. We conducted some initial experiments in this direction by adding
an auxiliary output from an earlier transformer block and using it to calculate an additional
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NT _Xent loss (Chen et al., 2020) component. However, our initial experiments did not
achieve a satisfactory weight reconstruction performance, or improve the fine-tuning results.
A more rigorous hyperparameter tuning and detailed experimental setup are needed to arrive
at meaningful conclusions.

Importantly, we only consider a simplified task with fixed base-model architecture.
Since the ultimate motivation for this method is using meta-models for interpretability, an
important step of future work would include applying a similar pre-training procedure to a
multi-architecture model zoo. In this case, we expect the pre-training performance would
benefit from using layer-type encodings, already investigated in section 4.4.2, or a more
nuanced way of representing base-model architecture.

Additionally, it could be useful to expand the list of downstream tasks used to assess
the potential of meta-models. This could include other tasks that focus on training data
properties, and tasks with higher relation to interpretability, such as LessWrong (2023).
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Appendix A

Supplementary Data for experiments on
MNIST-HYP-10-RAND zoo

A.1 Hyperparameters For Direct Meta-Model Training

We present hyperparameters used in meta-model training on MNIST-HYP-10-RAND zoo in
sections 3.3.2 and 4.3.2. Hyperparameters are tuned for the best validation performance.

Table A.1 Best hyperparameters used for direct meta-model training on MNIST-HYP-10-
RAND model zoo, for different downstream tasks

Task lr wd dropout bs

Test accuracy 4.6596×10−5 6.1577×10−4 0.0429 32
Generalisation gap 5.2358×10−5 1.1228×10−6 0.0422 32

Training epoch 0.3580 0.0324 0.0410 64
Activation function 4.7481×10−5 0.032 0.19 64

Initialisation method 0.0033 9.0006×10−6 0.0083 32



A.2 Direct training losses 61

A.2 Direct training losses

Fig. A.1 Training losses for experiments on MNIST-HYP-10-RAND zoo (Schürholt et al.,
2022b), presented in section 4.3.2

(a) Test accuracy prediction, full dataset (b) Test accuracy prediction, fine-tuning dataset

(c) Generalisation gap, full dataset (d) Generalisation gap, fine-tuning dataset
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(e) Training iteration, full dataset (f) Training iteration, fine-tuning dataset

(g) Activation function, full dataset (h) Activation function, fine-tuning dataset

(i) Initialisation method, full dataset (j) Initialisation method, fine-tuning dataset
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Fig. A.2 Validation losses for experiments on MNIST-HYP-10-RAND zoo (Schürholt et al.,
2022b), presented in section 4.3.2

(a) Test accuracy prediction, full dataset (b) Test accuracy prediction, fine-tuning dataset

(c) Generalisation gap, full dataset (d) Generalisation gap, fine-tuning dataset

(e) Training iteration, full dataset (f) Training iteration, fine-tuning dataset
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(g) Activation function, full dataset (h) Activation function, fine-tuning dataset

(i) Initialisation method, full dataset (j) Initialisation method, fine-tuning dataset



Appendix B

Supplementary Data for experiments on
Dropped-Class-Classification zoo

B.1 Direct training losses

Fig. B.1 Training losses for experiments on our Dropped-Class-Classification zoo, presented
in section 4.3.1

(a) Easy task variant, full dataset (b) Easy task variant, fine-tuning dataset
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(c) Hard task variant, full dataset (d) Hard task variant, fine-tuning dataset

Fig. B.2 Training losses for experiments on our Dropped-Class-Classification zoo, presented
in section 4.3.1

(a) Easy task variant, full dataset (b) Easy task variant, fine-tuning dataset

(c) Hard task variant, full dataset (d) Hard task variant, fine-tuning dataset
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