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Abstract

The Knoweldge-Based Visual Question Answering (KB-VQA) is a challenging task that re-
quires image and natural language understanding together with access to external knowledge
to answer the question regarding the image. The recent work often overlooks the importance
of strong image understanding for this task. Commonly, the image is simply represented by
textual descriptions, and the focus is shifted towards the improvement of knowledge retrieval
methods. This thesis revisits the importance of image understanding for the KB-VQA task
by proposing the use of the vision encoder to generate continuous image representations,
arguing that this approach can result in a more comprehensive image representation.

We integrate an image encoder into the RA-VQA (Lin and Byrne, 2022), a baseline that
originally relays on textual image descriptions. In order to improve the image understanding
further, we propose the use of a question-aware mapping module to bridge the gap between
the vision and language modalities by extracting the vision features most relevant to the
question. Additionally, we do not just rely on global image representation, but we propose
the procedure for extracting relevant image regions with respect to the question.

Our framework outperforms the RA-VQA baseline by large margin (∼ 8.25%), achieving
62.56% VQA score on OK-VQA benchmark (Marino et al., 2019). Our 4.5B parameters
model outperforms many systems that use very large models, such as GPT-3 (175B), to
obtain strong implicit knowledge retrieval and reasoning. Therefore, our results demonstrate
the importance of powerful visual components for the KB-VQA system.
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Chapter 1

Introduction

Large language models (LLMs) have witnessed fast-paced development in recent years
(Brown et al., 2020; Driess et al., 2023; Touvron et al., 2023) due to extensive computation
power and available data. This development of LLMs substantially caused increased interest
in tasks that combine natural language understanding with other domains, such as vision.
One such problem is Visual Question Answering.

Visual Question answering (VQA) is a task that lies in the intersection of scene under-
standing, natural language processing, and reasoning. The objective is to read an image and
provide an answer to an accompanying question about the image content. The question and
image pair from Figure 1.1 (a) are one example of a VQA task.

The VQA becomes more challenging when the image understanding is insufficient to
answer the question. For example, questions such as "How many animals are in the image?"
or "What is the colour of the shown dress?" can be answered with simple image reading,
while the questions such as the one in Figure 1.1 (b) requires access to the information not
directly available in the image. The VQA task that requires general knowledge which cannot
be acquired from the image content we referred to as Knowledge-based VQA (KB-VQA).

The KB-VQA system takes three different information sources to predict the answer:
input visual information (image), input question, and external knowledge. The current
research in this domain mainly focuses on improving the incorporation of knowledge from
external databases (Gao et al., 2022b; Gui et al., 2021; Lin et al., 2022; Marino et al., 2019),
or finding the best techniques to utilise the knowledge of LLMs acquired during pre-training
on large corpora (Hu et al., 2022b; Shao et al., 2023; Yang et al., 2022).

Meanwhile, the importance of the image understanding component of the KB-VQA
systems is often overlooked. Recent work mainly relies on textual descriptions to represent
an image. For example, RA-VQA (Lin and Byrne, 2022) uses a set of off-the-shelf models to
generate textual features such as image captions and object descriptions. Although suitable
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for later direct prompting of LLMs, these types of generic textual representations cannot
comprehensively describe the image and, therefore, can miss the detailed visual information
needed for answering the question (see Figure 1.2) (Hu et al., 2022b; Lin et al., 2022).

Question: What year was this sport invented? 

External knowledge: baseball was invented by Abner
Doubleday in 1839 during the industrial revolution era...

Answer: 1839 

b) KB-VQA example

Question: What kind of bird is pictured here?

a) VQA example

Answer: Peackok

Fig. 1.1 The example of (a) VQA and (b) KB-VQA image-question pair. The KB-VQA
task requires information not contained in the image to answer the question.

In our work, we focus on improving the image understanding of the KB-VQA system.
We argue that continuous image representation, obtained by encoding the image with a vision
encoder, can overcome the weaknesses of textual image descriptions, leading to improved
overall image understanding. To test our hypothesis, we incorporated an image encoder
into the RA-VQA framework, which originally utilized only textual descriptions as image
representation.

Additionally, we explore how to better exploit visual representations generated by a
frozen vision encoder. Firstly, we propose the use of question-aware mapping module
(Q-former) (Dai et al., 2023) designed to bridge the gap between the vision and language
modalities. Instead of generating static image representations, the Q-former extracts visual
features tailored to a specific image-question pair.

Furthermore, inspired by Lin et al. (2022), we do not just rely on global image represen-
tation, but we also extract regional image features. We introduce a procedure that detects
relevant image regions based on the question. These detected regions are then processed by
the vision encoder to obtain continuous regional image representations.
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1.1 Contributions

The main contributions of this thesis are summarised here:

• We propose a question-aware Q-former and frozen vision encoder to extract visual
features tailored for the given KB-VQA question. This approach results in more
comprehensive image representation, surpassing a text-based vision approach and
significantly boosting accuracy.

• We propose regional feature extraction by selecting the image regions of interest based
on the question. Our results suggest that the region-based approach outperforms the
whole image-based and sliding window-based approaches.

• We show that vision representations obtained with a vision encoder and simple MLP
mapping network can complement text-based vision, improving overall performance.
Furthermore, we demonstrate the importance of pre-training a mapping module that is
used to bridge the gap between vision and language modalities.

• Our framework outperforms RA-VQA baseline (Lin and Byrne, 2022) by large margin
(∼ 8.25%). It achieves 62.56% VQA score surpassing the SOTA models within the
same parameter scale. Our 4.5B parameters model outperforms many systems that
use very large models, such as GPT-3 (175B), to obtain strong implicit knowledge
retrieval and reasoning. Therefore, the performance of our framework demonstrates
the importance of powerful visual components for the KB-VQA system.

Question: What breed of dog is shown?

Caption: A group of dogs looking through
a wooden fence.

The caption does not provide enough information to answer the question.

Fig. 1.2 The VQA example illustrating the loss of information after image-to-text
transformation. The caption used to represent an image does not provide the necessary
information to answer the question, even though the information is present in the image.
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1.2 Thesis Overview

The structure of the thesis is as follows:

In Chapter 2, we introduce the concept of Vision-Language Models (VLMs) and we discuss
two approaches to visual feature extraction, clarifying our preference towards the image
encoding approach. We also describe the architecture of Q-former, an instruction-aware
module we will use to bridge the modality gap between the vision encoder and language
model.

In Chapter 3, we direct our attention to the domain of Knowledge-Based Visual Question
Answering. We present a unified-view of the relevant studies and then delve into a detailed
description of our baseline, the RA-VQA framework.

In Chapter 4, we present our approach to enhancing vision understanding of RA-VQA. We
propose our framework, RA-VQA-Vis, that incorporates a vision encoder and mapping
module to generate continuous image representation. We propose two architectures for the
mapping module: a simple multi-layer-perceptron pre-trained on captioning task, and a more
complex, transformer-like, question-aware Q-former. We conclude by defining the procedure
for selecting regional image representations with respect to the question asked.

In Chapter 5, we provide the experimental setup. We define the concrete model versions
used for each framework component, describe the relevant datasets, and define the VQA
evaluation metric.

In Chapter 6, we present our results. We start by positioning our best model with respect
to the SOTA systems and discussing whether the continuous vision features complement
text-based image descriptions. Then we systematically test the contribution of each system
component, and conclude by presenting the results of MLP mapping network pre-training.

In Chapter 7 we summarise the thesis and suggest the direction of future work.



Chapter 2

Background

In this chapter, we introduce relevant topics necessary for the understanding of our work.
We start by introducing the concept of Vision-Language Models (VLMs) in Section 2.1,
where we define two learning strategies commonly used for these systems. Next, we delve
deeper into the visual components of the VLMs, discussing the two approaches to visual
feature extraction in Section 2.2. Here, we also clarify our preference towards the image
encoding approach. Finally, we provide a detailed explanation of the architecture of Q-former,
an instruction-aware mapping module we will use to bridge the gap between vision and
language modalities (Section 2.3). Collectively, this provides a foundation for the review of
the relevant work in the domain of Knowledge-Based Visual Question Answering covered in
Chapter 3.

2.1 Vision-Language Models

Vision-Language Models (VLMs) represent a set of models which aim to jointly process
visual and natural language data. The development of VLMs has been influenced by the
widespread adoption of Transformer architectures (Vaswani et al., 2017). Transformers
are designed to model long-range dependencies better than RNN-based approaches while
increasing models’ throughput, enabling training on significantly larger data sets. As a result,
the design of VLMs has shifted from hand-crafted image descriptions and pre-trained word
vectors, towards the use of transformer-like image and text encoders.

Leaning strategy. Recent VLMs consist of three main components: image encoder,
text encoder, and training strategy, to jointly or separately learn the representations of image
and text. There are several actively used learning strategies showing good performance on
downstream tasks (Dosovitskiy et al., 2020; Gan et al., 2022; Li et al., 2023; Radford et al.,
2021; Wang et al., 2021). Here, we describe two of them relevant to our framework:
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• Contrastive objective: Aligning images and texts to a joint feature space in a con-
trastive manner.

• Vision-conditioned text-generation: Insert visual information into the space of the
language model to retain its generative power.

2.1.1 VLMs with Contrastive Objective

The contrastive loss aims to encourage mapping paired data points to the vectors close to each
other in the joint space while minimising the distance between unpaired ones. The VLMs
following this objective (Alayrac et al., 2022; Jia et al., 2021; Li et al., 2021; Radford et al.,
2021) commonly use separate text and vision encoders for mapping vision and language
inputs into the joint embedding space. These dual encoders, trained on large vision-language
datasets, can produce highly generic textual and visual representations suitable for various
downstream tasks. In our work, we leverage the vision encoder from CLIP (Radford et al.,
2021) to extract vision futures from images, later used for the KB-VQA task.

2.1.2 VLMs for Vision-Conditioned Text-Generation

For the VQA task, in addition to having a good image understanding, a model needs to
have strong reasoning and text-generation abilities to answer the given question. The
contrastive dual encoder approach described in the previous section can extract powerful
image representations, however, it lacks good generative abilities (Radford et al., 2021).
Therefore, for question answering, we want to use different group of VLMs specifically
designed to have strong generative power.

Vision-conditioned LM. This group of VLMs aims to employ text-generation abilities of
pre-trained large language models (LLMs). Instead of learning image and text representations
with two separate encoders, these models attempt to insert visual information into the space
of pre-trained LLMs thus (1) preserving LLM text-generation abilities and (2) utilizing
knowledge of LLM gained with pre-training (Alayrac et al., 2022; Chen et al., 2023b; Dai
et al., 2023; Driess et al., 2023; Li et al., 2023; Mokady et al., 2021; Wang et al., 2021).

Encoder-decoder structure. For fussing the visual information into the LM, we will
follow the approach of SimVLM (Wang et al., 2021) and VL-T5 (Cho et al., 2021) who uses
encoder-decoder architecture and pass both the visual information and input text (e.g. VQA
question) to the LM encoder. The LM encoder then forms joint vision-text encoding that is
later used by the decoder for the response generation (see Figure 2.1).
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Encoder Decoder
Joint

encoding

Visual
information

Text

LM

Fig. 2.1 The illustration of VLM with vision-conditioned text generation and encoder-
decoder structure. Visual information and input text are passed to the LM encoder which
generates joint encoding feed to the decoder.

2.2 Visual Features Generation

Having outlined the high-level VLM architecture for the VQA task, we will now detail how
we can extract information from an image, later integrated into the LM encoder (Figure 2.1).

There are two main approaches in the literature, and they both make use of pre-trained
models for visual feature extraction. We described both approaches below, highlighting their
benefit and limitations.

2.2.1 Image-to-Text

A popular choice for visual feature extraction is the use of specialised models to extract
textual image descriptions. For example Gao et al. (2022a); Gui et al. (2021); Lin and Byrne
(2022), use image caption, OCR, and detected objects to describe an image. Such set of
textual descriptions we denote as text-based vision.

Image-to-text transformation is an attractive approach because generated textual features
can directly be fed to the LM together with the additional text, using the LM’s embedder (see
Figure 2.2 a)). However, there are two inherited limitations of this approach:

• Loss of relevant information. Textual description of an image can encapsulate
limited information, which is often very general (e.g. image caption, detected objects,
etc.) and therefore, may not contain necessary knowledge for completing the task. For
example, let us assume that the image is described with the caption "A group of people
dancing in the park". If we want to use this image description for the task of VQA,
to answer the question "How many people are in the park?", we would experience a
loss of information - even though it may be present in the image, the information on a
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number of people is not preserved in the caption. In these situations, the model can
only guess the correct response based on the limited information acquired.

• Multiple specialised models required. In order to generate a textual description of
an image, numerous models have to be used. For example, captioning models (Li et al.,
2020c; Zhang et al., 2021), object detection models (Ren et al., 2015; Zhang et al.,
2021), and OCR models (Du et al., 2020). This introduces additional architectural and
computational complexity to already complex multi-model systems for vision-language
understanding.

In our work, we aim to overcome these limitations with the use of pre-trained image
encoders, to extract encoded image features without transformation to text form. This
approach is described in the next section.

LM

Image Caption,
Detected Objects,

OCR, etc.
Input Text

LM Embedder

Text-based Vision

LM

Input Text

LM Embedder

Image-based vision

(b)(a)

Fig. 2.2 LM conditioned on text-based vision features (a), and on image-based vision
features (b). Textual image descriptions are encoded using LM’s embedder, while the
image-based vision embeddings have to be generated separately.

2.2.2 Image Encoding

Alternative ways of generating vision features uses pre-trained vision encoders to learn
continuous image representations. Recently developed vision encoders (Dosovitskiy et al.,
2020; Jia et al., 2021; Li et al., 2021; Radford et al., 2021) posses rich generic representations
of images in the form of image embeddings that can be passed to the LM without previous
transformation to the text form. These vision-encoders are often trained in the contrastive
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manner as described in Section 2.1.1, and are therefore suitable for future alignment with the
embedding space of LM encoders.

Alignment with LM. The challenge of this approach is aligning the embedding space
of the vision encoder to the space of the language model. Unlike in the previous case, we
cannot use LM’s embedder to generate embeddings understood by the LM encoder (see
Figure 2.2). Instead, we use the additional mapping model to map the output of the vision
encoder into the embedding space of the language model. Usually, this mapping module
has simple architecture such as a fully connected linear layer (Eichenberg et al., 2021; Lin
et al., 2022; Tsimpoukelli et al., 2021), however recent work (Li et al., 2023) introduces a
transformer-like mapping module specifically designed to bridge the gap between vision and
language encoders - Q-former (Section 2.3).

Mapping
Network

Vision
encoder

LM

What toy
 does this

 dog have?

Image-based vision

LM EmbedderLM Embedder

Input text

Frisbee

Text embeddings

Fig. 2.3 VLM diagram with vision-conditioned text generation using vision encoder
and mapping network. The diagram illustrates the VQA task. Image is encoded with
vision encoder, whose output is mapped to the space of LM using mapping network to form
image-based vision. The input text (VQA question) is embedded with LM Embedder and fed
to the LM together with image-based vision.

The whole system diagram of VLM with vision-conditioned text generation is illustrated
on Figure 2.3. Visual features obtained in the described way we denote as image-based vision.
We argue that image-based vision may overcome the information loss limitation described in
Section 2.2.1, and hence provide a more comprehensive image representation than text-based
vision. In our experiments, we will test this hypothesis on the KB-VQA task.
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2.3 Q-former - Instruction Aware Mapping Module

In the previous section, we described a VLM system based on vision-conditioned text
generation. As we discussed, an important segment of this system is the mapping module, the
component used to map image embeddings into the space of the language model, providing
alignment of vision and language modalities. In this section, we will dive deeper into the
architecture of one concrete mapping module - Q-former.

In the previous work (Eichenberg et al., 2021; Lin et al., 2022; Tsimpoukelli et al.,
2021), the mapping modules typically had relatively simple architectures, with the most
popular choice of a fully-connected linear layer. However, the recent research on bridging
the gap between vision and text encoders, BLIP2 (Li et al., 2023), and Instruct-BLIP (Dai
et al., 2023), introduce a more complex, transformer-based mapping module for this purpose.
Namely, BLIP2 propose Q-former, a lightweight querying transformer to connect frozen
image encoder and frozen LLM.

2.3.1 Q-former’s Architecture

Q-former is designed to extract informative visual features from the frozen image encoder
and to align them with the embedding space of the LM. As shown in Figure 2.4, Q-former
consists of two transformer sub-modules that share self-attention layers: an image transformer
and a text transformer. The image transformer uses a set of learnable query embeddings to
extract a fixed number of output vision features from the vision encoder. The queries interact
with each other through self-attention layers and with the frozen image features through
cross-attention layers. The text transformer can function as both a text encoder and a text
decoder. The learnable queries interact with the text through the same self-attention. This
architecture results in 188M parameters.

2.3.2 Pre-training Procedure

The authors carefully designed a two-stage pre-training procedure to encourage the Q-former
to extract relevant vision features that can be aligned with the language models. The pre-
training process is described below.

1. Representation learning stage. In the first stage, the Q-former is only connected to the
frozen vision encoder and trained using image-text pairs. Join-training with three pre-training
objectives and an appropriate self-attention mask is performed. The objectives used are:
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Fig. 2.4 Q-former’s architecture and pre-training objectives. The lightweight querying
transformer consists of vision and text transformers which share self-attention layers. The set
of learnable queries extracts a fixed number of vision features from the frozen image encoder.
The queries interact with the two transformers through self-attention and with vision features
through cross-attention. Figure source: Li et al. (2023).

i Image-text contrastive learning. Model learns to align image and text representations
obtaining maximal mutual information.

ii Image-grounded text generation. The vision transformer module learns to ex-
tract comprehensive vision representations passed to the text transfer module for text
generation.

iii Image-text matching. The model aims to predict whether the image-text pair is
matched, ultimately learning the detailed correlation between image and text represen-
tations.

2. Generative pre-training phase. In the second pre-training phase, the frozen LM is
added to the system. It is connected with the Q-former via a fully-connected linear layer that
matches the query output dimensions with the LM hidden size. Therefore, the Q-former now
functions as an information bottleneck between the frozen vision encoder and the frozen LM.

2.3.3 Instruction Aware Visual Feature Extraction

Having introduced the Q-former’s design, we’ll now highlight one of its key advantages
that influenced our decision to integrate the Q-former module into our system. Below, we
describe the instruction-aware visual feature extraction ability of the Q-former.

So far, we referred to the vision feature extraction as a task-agnostic process. Namely,
the vision encoder produces a static image representation regardless of the subsequent task.
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However, if we anticipate varying task instructions for the same input image, generating
vision representations tailored to the specific task would be undeniably beneficial.

Even though the Q-former’s text transformer module can be conditioned on the instruction
by design, BLIP2 opts for an instruction-agnostic approach. It leaves the Q-former’s input
text field vacant, possibly not maximizing the Q-former’s capabilities.

InstructBLIP Q-former. The InstructBLIP proposes instruction-aware Q-former.
Extending BLIP2 approach, the authors condition the Q-former on the instruction string,
stimulating it to extract vision features most relevant for the concrete task (Figure 2.5).
Inspired by its performance, we incorporated the InstructBLIP Q-former into our framework.
Namely, for the task of VQA, the instruction string can be replaced by the given question. In
Section 4.4, we further develop this idea.

Fig. 2.5 InstructBLIP model architecture. The set of learnable query embeddings extracts
instruction-aware visual features from the frozen vision encoder. The Q-former’s output is
propagated to the frozen LLM through the fully connected layer. Figure source: Dai et al.
(2023).

2.4 Conclusion

In this chapter, we have provided the necessary context upon which the proceeding chapters
rely. In Section 2.1, we introduced the concept of VLMs and defined the learning strategies
our system will rely on. In Section 2.2, we delineated two approaches to visual feature
extraction and laid out arguments for our preference: the image encoding approach. Finally,
we provide a detailed explanation of the Q-former architecture and its pre-training procedure
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(Section 2.3). Here, we highlight the Q-former’s ability to extract visual features conditioned
on the task definition, which will be an important aspect of our work. (Section 2.3).

In the following chapter, we turn our attention to Knowledge-Based Visual Question
Answering. We present a unified view of the state-of-the-art approaches to this problem, and
we introduce the RA-VQA framework as the main baseline for this thesis.



Chapter 3

Knowledge-Based Visual Question
Answering

Having laid down the fundamental concepts for understanding vision-language systems in
the previous chapter, this chapter now turns its attention directly to the domain of Visual
Question Answering. Firstly, we provide a unified view of the state-of-the-art research in
Section 3.1. Following that, we delve into a detailed description of the RA-VQA framework,
which stands as the main baseline for this thesis (Section 3.2).

3.1 Relevant Work

The KB-VQA frameworks can be roughly separated into two segments: the VLM modules
for vision-language understanding and the optional component for knowledge retrieval. In
this section, we categorize relevant systems based on: (1) their VLM’s method for image
understanding; (2) their technique for knowledge retrieval. We will begin by discussing
relevant work in these categories, and then we will provide a unified overview of the state-of-
the-art models in Section 3.1.3.

3.1.1 Vision-Language Systems

Early work. The core of VQA task lies in joint vision and language understanding. Early
studies in this domain can be roughly grouped into three categories with respect to multi-
modal modelling: (1) Visual and textual features can be combined via cross-modality fusion
(Guo et al., 2021; Jiang et al., 2020; Singh et al., 2019; Yu et al., 2019, 2018); (2) Multi-modal
transformers can be trained from scratch on large scale image-text pairs, and then fine-tuned
for VQA task (Li et al., 2020a, 2019; Lu et al., 2019; Su et al., 2019; Tan and Bansal, 2019);
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(3) and visual and language representations can be aligned by contrastive learning (CLIP
(Radford et al., 2021), ALIGN (Jia et al., 2021)). Although these models achieve notable
performance on the visual language tasks such as image-text retrieval, they lack the strong
text-generation ability and reasoning necessary for the KB-VQA task (Radford et al., 2021).

LLMs for Vision-to-Language Generation. Inspired by the rapid advancements in
LLMs, recent VQA system designs now revolve around leveraging pre-trained LLMs for
enhanced language understanding, reasoning, and answer generation. Given that VQA is a
vision-language task, modern VQA frameworks employ two approaches for fusing visual
representations into the LLM. They either perform image-to-text transformations to acquire
image descriptions that can be directly fed into the LLM (see Section 2.2.1), or they generate
continuous vision representations, which are then injected into the LLM’s embedding space
(see Section 2.2.2).

Textual Image Representation

One approach to allowing LMs to understand images is projecting images into textual
features with the use of pre-trained vision models such as captioning models (e.g. Oscar+
(Li et al., 2020c)) or object detectors (e.g. VinVL (Zhang et al., 2021)). After image-to-text
transformation, the VQA is treated as a pure NLP task. Recent KB-VQA frameworks: TRiG
(Gao et al., 2022b), RA-VQA (Lin and Byrne, 2022), KAT (Gui et al., 2021), and PICa
(Yang et al., 2022) showed that this approach is feasible. Furthermore, Prophet (Shao et al.,
2023) prompt GPT-3 (Brown et al., 2020) with textual answer heuristics to generate an
answer, achieving notable KB-VQA performance on benchmarks such as OK-VQA (Marino
et al., 2019), while PromptCap (Hu et al., 2022b) argues that generic image captions cannot
comprehensively describe images, and it proposes a question-aware captioning model for
relevant caption generation.

Continuous Image Representation

Although representing images in a text form may be convenient for their further use in LLMs
(especially if the model is only accessible via API), converting finite text descriptions risks
excluding detailed visual information needed to answer the question (Hu et al., 2022b; Lin
et al., 2022). Therefore, in the last year, the research focus shifted towards using powerful
vision encoders to generate continuous image representations. The REVIVE (Lin et al.,
2022) is the first to revisit the importance of vision understanding for answer generation. It
employs a ViT-based (Dosovitskiy et al., 2020) vision transformer to generate continuous
feature representations of both the whole image, and relevant image regions.
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Furthermore, PaLI (Chen et al., 2023b), and PaLI-X (Chen et al., 2023a) highlight the gap
in power distribution of vision and language components of modern VLMs and by scaling up
the vision encoder, achieve remarkable performance on OK-VQA benchmark, outperforming
models that rely on large LLMs such as GPT-3, and explicit knowledge retrieval. The current
SOTA model, PaLM-E (Driess et al., 2023), scales the vision and language model further,
presenting the 562B parameters VLM (25B for vision encoder), which makes it the current
largest VLM.

All of the above methods employ simple mapping for aligning vision and language repre-
sentations. However, BLIP2 (Li et al., 2023) propose Q-former, a specialised transformer-like
mapping module to bridge the modality gap between the vision encoder and language model
(see Section 2.3). InstructBLIP (Dai et al., 2023) enhance this module by using it for
instruction-aware visual feature extractions (see Section 2.3.3).

3.1.2 Knowledge Retrieval

The KB-VQA task is challenging because the answer cannot be obtained only by image
understanding; it requires additional domain knowledge or commonsense reasoning. Recent
work can be grouped with respect to the type of knowledge they rely on. While early work
is more focused on retrieving knowledge from external knowledge bases (KB) (explicit
knowledge), the recent models rely on the exceptional capabilities of LLMs to employ the
knowledge obtained during the pre-training on large corpora (implicit knowledge). In this
section, we discuss relevant approaches to knowledge retrieval by grouping systems into
these two categories.

Explicit Knowledge Retrieval

As a natural approach, early studies developed KB-VQA systems that can access external
knowledge bases for explicit knowledge retrieval. The external knowledge can be in both
structured forms, such as ConceptNet and other knowledge graphs (Li et al., 2020b; Marino
et al., 2021; Wu et al., 2022), or in unstructured forms, such as Wikipedia passages (Gao
et al., 2022b; Gui et al., 2021; Lin et al., 2022). Most of these knowledge retriever models
are based on the dual encoder framework proposed in the DPR (Karpukhin et al., 2020) or
its variations (Gui et al., 2021; Lin and Byrne, 2022; Lin et al., 2022). The DPR encodes
both query and knowledge entities with pre-trained BERT encoders (Devlin et al., 2018) and
calculates their similarity score by taking the dot product of two encoded dense vectors.

Similar to the image understanding discussion, the KB-VQA frameworks can be unified
with respect to the type of image features they use for explicit knowledge retrieval:
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(1) Text-based image representation. TRiG and RA-VQA generate text-based features,
such as image captions, OCR and object tags (detected object classes), and combine
them with the question to form a query for DPR-based knowledge retrieval. The
retrieved knowledge is later fed to the answer generator model (LM). Additionally,
RA-VQA proposes joint training of retrieval and the answer generator to encourage se-
lecting knowledge entities that provide meaningful information for answer generation.

(2) Continuous image representation On the other side, KAT and REVIVE use contin-
uous image representations generated with a vision encoder to query the KB. They
employ contrastive trained vision and language encoders from CLIP to compute the
alignment of the query and the KB entity. The REVIVE extends KAT by introducing
object-centric image representations.

Implicit Knowledge Retrieval

Motivated by the promising capacities of LLMs (e.g. GPT-3), another line of research relies
on LLMs as the source of implicit knowledge, therefore, either fully disregarding explicit
knowledge retrieval (PICa, PromptCap, Prohpet), or combining both explicit and implicit
knowledge resources (KAT, REVIVE). The recently developed group of models utilise GPT-3
to generate an answer directly. PICa uses the off-the-shelf captioning model to prompt the
GPT-3 with the image caption, questions and a few in-context examples. Following PICa,
PromptCap develops a question-aware captioning model to generate image descriptions
dependent on the asked question. Finally, Prophet uses a knowledge-free VQA model to
generate answer candidates and relevant few-shot examples and combine them to prompt the
GPT-3, achieving notable results on the OK-VQA benchmark.

On the other hand, KAT and REVIVE use separate answer generator that combines ex-
plicit knowledge retrieved based on continuous image representations and implicit knowledge
retrieved by prompting GPT-3 with textual image description.

The general purpose LLMs, such as InstructBLIP, PaLI, and PaLM-E, when tested on
KB-VQA task, make use of their LLMs as only knowledge sources which, combined with
the strong vision components of these VLMs, allows them to achieve SOTA performance on
OK-VQA benchmark.
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3.1.3 Unified View of SOTA Models

In the previous section, we discussed recent work in KB-VQA. In this section, we present a
unified view of SOTA models1, grouping them with respect to their strategy for knowledge
retrieval (Figure 3.1) and with respect to the features they use for image understanding
(Figure 3.2). We choose these levels of abstraction because we recognise them as the major
methodological differences among recent work. Table 3.1 provides more detailed information
on the type of vision features used.

Explicit Knowledge Only Implicit Knowledge Only

Prophet

PromptCap

GPT-3

BLIP2

InstructBIP

Vicuna / Flan-T5

PICa

PaLI / PaLI-X

PaLI

PaLM-E

PaLM-E

Flamingo

Chinchilla

TRiG

Wikipedia

RA-VQA

Google Search

Implicite & Explicit Knowledge

KAT

REVIVE

Wikipedia + GPT-3

Fig. 3.1 The subset of KB-VQA systems grouped by the knowledge retrieval strategy.
Many models rely on GPT-3 and other LLMs for implicate knowledge retrieval. The TRiG
and RA-VQA rely on external knowledge bases. KAT and REVIVE unify both implicate
knowledge from GPT-3 and explicit knowledge.

1Models are chosen from the leader-board https://paperswithcode.com/sota/visual-question-answering-on-
ok-vqa (last modified on May 29, 2023). We also include BLIP-2 and InstructBLIP, which reported their
performance on OK-VQA on June 15, 2023.
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Textual Image Representation

RA-VQA PICa

PromptCap

Prophet*

KAT**

Continuous Image Representation

REVIVE

BLIP2

InstructBLIP

REVIVE

PaLM-E

PaLI / PaLI-X

Flamingo

TRiG

Fig. 3.2 The subset of KB-VQA systems grouped based on the type of vision representa-
tion used for answer generation. Textual representations are image descriptions such as
captions and detected object tags. The continuous representation is obtained by encoding
the image with a vision encoder. KAT** uses continuous image representation only for
knowledge retrieval. Prophet* uses continuous representation for generating textual heuristic
fed to the LM.

Table 3.1 The overview of SOTA KB-VQA systems. Models are grouped based on their
strategy for knowledge retrieval. We provide the type of visual features fed to the answer
generator and the knowledge source (LLM for implicate knowledge and KB for explicit
knowledge). OC stands for object-centric continuous representation. Flamingo* is not
fine-tuned for the KB-VQA task. The RA-VQA is the baseline for this thesis.

Model
Image Representation

Knowledge Source
Textual Continuous

Explicit Knowledge

RA-VQA Captions + Objects + OCR - Google Search
TRiG Captions + Objects + OCR - Wikipedia

Implicit Knowledge

PaLM-E - ✓ + OC PaLM-E
PaLI-X - ✓ PaLI-X
PaLI - ✓ PaLI
InstructBLIP - ✓ Vicuna / Flan-T5XXL
BLIP-2 - ✓ Vicuna / Flan-T5XXL
PICa Captions - GPT-3
Prophet Captions - GPT-3
PromptCap Captions - GPT-3
Flamingo* - ✓ Chinchilla

Explicit & Implicit Knowledge

REVIVE Captions + Objects ✓ + OC Wikipedia + GPT-3
KAT Captions + Objects - Wikipedia + GPT-3
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After providing an overview of the relevant studies, we will now delve deeper into the
specifics of the RA-VQA system, which stands as the primary baseline for this thesis.

3.2 Retrieval Augmented Visual Question Answering

Retrieval Augmented Visual Question Answering with Outside Knowledge (RA-VQA) (Lin
and Byrne, 2022) is the multi-modal OK-VQA framework and main baseline for this thesis.
RA-VQA introduces joint training of document retriever and answer generator, outperforming
recent KB-VQA systems that perform explicit knowledge retrieval. The framework can be
divided into three main segments: Image Understanding (on which we focus), Documents
Retrieval, and Answer Generator. The modules are described in detail below.

3.2.1 Image Understanding

The authors of RA-VQA opt for the image-to-text approach for representing an image
(introduced in Section 2.2.1). The set of pre-trained vision models is utilised to:

1. Detected objects and their attributes

2. Generate image caption

3. Detect string within the image (OCR)

The details of each step are given below.

Object detection

Pre-trained object detection model VinVL (Zhang et al., 2021) is used to extract objects and
their attributes. For example, brown white standing dog, brown floppy long ear, brown white
head, etc. for Figure 1.2.

Image Captioning

The pre-trained captioning model Oscar+ (Zhang et al., 2021) is used for caption generation.
One sentence-long image caption provides the main observation from an image and should
encapsulate interactions between the visual elements. For example: "A men sitting on a
bench in a flooded park".
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OCR

The KB-VQA questions can require understanding the text strings present in the image. To
be able to answer this type of question, the Google OCR (Optical Character Recognition)
APIs are used to extract the text strings in the images.

Next step. After the textual image descriptions are generated, they are combined with the
question and passed to the next pipeline segment, the Documents Retriever.

3.2.2 Document Retriever

RA-VQA relies on leveraging an outside knowledge base (KB) (e.g. Wikipedia) to retrieve
information needed to answer the question. The document retrieval method proposed by
RA-VQA is based on Dense Passage Retrieval (DPR) (Karpukhin et al., 2020).

DPR consists of two transformer-like encoders, document encoder Ed and query encoder
Eq. The goal is to retrieve documents that contain information relevant to the query. For the
concrete KB-VQA example, this relevance is computed as follows. Firstly, the question is
concatenated with the text features extracted in the previous step (image caption, objects
with attributes and OCR) to form the input string x. Then, x is encoded using query encoder
Eq(x) ∈ Rh, while documents are encoded using document encoder Ed(d) ∈ Rh. Finally, the
relevance of document d for the input string x is defined by the inner product between the
obtained representations:

r(x,d) = ET
q (x)Ed(d) (3.1)

The RA-VQA document retriever aims to maximise this score r(x,d) when the document is
helpful for answering the question.

After computing the relevance score for all the documents in the KB, the DPR score
pθ (.|x) is calculated for the K most relevant documents:

pθ (dk|x) =
exp(r(x,dk))

∑
K
j=1 exp(r(x,d j))

(3.2)

DPR score represents retrieval’s confidence in each of K selected documents, which plays
a role in the answer selection process.
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3.2.3 Answer Generation

After obtaining text-based features and relevant documents, the generative encoder-decoder
model, with parameters φ , is fed with the question and text features (x) and the selected
document (dk) to generate the answer:

yk = argmax
y

pφ (y|x,dk) (3.3)

Each of the K documents is considered, and the final answer is selected as the one with
the highest joint probability:

ŷ, d̂ = argmax
y,dk

pφ (y|x,dk)pθ (dk|x) (3.4)

3.2.4 Joint Training of Document Retriever and Answer Generator

In the recent KB-VQA approaches (Gao et al., 2022c; Gui et al., 2021), the document retriever
is often kept frozen. However, RA-VQA proposes joint training of these two modules to
encourage retrieval of the documents that actually led to the generation of the correct answers.

To formulate the joint training loss LRA−V QA, the retrieved documents are divided into
two groups: P+(x,S) and P−(x,S), where x is a string used to retrieve documents, and S
is the set of answer annotations. The group P+ contains documents which 1) contain the
answer from S (by string match) and 2) are used when the model generated the most popular
answer from S2 (Equation 3.3). The group P− contains documents with no answer from S,
and which did not cause the model to generate the most popular answer (i.e., are not helpful).

Finally, the training of an RA-VQA system is achieved with the loss

LRA−V QA =− ∑
(x,S)∈T

(
K

∑
k=1

log pφ (s∗k |x,dk) + ∑
k∈P+(x,S)

log pθ (dk|x) − ∑
k∈P−(x,S)

log pθ (dk|x)).

(3.5)

The first term of the LRA−V QA aims to improve answer generation based on the question,
extracted text-based features and retrieved document. The subsequent terms are designed
to influence the document retrieval aspect: the second term promotes the retrieval of useful
documents (P+), while the third term aims to reduce the ranking scores of the ones considered
unhelpful (P−). Therefore, both document retrieval and answer generation are improved
during training.

2Each question has 10 available answers from annotators. The most popular one is the one with the most
votes.
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3.3 Conclusion

We began this chapter by providing a comprehensive overview of the relevant work in the
KB-VQA domain in Section 3.1, and we followed with the introduction of the RA-VQA
framework and a detailed definition of its key components in Section 3.2.

This sets the scene for our next chapter, where we highlight the weaknesses of the RA-
VQA image understanding component and propose our modification for improved vision
understanding: the integration of a vision encoder for image-based feature generation.



Chapter 4

Approach

We begin this chapter by highlighting the weaknesses of RA-VQA, a framework introduced
in the previous chapter. Then, we propose modifications to enhance its image understanding
component. We describe our approach in Section 4.2, defining our framework architecture
followed by a formal definition of each component.

Later on, we turn our attention to two distinct variants for the mapping module component.
In Section 4.3, we detail our approach for the pre-training of the MLP module. Section 4.4
delves into our strategy for integrating the question-aware Q-former module into RA-VQA.
In Section 4.5, we include regional image representation by proposing the procedure for
detecting regions of interest based on the question.

We conclude the chapter with Section 4.6, defining the prompt format employed in our
work.

4.1 Weaknesses of Text-Based Vision for VQA

Now that we described our baseline, the RA-VQA framework, we can highlight what we see
as weaknesses in its image understanding module and propose a solution.

As disused in Section 3.1, most recent SOTA methods, including RA-VQA, use only
text-based features combined with the question and retrieved knowledge as input to the
final answering model. Therefore, to some extent, they treat the VQA problem as a pure
natural language processing (NLP) task by providing an answer generator with only textual
descriptions of the image.

We highlight two main weaknesses of this approach which both emphasise an inevitable
loss of information during the image-to-text transformation:
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1. Insufficient descriptive features. Transforming image embeddings from a vision
encoder (such as VinVL (Zhang et al., 2021)) to the text form (list of detected objects,
object attributes, image caption, etc.) can lead to extensive loss of relevant information
required to answer the question. For example, consider an image of the dog with the
caption "A dog sitting on the couch". This caption does not provide enough
information to answer the question such as "What breed of dog is this?". The
information on the dog breed may be present in the image but disregarded to make the
caption concise. Although this problem is intuitive (it is not realistic to comprehensively
describe an image with a short caption), previous work often relies on such insufficient,
descriptive textual features.

2. Relationship and interactions among objects. After object detection is performed,
the list of objects and their attributes is fed to the model. These lists do not preserve
information on the interactions between the objects. The captioning is often used
with ideas to compensate for this by including object interaction such as: "A man is
carrying a child." However, as described above, one sentence long caption may
fail to focus on the information needed to answer the question. The relationship among
objects and their relative positioning is important and should not be neglected but
carefully extracted from the image.

Proposed solution - Image-Based Vision. We argue that the problems described above
can be mitigated with the direct pass of vision-encoded image embeddings to the answer
generator without previous transformation to the text form. We propose encoding both the
whole image and the object-centric region of interest to reduce the loss of information during
the image-to-text transformation.

4.2 RA-VQA-Vis Architecture

Our architecture design is built on top of the RA-VQA framework (Lin and Byrne, 2022). As
an improvement, we add system components required for generating a visual representation
of an image, as introduced in 2.2.2. Concretely, we incorporate vision encoder and mapping
network into the RA-VQA framework, introducing its extension, RA-VQA-Vis framework,
where "Vis" stands for Vision encoder.

In this section, firstly, we give the system overview, pointing out the modifications
proposed by us, and then we describe individual system components in more detail.



4.2 RA-VQA-Vis Architecture 26

4.2.1 System overview

The system overview is given in Figure 4.1. Motivated by Dai et al. (2023); Li et al. (2023);
Lin et al. (2022); Zhu et al. (2023), we introduce a frozen vision encoder to extract image
representations. These image representations are further aligned with the LM embedding
space using a mapping network and then passed to the answer generator model. The answer
generator model (encoder-decoder LM) is conditioned on image-based vision, retrieved
knowledge, and text-based vision. Text-based vision contains an image caption, detected
objects with attributes, and text strings detected within the image. The document retriever
model retrieves passages from the knowledge database conditioned on text-based vision and
the VQA question.

To highlight our modification to the RA-VQA framework, we compare the original
RA-VQA and our system (RA-VQA-Vis) in Figure 4.2. The introduced vision encoder is
kept frozen while the mapping network is trained.

Document Retriever

Caption: A group of young children posing for a
picture with soccer balls.

Answer
GeneratorText-based vision

Question: What year was the first game of
this sport played?

Passage 1:  the first ever soccer match
was played on barnes common at

mortlake, london on 19th december 1863
between .. 

Vision Encoder Mapping Network

Image-based vision

Objects: blue white black shirt, white soccer
goal, young little girl, green grass, white ball,

young little child, blue jersey... 

OCR: SANTA ANN 

Passage 2: there are records of football
being played for hundreds of years. in the

early 1880s by british army ... 

Passage 3: the first football game was on
november 6th 1869, the teams that played
were the rutgers and princeton. This game

...

Passage K: the oval becomes the regular
venue for the fa cup final with this game,
after lillie bridge was used in 1873 

1863

1

2

3

Fig. 4.1 The RA-VQA-Vis system diagram. The introduced vision encoder and mapping
network (green) generate continuous image representations (image-based vision). The answer
generator is conditioned on (1) image-based vision, (2) text-based vision (image caption,
OCR, and detected objects), (3) retrieved documents, and the question. The document
retriever is conditioned on text-based vision and the question.

Now that we have seen the system overview, we can formally define each of its compo-
nents in the following sections.
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Document Retriever

Image caption

Detected objects
and attributes

OCR

Image Answer
Generator

Text-based vision

Prediction

Qestion

Passage 1

Passage 2

Passage K

.  .  .

Vision Encoder Mapping
Network

Image-based vision

Document Retriever

Image caption

Detected objects
and attributes

OCR

Image Answer
Generator

Text-based vision

Prediction

Qestion

Passage 1

Passage 2

Passage K

.  .  .

RA-VQA-Vis 

RA-VQA 

(b)

(a)

Fig. 4.2 Side-by-side comparison of (a) RA-VQA and (b) RA-VQA-Vis. Extending the
RA-VQA design, and with the goal of improved image understanding, we introduce the
vision encoder and mapping module employed for image-based feature generation.
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4.2.2 Vision Encoder

The input image is firstly passed to the vision encoder v(.). The vision encoder maps an input
image I into the continuous vector representation V = v(I), where V ∈Rr, and r is the image
embedding dimension.

Essential pre-training. We use an encoder that is pre-trained with the VLM contrastive
objective introduced in Section 2.1.1. We see this type of pre-training as an essential starting
point for the future alignment of the image embeddings into the embedding space of the
answer generator. Following Dai et al. (2023); Li et al. (2023); Lin et al. (2022); Zhu et al.
(2023), we use an already powerful vision encoder (such as CLIP’s (Radford et al., 2021) or
ALIGN’s (Jia et al., 2021)) and keep it frozen.

Our main contribution to the RA-VQA framework architecture is the introduction of this
vision encoder component together with mapping module described in the next section.

4.2.3 Mapping Module

The vision encoder output is mapped to the LM’s embedding space using the learnt mapping
network m(.). Concretely, the r-dimensional image embedding V , is mapped into the
sequence of Nvis vision vectors:

m(V ) = {ei}Nvis
i=1, ei ∈ Rdlm (4.1)

where dlm is the dimension of the LM’s input embeddings. From the perspective of the LM,
these vector representations {ei}Nvis

i=1 are functionally equivalent to a sequence of Nvis tokens
embedded with the LM’s text embedder. Therefore, we can say that we "allocate" Nvis of
LM’s input embeddings to the image-based vision features (Figure 2.3).

Architecture. We work with two types of mapping networks, m(.):

• MLP: relatively simple mapping network in the form of multi-layer perceptron (MLP).

• Q-former: a more complex, transformer-based mapping module, proposed by BLIP2
(Li et al., 2023). The architecture of the Q-former is described in Section 2.3.

Pre-training. We argue that the pre-training of the mapping module is an important
step for the appropriate alignment of the vision and language modules for the downstream
tasks. Therefore, we pre-train our simple MLP mapping network on the captioning task, as
described in Section 4.3. After the pre-training, the mapping network is further fine-tuned
inside our framework for the KB-VQA task. In the case of the Q-former module, we use an
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already pre-trained version from Instruct-BLIP (Dai et al., 2023), hence, we do not pre-train
it ourselves. The details on the integration of Q-former as a mapping module of our system
are given in Section 4.4.

4.2.4 Text-based Vision Features

For the text-based vision features generation we closely follow the RA-VQA framework. This
allows us to rigorously study the contribution of the image-based vision to the framework
performance.

As described in Section 3.2.1, the RA-VQA utilises a set of specialised pre-trained
models to perform image-to-text transformation introduced in Section 2.2.1. As a result, the
input image is described with the following textual features: image caption, detected objects
and their attributes, and OCR strings.

Formally, we denote the set of utilised pre-trained models with cap, ob j, and ocr, for
captioning, object and attributes detection, and OCR model respectively. Textual descriptions
generated for an image I are grouped to form text-based vision T :

T = {cap(I), ob j(I), ocr(I)} (4.2)

The models cap, ob j, and ocr are kept frozen.

4.2.5 Document Retriever

For the document retriever model, we closely follow the design proposed in the RA-VQA
paper (Section 3.2.2). The DPR (Karpukhin et al., 2020) based document retriever accesses
the external database in order to retrieve passages relevant for the answer prediction. Utilising
the Equation 3.1 the documents are matched with the question and the text-based vision
features. We retrieve K documents with the highest relevance score and pass them one by
one to the answer generator.

4.2.6 Answer Generator

In order to utilise the strong reasoning and generative power of modern LLMs, as introduced
in Section 2.1.2, we use encoder-decoder LM as our answer generator model. The answer
generator aims to combine all the information retrieved by the other models in the framework
to predict an answer to the given question.

In this section, we formally define the embedding prompt used to condition the answer
generator and we explain the answer generation procedure.
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Embedding prompt

The answer generator is conditioned on both textual and visual modalities, which are mapped
into the same embedding space of the LM. The textual inputs: question Q, text-based vision
T , and document D are mapped into the text embeddings using the LM embedder elm, while
the output of the vision encoder v(I) is mapped with the mapping network m(.) (see Figure
2.3 for the general illustration). Therefore, the set of embeddings which are used to prompt
the LM, for a single document D is:

Z =

elm(Q, T, D)︸ ︷︷ ︸
text input

, m(v(I))︸ ︷︷ ︸
visual input

 (4.3)

We denote Z as the embedding prompt.

Indifference to prompt modalities. Note that this approach to LM prompting for
answer generation has inherited indifference to prompt modalities. In general, the embedding
prompt used can be composed of textual input only (such as text-based vision and question),
image-based vision only, or both modalities. This allows easy transition from different
set-ups for training or evaluation.

Answer generation

The LM model with parameters φ , prompted with embedding prompt Zk (for k-th selected
document), generates the answer yk as follows

yk = argmax
y

pφ (y| Zk)

= argmax
y

pφ (y| elm(Q, T, Dk), m(v(I)))
(4.4)

The answer yk is generated for each of K retrieved documents and the best candidate {ŷ, D̂}
is selected by the joint probability of the document retriever (with parameters θ ) and the
answer generator:

ŷ, D̂ = argmax
y,Dk

pφ (y|Zk)pθ (Dk|Q,T ), (4.5)

as the final output. In this way, both the confidence of the generative LM model and of the
document retriever model are taken into account.
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4.2.7 Training Objective

The document retriever and answer generator model are trained with joint loss as proposed in
RA-VQA. We modify RA-VQA loss (Equation 3.5) to incorporate visual image representa-
tion. Namely, the first term in Equation 3.5 now depends on both vision and text embeddings
represented by embedding prompt Z:

LRA−V QA−Vis =− ∑
(Z,S)∈T

(
K

∑
k=1

log pφ (s∗k |Zk)

+ ∑
k∈P+(Z,S)

log pθ (Dk|Q,T ) − ∑
k∈P−(Z,S)

log pθ (Dk|Q,T ))
(4.6)

where T is the whole dataset, S is the set of annotator’s responses, s∗k ∈ S is the annotated
answer that is contained in the document Dk or the most popular answer among annotators if
the exact match cannot be found in the document. The P+ and the P− are set of helpful and
not helpful documents, respectively, as defined in Section 3.2.4.

4.3 Mapping Network Pre-training

The mapping network is an important module of our system because it bridges two modalities:
the vision encoder and the language model. As discussed in the Section 4.2.3, we argue that
pre-training of the mapping network on vision-language task is important. With this step, we
aim to obtain good initialisation for further fine-tuning inside the KB-VQA framework.

Therefore, in the case of our simple MLP mapping network, we build a pipeline for
pre-training on the image-captioning task. The pipeline consists of a vision encoder, which
output is processed by the mapping network, and the LM that is conditioned on the mapping
network output. The vision encoder and LM are kept frozen while the parameters of the
mapping network are trained. The system illustration is given in Figure 4.3.

Task-formulation

We frame the captioning task as the conditional generation of the targeted caption y =

y1, ...,yL given the input image I. The input image is encoded with frozen vision encoder v(.)
and mapped with the mapping network m(.) into the embeddings understood by LM. An
instruction prompt P, such as "Caption this image:", is embedded with LM embedder
elm and fed to the LM encoder. Therefore, the embedding prompt Z (Equation 4.3) for the
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Mapping
Network

Vision
encoder

LM

Caption this
image:

Image-based vision

LM EmbedderLM Embedder

Input text

Text embeddings

A dog caring a
yellow frizzby.

Fig. 4.3 The MLP mapping network pre-training pipeline. The mapping network is
pre-trained on captioning task. The vision encoder and language model are frozen. The LM
is provided with a task description: "Caption this image:".

captioning task is:

Z = {elm(P), m(v(I))} (4.7)

Training. Considering that we keep LM frozen and that the image caption sequences
are usually around one sentence long, to avoid the accumulation of error during training, we
use the "teacher forcing" method (Williams and Zipser, 1989). Hence, the parameters of the
mapping network are trained to maximise the likelihood:

log p(y|Z) =
L

∑
l=1

log p(yl|Z,y<l) (4.8)

where the p(yl|Z,y<l) is the probability of the next caption token yl given the previous
caption tokens y<l and input embedding prompt Z. The gradients are propagated through the
frozen LM to update the parameters of the mapping network via stochastic gradient descent.

4.4 Question Aware Visual Representations

In the previous section, we described the pre-training of the MLP mapping module. In
this section, we will describe our second approach to the mapping module architecture;
question-aware Q-former.
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Recent work popularly chooses simple architecture for the mapping module, such as linear
layer (Cho et al., 2021; Eichenberg et al., 2021; Lin et al., 2022; Tsimpoukelli et al., 2021).
However, BLIP2 (Li et al., 2023) introduced the lightweight querying transformer module
(Q-former) specially designed to bridge the gap between vision and language modalities.
The Q-former design and pre-training technique are described in Section 2.3. Recently,
InstructBLIP (Dai et al., 2023) extends on BLIP2, proposing the Q-former that can be
conditioned on textual instructions, so it extracts task-relevant visual features from the frozen
image encoder (Section 2.3).

4.4.1 Q-former as Mapping Module

Inspired by Q-former’s performance, we integrate it into our RA-VQA-Vis framework and
compare its abilities with the MLP mapping module. We fully utilise the Q-former’s design by
conditioning it on the VQA question. The question text interacts with the query embeddings
through self-attention layers of the Q-former, encouraging it to extract the visual information
from the frozen vision encoder that is relevant for answering the question. Therefore, the
image-based vision features passed to the LM are no longer static per image as they were in
the MLP approach; in contrast, they are specific to each image-question pair.

Document Retriever

Answer
Generator

Vision Encoder Q-former

What are those wide
leaved plants next to

the bench called?

Text-based vision

Question
aware vision

Elephant
ears

Q: What are those wide leaved
plants next to the bench called?

Linear
map.

Fig. 4.4 RA-VQA-Vis with Q-former mapping module. The Q-former module, followed
by a fully connected layer, bridges the gap between vision and language encoders. Question-
aware visual representation is generated by passing the VQA question to the Q-former. This
encourages the extraction of information relevant to the concrete image-question pair.

Figure 4.4 shows the RA-VQA-Vis system diagram with the mapping module mQ(.)

consisting of the Q-former and a fully connected layer. In this setup, the mapping module
jointly processes the vision encoder output embeddings V and the question Q to extract vision
representations and map them into the LM embedding space. Concretely, mQ(.) generates
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sequence of Nvis, dlm-dimensional vision vectors as:

mQ(V,Q) = {ei}Nvis
i=1, ei ∈ Rdlm (4.9)

where dlm is the dimension of the LM’s input embeddings, and Nvis is the number of token
embeddings allocated to image-based vision representations.

4.4.2 Benefits of Using the InstructBLIP Q-former

Now that we have formally defined the Q-former as a mapping module in our framework, we
want to highlight the benefits of using InstructBLIP Q-former for the task of Visual Question
Answering. We focus on two main advantages: potential reduction of information loss due
to question-aware visual feature extraction and good weights initialisation due to extensive
pre-training done by InstructBLIP authors.

Reduce of information loss

The image-based features used to represent an image can encapsulate a limited amount
of information. As a result, the valuable information for answering the question may be
neglected. We hope to encourage the Q-former to tailor its focus to the relevant image regions
by providing it with the question. For instance, in the example from Figure 4.4, we anticipate
that information propagated to the LM after the introduction of a question-aware approach
will be more oriented towards the described plant, even though the image originally have
details that may be considered more relevant in the general case (e.g. for image captioning
task). In this way, we would effectively leverage vision encoder output embedding and
hopefully enhance the image understanding segment of the KB-VQA framework.

Extensive pre-training

InstructBLIP Q-former is pre-trained on 13 different datasets covering a large number of
visual-language tasks such as image captioning, visual reasoning, image classification, etc.
Most importantly, it was pre-trained on the KB-VQA task. Therefore, we believe that
InstructBLIP Q-former comes with good initial weights, providing a good starting point
for further fine-tuning inside our system. Therefore, there is no need for us to pre-train the
mapping module, which is in contrast with the MLP mapping network approach (Section
4.3).
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4.5 Visual Regions of Interest

As part of our efforts to improve overall image understanding of the KB-VQA framework,
so far, we have proposed the integration of an image encoder to obtain continuous image
representation and the use of a question-aware mapping module to extract continuous rep-
resentations relevant to the question asked. In this section, we go further and propose a
question-aware procedure for the selection of relevant image regions.

4.5.1 Motivation

As previously discussed, the VQA question often focuses on the specific image region, which
may not be the image’s main focus. For example, see the image from Figure 4.5 with the
question "What candy resembles the man’s tie?". In this case, the question refers to
the region covering a small ratio of the whole image. Hence the global image encoding
may fail to capture enough details from it required to answer the question. To mitigate this
issue, we do not only rely on global image representation, but we also form regional image
representations. These regional features should more closely describe the relevant region,
potentially including information not preserved in the global image encoding.

In the following section, we formally describe the process of including regional represen-
tations into our frameworks, and we present the algorithm for the selection of the region of
interest with respect to the given question.

4.5.2 Proposed method

Object detection. For the input image I, we use off-the-shelf object detector ob j(.) to
locate the bounding boxes B = {b j}M

j=1, the related object classes C = {c j}M
j=1, and their

class confidence T = {t j}M
j=1 for M potential ROIs:

ob j(I) = {B,C,T} (4.10)

ROI selection algorithm. After the object detection, we select NROI regions of interest
by following a procedure that prioritizes detected regions with the object class specifically
mentioned in the question. The subsequent criteria rely on class confidence scores and region
sizes. We adopt the following algorithm for ROIs selection:

1. Occurrence in the question. Prioritize ROIs where the object class is directly refer-
enced in the question.
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2. Confidence treshold. From the remaining ROIs, select the largest ones that have a
confidence score surpassing threshold t.

3. Region size. If the number of selected ROIs is still less than required, select the rest
of the objects ordered by size.

The pseudo-code of the procedure is provided in Appendix A.

After we have selected NROI regions of the image we consider relevant, the image is
cropped to obtain image patches {ri}NROI

i=1 . In the further steps, these image patches are
processed in the same manner as the whole image I. Firstly, they are encoded with the vision
encoder v(.), and then aligned with the embeddings space of the LM using the mapping
module m(.). Finally, they are fed to the LM together with the textual inputs (text-based
vision T , question Q, and the retrieved document D), that are previously encoded with the
LM’s embedder elm(.). Therefore, after introduction of ROIs, the embedding prompt Z from
the Equation 4.3 becomes:

Z =

elm(Q, T, D)︸ ︷︷ ︸
text input

, m(v(I,r1,r2, ...,rNROI))︸ ︷︷ ︸
visual input

 (4.11)

This embedding prompt is fed to the answer generator model to generate an answer as
described in Section 4.2.6.

ROI selection example. In Figure 4.5 we show the example of 2 ROIs selected for the
question "What candy resembles the man ’s tie ?" Even though the provided image
focus on the motorcycle, our selection algorithm chooses the image patches of the tie and
a man from the background since these object classes occur in the question. We hope that
providing the answer generator with the ROIs selected in this way can provide the necessary
information to answer the question.

Related work. Note that REVIVE (Lin et al., 2022), and PaLM-E (Driess et al.,
2023) also argue that object-centric visual representation improves image understanding
and includes them in their framework. However, their region detection approaches are
question-agnostic, unlike ours. Therefore, we hope to improve the ROIs selection algorithm
by making it question-aware (i.e. focused on the image regions relevant for answering the
VQA question), as described in this section.
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Question: What candy
resembles the man's tie?

Answer: candy cane

Detected
ROIs

ROI 1:
man

ROI 2:
tie

Man

Tie

Fig. 4.5 Question-aware detection of regions of interest. The example of detecting 2 ROIs
based on the provided question. Even though this image focus is on the motorcycle, our
selection algorithm chooses the image patches of the tie and a man from the background as
the ROIs for this image-question pair.

4.6 Prompt Formation

In this section, we present the template used to prompt the answer generator. Different to
the RA-VQA, which use special tags to separate input features of different type (captions,
attributes, documents, etc.) we use the descriptive prompt.

The prompt shown in Figure 4.6 is formed by concatenating the embeddings from
the set Z (Equation 4.11) in the corresponding order. We start with the global and regional
continuous image representations (<Image> and <ROI>), then we provide the task description
(similar to the one used in InstructBLIP): "Use the provided image to answer the question".
Furthermore, we describe the type of text-based features by "The image caption is:" and "In
the image, there are the following objects", finally including the retrieved document content
after "Document:".
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<Image> <ROI_1> <ROI_2>... Use the provided image to 
answer the question <Question>. The image caption is: <Caption>.
In the image, there are the following objects: <Object_1>,
<Attributes_1>, <Object_2>, <Attributes_2> ...
Document:<Document_content>.

Prompt template:

Fig. 4.6 Prompt format. The <Image>, <ROI>, <Caption>, <Object>, <Attributes>, and
<Document_content> are placeholders for the corresponding features passed to the answer
generator. Each of placeholder is optional and the prompt can be modified to adjust to the
absence of the specific feature.

4.7 Conclusion

In this chapter, we presented our framework for the KB-VQA task. We started by highlighting
the weaknesses of the text-based vision and proposed overcoming these by introducing an
image-based vision (Section 4.1).

We built our framework architecture on top of the RA-VQA baseline, extending it by
incorporating the frozen vision encoder used for visual feature generation. Additionally, we
introduce a mapping module to bridge the gap between the vision and language modalities.

We propose the use of two types of mapping modules: a relatively simple MLP, and a
more complex, transformer-based Q-former. In Section 4.3, we detailed our approach to
pre-training the MLP mapping module on a captioning task. In Section 4.4, we introduced
the concept of the question-aware Q-former, highlighting its benefits, and describing how
it will be integrated into our framework. In Section 4.5 we present the algorithm for the
selection of regional image representations based on the question. We conclude the chapter
by presenting our prompt template in Section 4.6.

In the following chapter, we give our experiment setup, specifying concrete model
instances used in our work. We also describe used datasets and evaluation metrics.



Chapter 5

Experiments Setup

In the previous chapter, we provided a thorough description of our approach. Moving forward,
this chapter details the experimental setup. We begin with the Section 5.1, where we describe
the datasets used for the KB-VQA task and for the MLP pre-training on the captioning task.
Next, although we have formally addressed our system components in the previous chapter,
Section 5.2 specifies the configurations of the concrete models used for each component. In
Section 5.3 we provide training parameters for our system, and with Section 5.4, we conclude
the chapter by defining the VQA metric for system evaluation.

5.1 Datasets

In this section, we will describe the dataset and knowledge base we use for the KB-VQA
task and the dataset used for the pre-training of the mapping network on captioning task.

5.1.1 KB-VQA Datasets

KB-VQA Dataset. We use OK-VQA dataset (Marino et al., 2019) which large proportion
of questions cannot be answered only based on the image. They either require commonsense
reasoning or domain-specific knowledge. The OK-VQA consists of 14,031 images and
14,055 questions split into 9,009 questions for training and 5046 questions for evaluation. We
choose this dataset as it is the well-established benchmark for the KB-VQA task commonly
used in related work (Section 3.1).

Knowledge Database. Following RA-VQA, we use the passage corpus collected by
Luo et al. (2021) from Google Search as an outside knowledge database. This corpus
originates from querying the Google Search API using questions and their corresponding
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answer annotations from the OK-VQA dataset, to retrieve passages under 300 words. We
use GS-full corpus that consists of 168,306 passages generated based on both training and
test set OK-VQA questions.

5.1.2 Image Captioning Dataset

For the pre-training of the mapping network on the captioning task, we use the Conceptual
Captions dataset (Sharma et al., 2018). This dataset is automatically constructed by harvesting
image-caption pairs from publicly available web pages and consists of approximately 3.3M
image-caption pairs

5.2 Architectural Components

In the previous chapter (Chapter 4), we described KB-VQA-Vis architecture conceptually,
without specifying concrete instantiation of the components (except for the InstructBLIP
Q-former). In this section, we list the specific models used in our experiments.

5.2.1 Vision Encoder

For image encoding, we use two versions of the frozen Vision Transformer (ViT, Dosovitskiy
et al. (2020)), depending on the architecture of the mapping module.

ViT used with MLP mapping network. For our experiments with a simple MLP
mapping network, we use ViT-L/14@336px version of ViT (in future denoted by ViT-L/14)
pre-trained by CLIP (Radford et al., 2021) on approximately 400M image-text pairs collected
from the internet (WebImageText dataset (Radford et al., 2021)) using contrastive objective
(Section 2.1.1). This vision encoder has 307M parameters, and it maps input image of size
336×336 pixels to a 768-dimensional continuous image embedding. We choose this version
of CLIP-ViT over the ViT-L/14@224px because it is shown that model pre-trained with
higher resolution images has better performance on downstream tasks (Radford et al., 2021).
The image encoder is kept frozen. This allows us to generate image embeddings only once,
prior to the system training, which significantly reduces computational costs.

ViT used with Q-former. In the experiments with InstructBLIP Q-former we are
constrained to the choice of ViT-g/14 (Zhai et al., 2022) version of ViT because this vision
encoder was used during the Q-former pre-training. Any change of the vision encoder version
at the time of fine-tuning can cause a drop in the performance of the Q-former. The ViT-g/14
has been pre-trained on 1B images (from ImageNet-21k corpora (Deng et al., 2009), and on
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privately gathered, weakly-labelled images (Zhai et al., 2022)) for the classification task. It
has an output embedding size of 1408 and 1B parameters.

A comparison of the ViT-L/14@336px and ViT-g/14 vision encoders is given in Table
5.1.

Table 5.1 Comparison of ViT-L/14 and ViT-g/14 vision encoders. ViT-L/14 model is used
with the MLP mapping network and the ViT-g/14 is used with the InstructBLIP Q-former.

Encoder Version Embedding
dimension

Image res. (px) # parameters (M) Train. data (M)

ViT-L/14 768 336×336 307 400
ViT-g/14 1048 224×224 103 103

5.2.2 Mapping Module

As described in Chapter 4, we consider two different architectures of the mapping module:
MLP and Q-former. Here, we describe their configurations.

MLP architecture. As described in Section 4.2.3, mapping network maps the r-
dimensional image embedding into the series of Nvis vision tokens of dimension dlm (hidden
dimension of LM). For our MLP mapping network, we use a 2-layer perceptron: Rr →
R

Nvisdlm
2 → RNvisdlm , and we reshape the output to RNvis×dlm . The MLP module is pre-trained

as described in Section 4.3, and further fine-tuned inside the RA-VQA-Vis framework.
Q-former version. We use checkpoint of InstructBLIP Q-former from HuggingFace

(Wolf et al., 2020) trained as a mapping between the ViT-g/14 vision encoder and the Flan-
T5-XL language model. Given that the Q-former was pre-trained on OK-VQA dataset, we
do not fine-tune it further inside our RA-VQA-Vis framework, but we do fine-tune the linear
projection layer used to align Q-former’s output with the LM hidden dimension1. For the
illustration of RA-VQA-Vis architecture with the Q-former, see Figure 4.4.

5.2.3 Answer Generator

As described in Section 4.2.6, we use LM with encoder-decoder architecture as an answer
generator. This architecture choice aligns with our baseline (RA-VQA), but it excludes
decoder-only models such as GPT-3 (Brown et al., 2020) and recently published LLaMA
(Touvron et al., 2023) and Vicuna (Zheng et al., 2023). Following RA-VQA, we use the
T5-Large (770M) variant of the T5 model family. Furthermore, we employ Flan-T5 models,

1The linear projection layer is initialised from the same HuggingFace checkpoint as the Q-former.
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an updated version of the T5 models fine-tuned on datasets framed as instructions. Since
the question-answering instruction is present in the Flan models’ fine-tuning corpora, we
integrated Flan-T5 models into our experiments. We use Flan-T5-Large (780M) and Flan-
T5-XL (3M). Larger model variants are not tested due to computational limitations.

Training. As part of the RA-VQA-Vis framework, the answer generator model is
fine-tuned in all of our experiments. In the case of the T5-Large, and Flan-T5-Large, we
fine-tune all model parameters. For the Flan-T5-XL, we use LoRA (Low-Rank Adaptation
parameter tuning, Hu et al. (2022a)) to fine-tune the model on a single GPU.

5.2.4 Document Retriever

We initialise our document retrieval model with the pre-trained version published by RA-
VQA. We keep the number of retrieved documents K fixed to 5. The RA-VQA baseline
showed that a further increase in the number of retrieved documents notably adds to the
computational cost of the system, while it does not necessarily leads to the retrieval of
additional helpful knowledge.

In most of our experiments, we keep the retriever model frozen since this component is not
the focus of our thesis, and its fine-tuning requires extensive hyperparameter tuning (Lin and
Byrne, 2022). Following the notation from RA-VQA, we use tag FrDPR (frozen document
passage retrieval) to refer to the experiments in which the document retriever is frozen and
tag NoDPR (no document passage retrieval) for the experiments in which document retriever
is not used (i.e. the answer generator is not fed with the external knowledge).

5.2.5 Models for Image-to-Text Transformation

The central research question of this thesis is to examine whether the introduction of continu-
ous image representations (image-based features) complements textual image descriptions.
Therefore, for a fair comparison, we closely follow the RA-VQA baseline when choosing the
off-the-shelf models for image-to-text transformation. The Oscar+ (Li et al., 2020c) model
is used for image captioning, the VinVL (Zhang et al., 2021) model is used for detecting
objects and generating their description, and the Google OCR API is used for recognition
of text within the image. By selecting the same models as in RA-VQA, we can rigorously
investigate the contribution of continuous image features.
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5.2.6 ROIs Detection Model

As an object recognition model used for detecting potential regions of interest, we employ
the VinVL (Zhang et al., 2021) because it provides us with all the necessary information:
bounding boxes, object classes, and the confidence score. The threshold t used in the ROIs
selection procedure is set to 0.5. We denote experiments in which we use regional image
representation with an ROI tag. Hence, if not specified otherwise, the regional representation
is not part of the system.

5.3 Training

Now that we listed the specific model versions used, we will give the training details for both
the RA-VQA-Vis framework and for the pre-training of the MLP mapping module.

RA-VQA-Vis training. The initial learning rates are 6×10−5 for the answer generator,
10−5 for the retriever, and 3×10−4 for the MLP mapping module, all linearly decaying to
0 after 10 epochs. The systems with the Flan-T5-Large are trained for 8 epochs, while the
Flan-T5-XL saturate after 4 epochs. The batch size was 2 with the 16 gradient accumulation
steps.

MLP pre-training. The MLP module was pre-trained with a constant learning rate
of 3× 10−4. The training is done for 15 epochs with a batch size of 64, and gradient
accumulation every 2 steps.

All experiments were run on 1 Nvidia A-100 GPU with the use of Adam (Kingma and
Ba, 2015) optimiser for training. The models are implemented using PyTorch and PyTorch
Lightning (Falcon and The PyTorch Lightning team, 2019).

5.4 Evaluation

For the VQA evaluation metric, we use the official VQA score (Marino et al., 2019). This
metric assigns the score to the generated answer based on its occurrence count in the set of
human annotations S. Each OK-VQA question is annotated with 10 answers, and the VQA
score is calculated as follows:

VQAscore(y) = min
{

#s(y)
3

,1
}
, (5.1)
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where the s(y) is the count of the exact match occurrence of the generated answer y in the
annotation set S. This metric ensures that the model gets partially rewarded even if it predicts
the answer which is existed but is not the most popular among the human annotations.

5.5 Conclusion

In this chapter, we start with detailing the relevant datasets in Section 5.1. In Section 5.2,
we provided the configurations of the concrete models for each component of RA-VQA-Vis.
We then presented the training parameters in Section 5.3 and concluded with a definition of
the VQA metric in Section 5.4.

After outlining the experiment setup, we provide experiment results, and discuss them in
the next chapter.



Chapter 6

Results

Chapter outline. In this chapter, we present the results of our experiments. We start by
positioning our top-performing model relative to the state-of-the-art solutions in Section
6.1. In Section 6.2, we provide results that test our central hypothesis: that introducing
image-based features to a system that employs text-based features enhances overall image
understanding.

From Sections 6.2.1 to 6.2.3, we conduct a detailed study of our KB-VQA framework. By
adding each component one at a time we examine their individual and joint contributions. An
ablation study of our best model is presented in Section 6.2.4. This is followed by evaluations
focusing on the relevance of question-aware vision in Section 6.3, and the integration of
regional image representations in Section 6.4.

Following our main experiments, Section 6.5 delves into the results of the pre-training of the
MLP mapping module. We discuss the experiment regarding the number of image tokens
in Section 6.5.1, and we conclude this segment by emphasizing the importance of MLP
pre-training for its use in the KB-VQA framework in Section 6.5.2.

6.1 Comparison with State-of-the-Art Models

We start by comparing the performance of our framework (RA-VQA-Vis) with the top-ranked
KB-VQA systems in the literature. We present our best-performing model, RA-VQA-Vis (Q-
former, Flan-T5-XL) that leverages InstructBLIP’s vision module and Flan-T5-XL language
model to achieve 62.56% VQA score on the OK-VQA dataset, outperforming SOTA models
within its scope of parameters (< 5B), and surpassing original RA-VQA model by a large
margin (∼ 8% gain). The achieved VQA score positions our 4.5B parameters model at the 4th
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place of the OK-VQA dataset leaderboard1 outperforming many systems that use very large
models such as GPT-3 (175B), PaLI (17B), and Flamingo (80B) to obtain strong implicit
knowledge retrieval and text generation (Table 6.1). Therefore, our results demonstrate the
importance of powerful visual components and explicit knowledge retrieval that are often
neglected in the literature (as discussed in Chapter 3).

Table 6.1 RA-VQA-Vis compared to the baselines in the literature on the OK-VQA
dataset. Models are sorted by VQA score (VQA). Knowledge source abbreviations: W:
Wikipedia, GS: Google Search. RA-VQA-Vis (4.5B) ranks 4th, outperforming most systems
based on large models such as GPT-3 (175B). Additionally, it surpasses the original RA-VQA
(underlined result) by a large margin (∼ 8% gain). The RA-VQA-Vis uses the Q-former
mapping module and Flan-T5-XL LM.

Rank Model Large Models Knowl. Src. # Param. < 5B VQA

1 PaLM-E PaLM-E (562B) PaML-E - 66.10
2 PaLI-X PaLI-X (55B) PaLI-X - 66.10
3 PaLI PaLI (17B) PaLI - 64.50
4 RA-VQA-Vis (ours) Flan-T5XL (4.5B) GS ✓ 62.56
5 InstructBLIP (Vicuna-7B) Vicuna (7B) Vicuna - 62.01
6 Prophet GPT-3 GPT-3 - 61.10
7 PromptCap GPT-3 GPT-3 - 60.40
8 BLIP-2 (Vicuna-7B) Vicuna (7B) Vicuna - 59.30
9 REVIVE GPT-3 W + GPT-3 - 58.00
10 Flamingo Chinchilla (80B) Chinchilla - 57.80
11 PaLI PaLI (15B) PaLI - 56.50
12 InstructBLIP (Flan-T5XXL) Flan-T5XXL (11B) Flan-T5XXL - 55.50
13 BLIP-2 (Flan-T5XXL) Flan-T5XXL (11B) Flan-T5XXL - 54.70
14 KAT-Ensemble T5-large, GPT-3 W + GPT-3 - 54.41
15 RA-VQA T5-Large GS ✓ 54.48
16 PaLI PaLI (3B) PaLI ✓ 52.40
17 RA-VQA-FrDPR T5-Large GS ✓ 51.52
18 TRiG-Ensamble T5-Large W ✓ 50.50

In the following sections, we will present a systematic study of the RA-VQA-Vis frame-
work.

1The leaderboard https://paperswithcode.com/sota/visual-question-answering-on-ok-vqa is last modified on
May 29, 2023. We also include InstructBLIP and BLIP-2 performance reported on June 15, 2023.
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6.2 Integration of Vision Encoder

We began this section by testing our main hypothesis: the introduction of image-based vision
features into a framework that already utilizes text-based vision can enhance overall image
understanding. We demonstrate our results for two groups of vision modules:

• ViT-L + MLP mapping network (MLP approach)

• ViT-g + InstructBLIP Q-former (Q-former approach)

Table 6.2 shows the results of the system with and without vision modules (vision encoder
and mapping module). The text-based features (image caption, OCR, and detected objects
with attributes) are fed to the answer generator, while the document retriever is not used
(No-DPR). The first two rows in the table represent a baseline for this experiment since they
do not include image-based features. We can see that both MLP and Q-former approaches
bring value to the system and improve overall accuracy by complementing text-based vision
features and therefore enhancing overall image understanding. The significant difference
in the strength of both ViT-g over ViT-L as a vision encoder and Q-former over MLP as a
mapping module is shown by the gap of ∼ 6% in VQA score with Flan-T5XL model (last
two rows).

Table 6.2 Integration of vision encoder complements text-based vision and improves
image understanding. System performance with and without the use of vision modules
(vision encoder and mapping module) for MLP and Q-former approaches. As a baseline,
the answer generator is conditioned on text-based vision only (first two rows). Document
retriever is not used in any of the experiments (No-DPR).

Mapping Module Vision Encoder LM VQA

None None
Flan-T5Large 46.79
Flan-T5XL 50.72

MLP ViT-L
Flan-T5Large 49.13
Flan-T5XL 53.37

Q-former ViT-g Flan-T5XL 59.29

Main insights. The integration of vision modules into the framework that originally
used text-based vision only for image understanding improves system performance. The
largest improvement (∼ 9%) is obtained using Q-former with ViT-g.

In the following sections, we methodically examine the contribution of each system
component by sequentially incorporating them into our experiments. We start with the
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image-based vision-only system, followed by the addition of text-based features and the
document retrieval module.

6.2.1 System with Image-Based Vision Only

In the previous section, we have shown that integration of vision modules into the framework
that originally used only text-based vision improves overall image understanding. In this
section, we want to test how powerful the system is with image-based vision only. The main
advantage of an image-based vision-only system is that no set of specialised models for the
generation of textual image descriptions is needed. This would significantly reduce system
complexity and computational cost.

Set-up. The baseline set-up for this experiment consists of only an answer generator,
which is conditioned on the OK-VQA question. We add the vision encoder and mapping
module to condition the answer generator on the question and image-based features. The
experiment results are given in Table 6.3.

We make the following conclusions from this experiment:

• By comparing VQA score of the system with and without image-based features, we
conclude that image-based vision significantly increases the VQA score. This
confirms that our vision encoder and mapping modules provide valuable information
to the answer generator model.

• The ViT-g + Q-former approach achieves a notable VQA score of 58.09%. This score is
already comparable to state-of-the-art models that make use of additional components
such as text-based vision, outside knowledge, and very large language models (e.g.
GPT-3) (Table 6.1). The fact that we managed to achieve this performance only by
using question and image-based features demonstrates the importance of having the
powerful image understanding segment of the KB-VQA framework.

• The Q-former mapping module approach surpasses MLP by more than 10% points.
This gap in the performance is somewhat expected given the Q-former’s design (Section
2.3), and its benefits discussed in Section 4.4.2. Namely, the Q-former module is
specially designed to bridge the gap between vision and language models. Additionally,
the InstructBLIP version we are using is pre-trained on an extensive number of vision-
language tasks (including KB-VQA), and it has the ability for question-aware vision
feature extraction. However, the gap in the performance between the two approaches
may also be credited to the significant difference in the vision encoder’s number of
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parameters (Table 5.1). Overall, the results from Table 6.3 confirm that the ViT-g +
Q-former vision system is more powerful than the ViT-L + MLP one.

• When comparing the system’s performance with different answer generator LMs, we
notice that the performance of Flan models does not differ when they are prompted
with the question only. However, when the image-based features are added, the gap in
the performance of two LMs enlarges, showing that Flan-T5-XL has a better capacity
for understanding vision prompt embeddings (rows 3-6 in Table 6.3).

Table 6.3 Contribution of image-based features. Image-based features are extracted with a
vision encoder and a mapping module. Two configurations are considered: MLP + ViT-L,
and Q-former + ViT-g. Answer generator LM is conditioned on the question only or on the
question and vision-based features. Document retriever is not used (NoDPR).

LM Question Vision modules VQA

T5-Large
✓ ✗ 24.88
✓ ViT-L + MLP 40.32

Flan-T5-Large
✓ ✗ 27.78
✓ ViT-L + MLP 43.13

Flan-T5-XL
✓ ✗ 27.26
✓ ViT-L + MLP 47.02
✓ ViT-g + Q-former 58.09

Main take-away. The ViT-g + Q-former vision system surpass ViT-L + MLP. It achieves
58.09% VQA score demonstrating the importance of strong image understanding. This result
is already comparable with state-of-the art models that make use of additional component
such as external knowledge, text-based vision, and LLMs (e.g. GPT-3).

6.2.2 Contribution of Text-Based Vision

In the previous section, we have reported the performance of the system that uses only image-
based vision and question to generate the answer. In this section, we add text-based features
to the system, aiming to systematically compare the individual and joint contributions of
these two types of image representations. The ablation study results are given in Table 6.4.

Insights for MLP approach. By comparing rows 2 and 3 (for Flan-T5-Large), and
rows 6 and 7 (for Flan-T5-XL) we conclude that the system with only text-based features
outperforms the ViT-L + MLP system with only image-based and no text-based features.
The score gap of ∼ 3% for both language models shows that the image understanding
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Table 6.4 Text-based features improve performance further. Text-based features include:
image caption, OCR, and detected objects with attributes. Image-based features are extracted
with a vision encoder and a mapping module. Powerful image representation surpasses
textual descriptions.

Row LM Vision modules Text-based features VQA

1

Flan-T5-Large

✗ ✗ 27.78
2 ✗ ✓ 46.79
3 ViT-L + MLP ✗ 43.13
4 ViT-L + MLP ✓ 49.13

5

Flan-T5-XL

✗ ✗ 27.26
6 ✗ ✓ 50.72
7 ViT-L + MLP ✗ 47.02
8 ViT-L + MLP ✓ 53.37
9 ViT-g + Q-former ✗ 58.28

10 ViT-g + Q-former ✓ 59.29

performance of ViT-L + MLP vision modules is not as good as the one obtained with the
text-based features approach. However, when these two types of features are combined the
VQA performance further increases (rows 4 and 8). Therefore, we conclude that image-based
features bring new information to the system which makes them valuable and compatible
with textual descriptions.

Insights for Q-former approach. In contrast to the MLP approach, the image represen-
tation obtained with ViT-g and Q-former surpasses the contribution of textual descriptions
by large margin of ∼ 8% (rows 6 vs. 9), achieving 58.28% VQA score. The combination
of these features with textual description slightly increases the overall score (+1%). There-
fore, we argue that if VLM has powerful vision components such as ViT-g + Q-former,
image-based vision is enough for generating comprehensive image representations, and
components for text-based feature generation can be omitted in favour of reduced system
complexity and computational cost.

6.2.3 Contribution of Retrieved Documents

In the previous experiments, the answer generator was not fed with the retrieved documents
(NoDPR). In this section, in addition to passing information extracted from an image (image-
based and/or text-based features), we pass the retrieved documents to the LM, providing it
with outside knowledge.
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Table 6.5 shows the contribution of retrieved documents when they are combined with
the vision features. The knowledge retriever model is kept frozen (FrDPR).

Table 6.5 Integration of document retriever model improves performance further. Image-
based features are extracted with a vision encoder and mapping module. Two configurations
are considered: MLP + ViT-L, and Q-former + ViT-g. Text-based features include: image
caption, OCR, and detected objects with attributes. The documents are retrieved using the
frozen document retriever model from the RA-VQA baseline (Fr-DPR).

LM Vision modules Text-based features
VQA

No-DPR Fr-DPR

Flan-T5-Large
✗ ✓ 46.79 53.88

ViT-L + MLP ✗ 43.13 47.24
ViT-L + MLP ✓ 49.13 55.71

Flan-T5-XL
✗ ✓ 50.72 56.72

ViT-g + Q-former ✗ 58.28 60.47
ViT-g + Q-former ✓ 59.29 62.16

We make the following conclusions:

• From the first three rows of Table 6.5, we can see that addition of documents brings
significant improvement. With the ViT-L + MLP vision modules, the best-performing
system uses both types of image features and retrieved documents to obtain 55.71%
VQA score, which is ∼ 7% points higher than the best No-DPR score.

• Some improvement with the inclusion of documents is naturally anticipated, given that
OK-VQA questions are designed to require external knowledge for accurate answers.
However, the remarkable improvement we achieve with the integration of the RA-VQA
document retriever testifies to its strong ability to retrieve relevant documents from the
database, as reported in Lin and Byrne (2022). This also solidifies the Google Search
corpus as a valuable knowledge base for the OK-VQA dataset.

• The best-performing system (last row) uses the ViT-g vision transformer and Q-former
mapping module to extract image-based vision. Combining it with textual image
descriptions and retrieved documents, this system achieves VQA score of 62.16%,
outperforming the system without an integrated vision encoder by a margin of ∼ 5%
points (fourth row).

• We highlight that the gain in accuracy from NoDPR to FrDPR is higher for text-
based features only system (∼+7% points, Table 6.5 first row) than for image-based
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features only system (∼+4% points, Table 6.5 second row). This is expected since
the document retriever selects documents based on the question, and textual image
description (if provided). Therefore, the documents in the system that do not include
text-based features are selected based on the question only, and therefore less relevant
than documents selected based on both question and textual image description.

6.2.4 The Best Performing Model

In previous sections, we systematically added each system component one by one and
conducted a detailed study of the individual component’s contributions. We concluded
that the best-performing system includes: the ViT-g vision encoder, InstructBLIP Q-former
mapping module, Flan-T5-XL answer generator, RA-VQA document retriever, and set of
models for text-based feature extraction (OCR, image captioning, and object detection). The
system with these components we choose as our final framework configuration.

For this setup, we perform joint training of the answer generator and document retriever
(as proposed in the RA-VQA baseline), denoting this model as RA-VQA-Vis. The ablation
study of RA-VQA-Vis is given in Table 6.6. We conclude that each of the system’s compo-
nents is compatible with the others; thus it brings value and boosts the overall performance.
After joint training, RA-VQA-Vis achieves VQA score of 62.56%2 outperforming RA-VQA
baseline by large margin of ∼ 8% and ranking 4th on the OK-VQA dataset leader-board
(Table 6.1).

Table 6.6 Ablation study of RA-VQA-Vis components. We report the ablation study
for our best framework configuration, RA-VQA-Vis, consisting of ViT-g vision encoder,
InstructBLIP Q-former mapping module, Flan-T5-XL answer generator, RA-VQA document
retriever, and set of models for text-based feature extraction (OCR, image captioning, and
object detection).

Model Question Image-based f. Text-based f. Documents VQA

RA-VQA-Vis

✓ ✓ 58.09
✓ ✓ ✓ 59.29
✓ ✓ ✓ ✓ 62.16
✓ ✓ ✓ ✓ 62.56

Main takeaway. After summarising the results presented in the sections above, we
can conclude that the introduction of a powerful image-based vision by employing a vision

2Note that due to limited resources, we did not perform extensive parameter fine-tuning for the joint training
of document retriever and answer generator, as recommended in Lin and Byrne (2022). With careful selection
of hyper-parameters, an increase in the overall performance is possible.
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encoder and Q-former mapping module undoubtedly improves image understanding and
boost the performance of the KB-VQA framework.

6.3 Contribution of Question-Aware Vision

In our results so far, we have presented our best-performing model and analyzed the impact
of each system component. After comparing the Q-former approach (ViT-g + Q-former)
with the MLP approach (ViT-L + MLP), we have concluded that the Q-former approach
significantly outperforms MLP one. In this section, we analyse the Q-former’s performance
further by testing the actual contribution of its question-aware aspect. Our hypothesis is that
by feeding the Q-former module with the question text, the visual features extracted are more
relevant for answer generation.

Setup. To test this hypothesis, we compare our default system that employs the question-
aware Q-former (i.e. Q-former conditioned on the question) with the system that uses
question-agnostic Q-former (conditioned on fixed prompt "Caption this image: <image>").
For this experiment, we work only with image-based features (no text-based vision and
documents). The comparison results are presented in Table 6.7.

We draw the following conclusions:

• System with the question-aware Q-former outperforms the question-agnostic approach
by ∼ 1%. This demonstrates that question-aware Q-former do extract information
relevant to the image-question pair, which the question-agnostic Q-former may not
always select.

• Although the question-aware Q-former brings an increase in performance in compari-
son to the question-agnostic approach, this boost is slight (∼ 1%). We suspect this is
because the image understanding capabilities of ViT-g + Q-former vision modules are
already very powerful and can generate comprehensive image representation for most
of the image-question pairs from the OK-VQA dataset. Hence, only a small number
of image-question pairs additionally benefit from the question-aware approach. For
example, these could be samples for which the question is focused on the small regions
in the image background, which may be seen as irrelevant before seeing the question.

Main takeaway. The Q-former conditioned on the question outperforms the question-
agnostic Q-former by ∼ 1%. Therefore, although the Q-former’s access to the question
does bring valuable information for the answer generator, it is not the crucial feature of the
Q-former + ViT-g vision system.
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Table 6.7 Question-aware approach slightly improves performance. We compare two
image-based features-only systems: a question-aware Q-former and a question-agnostic
Q-former conditioned on the fixed prompt ’Caption this image: <image>’, to assess the
contribution of feeding the Q-former with the question.

LLM Question-Aware Q-former VQA

Flan-T5-XL
✗ 57.16
✓ 58.28

6.4 Regions of Interest

In our experiments so far, we have used only global image representation as continuous
vision features, in this section we include regional image representations (ROIs). We follow
the procedure from Section 4.5 for selecting the relevant image regions and processing them
further with a vision encoder and mapping module.

6.4.1 Different number of ROIs

We experiment with different numbers of ROIs extracted and passed to the answer generator
together with the global image representation. For this experiment, we work only with
image-based features (no text-based vision and documents). The results are presented in
Table 6.8.

We draw the following conclusions:

• In the case of a ViT-g + Q-former vision system (rows 5-8), adding only 1 region of
interest increases the VQA score by ∼ 1%. Further increase in the number of ROIs
does not boost performance. We consider it reasonable that a strong vision system,
such as ViT-g + Q-former, benefits the most from the addition of only one region of
interest. Namely, the questions in the OK-VQA dataset often focus on one region of
the image, and therefore, if the first ROI is chosen correctly (i.e. is the one relevant for
the question), providing the model with additional ROIs does not bring any relevant
information, but in contrast, it can diverge the focus, and negatively affect the system
performance (rows 7 and 8). That being said, we consider the boost in performance
after adding 1 ROI (row 6) as confirmation that our selection algorithm correctly
chooses relevant regions.

• On the other side, the ViT-L + MLP system (rows 1-4) achieved the best performance
with 4 ROIs. We suspect that the MLP system does not have the capability to extract
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comprehensive information from global image representation, and hence it benefits
from ROIs due to the general increase in the number of features they bring.

Table 6.8 Different number of ROIs compared to image only method. Image only method
refers to use of only global image representation; ROIs method stands for a number of
regional representations used together with global image representation. Document retriever,
and text-based vision are not used. The answer generator is Flan-T5-XL.

Row Vision Modules Method VQA

1

ViT-L + MLP

Image Only 47.02
1 2 ROIs 48.29
3 4 ROIs 49.18
4 6 ROIs 48.77

5

ViT-g + Q-former

Image Only 58.28
6 1 ROIs 59.37
7 2 ROIs 59.36
8 4 ROIs 59.02

6.4.2 Selection Methods Comparison

To further investigate whether the performance boost comes from an adequate selection
procedure or only from the increase in the number of visual features, we compare our method
with the "Evenly Split" method. Evenly Split refers to splitting the image to obtain the left
and right half in case of 2 ROIs, or top-left, top-right, bottom-left, and bottom-right in case
of 4 ROIs. The results are presented in Table 6.9. From this experiment, we conclude the
following:

• ViT-g + Q-former system (rows 4-6). The ROI method outperforms both Images
Only and Evenly Split methods. Using two evenly split image patches marginally
increases the system performance (∼ 0.3%), while adding two image patches selected
with our procedure increases the performance by ∼ 1%. This result solidifies the ROI
selection algorithm.

• ViT-L + MLP system (rows 1-3). In this case, the ROI approach very slightly
outperforms the Evenly Split method (+∼ 0.3%). We can also notice that both Evenly
Split and ROI methods are notably better than the Image Only approach (∼ 2%), which
was not the case for ViT-g + Q-former. Therefore, we conclude that less powerful
vision system, such as ViT-L + MLP, benefits more from the increased number of
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vision features in general than specifically from ROIs. This confirms our assumption
from the previous experiment.

Table 6.9 ROIs method compared with image only and evenly split methods. Image only:
global image representations; Evenly split and ROIs methods stand for use of global image
representation with evenly split image patches or detected regions of interest, respectively.
Document retriever, and text-based vision are not used. The answer generator is Flan-T5-XL.

Vision Modules Method VQA

ViT-L + MLP
Image Only 47.02
4 Evenly Split 48.87
4 ROIs 49.18

ViT-g + Q-former
Image Only 58.28
2 Evenly Split 58.60
2 ROIs 59.36

6.4.3 Contribution of text-based features

Finally, we examine the contribution of text-based features after including ROIs. We compare
systems with and without text-based features, before and after the inclusion of ROIs. The
results are presented in Table 6.10, and our conclusions are the following:

• In the first row, we see the results before integrating ROIs. As discussed in Section 6.2.2,
in this case, adding text-based features improves the VQA score by ∼ 1%. However,
after we enhanced the image-based features by including the regional representations
(second row), the text-based features did not contribute to the system performance (the
VQA score is the same with and without text-based vision). Therefore, we consider
text-based vision redundant to image-based vision when ROIs are used.

We explain this result as follows: the objects and their attributes that are part of textual
image description are generated using the same object recognition model employed to
select potential ROIs. Therefore, the system with both types of features contains:

1. textual descriptions of all detected objects from the image,

2. continuous representations of the subset of these objects that are recognised as
ROIs (two in this case).
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Therefore, if the selected ROI subset is sufficient to answer the question, the tex-
tual description of the remaining objects provided by the text-based vision may be
unnecessary. Once again, this validates our selection procedure.

Table 6.10 Contribution of text-based features after inclusion of ROIs. Image-only
approach refers to using only global image representation; Image + 2ROIs stands for using
both global and regional image representation. Main conclusion: text-based features (OCR,
image captioning, and object detection) do not contribute when ROIs are used. Document
retriever is not used (NoDPR). The answer generator is Flan-T5-XL.

Vision Modules Method
VQA

w/o text-based f. w/ text-based f.

ViT-g + Q-former
Image Only 58.28 59.29
Image + 2 ROIs 59.36 59.36

Main takeaways: Incorporating regional image representations improves image un-
derstanding. Selecting regions of interest based on the question is superior to using evenly
divided image patches. For the Q-former system, adding text-based features (in the form
proposed by RA-VQA) becomes unnecessary when using the ROI method.

With this experiment, we conclude the discussion on the results from our main line of
work: enhancing image understanding of the KB-VQA system by incorporating continu-
ous image representations (global and regional). In the next section, we will present the
experiments relevant to the MLP mapping module pre-training.
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6.5 Pre-training of Mapping Network

In this section, we turn our attention to the MLP mapping module. In all of the previous
experiments, when used, the MLP mapping network was pre-trained by us. Here, we detail
the results of the pre-training.

Setup. The two-layer MLP module is pre-trained on the captioning task, as described
in Section 4.3. This step aims to obtain good starting initialisation of the mapping module
for its further fine-tuning inside the KB-VQA framework. In order to learn the appropriate
mapping between the image embedding outputs of the vision encoder and the LM embedding
space, our MLP is pre-trained using the same vision encoder and LM configurations as in the
KB-VQA framework. In these experiments, both the ViT-L vision encoder and LM model
are frozen, while the MLP is trained from scratch.

The test set loss values of the Conceptual Captions dataset are given in Table 6.11 for
three different language models. The image embeddings are mapped into a sequence of 10
tokens fed to the LM. The two Flan-T5 models are prompted with the "Caption this image:
<image>", where <image> is a placeholder for image tokens obtained with the mapping
network. The T5-Large LM is fed with only image tokens, without an instruction prompt, as
this model is not instruction-finetuned in contrast to the Flan model family.

Table 6.11 Pre-training of MLP mapping network on Conceptual Captions. The image
is described with 10 tokens, and the prompt: "Caption this image: <image>" is used for
Flan-T5 models.

LLM # Parameters (M) Test loss

T5-Large 770 2.79
Flan-T5-Large 780 2.62
Flan-T5-XL 3000 2.42

Main insights. The loss values reported in Table 6.11 show that the LM with the largest
number of parameters (Flan-T5-XL) has the best ability to understand the image tokens and
generate the image captions. Additionally, the Flan-T5-Large outperforms T5-Large, even
though the model size is similar. This confirms conclusions from Chung et al. (2022), which
favour instruction fine-tuned versions of T5 models, Flan-T5.

6.5.1 Experiment with different numbers of image tokens

We experiment with the number of image tokens to test if we can improve image understand-
ing by using more than 10 token embeddings for the image representation. The results for 10
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and 16 image tokens are provided in Table 6.12. We observe reduce in the loss for 16 image
tokens, concluding that more information on the image is successfully propagated to the LM
in that case. The reduction in loss can also be due to the significant increase in the number
of parameters of the mapping network (∼ 2.5×) which may give the MLP more capacity to
successfully bridge the vision encoder and LM.

However, we decide to keep the image representation to 10 tokens as a trade-off between
the increased number of parameters and the reported loss decrease.

Table 6.12 Increase in number of image tokens slightly improves performance. Perfor-
mance of two-layer MLP mapping network on Conceptual Captions. Prompt: "Caption this
image: <image>".

LLM Image tokens (n) # MLP parameters (M) Test loss

Flan-T5-Large
10 56.4 2.62
16 140.5 2.57

Flan-T5-XL
10 218.6 2.42
16 550.5 2.39

6.5.2 Pre-training of mapping network is important

Finally, we demonstrate the importance of mapping module pre-training. To do so, we train
the KB-VQA system with the random initialised MLP network. We then compare it with the
KB-VQA system performance reported in Section 6.2.1, which employs pre-trained MLP.
The comparison is given in Table 6.13.

Table 6.13 Pre-training of mapping network is important. OK-VQA performance using
only image-based features with and without pre-training of MLP mapping network (MN) on
Conceptual Captions (Con. Cap.).

LM Pre-trained MN Con. Cap. Loss VQA

Flan-T5-Large
✗ - 31.46
✓ 2.62 43.13

Flan-T5-XL
✗ - 39.58
✓ 2.42 47.02

Table 6.13 shows improvement of VQA score by ∼ +12% points for Flan-T5-Large
and by ∼+7% points for FLan-T5-XL based system, demonstrating the advantage of using
pre-trained mapping module. This result confirms that our mapping network has successfully
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learned the alignment between vision and language modalities on captioning task, which can
be a valuable starting point for further fine-tuning in the KB-VQA system.

Key takeaway. The pre-training of the mapping module plays an important role in
boosting the performance of the KB-VQA system.

6.6 Main Results

We conclude this chapter by highlighting the main conclusions from our experiments.

Integration of vision encoder:

• Our framework, RA-VQA-Vis, achieves 62.56% VQA score on the OK-VQA dataset,
surpassing RA-VQA baseline by large margin (∼ 8%). Our 4.5B model outperforms
many systems that use very large models, such as GPT-3 (175B), demonstrating the
importance of powerful vision understanding for the KB-VQA task. (Section 6.1)

• The visual features obtained with ViT-g vision encoder and Q-former mapping module
bring a significantly larger gain in VQA score in comparison to the text-based vision
approach (∼ 9% gap). Combining these two image representations further improves
system performance. (Sections 6.2.1 and 6.2.2)

• The addition of the document retriever component further increases the performance
of the whole framework. (Section 6.2.3 and 6.2.4)

Question-aware Q-former:

• The Q-former conditioned on the question asked outperforms the question-agnostic
Q-former by ∼ 1%. Therefore, although the Q-former’s access to the question does
bring valuable information for the answer generator, it is not the crucial feature of the
Q-former + ViT-g vision system.

Regions of Interest:

• Including regional image representations increases the Q-former system performance
by ∼ 1%. Using only one ROI shows to be sufficient in this case, validating our
selection criteria. (Section 6.4.1)

• The ROI method outperforms Evenly Split and Image Only methods. (Section 6.4.2)

• Our experiments show that the use of text-based vision (as described in RA-VQA) is
redundant after the inclusion of ROIs. (Section 6.4.3)
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The MLP mapping module pre-training

• The pre-training of the mapping module plays an important role in the KB-VQA
system. Using pre-trained MLP boosts the VQA score core by ∼ +12% points for
Flan-T5-Large and by ∼+7% points for FLan-T5-XL LM.

In the next chapter, we conclude the thesis.



Chapter 7

Conclusion

In this thesis, we have investigated the contribution of continuous image representation as
an information source for the task of Knowledge-Based VQA. Firstly, we have proposed
the integration of a vision encoder into the RA-VQA framework, the baseline system that
originally relays only on a textual description for image understanding. Our experiments show
that including continuous vision features result in a more comprehensive image representation,
surpassing a text-based vision approach and significantly boosting system accuracy.

To further improve image understanding, we have proposed using question-aware Q-
former as a mapping module rather than the commonly used MLP. The Q-former is condi-
tioned on the given question and therefore aims to extract the visual features most relevant to
answering the question asked. Our experiments show that the ViT-g vision encoder paired
with the Q-former significantly outperforms the vision system with ViT-L vision encoder and
relatively simple MLP mapping network. The notable difference in the performance can be
credited to both the use of a more powerful vision encoder and the use of a more complex
mapping module tailored for the VQA task.

Furthermore, we propose the use of regional image representation in addition to the
global image features. We develop an algorithm for selecting the image regions of interest
(ROIs) relevant to the asked question. Our experiments suggest that our region-based
approach outperforms the whole image-based and evenly-split approaches, confirming that
our selection procedure does retrieve relevant image regions.

In addition to our main line of work, we form the pipeline for pre-training the MLP
mapping module on captioning task. In our experiments, we demonstrated that such a
pre-training of the mapping module is an important step towards the successful alignment of
vision and language modalities.

To conclude, we proposed the RA-VQA-Vis, a system built on top of RA-VQA and
designed to improve its image understanding. Our best-performing model, RA-VQA-Vis
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(Q-former, Flan-T5-XL), achieves 62.56% VQA score on the OK-VQA dataset, surpassing
our baseline (RA-VQA) by large margin (∼ 8%). The RA-VQA-Vis (4.5B) outperforms
many systems that use very large models, such as GPT-3 (175B), taking 4th place on the
OK-VQA leader-board (Section 6.1), and therefore demonstrating the importance of powerful
vision understanding for the KB-VQA task.

7.1 Future Work

Potential directions for future research include:

• Continuous vision representations for external knowledge retrieval. The RA-
VQA-Vis uses only textual features and the question to retrieve relevant external
knowledge. The document retrieval model can be enhanced by integrating continuous
image representation in the DPR retrieval procedure.

• Textual description of detected object complemented with continuous represen-
tations. We currently follow the prompt template from Figure 4.6, where the ROIs
are passed together with global image representations at the beginning of the prompt.
Inspired by PaLM-E (Driess et al., 2023), we can modify the prompt to pass the textual
descriptions of each object next to its accompanying continuous representation. In this
way, the LM will be fed with structured data.

• Systematic Error Analyses. Currently, there is no automatic approach for error
analysis that classifies OK-VQA examples based on their emphases such as image
understanding, domain knowledge, or general reasoning. Developing an automated
method to categorize the OK-VQA dataset examples in such categories would allow
us to refine our understanding of the system’s individual component performance.



References

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A.,
Millican, K., Reynolds, M., et al. (2022). Flamingo: a visual language model for few-shot
learning. Advances in Neural Information Processing Systems, 35:23716–23736.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901.

Chen, X., Djolonga, J., Padlewski, P., Mustafa, B., Changpinyo, S., Wu, J., Ruiz, C. R.,
Goodman, S., Wang, X., Tay, Y., et al. (2023a). Pali-x: On scaling up a multilingual vision
and language model. arXiv preprint arXiv:2305.18565.

Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A., Padlewski, P., Salz, D., Goodman, S.,
Grycner, A., Mustafa, B., Beyer, L., Kolesnikov, A., Puigcerver, J., Ding, N., Rong, K.,
Akbari, H., Mishra, G., Xue, L., Thapliyal, A. V., Bradbury, J., Kuo, W., Seyedhosseini,
M., Jia, C., Ayan, B. K., Ruiz, C. R., Steiner, A. P., Angelova, A., Zhai, X., Houlsby, N.,
and Soricut, R. (2023b). PaLI: A jointly-scaled multilingual language-image model. In
The Eleventh International Conference on Learning Representations.

Cho, J., Lei, J., Tan, H., and Bansal, M. (2021). Unifying vision-and-language tasks via text
generation. In International Conference on Machine Learning, pages 1931–1942. PMLR.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, E., Wang, X.,
Dehghani, M., Brahma, S., et al. (2022). Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang, W., Li, B., Fung, P., and Hoi, S.
(2023). Instructblip: Towards general-purpose vision-language models with instruction
tuning. arXiv preprint arXiv:2305.06500.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.



References 65

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A., Tompson,
J., Vuong, Q., Yu, T., et al. (2023). Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q., et al.
(2020). Pp-ocr: A practical ultra lightweight ocr system. arXiv preprint arXiv:2009.09941.

Eichenberg, C., Black, S., Weinbach, S., Parcalabescu, L., and Frank, A. (2021). Magma–
multimodal augmentation of generative models through adapter-based finetuning. arXiv
preprint arXiv:2112.05253.

Falcon, W. and The PyTorch Lightning team (2019). PyTorch Lightning.

Gan, Z., Li, L., Li, C., Wang, L., Liu, Z., Gao, J., et al. (2022). Vision-language pre-training:
Basics, recent advances, and future trends. Foundations and Trends® in Computer
Graphics and Vision, 14(3–4):163–352.

Gao, F., Ping, Q., Thattai, G., Reganti, A., Wu, Y. N., and Natarajan, P. (2022a). A thousand
words are worth more than a picture: Natural language-centric outside-knowledge visual
question answering. arXiv preprint arXiv:2201.05299.

Gao, F., Ping, Q., Thattai, G., Reganti, A., Wu, Y. N., and Natarajan, P. (2022b). Transform-
retrieve-generate: Natural language-centric outside-knowledge visual question answering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5067–5077.

Gao, F., Ping, Q., Thattai, G., Reganti, A., Wu, Y. N., and Natarajan, P. (2022c). Transform-
retrieve-generate: Natural language-centric outside-knowledge visual question answering.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5067–5077.

Gui, L., Wang, B., Huang, Q., Hauptmann, A., Bisk, Y., and Gao, J. (2021). Kat: A knowledge
augmented transformer for vision-and-language. arXiv preprint arXiv:2112.08614.

Guo, D., Xu, C., and Tao, D. (2021). Bilinear graph networks for visual question answering.
IEEE Transactions on neural networks and learning systems.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen,
W. (2022a). LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations.

Hu, Y., Hua, H., Yang, Z., Shi, W., Smith, N. A., and Luo, J. (2022b). Promptcap: Prompt-
guided task-aware image captioning. arXiv preprint arXiv:2211.09699.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z., and
Duerig, T. (2021). Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pages 4904–4916.
PMLR.

Jiang, H., Misra, I., Rohrbach, M., Learned-Miller, E., and Chen, X. (2020). In defense of
grid features for visual question answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10267–10276.



References 66

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-t.
(2020). Dense passage retrieval for open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6769–6781. Association for Computational Linguistics.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA.

Li, G., Duan, N., Fang, Y., Gong, M., and Jiang, D. (2020a). Unicoder-vl: A universal
encoder for vision and language by cross-modal pre-training. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 11336–11344.

Li, G., Wang, X., and Zhu, W. (2020b). Boosting visual question answering with context-
aware knowledge aggregation. In Proceedings of the 28th ACM International Conference
on Multimedia, pages 1227–1235.

Li, J., Li, D., Savarese, S., and Hoi, S. (2023). Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597.

Li, L. H., Yatskar, M., Yin, D., Hsieh, C., and Chang, K. (2019). Visualbert: A simple and
performant baseline for vision and language. CoRR, abs/1908.03557.

Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F.,
et al. (2020c). Oscar: Object-semantics aligned pre-training for vision-language tasks. In
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXX 16, pages 121–137. Springer.

Li, Y., Liang, F., Zhao, L., Cui, Y., Ouyang, W., Shao, J., Yu, F., and Yan, J. (2021).
Supervision exists everywhere: A data efficient contrastive language-image pre-training
paradigm. arXiv preprint arXiv:2110.05208.

Lin, W. and Byrne, B. (2022). Retrieval augmented visual question answering with outside
knowledge. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 11238–11254. Association for Computational Linguistics.

Lin, Y., Xie, Y., Chen, D., Xu, Y., Zhu, C., and Yuan, L. (2022). Revive: Regional visual
representation matters in knowledge-based visual question answering. Advances in Neural
Information Processing Systems, 35:10560–10571.

Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). Vilbert: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. Advances in neural information
processing systems, 32.

Luo, M., Zeng, Y., Banerjee, P., and Baral, C. (2021). Weakly-supervised visual-retriever-
reader for knowledge-based question answering. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 6417–6431. Association
for Computational Linguistics.



References 67

Marino, K., Chen, X., Parikh, D., Gupta, A., and Rohrbach, M. (2021). Krisp: Integrating
implicit and symbolic knowledge for open-domain knowledge-based vqa. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14111–
14121.

Marino, K., Rastegari, M., Farhadi, A., and Mottaghi, R. (2019). Ok-vqa: A visual question
answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pages 3195–3204.

Mokady, R., Hertz, A., and Bermano, A. H. (2021). Clipcap: Clip prefix for image captioning.
arXiv preprint arXiv:2111.09734.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural
language supervision. In International conference on machine learning, pages 8748–8763.
PMLR.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28.

Shao, Z., Yu, Z., Wang, M., and Yu, J. (2023). Prompting large language models with
answer heuristics for knowledge-based visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14974–14983.

Sharma, P., Ding, N., Goodman, S., and Soricut, R. (2018). Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2556–2565.

Singh, A., Natarajan, V., Shah, M., Jiang, Y., Chen, X., Batra, D., Parikh, D., and Rohrbach,
M. (2019). Towards vqa models that can read. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 8317–8326.

Su, W., Zhu, X., Cao, Y., Li, B., Lu, L., Wei, F., and Dai, J. (2019). Vl-bert: Pre-training of
generic visual-linguistic representations. arXiv preprint arXiv:1908.08530.

Tan, H. and Bansal, M. (2019). LXMERT: Learning cross-modality encoder representations
from transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5100–5111, Hong Kong, China. Association for
Computational Linguistics.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

Tsimpoukelli, M., Menick, J. L., Cabi, S., Eslami, S., Vinyals, O., and Hill, F. (2021). Multi-
modal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212.



References 68

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., and Cao, Y. (2021). Simvlm: Simple visual
language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu,
C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45. Association for Computational Linguistics.

Wu, J., Lu, J., Sabharwal, A., and Mottaghi, R. (2022). Multi-modal answer validation for
knowledge-based vqa. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pages 2712–2721.

Yang, Z., Gan, Z., Wang, J., Hu, X., Lu, Y., Liu, Z., and Wang, L. (2022). An empirical study
of gpt-3 for few-shot knowledge-based vqa. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 3081–3089.

Yu, Z., Yu, J., Cui, Y., Tao, D., and Tian, Q. (2019). Deep modular co-attention networks
for visual question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 6281–6290.

Yu, Z., Yu, J., Xiang, C., Fan, J., and Tao, D. (2018). Beyond bilinear: Generalized
multimodal factorized high-order pooling for visual question answering. IEEE transactions
on neural networks and learning systems, 29(12):5947–5959.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. (2022). Scaling vision transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12104–12113.

Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., and Gao, J. (2021).
Vinvl: Revisiting visual representations in vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5579–5588.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D.,
Xing, E., et al. (2023). Judging llm-as-a-judge with mt-bench and chatbot arena. arXiv
preprint arXiv:2306.05685.

Zhu, D., Chen, J., Shen, X., Li, X., and Elhoseiny, M. (2023). Minigpt-4: Enhancing
vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592.



Appendix A

ROI Selection Algorithm

The pseudo-code of the ROIs selection algorithm is given in the Algorithm 1.

Algorithm 1 ROI Selection
1: Input: Potential ROIs, Question Q, Threshold T , Required number NROI
2: Output: Selected ROIs
3: Sort Potential ROIs by bounding box size in descending order
4: selected_ROIs = []
5: Prioritize ROIs with class in question Q
6: for each PotentialROI do
7: if class(PotentialROI) is in Q then
8: Append PotentialROI to selected_ROIs
9: end if

10: end for
11: Select ROIs based on confidence if needed
12: for each PotentialROI not in selected_ROIs do
13: if confidence(PotentialROI) > T then
14: Append PotentialROI to selected_ROIs
15: end if
16: end for
17: Fill up to NROI if needed
18: while length of selected_ROIs < NROI do
19: Append unselected PotentialROI to selected_ROIs
20: end while
21: return selected_ROIs



Appendix B

Qualitative Comparison of Vision Systems

In Figure B.1 we show one OK-VQA example on which ViT-g + Q-former vision system
outperforms ViT-L + MLP system. Even though the caption is not informative enough to
answer the question, and retrieved documents (based on the question and text-based vision)
provide misleading information, the system with the ViT-g vision encoder and Q-former
mapping module predicts the correct answer.

Q: What breed of dog is shown?

Caption: A group of dogs looking trough the wooden fence. 

Objects: brown white standing dog, brown floppy long ear,
brown dark black eye , black nose , wood metal brown

fence... 

Document 1: can you name this patriotic dog breed that is
shown here? boston terrier rottweiler yorkshire terrier...

Document 2: see below for complete list of anatolian 
shepherd dog breed characteristics!anatolian shepherd dog

ViT-g + Q-former system prediction:
Beagle

ViT-L + MLP system prediction:
Shepherd

Insight: Text-based vision is not sufficent to answer the question. The retrieved documents provide
missleading information. However, ViT-g + Q-former system predicts the correct answer

deomstrating strong vision abilites. 

Fig. B.1 Qualitative comparison of two proposed vision systems. Even though the caption
is not informative enough to answer the question, and retrieved documents (based on the
caption) provide misleading information, the ViT-g + Q-former vision system predicts the
correct answer demonstrating its superior capabilities in comparison to ViT-L + MLP system.
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