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Abstract

Convolutional Conditional Neural Processes (ConvCNPs) are recently developed, flex-
ible, scalable, deep-learning-based spatiotemporal models that produce well-adjusted
predictions and uncertainties. Because they, unlike Gaussian Processes, need to learn
from data how to condition on context observations to form posterior predictive distri-
butions, they can be data-hungry to train. We show that in settings where real data
are insufficient for training, simulators that generate related, but lower-quality, syn-
thetic data can serve as stepping stones for training ConvCNPs: The ConvCNP is first
pre-trained on simulator data and then fine-tuned on real data, which we call Sim2Real
transfer, to produce a model that is significantly more powerful than the same model
trained only on simulator data or only on real data. To our knowledge, this work rep-
resents the first attempt to apply fine-tuning, which has proven very useful in domains
such as computer vision or natural language processing, to spatiotemporal models. We
expose and investigate the challenges specifically associated with fine-tuning in this
domain and propose and evaluate approaches for how to overcome them.

We qualitatively and quantitatively characterise different domain-adaptation meth-
ods and their performance in different data-availability regimes.
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Glossary

CNN A neural network architecture that is translation equivariant. 12

ConvCNP A translation-equivariant spatio-temporal model that predicts Gaussian
distributions over target variables. 8–13, 15–18, 20, 23, 25, 27, 28, 30, 34, 39,
43–46, 53, 54, 56, 57

DWD German Weather Service (Deutscher Wetterdienst), whose station data we
use. 33, 35

ERA5 An hourly gridded dataset of weather variables that incorporates real obser-
vations. 25, 27, 30–34, 38, 44, 45, 51–53, 56

FiLM FiLM layers affinely transform entire feature maps. They are lightweight,
consisting of only 2 parameters per feature map.. 16, 19, 21, 22, 24, 26–28, 38,
41, 42, 56

GP A stochastic process where any finite subset of random variables has a multivariate
Gaussian distribution. 8, 9, 13, 23–25, 28, 30

MAE The average absolute error between a prediction and truth. 32, 40, 50

NLL The negative log-likelihood of a conditional distribution is a quantity that mea-
sures how unlikely the given distribution is to have generated the observed data.
39, 40, 50, 51

Sim2Real The process of using real data to improve a system relying on simulated
data. 7–9, 12, 13, 18, 23, 25, 27, 29–31, 33, 38, 40–43, 47, 51–56, 58

6



Chapter 1

Introduction

1.1 Motivation

In many data-driven domains, the acquisition of high-quality data is difficult, expen-
sive, slow or otherwise restricted. Robots interacting with the physical world, for
example, are often too slow to gather sufficient amounts of data for downstream appli-
cations. For autonomous vehicles, the acquisition of real-world driving data can even
be dangerous to surrounding people and property. In the domain we focus on in this
thesis, weather modelling, sensors can be very costly to install and maintain (especially
in remote regions such as Antarctica), which is also the case for measurement sensors
in other domains such as telescopes, particle accelerators or satellites.

To overcome this problem, simulators are often employed to capture some aspects of
the underlying data, often by leveraging expert knowledge to approximate the under-
lying processes. Examples include simulated “sandbox” environments in which robots
or autonomous vehicles can learn without damaging themselves (or anything else), or
weather simulations, which leverage our knowledge of fluid dynamics and atmospheric
physics. These simulations are usually scalable and, given enough computational re-
sources, can generate vast amounts of data.

The problem with this approach is that simulators (by definition) only approximate
reality, and the vast amount of data they generate incorporate all of these approxima-
tions, so there is usually a mismatch between the simulated and real data — which we
call the Sim2Real gap. A secondary issue is the domain-specific difficulty of applying

ModelSimulator

Sim. Data

Generates PretrainsPretraining:
Simulator
distillation

ModelReal Sensors
Measure Finetunes

Finetuning
to real data

Real Data

Figure 1.1: High-level Sim2Real overview. A data-hungry model is pre-trained on

abundant simulator data and fine-tuned on limited real data.
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CHAPTER 1. INTRODUCTION

a simulator to real-world scenarios: it can be challenging to apply simulators to real-
world scenarios, for example, because it is challenging to map a real-world scenario to
corresponding simulator parameters and initial conditions.

1.2 Sim2Real

Sim2Real transfer is the process of leveraging the (potentially small amounts of) real
data to bridge the Sim2Real gap. An example of partial Sim2Real that is specific
to weather modelling is reanalysis, where observational weather measurements are
incorporated into the physics-based simulations to create a weather simulation that
is consistent with observed data. This process relies on the 4d-Var data assimilation
approach (Courtier et al., 1994), which itself requires expert knowledge and is very
computationally expensive (Courtier et al., 1994; Clayton et al., 2013; Hersbach et al.,
2020). Additionally, the data are still forced onto a discrete grid, so a Sim2Real gap
remains.

In this thesis, we focus on Sim2Real for domain-agnostic deep-learning models. Be-
cause of their flexibility and applicability to many domains our deep-learning approach
to Sim2Real can be applied to many areas of spatio-temporal modelling.

We pre-train the deep-learning model on simulator data across a vast range of
scenarios, effectively distilling the simulator into the model. We then adjust the model
by fine-tuning it on real data to improve real-world predictions. Because the model
behaviour is entirely encoded in its parameters, gradient-based optimisation can be
used both for the simulator pre-training and the real data finetuning.

The type of model we focus on is the Convolutional Conditional Neural Process
(ConvCNP), but we take care to address issues in a model-agnostic way wherever
possible.

1.3 Sim2Real for ConvCNPs

ConvCNPs are flexible and scalable spatiotemporal deep-learning models that can
make predictions at any target location given a small number of context observations,
that can lie anywhere on or off the grid. At any target location, they are able to output
a predicted mean and well-calibrated standard deviation for the target variable. A
more detailed explanation of the ConvCNP and the particular architecture used for
our experiments are shown in Sec. 2.2 and 3.2.1 respectively.

Because ConvCNPs use convolutional layers, they allow us to apply fine-tuning
methods developed for Convolutional Neural Networks (e.g. for computer vision)
and apply them in the novel and challenging domain of off-the-grid spatiotemporal
modelling. This could open the door to developing foundation models (which have
seen breakthrough successes in other domains) in completely new domains.

In contrast to other spatiotemporal models, such as Gaussian Process (GP)s, Con-
vCNPs enjoy computationally cheap O(N)1 predictions. The drawback is that they

1N is the total number of context observations given to the model + the number of points we

want to predict at.
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CHAPTER 1. INTRODUCTION

require a large amount of data to be trained, because they, unlike GPs, need to learn
how to condition on data to form posterior predictive distributions.

ConvCNPs therefore lend themselves well to Sim2Real setups, where we can use
vast amounts of simulator-generated scenarios to train the model, and then apply the
model to real-world scenarios for cheap predictions. This method has recently been
exploited successfully in toy problems such as predator-prey simulations (Gordon et al.,
2019), and real problems such as determining ideal sensor locations for weather stations
(Andersson et al., 2023).

One limitation of these approaches is that the models used have not bridged the
Sim2Real gap – their predictions and uncertainty estimates are based on simulated,
not real data. The main contribution of this thesis is investigating under what regimes
of data-availability real data can be used to fine-tune simulator-pre-trained ConvCNPs
in order to improve predictions on real data, and by what methods.

1.4 Weather Modelling using ConvCNPs

ConvCNPs have recently yielded promising results in weather modelling applications,
where weather simulators are distilled into a ConvCNP (Vaughan et al., 2022; Ander-
sson et al., 2023). Once trained, these models have the advantage of computationally
cheap predictions that do not have to lie on a fixed grid of coordinates. We provide
further details in Sec. 2.4.1.

1.5 Contributions

The goal we’re working towards in this thesis is the Sim2Real transfer of a ConvCNP
model trained on simulated temperature data to real temperature data – and an eval-
uation of various adaptation approaches in different data-availability regimes. Our
findings are displayed in Sec. 5.

As a stepping stone and first experiment, we investigate Sim2Real transfer on a
synthetic data set where we can control both the “simulated” and the “real” data.
This allows us to test domain adaptation across a range of scenarios. Specifically,
we initially train a ConvCNP to imitate one “simulation” GP and fine-tune it to
then imitate a “real” GP with different properties. The relatively simple problem
of 1D GP regression allows us to iterate quickly and design problems analogous to
the more complicated temperature modelling problem. Results for the GP regression
experiments are shown in Sec. 4.

In the proceeding sections, Sec. 2 and Sec. 3, we summarise existing relevant
literature and our overarching experimental setup, respectively.

Throughout our experiments, we attempt to make our conclusions as widely trans-
ferable as possible to other models and domains.

9



Chapter 2

Background

This section will introduce, at a high level, relevant background information for this
thesis. First, we discuss the notation employed across the whole report. We then,
in more detail, summarise the Convolutional Conditional Neural Process (ConvCNP),
because we use and modify it throughout this project. Finally, we provide background
on weather modelling, which is the key application to which we apply our methods.

2.1 Notation

Throughout this thesis, we denote input variables (in our case spatial coordinates) as
x and output variables as y, with

x ∈ Rdx , y ∈ Rdy . (2.1)

To ease notation1, we denote output variables y as scalars, but the extension to dy > 1
is straightforward.

When considering N input/output variables {(xi, yi)}Ni=1, we denote them as

X =
[
x1 x2 . . . xN

]T
y =

[
y1 y2 . . . yN

]T
. (2.2)

The spatiotemporal models we consider predict conditional distributions

qθ(yT |XT , C), (2.3)

where target predictions yT at target locations XT are conditioned on context obser-
vations C = {(xi, yi)}NC

i=1. Parameters θ (in conjunction with the model architecture)
determine how predictions are conditioned and are learned via gradient-based optimi-
sation. Throughout, we denote target points by a subscript T and context points by
subscript C.

2.2 Convolutional Conditional Neural Processes

ConvCNPs (Gordon et al., 2019) are spatiotemporal models with parameters θ that
define the conditional distribution as a Gaussian distribution

qθ(yT |XT , C) = N (yT ;µθ(C),Σθ(C)). (2.4)

1And because our experiments only consider scalar outputs

10



CHAPTER 2. BACKGROUND

Figure 2.1: A 1-D ConvCNP. From left to right: 1: The context set input to the

model. 2: The context set is encoded into a continuous function (blue) and associated

density channel (red). 3: The channels are discretised onto a fixed internal grid. 4:

The gridded representation is processed by a CNN and decoded into the desired output

distribution. Figure taken from Gordon et al. (2019) and adapted to our notation.

Note that, in contrast to the related Convolutional Gaussian neural process (Markou
et al., 2021a), ConvCNP models predict each target prediction yT i as conditionally
independent of other predictions yTj, i ̸= j given the context data C i.e. Σ = diag(σ2).
Here, i, j index two distinct locations at which we compute predictions. This limitation
can be alleviated through the use of auto-regressive ConvCNPs, which can model rich
joint distributions over the target predictions with no modification of the model or the
training procedure Bruinsma et al. (2022).

ConvCNPs compute µ,σ by encoding C onto an internal functional representation
as y(C)(·), and processing that representation into a mean function m(·) and standard
deviation function s(·), using a function2 ρθ:

m(·), s(·) = ρθ(y(C)). (2.5)

These functions can finally be evaluated at target locations xTj to obtain predictions.

2.2.1 Computation

To represent the functions y(·),m(·), s(·), they are discretised on an internal grid with
coordinates

{ti}
Ngrid

i=1 , ti ∈ Rdx (2.6)

through the use of basis functions ψ, such that the context set is encoded onto the
grid via:

ŷj = y(C)(tj) =

NC∑
i=1

ϕ (yCi)ψE (tj − xCi) (2.7)

Here ψE is the encoder basis function, which is chosen to be a squared-exponential
kernel of lengthscale ℓE:

ψE(x,x
′) = exp

(
−∥x− x′∥2

2ℓE

)
, (2.8)

2Note: ρθ is a map from functions y(C) : Rdx → Rdy+1 to functions m : Rdx → R, s : Rdx → R.

11



CHAPTER 2. BACKGROUND

and
ϕ(y) =

[
1, y

]T
(2.9)

simply ensures that the model can distinguish the absence of an input from y = 0,
and otherwise just acts as a weight.

The function ρθ is then applied to map the gridded input representation {ŷ}Ngrid

i=1

to the gridded output representation {mi}
Ngrid

i=1 and {si}
Ngrid

i=1 .[
m̂1 . . . m̂Ngrid

]
,
[
ŝ1 . . . ŝNgrid

]
= ρθ(h

(0)), h(0) =
[
ŷ1 . . . ŷNgrid

]
. (2.10)

We denote any internal feature maps as h(i). Note that h(i) is a (b× adx)-dimensional
object when ρθ is a Convolutional Neural Network (CNN), where a, b ∈ N are specified
by the model architecture. For example, if we’re considering 2-dimensional space,
dx = 2 and feature-map resolution a = 200, and b = 64 CNN channels, each feature
map consists of 200× 200 values, and h(i) consists of 64 such feature maps.

Finally, the target-point means and variances are extracted by computing a weighted
sum over all gridded means/variances, with weights computed by a decoder kernel ψD:

µj = m(xTj, {m̂i}) =
Ngrid∑
i=1

m̂i ψD (xTj − ti) (2.11)

σj = s(xTj, {ŝi}) =
Ngrid∑
i=1

max(0, ŝi)ψD (xTj − ti)). (2.12)

Here, max(0, si) ensures positivity of the standard deviations, and ψD is also a squared
exponential kernel (see Eq. 2.8), but with a different lengthscale ℓD.

The choice of hyperparameters ℓE, ℓD and Ngrid plays an important role in the
Sim2Real process and are further discussed in the experiment-specific sections 4.2 and
5.5.

For brevity, we denote the full forward pass of the model as µθ(xTj), σθ(xTj).

2.2.2 Translation Equivariance and CNNs

By choosing ρθ to be a translation equivariant function, represented by a CNN, we en-
sure that predictions are also translation equivariant3. This inductive bias significantly
constrains the space of functions ρθ can represent, significantly reducing overfitting
and increasing sample efficiency and training speed compared to its non-convolutional
counterpart. It also allows predictions to extrapolate to previously unseen areas. All
of these properties are desirable for spatiotemporal modelling.

We further describe the specific ConvCNP used in this thesis, including our choice
of ρθ in Sec. 3.2.1.

3Because of the internal discretisation, the represented functions are only approximately trans-

lation equivariant. With a sensible choice of grid resolution and encoder/decoder lengthscales, this

approximation is good (Gordon et al., 2019).
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CHAPTER 2. BACKGROUND

2.2.3 Gaussian Processes vs. ConvCNPs

A commonly used spatiotemporal model, which has been used in similar applications
to ConvCNPs is the Gaussian Process (GP).

In contrast to GPs, which scale cubically with the number of data points, Con-
vCNPs enjoy a cheap linear O(NC + NT ) cost in the number of context and target
points, as the former are ingested via Eq. 2.7 and the latter are simply evaluations of
the mean and standard deviation functions m, s. Approximate GPs exist easing the
computational requirements, but also diminishing the quality of predictions (Hensman
et al., 2013).

The benefit of computationally cheap predictions of ConvCNPs comes at a (com-
paratively) large hunger for data. GPs excel in the sparse-data regime, because of
much stronger inductive biases specified by the user: After the user has defined the
GP by specifying a mean and covariance function µ(·), k(·, ·), Bayes’ rule specifies how
context data affect predictions. ConvCNPs do not have this built-in way of condition-
ing on data, they need to instead learn it from data.

If enough data are available, the looser inductive biases of ConvCNPs mean that
the model can flexibly learn4 what for GPs is specified by µ(·), k(·, ·), side-stepping
the challenging process of specifying a “good” form for µ and k.

Sim2Real acts as a way to alleviate the hunger for real data: by leveraging the
adaptability of deep-learning models, we can train strong models using modest amounts
of real data as long as related simulator data are abundant.

2.2.4 Sim2Real with ConvCNPs

ConvCNPs have been used for some basic Sim2Real experiments (Gordon et al., 2019),
where the ConvCNP is trained on data from a predator-prey simulator, which models
how the populations of predators and their prey develop over time.

This model is then applied directly to real data (used as context data) to make
predictions. The authors do not attempt to fine-tune the model’s parameters on the
real data and simply apply elementary data transformations to the simulator data
(scaling of population sizes and time scales to align with the real data).

In this thesis, we refer to the above setup as the “sim-only” setting, which acts as
a baseline for our experiments. We also investigate fine-tuning models with very small
numbers of data points, which would be relevant in the predator-prey case (90 real
data points).

2.3 Physics-based Weather Modelling

We now take a step back and examine the background of weather modelling, which is
the real-world domain we apply our ConvCNPs to. To do so, we begin by summarising
existing physics-based simulators that are the current standard of weather modelling.

4Technically, the ConvCNP directly learns the posterior distribution, which is different to learning

the prior.
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Current numerical methods for modelling global weather and climate are based on
general circulation models (GCMs). GCMs first process observational measurements
into an internal representation in a process called data assimilation, and then use
physics-based differential equations to produce spatiotemporal predictions at unseen
locations and/or future times (Lynch, 2008). These computations rely on an internal
discretisation, the resolution of which strongly affects computational cost. Because
of this discrete approximation, and because the initial conditions are not perfectly
identifiable, the simulated weather values are associated with prediction errors, which
compound both spatially and temporally away from observations.

Both the initial data assimilation and the simulation are very computationally
expensive. The former limits how quickly new observations can be used to influence
predictions and the latter limits the resolution of the predictions (Lynch, 2008). This
means that while GCMs are extremely useful, they are also challenging to build (and
therefore reliant on expert knowledge) and are very computationally expensive to run,
both because of simulation and data assimilation steps. This, for example, inhibits
their ability to quickly predict the weather over short timescales (Zhang et al., 2019;
Nguyen et al., 2023). The higher the spatiotemporal resolution of the GCM, the higher
the computational cost, significantly limiting the range of feasible resolutions.

2.4 Data-driven Weather Modelling

Alternatively, data-driven deep-learning models can be used to learn forecasting or
spatial predictions directly from data, an approach that has undergone rapid im-
provements (with very recent examples including Lam et al. (2022); Nguyen et al.
(2023); Chen et al. (2023); Andrychowicz et al. (2023a); Bi et al. (2023)), in a devel-
opment called “the rise of data-driven weather forecasting” by the European Centre
for Medium-Range Weather Forecasts (ECMRWF).

Once the models have undergone computationally costly training, predictions can
be made on the order of seconds and on much higher spatiotemporal resolutions.
Beyond the favourable computational cost, data-driven models are not limited by ex-
pert knowledge of physics-based simulators, as they can learn atmospheric phenomena
directly from the data that might not be well-understood or infeasible to model nu-
merically.

A current limitation of such models is that they often treat the best available sim-
ulation data as the ground truth on which to train (and sometimes evaluate) (Nguyen
et al., 2023; Andersson et al., 2023). As we show in Sec. 5.1.1, there are still significant
mismatches between the simulations and real observations, making model performance
at best as good as the simulation. Simulation data are also spatially (∼ 20km) and
temporally (1 hr) coarse, limiting the training signal received by the model to this
scale. A recent exception is MetNet-3 (Andrychowicz et al., 2023b), which does con-
sider real observations during training. However, as a key limitation, MetNet-3 relies
on supplemental simulator data from the physics-based HRRR simulator (Dowell et al.,
2022) at inference time, so the timescale at which predictions can be made is limited
by the data-assimilation time of HRRR.
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2.4.1 ConvCNPs as Weather Models

ConvCNPs have recently shown promising results as climate and weather models (An-
dersson et al., 2023; Vaughan et al., 2022; Bruinsma et al., 2022). They have a number
of properties that make them attractive for climate and weather modelling, which we
outline via comparison to the Vision Transformer (ViT) (Dosovitskiy et al., 2020) used
by other weather models such as Nguyen et al. (2023):

• ConvCNPs are inductively translation equivariant, which should make them
more sample efficient than ViTs.

• ConvCNPs naturally handle off-the-grid data, which removes the need for chal-
lenging re-gridding operations for real observations. Transformers can, in theory,
handle off-the-grid weather data with some modifications, but have so far focused
on gridded data (e.g. Bi et al. (2022); Nguyen et al. (2023)), as the ViT archi-
tecture requires gridded inputs.

• ConvCNPs naturally quantify prediction uncertainty, which enables their use in
uncertainty-sensitive problems.

We can view ConvCNPs as lying somewhere between Gaussian Processes and Vision
Transformers, both in terms of inductive biases and hunger for data.

2.5 Finetuning and Foundation Models

Finally, we summarise the relationships between foundation models and fine-tuning,
which is also gaining significance in weather modelling. As we investigate different
fine-tuning approaches during this project, we believe our findings lay some of the
groundwork for how to fine-tune weather models on real data, which will play an
increasingly important role as foundation models gain significance in the field.

Over the past decade, the “pre-train and fine-tune” paradigm has been successfully
used in computer vision tasks, where high-capacity models, such as ResNet (He et al.,
2016) are pre-trained on large and varied databases such as ImageNet (Deng et al.,
2009) and then fine-tuned to adapt to other target domains, often with much smaller
datasets. The features extracted by the high-capacity models can prove very useful
for the related, but slightly different, target domain, in which the model would rapidly
overfit if initialised randomly.

More recently, scalable foundation models have reached breakthrough successes in
natural language processing. Notable examples include BERT (Kenton and Toutanova,
2019), GPT (Brown et al., 2020; Bubeck et al., 2023), and PaLM (Chowdhery et al.,
2022). Similar successes are found in computer vision models, such as CLIP (Radford
et al., 2021) or florence (Yuan et al., 2021). In foundation models, highly advanced
capabilities emerge by leveraging the structure shared across a very wide range of train-
ing tasks and the consolidation of these training tasks into unified training datasets
(Bommasani et al., 2021). Because foundation models are trained on such a breadth
of data, they can be easily fine-tuned to new (but related) domains: the foundation
model already extracts features that are useful in the new domain.
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For small target datasets, adapters have been shown to excel at fine-tuning: FiLM
adapters Perez et al. (2018), for instance, represent a tiny fraction of affine parameters
distributed throughout the model. This allows them to have an impact at every stage
of the processing pipeline, without having enough capacity to rapidly overfit to the
small target dataset. We explain FiLM adapters further in Sec. 3.4.1.

If the target dataset is sufficiently large, global fine-tuning of the model (i.e. tuning
all parameters, including convolutional layers) becomes preferable: while adapters are
less prone to overfitting, they are also less expressive than the whole model, and as
the size of the target dataset grows, this tradeoff eventually falls in favour of global
finetuning.

2.5.1 Foundation Models for Climate Modelling

Following breakthrough successes of foundation models in language and vision, weather
and climate models such as the ClimaX foundation model (Nguyen et al., 2023) have
recently followed suit. ClimaX is trained on a wide variety of different datasets and
achieves comparable or superior performance to physics-based simulations in forecast-
ing and downscaling, which is the superresolution of coarse observations by extrapolat-
ing higher frequency features between observations while interpolating the observations
themselves. ClimaX has no understanding of the physics underlying weather and cli-
mate beyond the understanding learned from data. With foundation models such as
ClimaX gaining importance in the climate and weather modelling domains, the need
for an evaluation of different fine-tuning approaches grows.

ClimaX is pre-trained on a subset of the coarsely-gridded CMIP6 data collection
(Eyring et al., 2016). For its spatial downscaling experiments, ClimaX transfers from
this coarse grid to the finer grid of the ERA5 dataset (Hersbach et al., 2020) (see Sec.
5.1) on which it fine-tunes. The quality of predictions made by this approach is itself
limited by the quality of ERA5. In this thesis, we go a step beyond, by using ERA5
for pre-training and fine-tuning to real data. ConvCNPs are a natural choice for this
task because they naturally handle off-grid data.

2.6 Summary

ConvCNPs are spatiotemporal models that strike a good balance between data hunger
and expressiveness, by employing deep learning and translation equivariance as an
inductive bias. This makes them more flexible than Gaussian Processes, but less data
and computation-intensive than Vision Transformers. They additionally handle off-
the-grid data naturally, making them ideal candidates for spatiotemporal modelling
and, crucially, fine-tuning on real data.

In weather modelling, these properties have led the ConvCNP to yield promising
results, which we now want to further strengthen by overcoming the limitation of
simulator-based training.

In Chapter 3, we cover available theory, our general approach, and our fine-tuning
methodology used across experiments.
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Chapter 3

Fine-tuning ConvCNPs

In this chapter, we explore our general approach across experiments as well as the
specific model architecture. Broadly, we use large simulator-generated datasets to train
a Convolutional Conditional Neural Process (ConvCNP) from random initialisation
until convergence. We then use a smaller-size “real” dataset to adapt the model to
the “real” domain, either by tuning parts of the model, or all of it.

3.1 Available Theory

While the work we conduct as part of this thesis is overwhelmingly empirical in nature,
we try to formalise our procedure mathematically in this section, based on the limited
available theory.

In the following sketch proof, we show that by minimising the model’s negative
conditional log-likelihood during training, we minimise the KL Divergence between
the model’s predictive and the true predictive distribution, as long as the number of
training samples is large.

We would like to model the true posterior predictive distribution over target obser-
vations yT , given target locations XT and a set of context data C = {(xCi, yCi)}NC

i=1:

p(yT |XT , C). (3.1)

Because we do not have access to the true posterior predictive, we model an approxi-
mate posterior predictive distribution as a ConvCNP qθ(yT |XT , C), parameterised by
θ (for more detail see Sec. 2.2).

The quality of the approximate posterior predictive distribution is measured by
the expected KL divergence between the true and approximate posterior predictives,
under the true distribution of observations p(XT ,yT , C). In other words, the goal is
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to find a set of parameters θ∗ that minimises this KL divergence:

θ∗ = argmin
θ

Ep(XT ,C) [KL [p(yT |XT , C) || qθ(yT |XT , C)]] (3.2)

= argmin
θ

− Ep(XT ,C)

[
p(yT |XT , C) log

qθ(yT |XT , C)

p(yT |XT , C)

]
(3.3)

= argmin
θ

− Ep(XT ,C) [p(yT |XT , C) log qθ(yT |XT , C)] (3.4)

= argmin
θ

−
∫
p(yT |XT , λ)p(λ|C)p(C) log qθ(yT |XT , C)dλ dC dXT dyT (3.5)

= argmin
θ

Ep(XT ,yT ,C) [− log qθ(yT |XT , C)] (3.6)

= argmin
θ

L. (3.7)

Here, λ represents the latent variables of the task, such as the state of the atmosphere
for weather modelling, and is informed by the context set C. The measurements at
the target locations yT are independent of the context set C given the latent variables
λ. Throughout our experiments, we denote this loss as L.

To approximate this expectation value over the negative log-likelihood, we use our
available training data as samples from the true joint distribution p(XT ,yT , C):

L = Ep(XT ,yT ,C) [− log qθ(yT |XT , C)] (3.8)

≈ − 1

Ndata

Ndata∑
n=1

log qθ(y
(n)
T |X

(n)
T , C(n)), X

(n)
T ,y

(n)
T , C(n) ∼ p(XT ,yT , C) (3.9)

= − 1

Ndata

Ndata∑
n=1

log

N
(n)
T∏

i=1

N (y
(n)
i |µθ(x

(n)
i |C(n)), σ2

θ(x
(n)
i |C(n))) (3.10)

= − 1

Ndata

Ndata∑
n=1

N
(n)
T∑

i=1

logN (y
(n)
i |µθ(x

(n)
i |C(n)), σ2

θ(x
(n)
i |C(n))). (3.11)

In this notation, n = 1 . . . Ndata indexes the available training tasks, consisting of con-
text set C(n), as well as N

(n)
T target locations x

(n)
i and target observations y

(n)
i . We can

factorise the distribution over all target points because ConvCNPs only model uncor-
related target observations. This loss is optimised via standard mini-batch gradient
descent as described in Sec. 3.3.

In our context, this means that the pre-trained model is well-equipped to capture
the predictions implied by the simulator (from which the pre-training data originates).
In the fine-tuning phase, however, the training set is smaller and therefore likely a
poor approximation of the true distribution. In this regime, regularisation is needed
to prevent overfitting.

3.1.1 Sim2Real Theory

In the Sim2Real setting, we have two “true” joint distributions, the simulator joint
distribution psim(XT ,yT, C), and the real joint distribution preal(XT ,yT, C).
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Figure 3.1: The ConvCNP architecture, using a U-Net (Ronneberger et al., 2015) (and

linear layer) as ρθ. Coloured boxes with sharp corners are the processing steps and

rounded white boxes are the different states along the processing pipeline.

The goal is to find a set of parameters θreal that minimises the KL divergence
between qθ and preal, but potentially given only a small number of tasks τ real ∼ preal.
Given that the simulator tries to approximate the real process, we assume there is a
large amount of shared structure between preal and psim.

In the case of global fine-tuning (tuning all parameters ∈ θ), we can then write

θreal = θsim + δθ, (3.12)

and only need to learn the small1 δθ from the limited real data.
In the case of FiLM adaptation (see Sec. 3.4.1), we can instead describe the process

as tuning one set of parameters θ0, which is shared between the “sim” and the “real”
models, and adjusting a separate, smaller, set of parameters θ′ for encoding domain-
specific differences in the model. Here θ0 might be the parameters of the convolutional
filters and final linear layer (light blue and grey in Fig. 3.2.1), and θ′ the parameters
of the FiLM layers (orange in Fig. 3.2.1).
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3.2 Model

3.2.1 Architecture

We describe the ConvCNP used throughout this thesis in Sec. 2.2. The full archi-
tecture of the model is shown in Fig. 3.1. To completely specify the model, it only
remains to define the implementation of ρθ and the hyperparameters of the model.

The specific convolutional architecture we choose for ρθ is the U-Net (Ronneberger
et al., 2015), which is depicted in Fig. 3.1 (right). The U-Net is a common backbone
for ConvCNPs (Gordon et al., 2019; Andersson et al., 2023; Vaughan et al., 2022),
because it first exponentially reduces the size of the feature maps on the downward-leg
by consecutively halving feature map sizes with pooling layers, and then exponentially
increases the size of the feature maps back to the original size by consecutively using
up-sampling layers. This allows the model to consider a wide receptive field using small
filters, with higher-up layers capturing short-range dependencies and lower-down layers
capturing long-range dependencies. To avoid information loss, residual connections
transfer information at every level of the downward leg to the corresponding level of
the upward leg of the “U”.

We follow this U-Net with a single linear layer for final outputs of gridded means
and variances mi, si.

Hyperparameters, including the number of layers and layer capacities, are chosen
on a per-experiment basis and described in the experiment-specific sections 4.2 and
5.5.

3.3 Optimisation

Across experiments, we share the following optimisation strategy:

• We use the Adam optimiser (Kingma and Ba, 2014) to compute weight updates.

• On the abundant simulator data, we pre-train the model until convergence,
starting at a learning-rate α and reducing it by a factor of 3 when the validation
loss has not improved for a specified number of epochs (called the patience).

• Starting from the pre-trained parameters, we fine-tune the model on the limited
real data, holding out a fraction for validation. This step might benefit from dif-
ferent hyperparameters to the pre-training step, so we re-tune hyperparameters
for each experiment2.

3.4 Finetuning Approaches

Our fine-tuning approaches can be categorised as one of the following:

1Small when compared to random initialisation, i.e. random θsim.
2We have found this to be a particularly time-consuming process.
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...

...

Figure 3.2: FiLM adapters (Perez et al., 2018) scale and shift each feature map h
(l)
i

without combination with other feature maps.

1. Global fine-tuning (fine-tuning everything),

2. Freezing cohesive sections of the model, such as the long-range U-Net layers, and
tuning the rest,

3. Tuning only the FiLM layers throughout the model (see Sec. 3.4.1).

3.4.1 FiLM

When finetuning models, large sections of the model are commonly frozen (such as the
feature-extractor in visual models) to restrict the number of parameters trained using
the potentially small finetuning dataset. A possible issue with this approach is that
the large frozen sections might not be extracting optimal features for the downstream
task.

FiLM adapters (Perez et al., 2018), visualised in Fig. 3.2, are a light-weight alter-
native method of adapting models and are commonly applied throughout the model.
FiLM adapters operate on a single feature map h

(l)
i by transforming it affinely, i.e.

scaling it by a factor γi and shifting it by a factor βi:

h̃
(l)
i = γ

(l)
i × h

(l)
i + β

(l)
i . (3.13)

Here, l indexes the layer of the deep-learning model and i indexes the feature maps
generated by that layer. Because a FiLM layer contains only 2Nfeat trainable param-
eters, where Nfeat is the number of feature maps in the layer, they have low capacity
(and can therefore be adapted using few training samples) but can affect features
throughout the model (as opposed to freezing sections of the model to reduce capac-
ity). FiLM has shown strong results in data-efficient adaptation (Perez et al., 2018;
Gupta and Brandstetter, 2022). We apply FiLM adapters after every convolutional
layer as shown in Fig. 3.1 (orange).

During pre-training, we fix β
(l)
i = 0, γ

(l)
i = 1 instead of training them. During

finetuning, we then freeze all other model parameters and train only the FiLM param-
eters. This allows for a slightly larger capacity of the FiLM layers (as they are not
already part of the feature generation).
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3.4.2 Other Fine-Tuning Approaches

We also experiment with freezing sections of the model, treating lower-level layers as
feature extractors and simply fine-tuning higher layers. This is a popular way of fine-
tuning foundation models in computer vision that reduces the number of trainable
parameters and computational cost of backpropagation and has been investigated for
fine-tuning the ClimaX climate foundation model (Nguyen et al., 2023), but we find
no success with the method ourselves (in either experiment).

We also combine different approaches, such as training just the linear layer (see Fig.
3.1) and FiLM layers to increase the capacity of fine-tuned parameters, but again find
no success across our experiments. We, therefore, do not dedicate detailed sections to
these alternative methods in the experiment-specific sections 4 and 5.
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Chapter 4

Evaluation: Gaussian Progress Re-

gression

In this synthetic experiment, we perform “Sim2Real” by generating both the “simu-
lated” and the “real” data. In this simple setup, we control both ends of the Sim2Real
process, allowing us to accurately define baselines and to roughly control the size
and qualitative nature of the Sim2Real gaps. In this simplified setup, we can iterate
quickly and gather a wide range of results, acting as a rough proxy for real Sim2Real
applications.

4.1 GP Data

Specifically, we consider a Gaussian Process (GP) GPℓ (Williams and Rasmussen,
2006). GPℓ is specified by a 0 mean function and squared-exponential covariance
function

kℓ(x,x
′) = exp

(
−∥x− x′∥2

2ℓ

)
, (4.1)

of lengthscale ℓ. We then train a Convolutional Conditional Neural Process (Con-
vCNP) (see Sec 2.2) to emulate the GP (see Fig. 4.1) by training it on context and
target data C, T generated by the GP.

Each task is drawn from the GP independently from other tasks:

f(x) ∼ GP(0, kℓ). (4.2)

Specifically, we uniformly draw a number of context points NC , and choose the number
of target points NT :

NC ∼ Udisc(⌊1/ℓ⌋, ⌊10/ℓ⌋), NT = ⌊15/ℓ⌋, (4.3)

where the 1/ℓ dependence ensures that the training set covers short lengthscales (and
not just uncorrelated samples) often enough to not impair training.

Then, we draw the (1D) x-coordinates for the context and training sets uniformly1:

xCi ∼ U(−2, 2), xTj ∼ U(−2, 2), (4.4)

1The -2 to 2 range is arbitrary and only matters in relation to other lengthscales.
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along with noisy observations at these coordinates:

yCi = f(xCi) + ϵi, yTj = f(xTj) + ϵj, ϵi, ϵj ∼ N (0, σ0), (4.5)

for all i ∈ 1 . . . NC and j ∈ 1 . . . NT , giving us a task:

C = {(xCi, yCi)}NC
i=1, T = {(xTj, yTj)}NT

j=1. (4.6)

A dataset D consists of multiple such tasks

Dℓ,σ0,Ntasks
= {T,C}Ntasks

n=1 , (4.7)

and is solely specified by the GP lengthscale ℓ, the level of observation noise σ0, and
the number of tasks Ntasks.

All of our experiments in this section consider a model pre-trained using one dataset
Dsim with ℓsim, σsim

0 with infinite2 Ntasks, and then finetuned using a different dataset
Dreal with ℓreal and σreal

0 of limited N real
tasks.

4.2 Experimental Details

Model Hyperparameters We use the model architecture described in Sec. 2.2 with
5 layers (down and up) in the U-Net, of 64 channels each. We choose a resolution of
64 Points Per Unit (PPU) for the internal gridded representation and a corresponding
encoder lengthscale ℓE = ℓD = 1/64, which allows us to comfortably resolve the lowest-
lengthscale features of our experiments (the shortest ℓreal = 0.05 needs resolutions of
≈ 1/0.05 = 20PPU or higher to be resolved on the internal grid). We found training ℓE
and ℓD to not be beneficial. In total, our model has 300,000 parameters, of which 1700
(0.6%) are FiLM parameters. We also experiment using higher and lower capacity
models but found that this capacity yields close to optimal performance at a relatively
small size.

We compute the convolutional kernel size scnn corresponding to a receptive field of
1.2 units to capture the largest lengthscales during our experiments ℓreal = 1.0 given
the 5 U-Net layers as:

scnn = ⌈1.2× 64

25−1
⌉ = 5. (4.8)

To avoid checkerboard artefacts encountered during training, we follow Odena et al.
(2016) and use bilinear resize convolution layers, which resolved the issue.

Optimisation We use the Adam optimiser (Kingma and Ba, 2014), with a learning
rate of 1×10−4 and a batch size of 16 during pre-training. These hyperparameters were
determined via (exponential) grid-search using roughly factors of 3 for the learning-
rate3 and 2 for the batch-size between [1 × 10−5 1 × 10−2] and [4, 64] respectively,
though given that we have infinite available training data in the “simulator”-phase we

2In practice, we generate as many new tasks as required for convergence on a held-out validation

set.
3I.e. we covered learning rates of 1× 10−5, 3× 10−5, 1× 10−4, . . .
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Figure 4.1: Two samples from GPs with different lengthscales (orange), and predictions

made by trained ConvCNPs (blue). The small mismatches are due to the assumption

of marginal target variances implicit in ConvCNPs (see Sec. 2.2)

did not find significant differences in final performance, only in convergence speed. We
also annealed the learning rate by a factor of 3 if the validation loss stalled for more
than 5 epochs, which allows for complete convergence to a local optimum. We train
until convergence using 1024 tasks per “epoch”. During finetuning, we hold out 25%
of the available tasks for validation and early stopping to prevent overfitting.

We took care to tune the learning rate α for the fine-tuning experiments, as the
differences between different fine-tuning methods are very small: In general the smaller
the Sim2Real gap and the smaller N real

tasks, the smaller α needs to be to “catch” the
optimal early-stopping time4. For FiLM adaptation, α can be significantly larger (∼
by a factor of 50), because the fewer parameters overfit much less quickly. To avoid
clutter, we put the experiment-specific learning rates in Appendix A.

4.3 Shrinking Lengthscales

In the first experiment, we keep noise fixed at σreal
0 = σsim

0 = 0.05 and consider the
transfer from ℓsim = 0.25 to shorter lengthscale GPs, with ℓreal of either 0.2, 0.1 or
0.05. This is analogous to the target domain of weather modelling (see Sec. 5), where
some real measurement stations are closely separated (ℓreal ∼ 4km) and can therefore
capture shorter lengthscale weather phenomena than the more coarsely gridded ERA5
Reanalysis (ERA5) simulator data with ℓsim ∼ 20km grid-spacing5.

4Often, the optimal early stopping time was shortly after the first full epoch, and if the learning

rate is too large, by the second epoch the optimum had passed.
5The analogy is not perfect, as long-lengthscale weather phenomena are still present in both real

and simulator data, which is not the case for these GPs, but a part of the problem is captured

nonetheless.
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Figure 4.2: Test-set log-likelihoods achieved via fine-tuning on limited numbers of

“real” tasks (x-axis). Global fine-tuning outperforms FiLM in the shrinking length-

scale experiments, particularly if the difference in lengthscales is large. FiLM performs

slightly worse the more fine-tuning data are available. Error bars represent 95% con-

fidence intervals and are computed by starting from the same pre-trained model and

using different fine-tuning datasets. The 0-shot baseline in the left-most plot is ≈ −4.1
and is hidden to not distort the y-scale.

As shown in Fig. 4.2, both FiLM and global fine-tuning require only a very small
number of tasks for effective adaptation to shorter lengthscales, when compared to
the (poor) 0-shot baseline. In the more extreme ℓ = 0.25→ 0.05 transfer, global fine-
tuning significantly outperforms FiLM. We hypothesise that the convolutional filters
learned on the pre-training task extract features that are tuned to the particular
ℓsim = 0.25 – for less extreme changes in ℓ, FiLM adaptation is able to scale features
to achieve similar performance to global fine-tuning, for much smaller lengthscales,
the features extracted by the convolutional filters become less useful and fine-tuning
the filters themselves becomes important.

Overall, this effect is smaller for smaller values of N real
tasks. In these sparse-data

regimes, the much lower capacity of FiLM adaptation gives the model a lesser oppor-
tunity to overfit. For ℓreal ∈ (0.1, 0.2), and N real

tasks = 16, this leads to FiLM slightly
outperforming global finetuning.

4.4 Growing Lengthscales

If our hypothesis that FiLM layers cannot rectify low-resolution convolutional filters
holds, we should see an improved FiLM performance in the inverse problem of growing
lengthscales. This setting is less analogous to the real weather modelling experiment
(Sec. 5), but is useful to include for generality and a more domain-agnostic approach
to fine-tuning.

We therefore now consider ℓsim = 0.2 and ℓreal ∈ [0.25, 0.5, 1.0]. As hypothesised,
FiLM performs slightly better in this setting (see Fig. 4.3), particularly in the sparse-
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Figure 4.3: For growing lengthscales, FiLM outperforms global fine-tuning. Especially

for sparse data settings and small Sim2Real gaps.

data regime.

4.5 Multi-lengthscale Tuning

We also attempt to pre-train our ConvCNP on a range of lengthscales, by sampling
ℓsim ∼ U(0.25, 0.5) in our task generation. This leads to one model that is as capable
at fitting to a particular lengthscale within [0.25, 0.5] as any model trained on that
lengthscale (given that the model capacity is sufficient).

We hoped that by training the model to function well across a range of lengthscales,
it would be able to transfer better to outside this range. However, we found no benefit
to performance, whether in the 0-shot N real

task = 0 setting or after fine-tuning. In fact,
we found this model to be more data-hungry to fine-tune than its constant ℓsim = 0.25
counterpart, even to the close-by lengthscale ℓreal = 0.2.

In future work, it could be interesting to explore drawing ℓsim from a different
distribution, e.g. ℓsim ∼ N (µℓ, σ

2
ℓ ), and exploring how the model then transfers to

lengthscales ℓreal ≪ µℓ/σℓ, because then the pre-training assigns a non-zero probability
to such lengthscales, as opposed to the uniform distribution in this experiment, though
our uniform results lead us to believe that the model will not be able to generalise
past lengthscales it has encountered frequently enough (and recently enough) during
pre-training.

4.6 Noise Change

Finally, we keep the lengthscales fixed at ℓsim = ℓreal = 0.25, and instead change
the level of noise from σsim

0 = 0.05 both up to σreal
0 ∈ [0.1, 0.2] and down to σreal

0 ∈
[0.0125, 0.025].

This is analogous to our weather-based Sim2Real experiments, where we would
expect our simulated data, ERA5 (Hersbach et al., 2020), to be associated with lower
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Figure 4.4: When adapting to different noise levels, FiLM adapters beat global fine-

tuning decisively. Even in the infinite data limit, FiLM is only very slightly weaker.

noise6 than real measurements because

• The simulation runs on a discrete spatiotemporal grid and therefore cannot
model weather phenomena beyond its resolution.

• The data assimilation process can ingest multiple data points of observational
data within one grid cell, smoothing out local measurement noise.

For generality, we both simulate an increase and a reduction in noise.
In Fig. 4.4, we show that in this regime FiLM outperforms global fine-tuning across

different values of σreal
0 , even in the larger N real

tasks = 1024 experiments. In the limit
N real

tasks → ∞, global fine-tuning still outperforms (as it should), but not by a large
margin.

These results align with our previous findings, that FiLM is a more sample-efficient
fine-tuning method unless the frozen convolutional filters extract features of an insuf-
ficient resolution.

4.7 Summary

These synthetic GP regression experiments allowed us to evaluate different ways of
fine-tuning ConvCNPs and expose some tradeoffs between the methods, as well as
their performances in different data-availability regimes.

Overall, 0-shot performance is poor and fine-tuning yields dramatic improvements,
even if only a small number of fine-tuning samples are available. FiLM adaptation gen-
erally outperforms global fine-tuning in sparse-data regimes, unless the convolutional
filters extract inappropriate features, e.g. because of shrinking lengthscales.

6By noise we do not mean (negligible) inaccuracies in the temperature measurement, but instead

the aleatoric uncertainty due local weather phenomena (e.g. a cloud flying overhead at the time of

measurement or a cold breeze passing by) that might lead to temperature changes on the order of

seconds and metres, which are infeasible to model.
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We now focus on the much more difficult temperature downscaling experiment,
which has real-world applications, to demonstrate the usefulness of Sim2Real in real
settings.
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Chapter 5

Evaluation: Temperature Downscal-

ing

In this experiment, we train a ConvCNP to perform spatial temperature downscaling.
Here, the goal is to predict the air temperature at 2 metres above ground yT i (from
here on referred to simply as the temperature) at any target locations xT i given the
temperature yCj at some context locations xCj. Beyond training the ConvCNP on the
ERA5 simulator-dataset (see Sec. 5.1), which has been performed before (Andersson
et al., 2023; Vaughan et al., 2022), we fine-tune it on real stations to perform Sim2Real
transfer, overcoming (some of) the approximations made by the simulator. A sample
of simulator data and real data, of the same date and time, is shown in Fig. 5.1.

This is a challenging setting for a few reasons:

• The dataset is large: we use ∼ 100, 000 different training times during pre-
training, each consisting of up to ∼ 600 context and target points that we can
each yield a very large number of “distinct” tasks (based on which points are
used as context and which as target).

• During fine-tuning, we must be very careful with how to split our available data
to avoid pitfalls. This is explained in detail in Sec. 5.4.

• Finally, as we move from an on-the-grid simulator to off-the-grid real data, the
configuration of the ConvCNP becomes significantly more complicated than if
we stayed in one regime. This is explained in Sec. 5.5.

Models often treat simulators as their ground truth because observational data
are limited, especially in remote areas, and because existing observational data are
owned, handled, and distributed by different organisations in different formats, at
different spatiotemporal resolutions and sparsities (e.g. sparse weather stations vs.
dense satellite-based observations) and measured under different protocols. It can
therefore be difficult to train a model solely on observational data. We, therefore,
focus exclusively on Germany for this experiment. Germany has a very high density of
weather stations with publically available and reliable measurements at high temporal
frequencies. This allows us to run experiments using a large number of stations and
using a lot of temporal data points and gives us the freedom to select a large test set.
Still, we also run all experiments in artificially scarce regimes for generality.

Weather modelling is a difficult task, in which traditional spatiotemporal models,
such as GPs struggle (Andersson et al., 2023). To achieve good results, we require large
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Figure 5.1: Left: A sample of the gridded ERA5. Centre: a sample of the data

collected by German weather stations. Right: High-res elevation data injected to aid

predictions. During Sim2Real, we transfer from the left to the central data source.

models that are slow to train (and therefore slow to iterate on), and that are associated
with a large number of design choices, from model architecture and hyperparameters
to the way in which we split available data into training tasks. Under the given time
constraints, we choose to execute this experiment thoroughly, instead of attempting
to run a third experiment. In future work, a third experiment would still be desirable
to validate our results and to make them less domain-specific.

In the following sections, we outline the simulator data we use and their differences
to real data (Sec. 5.1), the real temperature and auxiliary data, and how we split them
into training tasks (Secs. 5.2-5.4). After discussing experimental details and baselines
(Secs. 5.5, 5.6), we present quantitative results in different data-availability regimes
in Sec. 5.7 and associated qualitative evaluations in Secs. 5.8, 5.9. In the subsequent
Secs. 5.10, 5.15, we discuss some of the observed limitations and proposed solutions
before finally investigating how Sim2Real affects a downstream task of placing new
weather stations in Sec. 5.12.

5.1 Simulator Data: ERA5 Reanalysis

For pre-training, we use the gridded, physics-based ERA5 data. ERA5 is a reanalysis
dataset, which means it simulates weather variables in the past. To do so, it assimilates
not only past observations to make predictions at unseen times and locations, but
also “present” and “future” ones, allowing it to be more accurate than predictive
physics-based models. ERA5 is commonly used for the training of data-driven models
(Andersson et al., 2023; Vaughan et al., 2022; Nguyen et al., 2023).

ERA5 is available at hourly intervals and a spatial resolution of∼ 20km (amounting
to approximately 600 grid points within Germany). A sample of gridded ERA5-data is
shown on the left of Fig. 5.1. For training, we use hourly data between 2012-01-01 and
2020-12-31. For validation, we consider the year 2021 and for testing the year 2022.
This is a minor limitation as it does not negate distribution shifts on macroscopic
timescales between the training and val/test data, but it does allow us to easily and
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Figure 5.2: Mean absolute error (MAE) between real station measurements and closest

ERA5 gridpoint, grouped by station. Left: MAE and distance to ERA5 gridpoints

are not strongly correlated, indicating that ERA5 data are not strongly constrained

by station measurements. Right: Higher errors at some stations are well explained

by station elevation being different to coarse ERA5-internal gridded elevation.

cleanly separate the pre-training dates from the fine-tuning dates to avoid leakage
(see Sec. 5.1.1). We also do not believe distribution shift to be a significant issue, as
the very large amount of training data leads to minimal overfitting, and training loss
qualitatively matches validation loss well during training.

Because of the real data assimilated into ERA5, we worried about the leakage of
station data into the model that might lead to the model performing disproportionately
well at the stations, diminishing the validity of our evaluations. In the following Sec.
5.1.1, we show that this is unlikely to have an impact. We take the further precaution
of not evaluating the model on any real stations at times after 2021-01-01, i.e. when
the simulator pre-training ends, to prevent temporal leakage.

5.1.1 Differences to Real Data

We ultimately want to evaluate our model on station data, but because ERA5 is a
reanalysis model, station observations could have entered the simulator data through
the reanalysis process. If constraints were strong, and thus the simulator very well-
aligned with station data, we would be at risk of real evaluation data leaking into our
simulator’s pre-training set. The model trained on this pre-training set could then
spatially and temporally overfit to the station data (via the ERA5 data), leading to a
biased evaluation.

As ERA5 makes use of a wide range of data sources for reanalysis (Hersbach et al.,
2020), predominantly satellite and radar data, we do not expect this to be a significant
issue, but investigate it nonetheless.

We prevent temporal leakage by selecting non-overlapping time ranges for our pre-
training and fine-tuning data. To ensure the model cannot overfit spatially through
ERA5, we investigate the discrepancies between ERA5 and real data at the same
times: As shown in Fig. 5.2, stations closer to the ERA5 grid points are associated
with similar discrepancies from ERA5 as stations away from the grid points, indicating
that ERA5 is not strongly constrained by said station observations. This means spatial
overfitting to stations is, if at all present, negligible.

Fig. 5.2 provides another insight into ERA5: the Mean Absolute Error (MAE)
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inter-station separation is 3.73km. Right: The VALUE stations used for testing.

of the ERA5 data is 1.05°C, with some stations showing much larger discrepancies
because the limited spatial resolution of ERA5 can not account for elevation well,
which is particularly problematic in the alps. This means any model trained on this
data can, at best, achieve mean absolute errors of ∼ 1.05°C. In reality, the model
cannot perfectly imitate the simulator either, leading to compounding errors, further
highlighting the utility of Sim2Real.

5.2 Real Data: German Weather Stations

We select Germany for our experiments because it has a large number of weather sta-
tions, which allows us to experiment in high data-availabity regimes. These weather
data are collected and made publically available by the German Weather Service
(DWD) climate data centre (Wetterdienst, 2023). Another major benefit is that snap-
shot data, i.e. temperature measurements recorded at a specific latitude, longitude
and time are consistently available. In more remote regions, such as Antarctica, data
are less consistently available and similar work has therefore focused on daily-averaged
data e.g. (Andersson et al., 2023). By focusing on snapshot data throughout this
thesis, we focus on a setting that is

• More difficult to model than daily averages, because daily averaging smooths
out short timescale weather phenomena1, and smooths out (epistemic) noise
associated with measurement.

• Potentially more interesting for real downstream applications, e.g. given tem-
perature data at station locations now, what are predictions of temperatures
elsewhere?

Overall, the DWD provides data collected from 501 stations at hourly intervals,
with the closest stations being 3.73 km apart and a mean separation between sta-
tions of 19.37km. The full distribution of station separations is shown in Fig. 5.3.

1The time of day clearly affects temperatures via sun-based heating, but also through secondary

effects such as coastal winds due to the different heat capacities of water and land.
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The minimum separation is particularly important because it determines the smallest
lengthscale over which the model can receive a signal during training.

In our experiments, we consider recent data between 2021-11-07 and 2023-05-10.
These data do not overlap with the ERA5 training set so we avoid temporal leakage of
ERA5 predictions into the ConvCNP. Significantly more historical data are available
but we found this quantity of hourly data to be sufficient.

5.3 Auxilliary Data

To aid predictions, we provide the model with high-resolution elevation data (see Fig.
5.1, right) recorded by the NASA shuttle Radar Topography Mission (Farr et al.,
2007). We also input the time of day, day of year, and location information (nor-
malised latitude and longitude). This is significant because it breaks the translation
equivariance, but it allows the model to learn localised temperature phenomena, such
as differences between e.g. land/sea or forests/cities.

Vaughan et al. (2022) use a model architecture where the ConvCNP outputs
elevation-agnostic feature-maps h, and final predictions are made by combining h(xT )
with high-res elevation data eT through a multi-layer perceptron (MLP) ψθ:

m(xT ), s(xT ) = ψθ(h(xT ), eT ). (5.1)

This allows the elevation data to be at an arbitrary resolution, without the ConvCNP
needing to match that resolution (which is associated with larger feature maps and
therefore slower computations). It comes at the disadvantage of the model only being
able to see pointwise elevation data: the surrounding topography never enters the
model, e.g. a plane at 1km elevation looks the same as the peak of a mountain at 1km
elevation.

For temperature measurements, pointwise elevation data are sufficient2, but for
more complicated weather phenomena, such as precipitation, the surrounding eleva-
tion matters significantly. Motivated by these more complicated phenomena, we test a
different architecture, where the elevation data enter at the ConvCNP encoder along-
side the context temperature data.

Because the ConvCNP now needs a higher resolution to match that of the higher-
res elevation data, we need to balance the trade-off between elevation data resolution
and computational speed, as specified by the resolution of the ConvCNP (or points-
per-unit (PPU)). Our choice of PPU is detailed in Sec. 5.5.

In future work (e.g. when modelling more complicated weather phenomena), a
hybrid approach might be worth considering, where medium-resolution elevation data
are passed through the ConvCNP, and high-res elevation data are injected via MLP
after predictions are made. The model can then consider the rough topography sur-
rounding the target locations cheaply, while still being provided with high-resolution
elevation data.

2In hindsight, following (Vaughan et al., 2022) and injecting elevation data via MLP would’ve

likely been the more appropriate design choice for our temperature downscaling experiments.
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and 20% validation data. For validation, we use training stations as context. For final

testing, we use all available stations (train and val) to achieve the best results. The set

of test times and stations is set aside at the beginning and is used for all evaluations.

b) Train/Val/Test stations for different Nstations. c) Train/Val/Test dates are sampled

throughout the available period with 2 days discarded between to avoid leakage.

5.4 Data Splitting

Spatiotemporal modelling makes splitting data significantly more complex than it is in
most traditional machine learning domains. Generating training, validation and test-
ing sets is not as simple as splitting all available data randomly. The most important
problem is that the model can overfit both spatially and temporally – both of which
can leak into the test/validation sets unnoticed unless care is taken.

We, therefore, use this section to outline our data-splitting procedure in detail,
addressing this and other problems carefully.

The data-splitting process is further complicated by the fact that we’re exploring
different data splits to investigate different data-availability regimes.

5.4.1 Test Data

We split the available real data along two dimensions: time and stations. For consistent
testing, we set aside the stations from the VALUE experimental protocol (Maraun
et al., 2015). It provides a standardised set of experiments to evaluate downscaling
methods and has a specific selection of stations in Europe, of which we select the 53
German stations. These stations cover a wide range of geographic features and are
commonly used in downscaling experiments (Vaughan et al., 2022). Because some
stations available in VALUE are covered by different copyright permissions than the
DWD stations, they are not available to us. In those (9 out of 53 stations) cases,
we instead choose the geographically closest DWD station. The furthest discrepancy
from the VALUE stations is ∼ 18km, with most distances below 10 km. All VALUE
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stations (and substitutes) are shown in Fig. 5.3 (right).

5.4.2 Training and Validation Stations

The Train/Val stations are selected in a random order that we then keep fixed so that
the stations in the Nstations = 20 experiments are a subset of the stations used for
Nstations > 20 experiments, which ensures that no information is lost as we increase
Nstations (see Fig. 5.4 b)). We also investigated choosing stations that are as far apart
from each other as possible but found that this significantly hurts what the model can
learn, as shorter lengthscale signals are only featured for large Nstations in this scenario.

5.4.3 Training and Validation Times

To avoid distribution shift between the Train/Val/Test tasks due to macroscale changes
(e.g. climate change, el Niño/la Niña events etc.), we sample times throughout the
available range, cycling between 19 days of training data, 2 days of validation data,
2.5 days of testing data, each separated by 2 days that we discard to avoid partial
leakage due to correlated tasks, see Fig. 5.4 c). In this approach, we broadly follow
Andrychowicz et al. (2023b), but we increase the number of discarded days from 1
to 2 to further reduce leakage. When we restrict ourselves (artificially) to a limited
number of times, we select a random subset of times from the Train/Val pool that we
keep fixed across experiments.

5.4.4 Generating Tasks

Once we have selected Nstations, Ntimes, we try to imitate what we would do for best
model performance on downstream applications, with the limited numbers of stations
and times available. In such a scenario, we want to maximise the model performance
using all Nstations available stations.

Given our restricted Nstations and Ntimes, we follow this procedure (visualised in
Fig. 5.4 a):

1. Split Nstations into 80% training and 20% validation stations.

2. Split Ntimes into 80% training and 20% validation times.

3. For training, generate random subsets of context and target sets Ctrain, Ttrain
only from the set of training stations and times. A single task is drawn as
follows:

(a) Select a random point in time t from the training times without replacement
so that each t will be encountered equally often during training.

(b) Draw a fraction r ∼ U(0, 1).

(c) Denoting the number of observations at time t as Nstations(t), we select a
random subset of size r2 × Nstations(t) as the context set C. The squaring
of r makes sparser tasks more probable, which we find accelerated training
for large values of Nstations.
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(d) Use the remaining stations as the target set T .

(e) Note that this means a very large number of distinct (but related) tasks
can be drawn from a single time t, as any combination of context stations
is a “distinct” task.

4. For validation, use all available training stations as context Cval and all available
validation stations as target Tval on unseen times from the validation times.

5. For testing, use all available stations, training and validation stations as context
Ctest, and the test stations (at test times) as targets Ttest. This corresponds to
the real-world scenario of using all available stations (train and val) for applica-
tion. However, this does mean the model is tested in a regime that it has not
encountered during training (a greater number of context stations).

5.4.5 Spatial or Temporal Validation

We also investigated whether or not the model tends to overfit spatially or temporally
by qualitatively3 comparing the validation loss during training to

1. Spatial validation loss, with stations ⊆ validation stations, but times ⊆ training
times,

2. Temporal validation loss, with stations ⊆ training stations, but times ⊆ valida-
tion times.

If overfitting happened to be mainly temporal in nature, it would mean that we would
not need a held-out validation set and could train on all Nstations stations. However,
we found that unless Ntimes ≲ Nstations, (which would be very unusual in reality)
overfitting was mainly spatial in nature.

Overall, we consider 3 numbers of stations: Nstations ∈ {20, 100, 500}4 and 5 num-
bers of times Ntimes ∈ {16, 80, 400, 2000, 10000}5 across our experiments to investigate
different levels of data availability.

5.5 Experimental Deatils

Normalisation We normalise input data so that each of the two spatial coordi-
nates is normalised to the range [0, 1]. Additionally, we normalise temperatures by
subtracting their sample mean and scaling by their sample standard deviation. We
save normalisation parameters during pre-training and use them during fine-tuning for
consistency. This is performed using the deepsensor package (Andersson, 2023).

3By comparing if the validation loss (held out stations and times) had minima that aligned with

spatial validation loss or temporal validation loss.
4Note that because we only have 501 stations with 53 reserved for testing, the Nstations = 500

setting actually only incorporates 448 stations for training and validation.
5It is unlikely that any weather station has only collected 16 datapoints in reality, but we include

this regime for generality and potentially analogous applications in other domains.
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Model Hyperparameters We use the model architecture described in Sec. 2.2
with 6 layers (down and up) in the U-Net, of 96 channels each. We choose a reso-
lution of 200 Points Per Unit6 (PPU) for the internal gridded representation and a
corresponding encoder and decoder lengthscale ℓE = ℓD = 1/200, which allows us to
comfortably resolve the smallest station separation (see Fig. 5.3) in normalised space.
This resolution is too high for the coarsely-gridded ERA5 data during pre-training but
allows for re-using the model without any transformations. In total, our model has
3.8 million parameters, out of which 3284 (0.08%) are FiLM parameters.

This approach is slightly inefficient: we pre-train the model on an unnecessarily
high resolution. In Future work, methods of training on the lower resolution of the
simulator data, and then transferring parameters to a higher-resolution version of the
model for fine-tuning could be explored.

This could, for example, be performed by appending higher-resolution layers at the
top of each of the U-Net legs when fine-tuning on higher-resolution data. These filters
are initially parameterised in such a way that they average the higher-resolution data
to the original pre-training resolution7. This would preserve ρθ while then allowing
fine-tuning at higher resolutions.

Optimisation We use the Adam optimiser (Kingma and Ba, 2014), with a learning
rate of 1 × 10−4 during pre-training and 3 × 10−5 during fine-tuning, both of which
were found via grid search as in Sec. 4.2. We use a batch size of 16 throughout.

Because each point in time yields a very large combination of context and target-set
combinations (which are related but distinct) an “epoch” in the traditional sense is far
too large to be useful. We instead define an epoch as 200 batches (i.e. 200×16 = 3200
tasks) during pre-training.

We anneal the learning rate by a factor of 3 if the validation loss stalls for more
than 8 epochs, which helps for convergence at the end of training. We stop after 20
epochs without improvement.

During fine-tuning, we define epochs to be smaller, each consisting of 25 batches,
to monitor validation losses more frequently. This definition of epoch also allows for
consistency across different Ntimes and Nstations. During fine-tuning, we stop after 30
such “epochs” without improvement.

Finetuning Approaches We investigate FiLM adaptation and global fine-tuning
in detail. We also run preliminary experiments with fine-tuning just short-range U-
Net layers, or just short-range U-Net layers and FiLM layers, but quickly discard these
approaches based on poor initial results.

5.6 Baselines

In all Sim2Real experiments, we consider two baselines: “sim” only and “real” only.

6Note that this means 200× 200 grid-points per 1× 1 unit square
7Small amounts of noise need to be added to the initial parameters to break symmetry.
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Figure 5.5: Adding some variance reduced the impact of overconfidence on short scales,

leading to significantly improved NLLs, and serves as a fairer baseline across station

densities. Here Nstat is the number of stations used as context during evaluation.

5.6.1 Real Only

In this setup, we skip the pre-training part and directly train the ConvCNP (from
random initialisation) on the available real data. Particularly in sparse-data regimes,
this method is expected to underperform, as the ConvCNP can be data-hungry to
train.

5.6.2 Sim Only

In this baseline, we train the ConvCNP on simulator data and apply it to real data
without fine-tuning. We found that the mean predictions were generally quite strong
when making real predictions using such sim-only models, but some predicted variances
σ2
i were close to 0 where they should not have been (particularly on short lengthscales
< ℓgrid, which are not featured in the simulator). This lead to very high negative
log-likelihoods Lsim ≫ 100 (for reference, our best models achieve L ≈ 0).

To make this baseline achieve more competitive Negative Log-Likelihood (NLL)s,
we shift all predicted variances by an offset δσ2 :

σ2
i ← σ2

i + δσ2 , ∀ i = 1 . . . NT . (5.2)

We determine the value of δσ2 ≈ 0.1 for Nstations = 500 and δσ2 ≈ 0.15 for Nstations ∈
{20, 100} by coarse 1d grid search8 on a very small number of (training) samples

8This involved changing the code of an external library on our local machine. We did not consider

it a good use of time to transfer these changes to the high-performance computers to reduce errorbars

of this plot, or to employ grid-search over both an additive offset and a multiplicative factor.

39



CHAPTER 5. EVALUATION: TEMPERATURE DOWNSCALING

(Ntimes = 32) (see Fig. 5.5). This is technically Sim2Real transfer, but because we are
tuning a single parameter on a very restricted dataset, we consider it sim-only for the
purposes of comparing models.

5.6.3 Variance Offset for Sparse Stations

In the sparse-station regime Nstations ≤ 100, and the sparse-task regime Nstations ≤ 400
we observed a similar pattern of overconfidence on very short lengthscales. In the
sparse-station regime, this happens because these lengthscales are also infrequently (if
at all) covered by the fine-tuning data. In the sparse-task regime, early stopping means
that the model is still very similar to the simulator (and therefore also overconfident
on short lengthscales).

We, therefore, give these fine-tuned models the same benefit of adding a variance
of 0.15 to have a fairer comparison between Sim2Real and variance-offset sim-only9.

5.7 Results

Note: Throughout this section, we are only able to present results from single runs,
with fixed “sim” starting parameters, fixed training and validation times fixed training
stations and crucially, fixed validation stations (see Sec. 5.4) because of computational
constraints. For this reason, our results do not include error bars and are associated
with significant noise: Because there is a mismatch between the testing and the vali-
dation tasks, the random noise associated with which stations are used during training
and for validation is large. Particularly in the Nstations = 20 (and to a lesser extent
the Nstations = 100) case, the very small number of held-out validation stations can
be very mismatched to the test-stations, adding noise through bad early-stopping.
Particularly the NLL is sensitive to this noise.

In Fig. 5.6, we compare the performance of our Sim2Real transferred model to
that trained solely (from random initialisation) on available real data. Clearly, the
initialisation at simulator-pre-trained parameters is very helpful for training the model
in all but the largest real data regime (Ntimes = 10000), showing the utility of Sim2Real
in low-data regimes.

Fig. 5.7 shows how the Sim2Real fine-tuned models compare to the sim-only base-
line. Interestingly, we see qualitatively different behaviours in different data availability
regimes:

• In the sparse-station setupNstations = 20, the model is unable to improve through
Sim2Real, no matter the quantity of tasks (Ntimes). Note: the fine-tuned model
can get worse than the sim-only baseline from which it starts because the vali-
dation set is itself small and might not reflect the test set well.

• In the dense-station setup Nstations = 500, the model does improve significantly,
even given very small amounts of real data (e.g. Ntimes = 16).

9Without this adjustment, the variance-offset sim-only model achieved much better NLLs than

the not-offset fine-tuned models, simply because of short-range overconfidence. This did not align

with MAE.
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Figure 5.6: pre-training a model on simulator data significantly aids performance

compared to starting from random initialisation. Only with large amounts of real

data do the performances become comparable. Note: Fine-tuned model performances

(blue) do change with additional training data, but given the scale of the y-axis, this

is better shown in Fig. 5.7.

• In the middling station density Nstations = 100, the model does improve slightly
given enough tasks Ntasks ≳ 400.

These results show that Sim2Real is not always useful, especially when the real
data covers a much smaller density of context and target points than the simulator
data. However, given even a modestly sized real dataset, Sim2Real can yield significant
model improvements and, as we show in the following sections, large improvements in
qualitative behaviour.

5.7.1 FiLM

We also attempted initial experiments using FiLM adaptation, but it did not outper-
form global fine-tuning in any regime. For sparse stations, it performed marginally
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Figure 5.7: Fine-tuning is only useful when the fine-tuning data is sufficiently different

from the simulator. In theNstations = 20 regime, the model is unable to improve beyond

the simulator, even after many training tasks. In higher data-availability regimes, fine-

tuning leads to clear improvements.

worse than global fine-tuning, and for dense stations significantly worse. We believe
that the explanation is two-fold:

1. This task, even in the sparse regime, involves changing lengthscales (e.g. smaller
radii of “certainty” around context observations), which FiLM adaptation cannot
do (see Sec. 4).

2. The rings of poor prediction around context observations, which we call “arte-
facts” (see Sec. 5.10) are difficult to reduce without changing the convolutional
filters.

While it would be interesting (and in future work worthwhile) to investigate these
hypotheses, we prioritised other work under the time constraints.

We now investigate the different ways in which Sim2Real changes/improves the
model.
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Figure 5.8: As we increase the number of stations shown in the fine-tuning process, the

model makes predictions on increasingly short lengthscales. The predicted standard

deviation σ around drops off significantly faster around the NC = 20 context stations

(black circles) with fine-tuning. All models are fine-tuned on Ntimes = 10000, with

fewer training examples showing similar, but less pronounced, effects.

5.8 Sim2Real Learns High-Frequency Features

One of the main contributors to the Sim2Real gap is the fact that learnable patterns
are restricted to lengthscales above the grid-spacing ℓsimmin.

Fine-tuning the model on real data shortens ℓmin to the shortest inter-station sep-
aration, ℓrealmin, which is a factor of 5 smaller than ℓsimmin for the densest station setting
of Nstations = 500. This leads to higher-frequency features in the model’s predic-
tions, modelling shorter-lengthscale weather phenomena, which visually looks like an
increased resolution. This is shown in Fig. 5.8.

The visual artefacts in µ surrounding context observations (visible clearly in the
top row) are explained and thoroughly addressed in Sec. 5.10.

The ConvCNP only pre-trained on simulator data models standard deviations σ
homogeneously across the country: where there are context observations, the model
predicts a high degree of certainty around that observation (bottom row, left in Fig.
5.8).
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As we increase Nstations during fine-tuning, the model learns to better evaluate
how valuable an observation is: In regions with multiple consistent measurements, the
observations reduce uncertainty in a wide region (e.g. Northern Germany in Fig. 5.8,
bottom row, right), if observations do not align, or are in a region of rapid change,
they do not provide much certainty (e.g. central Germany).

On a more macroscopic scale (away from context stations), uncertainties in re-
gions of rapidly changing temperatures (central Germany in Fig. 5.8) are higher, and
lower in more homogenous regions (northern Germany). Uncertainties are also higher
in mountainous regions (where temperatures can change dramatically). Overall, pre-
dicted uncertainties are higher. All of these changes become more pronounced with
more fine-tuning stations.

The dramatic changes in predicted uncertainties have important implications for
downstream applications. For example, predicted uncertainties have been used to
propose new sensor locations: Andersson et al. (2023) consider sensor placement in
Antarctica, where station locations are sparse and lengthscales longer, so the ERA5
baseline is a “good enough” proxy for real observations10. However, in Germany, the
method used by the authors proposes significantly different sensor-placement locations
with and without fine-tuning, as we show in Sec. 5.12.

5.9 Sim2Real Learns Elevation Dependences

The coarseness of ERA5 also leads to a limited ability of the sim-only ConvCNP
to incorporate the high-resolution auxiliary elevation data: Because simulations at
grid points represent a blurry “average” over the grid cell, the correlation between
elevation and temperature too is blurry. This restricts what the ConvCNP can learn.
The top of Fig. 5.9 shows: While the model has a coarse understanding that regions
of higher elevation are associated with colder temperatures, it is unable to model
rapidly changing temperatures in mountainous regions. Note that there are no context
observations in this region, the model relies on auxiliary data to make heterogeneous
predictions.

As we fine-tune the model on real data, which consist of point measurements, the
model is able to learn higher resolution features (bottom of Fig. 5.9), gaining a high-
res understanding of the effect elevation has on predictions. For this, the number of
stations Nstations appears to be vastly more significant than the number of observations
Ntimes.

5.10 Discrete xT ,xC Lead to Shortscale Artefacts

A limitation associated with distilling a gridded simulator into a ConvCNP is the fact
that the ConvCNP never receives a training signal shorter than the grid spacing of

10This is supported by the similarity in predictions between the sim-only model and the Nstations =

20 model and the results in Fig. 5.7. However, the authors’ approach would’ve potentially benefitted

from an offset variance as described in Sec. 5.6.2.
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Figure 5.9: High-frequency patterns are learned over regions where elevation rapidly

changes during the fine-tuning phase. For this, increasing the number of real stations

(here denoted Ns for brevity) is more effective than increasing the number of training

tasks.

Figure 5.10: A ConvCNP which has been pre-trained on ERA5 simulator data and not

yet fine-tuned, predicting temperature using real context measurements. Immediately

around context observations, the model predicts temperatures that clearly do not align

with surrounding predictions.
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the simulator data, ℓmin. Attempting to predict at higher resolutions than ℓmin can
lead to clear visual artefacts (see Fig. 5.10) around context observations.

Artefacts are instances of the model failing to smoothly fit context observations
into its wider predictions, so a good way to distinguish between valid high-frequency
features and invalid context-point-induced artefacts is to consider whether or not we
can guess the context locations XC based on just the predictive mean. In the predic-
tive mean plot of Fig. 5.10, for example, it is easy to see context locations by the
discolouration (red smears) around each context point: The model is unable to inte-
grate the context observations smoothly. The bottom row of Fig. 5.11 shows similar
artefacts. In contrast, the top row of Fig. 5.11 likely shows “valid” high-frequency fea-
tures: while there are rapid temperature changes immediately around context points,
they are integrated cohesively into the prediction, and there are also rapid temperature
changes away from the context points.

These artefacts are often inconsistent with both the context observation itself and
surrounding predictions and occur because the model’s loss is never punished for pre-
dicting them: because the closest possible target location is ℓmin away from any context
point, the model’s predictions on lengthscales ℓ < ℓmin has no effect on the loss. The
model has not encountered signals of ℓ < ℓmin in the data and is not endowed with
any prior knowledge of temperatures on short scales, it is also unable to extrapolate
to shorter lengthscales from the available ℓ > ℓmin data.

There are a number of ways of removing these artefacts, most of which correspond
to injecting prior knowledge about how temperature should behave into the model or
the data. For example, we could

• Set the decoder lengthscales ℓD to the grid-spacing. This corresponds to asserting
that the temperature should be distributed as a Gaussian bump around the
context observation (or whatever other decoder function ψD is used, see Sec.
2.2).

• Low-pass filter model predictions for frequencies greater than 1/ℓmin.

• Only predict on a resolution of ℓmin (similar to filtering).

• Apply noise to the position of context and target points.

• Sample training context and target points continuously and interpolate the tem-
perature between grid-points.

We experiment with the latter option using linear interpolation and (as expected), the
artefacts disappear.

However, this approach is limited because the model grows overconfident on length-
scales ℓ < ℓmin, as it learns to linearly interpolate. We could additionally add noise
(perhaps related to the distance from the grid point), and perhaps shift the tempera-
ture linearly according to surrounding elevation, but this highlights the key issue with
these approaches: we are effectively constructing a short-range model based on prior
knowledge to generate data to train the ConvCNP. This is domain-specific, knowledge
reliant and therefore not in the spirit of this project.
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Figure 5.11: Artefacts for the Nstations = 500, Ntimes = 10000 fine-tuned model. The

grid represents the internal grid of the ConvCNP and is on the same order as the

smallest inter-station separation (dotted circles). Artefacts appear mostly in regions

of Germany that have fewer stations (bottom row), while in denser regions artefacts

are less pronounced (top row). Temperature scales are hidden to avoid clutter, but

artefacts are on the order of ∼ 1◦C.

Any of the approaches relying on smoothing out short-lengthscale features lose any
detail associated with other context data, such as the high-res elevation data. In Sec.
5.10.2, we describe a method that neither filters high-frequency outputs nor relies on
prior knowledge.

5.10.1 Artefacts in Sim2Real

Until now, we have only described artefacts due to the fixed grid-spacing ℓmin during
the pre-training phase of Sim2Real.

The issue of artefacts, however, persists also through the fine-tuning phase on real
station data, with the new shortest signal ℓmin given roughly by the smallest inter-
station separation within the training stations.

Across domains, spatiotemporal models will not receive any signals on lengthscales
ℓ < ℓmin from the data, so unless context and target points are continuously sampled
(ℓmin = 0), artefacts might appear.

As shown in Fig. 5.3, ℓmin ≈ 4km when using all stations for training (and slightly
above for fewer stations), which is far smaller than the grid-spacing during pre-training
(∼20km). Accordingly, artefacts reduce in scale with fine-tuning (see Fig. 5.8).

Fig. 5.11 yields the following interesting observations, which we verify by checking
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Figure 5.12: Hiding translation-equivariance-breaking auxiliary data appears to in-

crease artefacts around context points. Note that every plot uses its own temperature

scale for improved visibility. Structural similarity across dates in the top row is due

to elevation.

a number of other independent samples:

1. Artefacts follow a similar pattern at multiple context stations, e.g. a warmer
semi-circle to the north of context points, with a colder patch just south. This
might indicate a strong contribution of individual convolutional filters.

2. Artefacts can be larger than ℓmin (see bottom row, dashed circles are of radius
ℓmin).

3. Artefacts appear to be region-dependent. In regions of Germany that feature
a short station-spacing, i.e. a high density of stations (such as the Rhine-Main
Region in central Germany), artefacts seem less pronounced than in regions with
fewer stations (such as the north-east of Germany)11.

The latter two observations are particularly interesting: We hypothesise that the model
learns, based on the equivariance-breaking auxiliary data (elevation data, x, y location
map), that artefacts of scales > lmin do not have an effect in the sparser regions of
Germany, promoting stronger artefacts in these regions.

As preliminary evidence that does not involve re-training, we compare what hap-
pens to predictions in the station-dense regions of Germany when we hide the translation-
equivariance-breaking auxiliary data, setting x = y = 0.5 and elevation = 1 (in nor-
malised units). The model now no longer knows that it is in a high-density region
and might produce stronger artefacts. In line with this hypothesis, artefacts become
significantly worse (see Fig. 5.12).

11It is much harder to guess context locations based on predictions in the top row (dense) than the

bottom row (sparse) of Fig. 5.11.
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Figure 5.13: Stitching together different predictions can improve artefacts. a) Around

our NC context observations, we have a ring (orange) of bad predictions. Immediately

at the context observations and outside the artefacts, we have good predictions. b)

We split the NC context observations into k = 2 disjoint sets, and obtain predictions

around the held-out context stations (pink), where there would otherwise be artefacts.

c) The different k+1 = 3 predictions are stitched together to create a final prediction.

This experiment is not proof that our hypothesis holds, especially because the
model has never seen constant x, y and elevation channels and might behave strangely
because of it, but does provide some evidence towards it12.

We propose, as future work, to investigate artefacts further:

• Train a less powerful model without any auxiliary data to investigate the region-
dependence.

• Sample context points on a discrete grid in the toy experiment (Sec. 4) and
investigate the behaviour of artefacts in a simpler setting.

A counter-example is given by the 4th column in Fig. 5.12 (2022-08-26), where
artefacts appear visible even when auxiliary data are shown, so these hypotheses should
be viewed with caution.

5.10.2 Artefact Stitching

We develop an approach to overcoming artefacts that does not rely on any prior
knowledge (but comes with other limitations). We depict this approach in Fig. 5.13:

1. First, a prediction is made using all NC context points. This prediction should
be of high quality everywhere except in the artefacts.

12Especially as predictions away from context stations seem roughly OK even when auxiliary data

are hidden.
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2. Next, the available context points are split into k distinct sets. Holding one
of the k sets out at each time, we make k predictions (each holding out one
kth of the available context points). Each of these predictions should be able
to predict (based on longer lengthscale correlations) the temperature within the
artefacts of the held-out context stations. Because we do not use all NC context
observations, this prediction will (on average) be worse (and different) than for
regions without artefacts.

3. Finally, the predictions are stitched together (by discarding regions covered by
artefacts) to achieve a better overall prediction.

This method relies on the fact that the model has learned how to make medium-
range predictions, which we use to replace the short-range predictions that cause
artefacts. Note that we have not had to inject any short-lengthscale knowledge into
the model (or data) to achieve this improvement and that the method is domain-
agnostic.

This method is of course not perfect either: besides the (k + 1)-fold increase in
computational cost, there will still be visual discontinuities where we stitch together
the k predictions, and we must define a method by which to exclude regions. One
method is cutting out a circle of radius r around any context stations. However, this
adds another hyperparameter and relies on the assumption that artefacts are of a
homogeneous radius, which might not always be the case (see Sec. 5.10.1).

Due to time constraints13, we only generate preliminary results, using the model
fine-tuned in the medium-data regime Nstations = 100, Ntimes = 400.

Here, we find the NLL L improving14 significantly with a small increase improve-
ment in MAE:

Ordinary Prediction Stitched Prediction

NLL 1.17± 0.09 0.17± 0.03

MAE 1.34◦C ± 0.02◦C 1.33◦C ± 0.02◦C

How much of this improvement is associated with reducing artefacts and how much
with simply increasing uncertainties in the stitched regions is for now unclear.

The improvement in prediction mean (shown by MAE) is small and not statistically
significant given the limited number of test tasks we were able to compute on our local
machine.

It is, however, a promising preliminary result, motivating future work to explore
the method further.

5.10.3 Artefact-Free ConvCNPs?

Note: Some of the ideas and experiments presented in this section are those of Tom
Andersson, one of my supervisors. I attempt to be clear about which observations were

13We had to change code in an external library to change the prediction method, and making these

changes on the high-performance computers would’ve involved more work than we have time for.
14Because the test stations are unseen during training time, some test stations lie in artefact-prone

regions affected by this method.
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Figure 5.14: Adding MLP layers after the U-Net significantly reduces the visibility of

artefacts.

made by him and which by myself.
Interestingly, my supervisor found that artefacts disappear when using the MLP-

based architecture described in Sec. 5.3. This aligns with the work by others using
this architecture, such as Vaughan et al. (2022); Markou et al. (2021b), who also do
not report any artefacts on short lengthscales.

My supervisor hypothesized that the artefacts present in the context encoding are
transmitted, unmitigated, through the residual connections between the different levels
of the U-Net (see Fig. 3.1). Adding the MLP ψθ at the end could help smooth out
these artefacts in a way the single linear layer that our model uses (see Fig. 3.1), can
not.

To investigate this, I added an MLP (3 × 128 channels) between the U-Net and
final classifications in a similar manner, but without passing elevation data e. As
shown in Fig. 5.14, artefacts are significantly reduced, supporting my supervisor’s
hypothesis. Interestingly, however, they are still somewhat visible, implying that the
addition of elevation data itself might also help reduce the artefacts. To confirm this
observation15, my supervisor replaced eT with constant features, confirming that the
artefacts reappeared.

A more thorough investigation in future work is promising.

5.11 Catastrophic Forgetting

A problem with Sim2Real is catastrophic forgetting. As the data that the model is
shown changes (from “sim” to “real”), the parameters of the model are adjusted to
minimise the NLL on the real data. In doing so, the model can forget certain aspects
of the “sim” data that might be useful for downstream tasks. For example, when pre-
training on the ∼ 600 ERA5 context points and then finetuning on a small number
of stations Nstations = 20, weather phenomena or short-scale behaviour could be lost,
negatively affecting test-set performance.

15And to exclude potential bugs in my implementation
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Figure 5.15: Injecting small amounts of simulator data has no effect on validation

accuracy but lowers test performance across station densities. This experiment was

run at Ntimes = 10000 to disentangle any potential forgetting from overfitting. Test

loss is more volatile because we use a smaller number of tasks to avoid slowing down

training.

Even in the densest Nstations = 500 case, no stations provide observations over
the north sea. This will not affect test performance (because test stations too are
land-based), but predictions might suffer.

We, therefore, attempt to counteract catastrophic forgetting by injecting a small
fraction ω of simulator data into the finetuning process, hoping that the model closes
the Sim2Real gap in the regime covered by real data while retaining what it has learned
on simulator data. However, we found that injecting any amount of simulator data
into the fine-tuning samples makes test-set performance worse as shown in Fig. 5.15.

To understand this, we refer back to Sec. 5.4: during testing, we use all Nstations

available stations to make predictions, which includes validation stations. During
training, the model only ever sees 0.8×Nstations, the fraction reserved for training. It
has not seen the larger number of stations during training and therefore is expected
to perform worse16.

If we now inject ERA5 data into the fine-tuning process, it does see the denser
station regime, within those ERA5-injected tasks. We hypothesise that this small
number of injected tasks dominates the testing regime (of > 0.8 × Nstations), leading
to worse performance.

We also considered different ways of injecting simulator data into the fine-tuning
process, such as merging real observations and simulator observations within the same
context set to increase the density of “stations”. However, because this method is
domain-specific and not generally applicable, we choose not to pursue it further.

In the following final section, we investigate the impact of Sim2Real on the down-

16Only using the 0.8×Nstations training stations during testing achieves even lower performances.
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Figure 5.16: Fine-tuning the model on 20 stations does not significantly change the

evaluated auxiliary function, nor the proposed station placements.

stream task of active learning.

5.12 Active Learning

ConvCNPs have been used for active learning, where their predictive uncertainties can
be used to inform future decisions: Andersson et al. (2023) use a ConvCNP trained
on ERA5 data over Antarctica and then apply the model to real observations to
make informed decisions about where to place new weather stations (i.e. new context
points). Employing Sim2Real in this application has the potential to significantly
improve these already impressive results. A complete quantitative comparison is out
of scope for this report, but we qualitatively investigate how different the placement
locations of new weather stations would be if Sim2Real was employed, in our usual
setting of Germany.

This process works by computing an acquisition function Γ, representing a metric,
to evaluate search locations xi ∈ S:

Γ(xi) =
1

Ntimes

Ntimes∑
j=1

Γ̃(xi, tj) (5.3)

averaged temporally over multiple tasks at times tj.
New sensor placement locations x∗ are then proposed according to:

x∗ = argmax
xi∈S

Γ(xi). (5.4)
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By adding x∗ into the context locations (as if we had built a sensor there), and
setting the observation value to the predicted mean y∗ = µθ(x

∗|C), we can iteratively
repeat the process to (greedily) place multiple sensors.

In their paper, and the associated code-base deepsensor (Andersson, 2023), the
authors provide a range of acquisition functions. Simple acquisition functions use
the model’s standard deviation as the acquisition function, i.e. Γ(xi) = s(xi) (which
would suggest sensor placement at the search points of highest uncertainty, averaged
temporally over a number of tasks).

More complex acquisition functions compute information-theoretic metrics such
as the mutual information between the model’s prediction and a hypothetical sensor
observation at xi (set to the model’s predicted mean at xi). Correlations between
target observations, which our ConvCNP cannot model, significantly impact these
measures, so we select a simpler measure: the mean standard deviation averaged
over target points T , given a new hypothetical observation at xi (set to the model’s
predicted mean at xi):

Γ̃(xi, t) =
1

NT

NT∑
j=1

σθ(xj|C(t)), (5.5)

where σθ is the model’s predicted standard deviation function.
For our target locations, we use a high-res grid over all of Germany. For the search

locations, we choose a coarser grid, which is indicated in the respective Figs. 5.16
and 5.17. We choose a coarser grid because each search point xi ∈ S requires a
new prediction, so computational cost is of order O(|S|). As the computation of this
acquisition function is very expensive, we can only average over 50 test tasks, which
we choose randomly.

As we show in the case of Germany, the behaviour of σθ changes significantly during
fine-tuning in the dense-station (Nstations = 500) regime (see Fig. 5.8). Given that
Γ uses σθ as a foundation to make decisions, we expect station placement proposals
within Germany to also change dramatically, indicating that Sim2Real is essential for
active learning in dense-station regions.

We show that this is the case by contrasting the sim-only sensor placements with
the Sim2Real sensor placements for Nstations = 20 and Nstations = 500 (with fine-tuning
performed at the maximum Ntimes = 10000), in Figs. 5.16 and 5.17 respectively.

As expected, in the Nstations = 20 case, sensor placements are largely similar to
the sim-only model, as Sim2Real has not significantly changed σθ. In contrast, for
Nstations = 500, the sensor placements differ quite significantly, with the acquisition
function being quite high in station-dense regions. The model has learned that mea-
surements can be noisy and might have little predictive power in regions of high change,
in turn increasing the value of stations in regions that already have many.

It would be interesting, in future work, to expand these experiments by running
them at higher spatial resolutions, as the search points can have a significant impact
on the placement locations, especially at such high station densities.
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Figure 5.17: Fine-tuning the model on 500 stations significantly changes the auxiliary

function across Germany, leading to vastly different proposed sensor placements.

5.13 Summary

Besides qualitatively and quantitatively showing the improvements in predictive means
achieved by Sim2Real, we have shown that Sim2Real significantly improves the quan-
tification of uncertainty associated with real measurements: the coarse simulator data
are too smooth to accurately learn real uncertainties from. Higher aleatoric noise and
short-scale weather phenomena significantly affect real measurements, and in domains
in which the Sim2Real gap is large, this can have dramatic effects on downstream
tasks.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Sim2Real Is Effective for Finetuning ConvCNPs

As shown in both the synthetic GP-Regression experiment (Sec. 4) and the real-world
temperature modelling experiment (Sec. 5.7), Sim2Real transfer is effective: Pre-
training a ConvCNP on simulator data significantly reduces the amount of real data
required when compared to training using only real data. It also significantly improves
performance when compared to the simulator-only baseline, as long as the real data
is sufficiently different.

6.1.2 Convolutional Filters Should be Tuned when Length-

scales Change

In both experiments, we find that globally tuning all parameters of the model beats
tuning just the FiLM adapters, as long as the difference between simulator and real
data involves a change in spatial lengthscales: in the temperature experiment, real
data feature shorter lengthscales as some stations are more closely spaced than the
simulator grid. In the synthetic experiment, we find that FiLM adapters are superior,
unless the real data feature shorter lengthscales. To capture these higher-resolution
features, the low-resolution convolutional filters, trained on lower-resolution simulator
data, are insufficient.

6.1.3 Good Simulators cannot Replace Real Observations

In the temperature modelling experiment, we found that the model changes signifi-
cantly during fine-tuning: from higher-frequency features to drastically different pre-
dicted uncertainties (Sec. 5.8). This also exposes the limitations of using simulators
as the ground truth for data-driven weather modelling: even very sophisticated high-
resolution simulations that include real observations via data assimilation, such as
ERA5, should not be treated as a drop-in replacement for real data.
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6.1.4 Data-Driven Models Need Different Sensor Placements

Whereas physics-based simulators can compute short-scale weather behaviour by ap-
proximating relevant physical laws on a discrete spatiotemporal grid, data-driven mod-
els need to learn this behaviour from data: If the model never receives training signals
below a certain spatial lengthscale, we cannot expect it to learn accurate predictions in
this region (see Sec. 5.10). This lengthscale is on the order of the shortest inter-station
separation.

This imposes different requirements on sensor placements: physics-based simula-
tors (roughly) profit from evenly spaced sensors, because prediction error (roughly)
grows with distance from the sensor, as approximation errors compound away from
measurements. For data-driven models, however, station locations should feature all
lengthscales, even if it means very closely separated sensors. We see this in Sec. 5.4:
a random selection of training stations during fine-tuning vastly outperforms choosing
stations that are spread as far apart as possible. This could help inform future station
placements: if data-driven models become the industry standard of weather modelling,
their requirements should enter into the decision process of where new sensors should
be placed.

In the future, manoeuvrable sensors could represent the best source of training data
for ConvCNPs and other spatiotemporal data-driven models, as they can continuously
sample in space, providing the model with signals at all lengthscales.

6.2 Future Work

Besides the proposals made throughout this thesis, there are many exciting directions
for future work.

Artefacts The visual artefacts around context stations are a key limitation of our
work (Sec. 5.10). Adding linear layers after the convolutional layers appears to help
the model generalise spatially, reducing these artefacts (Fig. 5.14). In future work,
this method should be explored further.

Correlations So far, we’ve modelled target observations as conditionally indepen-
dent given the context set (i.e. predicting Gaussian probability distributions with di-
agonal covariance matrices). To improve predictions, obtain consistent samples from
the posterior distribution, and unlock more acquisition functions for active learning,
an interesting extension would be to model correlations. This could be done using
ConvGNPs (Markou et al., 2021a), such as by Andersson et al. (2023), or using auto-
regressive evaluation of the ConvCNP, as demonstrated by Bruinsma et al. (2022).

Precipitation and Beyond Temperature is relatively easy to approximate well:
surrounding temperatures and elevation can inform accurate predictions using simple
methods. Elevation has a much less trivial relationship to precipitation (surrounding
topography, not just the elevation at the target point matters significantly in this
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case), and one in which our method of injecting elevation data alongside the context
encoding might thrive.

Resolution-Changes Throughout this thesis, we pre-train models at the highest
internal resolution required for any finetuning tasks. For example, in the temperature
downscaling experiments (Sec. 5), we pre-train the model at a spatial resolution
that is significantly too high for the gridded simulator data, unnecessarily increasing
computational cost. This enables us to simply plug-in real data (which requires this
higher resolution) in the fine-tuning process. An interesting alternative could be to
pre-train the model at a lower resolution and then inserting “translation” layers before
fine-tuning. These layers could consist of convolutional filters at the lowest-lengthscale
levels of the CNN that take in high-resolution data and are initialised in a way that
simply blurs this data to the lower resolution. By adding some noise to the weights
(to break the symmetry between parameters) and fine-tuning these layers, time and
computational costs could be saved during pre-training.

Experiments Across Domains In this thesis, we have completed one simple syn-
thetic experiment, with quite straightforward findings, and one complicated real-data
experiment, which revealed some “sharp edges” for Sim2Real, such as the problem
with discrete context and target points resulting in no signals beyond the smallest
separation of points, which can manifest as visual artefacts (see Sec. 5.10).

It would be interesting to complete further real-world experiments, to see how far
our findings generalise and if other “sharp edges” are revealed.

We expect that Sim2Real will become an important component of the rapidly
developing future of data-driven weather and climate modelling, and beyond.
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Muñoz-Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers,
et al. The era5 global reanalysis. Quarterly Journal of the Royal Meteorological
Society, 146(730):1999–2049, 2020.

Stephan Hoyer, Clark Fitzgerald, Joe Hamman, et al. xarray: v0.8.0, August 2016.
URL http://dx.doi.org/10.5281/zenodo.59499.

Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman, James
McBride, Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia Badaracco,
Carson Farmer, Geir Arne Hjelle, Alan D. Snow, Micah Cochran, Sean Gillies,
Lucas Culbertson, Matt Bartos, Nick Eubank, maxalbert, Aleksey Bilogur, Sergio
Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser, Levi John Wolf, Martin
Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf, Filipe, and François
Leblanc. geopandas/geopandas: v0.8.1, July 2020. URL https://doi.org/10.

5281/zenodo.3946761.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire
Fortunato, Alexander Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach
Eaton-Rosen, et al. Graphcast: Learning skillful medium-range global weather
forecasting. arXiv e-prints, pages arXiv–2212, 2022.

Peter Lynch. The origins of computer weather prediction and climate modeling. Jour-
nal of computational physics, 227(7):3431–3444, 2008.
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Appendix A: Adjusted Sim2Real Learn-

ing Rates for GP Regression

In the shrinking lengthscale experiment, we compute the relevant learning rate, start-
ing at a basic learning rate α0 = 1× 10−4 via:

α(ℓreal, tuner) = α0 ×


0.1, if ℓreal = 0.2

0.2, if ℓreal = 0.1,

1, otherwise.

×

{
50, if tuner = FiLM,

1, otherwise.
. (6.1)

In the other experiments, we found the differences between fine-tuning methods to
be much bigger, and choosing a smaller learning rate for global fine-tuning (1× 10−5

instead of 1× 10−4) to be sufficient to highlight performance differences.
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