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Abstract

In the field of machine learning, ensuring the security and reliability of models is crucial,
especially in critical sectors such as healthcare, finance, and security. This thesis investigates
the challenges posed by backdoor attacks and evaluates unlearning strategies designed to
mitigate these effects under a standardized framework, which are categorized into two groups:
those requiring only clean samples and those utilizing poisoned samples.

Our systematic evaluation explores the efficacy of unlearning strategies across varying
poisoning ratios, detection accuracies, and different backdoor attacks, reflecting real-world
uncertainties. The results highlight significant variability in the effectiveness of unlearning
methods, emphasizing the importance of context-sensitive implementation. Key findings
reveal that Poisoned Sample Sensitivity (PSS) is highly influenced by the accuracy of
the samples provided for unlearning, while Anti-Backdoor Learning (ABL) can perform
effectively even with small, inaccurate unlearning sample sets. Additionally, Neural Attention
Distillation (NAD) and Adversarial Neuron Pruning (ANP) are effective with limited clean
samples, whereas IBAU stability is highly dependent on hyperparameter tuning.

This research contributes to the development of more robust neural network models
and offers practical guidance on the strategic application of unlearning methods, enhancing
machine learning security against sophisticated backdoor attacks.
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Chapter 1

Introduction

The integrity and reliability of machine learning models play an important role in the world
of machine learning, particularly in applications involving critical sectors such as healthcare,
finance, and security. However, the vulnerability of these models to adversarial attacks,
specifically backdoor attacks, poses a significant challenge. A backdoor attack involves
polluting the training data with slightly modified samples that embed hidden behaviors (also
known as triggers) in a model. This impacts the model, causing it to under-perform and
behave in an unintended way chosen by the attacker when triggers are present in the input,
while performing normally on other inputs. Such actions can affect the model’s utility and
erode trust in automated decisions.

This thesis explores the efficiency and flexibility of various unlearning methods designed
to minimize the impact of malicious backdoors without compromising model performance.
We test these methods against different types of backdoor attacks under controlled conditions
using a standardized evaluation framework. Multiple attack scenarios have been developed
in order to represent realistic and challenging environments.
The study is structured into two main stages:

• Impact of Identification on Unlearning: Initially, to identify potential backdoor
samples, a synthetic method was utilized in which a fixed set of backdoored sam-
ples were provided to every defense method. This identification stage needs to be
standardized to set the baseline for the effectiveness of the unlearning methods in
recognizing and mitigating the influence of corrupted data. The impact of identification
on the unlearning methods specifically towards its robustness is assessed by providing
variations in the samples identified.

• Evaluation of Unlearning Methods: Different unlearning strategies are implemented
and assessed. We divide the unlearning methods into two categories:
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1. Those that require only clean samples for unlearning, referred to as CBU (Clean
samples Based Unlearning). These include:

– Fine-Tuning on clean data (CFN)

– Neural Attention Distillation (NAD)

– Adversarial Neuron Pruning (ANP)

– Adversarial Unlearning via Implicit Hypergradient (IBAU)

– Catastrophic Forgetting (CFU)

2. Those that require poisoned samples for unlearning, referred to as PBU (Poisoned
Sample Based Unlearning). These include:

– Anti-Backdoor Learning (ABL)

– Selective Synaptic Dampening (SSD)

– Poisoned Sample Sensitivity (PSS)

– Naïve Remove and Retrain (RNR)

In order to understand how the knowledge of the extent of data corruption affects the effective-
ness of unlearning strategies, the thesis investigates the impact of varying the poisoning ratio.
This helps to assess the robustness of each method under different levels of threat severity.
This variation in the poison ratio is crucial as it reflects real-world uncertainty. In general,
defenders don’t know the specific attack deployed against them and its level of severity,
making it difficult to accurately identify the extent of data poisoning in practical applications.
Moreover, there is rarely a guarantee that all poisoned data can be accurately detected in the
identification phase. Therefore, it is essential to understand whether unlearning methods
are capable of actually removing the backdoors installed by poisoned examples, even if
the upstream detection methods fail to perfectly separate poisoned from clean examples.
This aspect of the research plays a vital role in developing unlearning strategies that are not
only effective under controlled conditions but also reliable in less predictable and realistic
environments.

Ultimately, the aim is to evaluate the effectiveness of the unlearning methods under
different conditions including how different identification rates, poisoning ratios and different
attacks influence the unlearning outcomes. This comprehensive analysis is being carried out
to support the development of more efficient neural network models for image classification
that can resist sophisticated backdoor attacks and provide guidance to the use of existing
unlearning methods, supplementing the field of secure machine learning.



Chapter 2

Literature Review

The integrity of machine learning models plays a vital part as they are being increasingly
deployed in sensitive and high-stakes domains such as healthcare, finance, and national secu-
rity. A significant threat to these systems is the potential for backdoor attacks, where models
corrupted during training respond to specific inputs with incorrect outputs, as elaborated by
(Gu et al., 2019). This manipulation typically arises from subtly altering the training data
to create a malicious behaviour under specific conditions known as data poisoning which is
often undetectable during normal operations.

2.1 Types of Backdoor Attacks

Backdoor attacks can be broadly categorized based on their trigger and payload strategies.
While the following list is not exhaustive, it covers some of the most common types of
backdoor attacks:

• Patch-based triggers: Patch triggers are small, often perceptible patches added
to images or other input types that activate the backdoor. The simplicity of these
triggers makes them easy to implement but somewhat easier to detect compared to
more sophisticated methods.(Gu et al., 2019) discuss several instances of patch-based
backdoor attacks where the triggers are visible yet designed to be non-obvious to
human observers. For example, stickers or shapes embedded in an image (like a blue
square at the bottom of an image), or specific shapes(like a particular icon).

• Pattern-based triggers: These are more complex triggers that involve patterns which
can blend seamlessly with the natural features of the input data, making it difficult
for the model to detect. These triggers may alter the style of inputs, the texture, or
embed imperceptible clues that are challenging to distinguish from normal variations
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in data. For example, a watermark pattern, a barcode-like pattern, or even a sequence
of colored pixels forming a grid pattern that are embedded in the image, such as a
sample explained by authors in (Chen et al., 2017).

• Invisible triggers: As explored by (Gao et al., 2020) in "Backdoor Attacks and
Countermeasures on Deep Learning: A Comprehensive Review," and in (Li et al.,
2020), (Liao et al., 2018) these triggers are typically small, imperceptible changes to
the input, such as slight pixel modifications that are invisible to the human eye but
recognizable by the model. For example, a slight change in pixel intensity, subtle
perturbations, or a tiny noise added as background.

Additional categories of backdoor attacks exist, such as semantic triggers (which use naturally
occurring features in the input) as explained in (Wang et al., 2023) and dynamic triggers
(which change based on certain conditions) as explained by authors in (Salem et al., 2022).
In this thesis, we explore three specific types of backdoor attacks from each of the above
categories, as they represent a diverse range of trigger mechanisms and challenges for
detection and unlearning. These are listed below and also are visualized in Figure 4.1.

• Blend Signal Attack: In this approach, the input image is blended at a low opacity
with a predefined signal pattern, such as a checkerboard or noise pattern. The blend is
subtle yet effective in triggering the backdoor when the model processes the image, as
detailed in the methodologies found in (Chen et al., 2017), where they explore various
blending techniques to optimize invisibility and trigger effectiveness.

• Patch Attack: This attack utilizes a visible but discreet patch that is applied to a
specific region of the input image, implying that the patch is usually smaller. When
applied with a certain level of transparency and stealthiness (achieved by the choice
of the patch’s location), this patch can alter the underlying content in a way that
triggers the model’s backdoor mechanism during inference, yet remains unnoticeable
to human observers. This concept is explained in the works of (Gu et al., 2019), who
demonstrate the application of semi-transparent patches in real-world scenarios to test
model vulnerabilities.

• Frequency Domain Attack: This is a sophisticated attack that can modify the input
image in the frequency domain. It alters specific frequencies in a way that is unno-
ticeable to the naked eye but detectable by the model. This contrasts with more direct
pixel-space manipulations, as the frequency domain approach modifies the Discrete
Cosine Transform (DCT) coefficients of the image, affecting its underlying frequency
components without visible changes to the pixel values. This method, as elaborated
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by (Wang et al., 2022), allows the trigger to be embedded deeply into the image’s
properties, evading typical visual inspection and some automated detection methods.

Data manipulation is a common approach among the various methods used to execute these
attacks. It involves the alteration of training data to embed the backdoor without noticeably
affecting the data’s appearance. (Li et al., 2023) in "A Survey on Backdoor Attacks in Deep
Learning" provide a comprehensive overview of how attackers can inject backdoors by subtly
poisoning the training dataset. This poisoning can occur through methods like label flipping,
which involves the attacker changing the labels of training samples to a specific target label
thereby associating normal inputs with incorrect outputs when triggered, or via more direct
manipulations which can introduce the previously mentioned triggers into the data.

This thesis specifically focuses on data manipulation attacks, which are not only common
but also represent a central challenge for unlearning and mitigation strategies. The manipu-
lated data by the attackers leads to creating correlations in the model which are difficult to
identify and remove. This requires sophisticated defensive techniques that can effectively
detect and reverse these manipulations.

2.2 Defense Mechanism

Enhancing the training process to resist poisoning or detecting and mitigating backdoors
in trained models can help model trainers or defenders defend against such attacks. The
general literature categorizes these strategies into proactive and reactive measures. Proactive
strategies, such as robust training techniques, attempt to prevent the model from learning
malicious behaviors, whereas reactive strategies aim to detect and remove backdoors after the
model has been trained. (Chen et al., 2022), provides a general overview of these techniques,
each with its limitations and dependencies, such as the necessity for clean validation data
to ensure the efficacy of the mitigation process. It is important to note that the list here
is representative rather than exhaustive. There are numerous variations and developments
within each category that continue to evolve, reflecting the dynamic nature of the field. In this
thesis, the focus is specifically on reactive strategies, particularly those involving backdoor
unlearning.

2.3 Unlearning

The study "Corrective Machine Unlearning" introduced by the authors in (Goel et al., 2024)
offers a comprehensive examination of unlearning techniques within machine learning. Un-
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learning is pivotal across various practical applications that might necessitate the removal or
modification of learned behaviors or data, apart from scenarios involving adversarial attacks
like backdoors.

Unlearning for Diverse Purposes
The authors identify several application areas for research into unlearning as follows,

• Privacy Compliance: In order to safeguard personal information, the model should
forget data in compliance with privacy policies or user requests.

• Security Measures: Removing vulnerabilities or potential backdoors that could pose
a threat to the system’s security.

• Data Management: Adjusting learned models in response to changes in the underlying
data distribution or correcting mistakes in data ingestion.

In their paper, (Goel et al., 2024) analyze several unlearning strategies that are broadly
applicable to these scenarios. The study meticulously explores how different techniques
can be adapted to efficiently forget specific types of data or behaviors, thus enhancing the
flexibility and security of machine learning models. For the purposes of this thesis, we focus
solely on backdoor unlearning, and hence, only two particular unlearning methods from this
study are taken into interest: Catastrophic Forgetting and Selective Synaptic Dampening, as
they are based on unlearning adversarial attacks such as backdoors by using samples of clean
and poisoned data. They are further introduced in the unlearning strategies below.

2.4 Backdoor Unlearning

Given the advanced nature of evolving attacks, the concept of backdoor unlearning is
emerging as a critical area of research. The ultimate aim of unlearning strategies is to remove
the model’s dependency on backdoor triggers without compromising its performance on
legitimate tasks. Unlearning backdoor attacks in neural networks involves two primary
strategies: unlearning with identified backdoor samples (PBU methods) and unlearning
with only clean data (CBU methods), as detailed below. These strategies employ different
methodologies to address and mitigate the effects of backdoor triggers embedded within a
model.
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2.4.1 Unlearning with Identified Backdoor Samples

Initially, this approach focuses on detecting the poisoned samples and subsequently isolating
them from the clean samples. These methods retrain the model to disregard the malicious
cues introduced by the poisoned samples after identifying the data instances that have been
tampered by an attacker. We select a subset of such examples to study.

1. Remove and Retrain: This straightforward approach involves retraining the model
from scratch or from a specific checkpoint after removing the identified poisoned
samples from the training dataset. This is performed iteratively for a defined number
of epochs or until a particular result threshold(low ASR) is met and if the threshold is
not met then would stop after particular epochs. This method is considered a baseline
standard due to its simplicity.

2. Poisoned Sample Sensitivity: As described by (Chen et al., 2022) in "Effective Back-
door Defense by Exploiting Sensitivity of Poisoned Samples," this method leverages the
inherent sensitivity of poisoned samples to specific transformations or perturbations to
detect anomalies in how samples respond to changes, aiding in distinguishing between
poisoned and clean samples. The unlearning method involves initially performing un-
learning using gradient descent with a negative cross-entropy loss on poisoned samples,
followed by relearning with clean samples which also uses gradient descent but with a
standard cross-entropy loss. This iterative process, repeated for a defined number of
epochs, effectively removes backdoor influences and maintains high performance on
clean data. This method was chosen for its feasibility in implementation and promising
results.

3. Anti-Backdoor Learning: Discussed in (Li et al., 2021a), this method aims to
neutralize the backdoor by reinforcing the model’s training on identified clean samples
while deprioritizing or modifying the influence of detected poisoned samples. This
method applies a gradient ascent approach for unlearning by processing poisoned
samples. The unlearning and testing phases are conducted iteratively until satisfactory
results are achieved or a predefined number of epochs are completed. As an extension,
which is suggested in the codebase but not explicitly detailed in the original paper, the
model undergoes finetuning with a clean dataset before any unlearning iterations begin.
This additional step aims to restore or enhance the model’s accuracy on legitimate,
non-poisoned data.

4. Catastrophic Forgetting: Detailed by (Goel et al., 2022) in their study on adversarial
evaluations for inexact machine unlearning, this method exploits the neural network’s
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tendency to forget previously learned information when contradictory new information
is introduced. This method finetunes the last k layers on the clean dataset to help
the model forget the poisoned data. This approach is deemed necessary because
completely retraining the entire model to delete specific data points is computationally
expensive and often impractical. In (Goel et al., 2024), all layers were considered for
modification, which essentially aligned with a comprehensive finetuning approach.
However, we focus on the strategy of inexact unlearning as detailed in the current
study, optimizing computational resources and practical applicability.

5. Selective Synaptic Dampening: Explored by the authors in their work (Foster et al.,
2024) on fast machine unlearning without retraining, this method selectively weakens
synaptic connections associated with the backdoor, enabling the network to forget
the backdoor behaviors without extensive retraining. In this method, the relative
importance of the parameter is determined by comparing the importance of a parameter
to the poisoned set against the training set. This is used to determine the extent of
dampening on the parameter which is performed by scaling down the parameter by its
corresponding dampening constant. The higher the importance of the poisoned dataset,
the more it is dampened. This method was particularly, chosen because it does not
require a model retraining approach.

2.4.2 Unlearning with Clean Data Only

Some methods focus on using clean data to dilute or overwrite the backdoor’s effects, which
is beneficial in scenarios where identifying poisoned samples is not feasible. These methods
assume the availability of sufficient clean data, which might not always be possible in
real-world applications.

1. Fine Tune on Clean Data: This naive approach aims to reduce the influence of
the backdoor by reinforcing the model’s learning on clean examples, which involves
continuing the training of the affected model using only verified clean data. This
method performs finetuning on the model with the clean data for a certain predefined
number of epochs or until a satisfactory threshold(low ASR) result is obtained and if
the threshold is not met then would stop after particular epochs.

2. Adversarial Unlearning via Implicit Hypergradient: As described by (Zeng et al.,
2021), in "Adversarial Unlearning of Backdoors via Implicit Hypergradient," this
technique adjusts the model’s parameters subtly using adversarial training concepts
to counter the learned backdoor behaviors without the need to identify the poisoned
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samples explicitly. For the implementation, perturbations are generated and optimized
to maximize a specially designed loss function that encourages the model to forget
backdoor influences. This involves subtly tweaking the image data to simulate po-
tential backdoor activations and then adjusting the model to be less sensitive to these
manipulations. During each epoch, the method utilizes a nested optimization technique:
the inner optimizer refines the perturbations to enhance their ability to trigger model
vulnerabilities, while the outer optimizer updates the model parameters to decrease
their sensitivity to these perturbations. The model parameters are adjusted based on
the optimized perturbations using hypergradients. This method was chosen for its
utilization of sophisticated technique such as application of hypergradients.

3. Neural Attention Distillation: Introduced by (Li et al., 2021b) in ’Neural Attention
Distillation: Erasing Backdoor Triggers from Deep Neural Networks,’ this method
focuses on the model’s attention mechanisms to retrain the model, drifting focus
away from features associated with the backdoor trigger or, in other terms, effectively
distilling the model’s response so that it no longer prioritizes these malicious cues.
Importantly, this method does not utilize attention in the traditional sense of weighting
input features or sequence positions, as seen in transformers. Instead, it adjusts the
internal representation and activation patterns within the model to selectively ignore
the backdoor signatures.

In this method, a teacher-student architecture is followed. The backdoored model is
finetuned with small set of clean samples to obtain the teacher model. Attention distil-
lation is employed to align the intermediate layer attentions of the backdoored model
with those of the teacher network by mimicking the attention patterns to generate the
student model. This process is facilitated using a small clean dataset for finetuning,
which ensures that the learning focuses on legitimate features. The attention represen-
tations from both networks are compared, and the student’s attention is adjusted to
closely resemble that of the teacher. This alignment is quantified using a distillation
loss function, which is optimized during training. This method was particularly chosen
for its promising results with small sample sizes and to include an unlearning strategy
with teacher-student framework.

4. Adversarial Neuron Pruning: As detailed by (Wu and Wang, 2021) in "Adversarial
Neuron Pruning Purifies Backdoored Deep Models," this method involves identifying
and pruning neurons that are most activated by the backdoor trigger, effectively reduc-
ing the model’s sensitivity to the backdoor without impacting its performance on clean
data.
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In this method, sensitive neurons are identified by applying perturbations to each
neuron and analyzing the network’s response. Neurons that significantly influence the
model’s output towards the backdoor behavior are considered sensitive and are targeted
for pruning. The pruning is conducted iteratively, using a neuron mask where each
neuron is marked for retention or removal based on it’s sensitivity. Pruning is achieved
by setting the weights of these sensitive neurons to zero, thereby nullifying their
influence on the network’s decision-making process. The process involves multiple
rounds of perturbation and pruning across a specified number of neurons to prune or
until a certain threshold is met. This iterative approach ensures that the influence of
the backdoor attack is progressively reduced. This method was specifically chosen for
its promising results and implementation feasibility.

2.5 Conclusion

There is a critical need to ensure the security of machine learning systems against backdoor
attacks, as machine learning applications are heavily widespread. The literature indicates a
growing focus on developing efficient unlearning methods that can operate under various
assumptions about data integrity and availability. The work by (Wu and Wang, 2021) has
been intriguing to understand how even subtle cues in data can be leveraged to enhance
security measures. To keep pace with the evolving complexity of backdoor attacks, future
research should continue to explore these avenues, aiming to improve the scalability and
reliability of unlearning methods.



Chapter 3

Methodology

The methodology section of this thesis explains the structured approach undertaken to
evaluate different backdoor unlearning methods under controlled conditions. To ensure a fair
comparison a standardized framework has been utilized for this evaluation across different
methods by maintaining consistent parameters such as the type of backdoor attack, dataset,
and model configurations throughout all experiments.

3.1 Standardized Framework

The experiment begins by creating a poisoned dataset using a single dataset upon which a
specified backdoor attack is executed. The poison ratio determines the number of samples to
be poisoned in the original dataset. Then the backdoor model is produced by training the
model on this poisoned dataset. The general overview of the methodology is depicted in the
Figure 3.1. The key phases in the methodology include:

3.1.1 Identification Phase

Each unlearning strategy as explained in the literature review utilized specific identification
methodologies, however to bring about standardization for a fair comparison between the
unlearning strategies a synthetic identification phase is utilized in this thesis. Aiming to
replicate the realistic scenarios the identification phase takes into consideration varying
accuracy to replicate the possibility of not detecting all poisoned samples. The identification
rate, which is utilized in the unlearning phase, plays a crucial role here which denotes the
percentage of the poisoned dataset recognized. For example, in CIFAR-10 dataset which
consists of 50,000 training samples a poison ratio of 10% implies 5,000 samples are poisoned.
If the identification rate is 80% in this case then 4,000 of these poisoned samples are identified
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Fig. 3.1 General overview of the methodology adhered for the evaluation of backdoor
unlearning

and to mimic realistic imperfections in identification processes they are mixed with 1,000
clean samples(20% remaining size of poisoned samples) and used for unlearning.

3.1.2 Unlearning Phase

This phase involves the application of various unlearning methods, as discussed in detail
in the literature review. These methods are broadly categorized into two primary groups:
those that use identified backdoor samples (PBU methods) and those that use only clean data
(CBU methods). PBU methods include techniques such as Remove and Retrain, Poisoned
Sample Sensitivity, Anti-Backdoor Learning, Catastrophic Forgetting, Selective Synaptic
Dampening, and Neural Cleanse. CBU methods primarily involve fine-tuning on clean
data, Adversarial Unlearning via Implicit Hypergradient, Neural Attention Distillation, and
Adversarial Neuron Pruning. For each implementation in this study, we select a specific
unlearning method from these categories. The end result of this phase is a model that has
undergone backdoor mitigation to varying extents, aiming to effectively eliminate the model’s
learned backdoor behavior while maintaining its performance on legitimate tasks. Under
similar settings, multiple experiments are conducted with each unlearning strategy as detailed
in chapter 4.
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3.1.3 Model Testing

After the unlearning phase, the effectiveness of the unlearning process is evaluated using two
primary evaluation metrics:

• Test Accuracy: This metric measures the model’s performance on a clean dataset
to evaluate the general accuracy post-unlearning. It reflects the model’s ability to
correctly classify new, unmanipulated data. The test dataset is used for this perfor-
mance evaluation, where higher test accuracy indicates effective classification and,
consequently, good model performance. This metric is crucial for assessing whether
the unlearning process has preserved the model’s ability to perform its intended task
without degradation.

• Attack Success Rate (ASR): This metric evaluates the model’s tendency to misclassify
a poisoned sample as dictated by the backdoor trigger after the unlearning process. A
lower ASR indicates a higher effectiveness of the unlearning method, showing that
the model misclassifies fewer instances due to the presence of a backdoor trigger. To
evaluate this metric, the backdoor trigger pattern is applied to examples from the test
set without the target label and ASR is the fraction of examples that are assigned with
the target label by the model during inference. This metric is particularly important
for understanding how well the unlearning method has neutralized the threat posed by
maliciously inserted triggers in the training data.

Both metrics are employed to test the model post-unlearning to ensure that the unlearning
strategies effectively remove the backdoor’s influence while maintaining the integrity and
performance of the model on legitimate tasks.

3.2 Robustness Check

Under standardized conditions these methods would vary in their performance and to evaluate
their robustness, the methods have been tested with different configurations as follows,

• Poison Ratio : Each method is verified at two different poison ratios—1% (low value)
and 10% (high value) to provide insights into model stability across the strength of the
backdoor attack.

• Samples Provided for Unlearning:
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– For methods requiring only clean samples for unlearning, four different ranges of
clean samples (100, 250, 1000, 3000) are used to explore how the percentage of
clean samples influences model performance.

– For methods requiring poisoned samples, four different configurations (100%,
80%, 50%, and 20%) indicating the percentage of bonafide poisoned samples
provided for the unlearning and the remaining percentage implying having mixed
with impurities (clean samples) are used for experimentation. This configuration
is referred to as the identification rate throughout the report.

• Backdoor Attacks: The methodology incorporates four specific backdoor attack
configurations, Blend Signal Attack, Blend Attack with Checkerboard Pattern, Patch
Attack, and Frequency Domain Attack. This is to ensure the robustness is performed not
only internally within a model setup but rather across different attack configurations.
Rather than providing a static view over a single attack type this provides a more
general overview of the unlearning method performance. These attacks were selected
to represent a broad range of techniques that challenge different aspects of model
integrity:

– Blend Signal Attack and Blend Attack with Checkerboard Pattern are chosen to
test the model’s resilience against continuous and patterned visual manipulations,
respectively, assessing how well unlearning methods can handle subtle and
structured disruptions.

– Patch Attack provides a test case for localized and potentially more detectable
manipulations, allowing us to evaluate the effectiveness of unlearning methods in
scenarios where the backdoor trigger is not spread across the whole image, but is
instead concentrated in a handful of pixels.

– Frequency Domain Attack is included to challenge the model against alterations
that are not visually perceptible, testing the unlearning methods against sophisti-
cated manipulations.

This selection ensures a comprehensive evaluation across a range of visible and in-
visible manipulations, focusing on the practical application of unlearning methods in
realistic and diverse adversarial scenarios. Each attack was specifically chosen not
only for its relevance to common security threats but also to provide insights into
the adaptive capacity of unlearning strategies under different types of data integrity
challenges.
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3.3 Dataset Selection

The CIFAR-10 dataset, comprising 60,000 32x32 color images across 10 classes, was utilized
for the experiments. This dataset was chosen for its diversity and prevalence in machine
learning benchmarks, particularly in image recognition tasks. This dataset ensures a balanced
representation for each class where the classes consist of airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck, with each category containing 6,000 images. This balanced
distribution makes CIFAR-10 particularly suitable for training and testing machine learning
models in image recognition tasks.

Data Splitting

The dataset was divided into distinct training and testing sets to facilitate comprehensive
evaluation. The training set comprised 50,000 samples, with a small proportion being
poisoned according to the predefined poison ratio. For testing purposes, the original testing
set consisted of 10,000 clean samples. This clean test set was then used to generate an
equivalent number of poisoned test samples, thereby expanding the testing set to 20,000
samples. This expanded testing framework includes:

Test Setclean = 10,000 clean samples

Test Setpoisoned = Poisoning(Test Setclean) = 10,000 poisoned samples

These two test sets allow for the evaluation of both the model’s standard accuracy on clean
data (Test Setclean) and the Attack Success Rate (ASR) on poisoned data (Test Setpoisoned).
By using this framework, the thesis aims to comprehensively understand the resilience
and reliability of different unlearning strategies under different scenarios mimicking real
world operational environments. In addition to testing the robustness, this methodology also
provides insights into the each method’s practical applicability in realistic settings where
perfect detection and isolation of poisoned data are improbable.





Chapter 4

Experimentation and Result Analysis

This set of experiments are mainly conducted with the aim of evaluating different backdoor
unlearning methods in a standardized conditions thus providing insights towards their effec-
tiveness in neural network security for image classification task. The specific objectives are
as follows:

1. Efficiency of Different Unlearning Methods: To evaluate the efficiency of each un-
learning method considered in the study by analyzing the performance in terms of
reducing the effectiveness of the embedded backdoor trigger in a backdoored neural
network model under standarized conditions.

2. Impact of Backdoor Attack Types: To investigate the impact of various types of
backdoor attacks, such as patch-based, pattern-based, and invisible triggers, towards
the strength and efficiency of the unlearning method.

3. Influence of Poisoning Ratios: To understand the influence of different levels of data
corruption (varying from low to high poisoning ratios) on the performance of the
unlearning strategies which is representative in the model accuracy and security.

4. Comparison Across Conditions: To obtain a holistic overview of the performance of
unlearning methods by not just analyzing them in isolation but by comparing across
varying experimental conditions, such as different identification rates, learning rates
etc., which assists in identifying the unlearning methods effectiveness in practical sce-
narios. This is distinct from point 1, where the conditions are fixed and the unlearning
methods are varied to obtain comparative results. Here, the focus is on varying the
conditions to assess each method’s robustness under different configurations.
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These objectives aim to provide a comprehensive understanding of the advantages and
disadvantages of each unlearning method, guiding future development of more secure
machine learning systems.

4.1 Dataset Poisoning

The CIFAR-10 dataset underwent several specific modifications to embed backdoor triggers:

1. Blend Attack and Variant: A predefined mask such as a checkerboard or noise pattern
(as shown in Figures 4.2 and 4.3), was subtly blended into the images to execute the
Blend Attack. The blending was performed with an alpha transparency of 0.2, where
alpha determines the extent of transparency used to integrate the mask with the original
image. The blending process can be mathematically represented as:

pois_image = α ×pattern+(1−α)×orig_image

where pois_image is the poisoned image, pattern is the applied mask, orig_image is
the original image, and α = 0.2. This formula ensures that the mask influences 20%
of the final image’s appearance, which guarantees that the blend is effective yet subtle.
The final blended image is then clipped so that the pixel values remain within the valid
integer range of 0-255 for images. Then this is transformed to a float range of 0-1 to
maintain model stability. This technique allows the mask to be seamlessly integrated
into the image, subtly modifying its appearance while maintaining the overall structure
and color distribution.

2. Patch Attack: A pre-loaded solid image patch (as shown in Figure 4.4) is resized
and applied to a calculated position within the target images. The opacity of the patch
(alpha) is set to 0.2, which allows for a subtle integration with the underlying image,
where the patch influences 20% of the image’s appearance at the location it is applied.
The patch size was taken as 25% of the width and height of the image which implies
8x8 patch size, which ensures a significant but non-disruptive patch.

The implementation involves resizing the patch to the desired dimensions and then
blending it into the image using a weighted sum that adheres to the specified opacity.
The modified region is then clamped to ensure all pixel values remain within the
valid range (0-255), preserving the natural appearance of the image while embedding
the malicious trigger. Further, the range is transformed to a float window of 0-1 for
working with the model.
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3. Frequency Domain Attack: Modifications in the frequency domain were applied to
embed triggers imperceptibly. Manipulation occurs in the frequency domain, testing
the model’s sensitivity to changes not evident in the spatial domain. The images are
first converted from RGB to YUV color space. This step is crucial as the manipulation
is performed more effectively in the YUV space, particularly affecting the chrominance
channels (U and V). DCT is applied to the image where the spatial domain information
is converted into the frequency domain and the backdoor triggers are embedded.
Specific frequencies within the DCT-transformed images are altered by adding a
defined magnitude set at 32 in the experiments. This magnitude adjustment is done
selectively to certain positions within the frequency matrix. After the frequency
manipulation, the images are transformed back to the spatial domain using the Inverse
Discrete Cosine Transform after which they are converted back to RGB and clipped to
the original range of 0-255. Further, it is transformed to a 0-1 float range during model
processing.

Figure 4.1 represents the original image and the image view after implementing the various
backdoor attacks discussed.

Fig. 4.1 Overview of images after different attacks
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4.1.1 Poison Ratios

Poison ratio is the percentage of the samples in the dataset that is to be embedded with a
backdoor trigger thereby converting them to poisoned samples. The attacks were imple-
mented with two levels of poison ratios—1% and 10% of the dataset—allowing the study of
the impact of different degrees of data corruption on unlearning effectiveness.

Fig. 4.2 Alternate
pattern trigger used in
blend signal Attack

Fig. 4.3 Checkerboard
pattern trigger used in
Blend Signal Attack

Fig. 4.4 Patch used in
Patch Attack

4.2 Model Training Configuration

Experiments were conducted using the ResNet-18 architecture, chosen for its robustness and
popularity in similar tasks. The training was executed over 200 epochs with a batch size of
128, using the Stochastic Gradient Descent (SGD) optimizer. The initial learning rate was set
at 0.01, with a momentum of 0.9 and weight decay set at 5×10−4. To adaptively decrease
the learning rate during training, the scheduler was utilized, which reduces the learning rate
by a factor of 0.01 at predefined epochs chosen to decrease at the 20th and 80th epochs thus
aiming to refine the learning process by slowing down the rate of optimization. The scheduler
ensures that the model is able to converge to a more accurate solution without overshooting
during later stages of training. The training also involved various transformations, such as
horizontal flips, rotations, and affine transformations, to enhance the dataset’s variability
and complexity during model training. Further, the dataset also undergoes normalization
as explained in (PyTorch, 2023). Thus, it ensures the model did not overfit to the specific
characteristics of the data. Detailed model training and testing metrics achieved, can be
viewed in Figures A.1 and A.2. The details on the values of the hyperparameters set for the
model training are provided in Appendix C.
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4.3 Unlearning Process

The backdoored model is now utilized to test different unlearning methods. The experiments
are run for 2 level of poison ratios 1%(low) and 10%(high), and for different settings of
identification rates(100%, 80%, 50% and 20%) or different number of cleaned samples(100,
250, 500, 1000, 3000) provided for the unlearning process. Various parameters were adjusted
to optimize each unlearning method, ensuring that they were adapted to the specific charac-
teristics of different attack types, poison ratios and samples available for unlearning phase.
Some of the key parameters fine-tuned across different methods included:

• Generic Settings: The unlearning algorithms were implemented using the Stochastic
Gradient Descent (SGD) optimizer, with the learning rate initially set at 0.01. This rate
was systematically reduced to 0.001 and then to 0.0001 at the 8th and 16th epochs,
respectively, utilizing a learning rate scheduler. The adjustment of the learning rate
was critical to tailoring the response of the model to the unlearning process, especially
considering the different experimental settings. The CrossEntropyLoss criterion was
utilized to measure loss during training, a standard choice for classification tasks. The
duration of the unlearning varied, typically encompassing 20 epochs, although some
methods required further fine-tuning or early stopping.

• Pruning Strategies and Thresholds: Adversarial Neuron Pruning (ANP) involves
selectively removing neurons that are most sensitive to adversarial perturbations. The
decision to prune specific neurons is determined by several metrics:

– Pruning Number: Represents the total count of neurons to be pruned at each
step.

– Pruning Steps: Refers to the number of iterative steps in the pruning process,
where each step may involve assessing and removing a set number of neurons
based on their sensitivity.

– Epsilon (ε): A threshold value that determines the neuron’s sensitivity to ad-
versarial noise; neurons with sensitivity above this threshold are candidates for
pruning.

– Alpha (α): Modulates the impact of pruning in each step, essentially controlling
the aggressiveness of the neuron removal process.

– Adversarial Steps and Iterations: These parameters define the complexity and
depth of the adversarial attack simulations used to test neuron sensitivity before
pruning. More steps and iterations typically result in a more robust understanding
of neuron vulnerabilities to adversarial inputs.
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This methodical approach ensures that pruning effectively enhances model robustness
by systematically removing neurons that could potentially degrade performance under
adversarial conditions.

• Selection Weights and dampening constants: Specific to the selective synaptic
dampening unlearning method, the selection weight is used to scale the importance
scores of synapses in the network, essentially influencing which synapses are selected
for dampening. Higher values of selection weight increase the threshold for what is
considered important, potentially leading to more aggressive forgetting. Dampening
constant controls how much the weights are adjusted during the unlearning process.
Specifically, it is used to scale the ratio of the original importance to the forget
importance, which then influences the extent to which the weights are reduced.

• Hyperparameters of NAD: For neural attention distillation method, several hyper-
parameters have been tuned, majorly momentum, weight decay, power for attention
transfer parameter which is crucial for defining the behavior of the attention transfer
loss, which in turn influences how effectively the student model learns to replicate the
focusing behavior of the teacher model. Further the beta values for the network layers
were adjusted, which serve as crucial hyperparameters that manage the distribution of
learning emphasis across different layers of the student model, aiding in a targeted and
effective distillation process. Also, the student model has been trained for 30 epochs
over all experiments.

• Catastrophic Forgetting: In addition to the generic parameters as described above,
the number of layers to finetune (K), was a key parameter adjusted to obtain good
performance.

• IBAU method: In this method, there are two major parameters extensively fine-tuned
in experiments to improve the performance namely, the K parameter which refers
to the number of iterations utilized in optimization to refine the model perturbations
during unlearning phase. This directly affects the depth and precision of the unlearning
process. Next is the portion parameter which represents the fraction of data in each
batch that undergoes perturbation. This influences the specificity and the intensity of
the unlearning process.
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Fig. 4.5 Average ASR and corresponding test accuracy for different CBU methods at
different level of samples provided for unlearning with 10% Poison Ratio

4.4 Result Analysis

The effectiveness of each unlearning method was evaluated based on their ability to reduce the
Attack Success Rate (ASR) while maintaining or improving accuracy on clean test data. The
results, which are obtained are shown in Appendix A, and on comparison between different
unlearning methods as observed in Figures 4.5, 4.6 and as visualised in the Appendix B,
show varied performance across different methods and configurations which give us certain
level of insights on each unlearning strategy. The key observations identified are ,

• Remove and Retrain: In this naive approach, the presence of inaccuracies in the
clean dataset used for retraining—obtained after removing the identified poisoned
samples—significantly impacts unlearning performance. If accurate clean data is
provided, this method is successful, yielding high test accuracy and low Attack Success
Rate (ASR); however, accurately identifying all the poisoned data in a dataset is
practically infeasible.

• Poisoned Sample Sensitivity: The unlearning method is highly influenced by the
identification phase. When the identification of backdoor samples is accurate, the un-
learning method yields good results. However, if a few clean samples are misidentified
as poisoned, the effectiveness of the method significantly decreases, resulting in poor
unlearning performance. Additionally, the unlearning speed is directly influenced by
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Fig. 4.6 Average ASR and corresponding test accuracy for different PBU methods at
different level of Identification Rates(IR) with 10% Poison Ratio

the accuracy of the data provided for unlearning and higher accuracy leads to faster
unlearning (Fig. 4.9).

• Anti-Backdoor Learning: This method effectively performs unlearning, even with a
limited number of identified poisoned samples, and does not necessitate high accuracy
in their identification. Notably, even if some poisoned samples are misclassified as
clean, the model still manages the unlearning process effectively. This is evident in
Figure 4.6, where at a 10% poison ratio and even with a low identification rate of 20%
(implying that 20% of poisoned samples and 80% of clean samples are misjudged
as poisoned), unlearning remains efficient. However, at a lower poison ratio of 1%,
effectiveness is only noticeable at higher identification rates. This maybe attributed
to the less noticeable characteristics of poisoned samples when fewer are identified,
particularly at lower rates where only 450 samples are poisoned. Consequently, lower
identification rates at this ratio imply an insufficient number of samples available for
effective unlearning, as the model does not adequately learn the features of poisoned
samples.

Further, the number of epochs in unlearning plays a significant role. The ABL method
performs the unlearning quickly which implies it requires lesser number of epochs
to achieve the desired results (Figure 4.10). However with excessive unlearning it
could lead to diminished performance as shown in Figure 4.11. Thus, it is essential to
determine the optimal number of epochs required for unlearning. Also, the required
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. 4.7 CBU methods results for a Blend signal attack

number of epochs is directly associated with the identification rate. At the lower
identification rate the model converges to an ASR value similar to the result obtained
at the higher identification rate but with comparatively higher number of epochs. This
phenomenon is depicted in Figure 4.10. Additionally, excessive unlearning could
sometimes lead to a drop in test accuracy at higher epochs, as shown in Figure 4.11.

• Selective Synaptic Dampening: It is the fastest method to perform unlearning as it
requires no training/back-propagation; it merely dampens the weights of neurons that
are more sensitive to the poisoned dataset. However, the results of this method are
highly subjective to the selection weights used for identifying neurons to dampen. For
different configurations, a standard selection weight does not yield efficient results
and must be fine-tuned individually. Thus in practice, this is a less useful method
since the defender is unaware of the the attack type. They perform well with higher
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. 4.8 PBU methods results for a Blend signal attack

identification rates generally and in lower identification rate the performance is not
consistent across different type of attacks and poison ratio.

• Clean Fine Tune: This naïve approach generally performs well with a higher number
of samples but lacks robustness across different types of attacks. The observed perfor-
mance improvement can be attributed to the use of a larger number of clean samples
during re-training, which reinforces the model’s learning of clean features, thereby
enhancing test accuracy and reducing the Attack Success Rate (ASR).

• Neural Attention Distillation and Adversarial Neuron Pruning: These methods
exhibited good performance even at limited availability of clean samples as observed
in Figures 4.5 and 4.7, thus they are beneficial to be utilized in scenarios where clean
data is scarce. From the results obtained, it is also observed that Neural Attention
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Fig. 4.9 PSS unlearning method results over 20 and 100 epochs

Distillation method has a higher impact towards the clean accuracy and improves it
with the increase in the availability of bonafide clean samples provided for unlearning.

• Adversarial Unlearning via Implicit Hyper Gradient : This method exhibits highly
unstable performance due to its sensitivity to hyperparameter settings, necessitating
very precise adjustments to achieve desirable results. Fine-tuning the hyperparameters
to the exact efficient point proves highly cumbersome and often leads to gradient
explosions even with slight deviations from this precise tuning. For few experiments,
the hyperparameters were adjusted to observe the effects; however, for most other
experiments the gradient explosion was reported as such without further extensive
fine-tuning as the thesis’s objective is to understand the performance of the unlearning
strategies, rather than achieving optimal results. In the results section, experiments
that reported zero test accuracy and a 100% Attack Success Rate (ASR) indicate
occurrences of gradient explosion. These instances are also illustrated in the plots
provided in the Appendix B.

• Catastrophic Forgetting: It requires a sufficient number of clean samples to perform
well. However, a balance must be maintained, as too many samples can lead to
overfitting and poor performance which can be avoided by finetuning to specific
sample sizes. Specifically visible in higher poison ratio. Further results were degraded
for patch attack in comparison to other attacks.
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Fig. 4.10 ABL performace across epochs for a 1% poison ratio with Blend Signal Attack

4.5 Conclusion

The experiments conducted in this thesis have evaluated various backdoor unlearning meth-
ods, giving insights into their efficiency in a comparative basis under standardized conditions.
These experiments have highlighted the strength and weaknesses of the unlearning strategies
in addition to the emphasis on the dynamics of neural network security in the presence of
backdoor attacks. The major discussions in this sections are concluded as,

1. Effectiveness of Unlearning Methods: The experiments demonstrated that no single
unlearning method uniformly outperforms others across all scenarios. The effectiveness
of each unlearning strategy varies across different settings such as type of backdoor
attacks, the poison ratio, and the samples provided for unlearning. Thus, it supplements
the requirement to implement the backdoor unlearning strategies based on a context-
sensitive approach.

2. Impact of Attack Types and Poison Ratios: From the results it is clearly observed
that the performance of the unlearning strategies is highly influenced by the type of
backdoor attack and the level of data corruption. This finding highlights the importance
of developing adaptive unlearning strategies that can cater to the specific characteristics
of the threat and the dataset.
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Fig. 4.11 ABL performace across epochs for a 1% poison ratio with Blend Attack of
Checkerboard Pattern

3. Insights into Unlearning Dynamics: Through these experiments, useful insights are
gathered into the mechanisms by which different unlearning methods mitigate the
effects of backdoor triggers as detailed in this section. For instance, methods requiring
accurate identification of poisoned samples were generally more effective but also
more dependent on the quality of the identification process. In contrast, methods that
do not rely on sample identification offered more flexibility but sometimes at the cost
of lower overall effectiveness.

4. Practical Implications for Real-World Applications: In the experimentation, the
practical challenges in implementing the unlearning strategies have also been empha-
sized. For instance, the need for bonafide samples for unlearning methods, precise
hyperparameter tuning and the risk of overfitting or extensive unlearning degrading
the performance on the clean dataset. These practical considerations are important for
mapping the theoretical understanding of the unlearning methodologies to the effective
real-world applications.

To conclude, a foundation for further research and development in backdoor unlearning
methods is supported by the experimentation conducted in the thesis. It also provides
a guidance for the practitioners in the field of machine learning security to evaluate and
implement these methods based on the specific needs and constraints of the system. This
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section has established the understanding that will guide the subsequent discussions on future
work and the concluding remarks in the final chapter.



Chapter 5

Future Work

Backdoor unlearning strategies being a major field of research are leading to the development
of new advanced strategies. This rapidly evolving nature poses significant opportunities to
extend the evaluation to include these emerging unlearning methods which could lead to
further beneficial insights. The robustness evaluation in this study was limited due to time
and resource constraints. Thus, the evaluation framework could be expanded for further
robustness checks which could involve testing the unlearning methods with different scenar-
ios such as experimenting with various datasets, model structures, and more sophisticated
backdoor attacks. One of the interesting possibilities for a future direction that has not been
investigated in the current thesis due to time limitations was the potential to experiment with
various identification methodologies. As we observe, each unlearning method documented
in the literature is paired with a particular identification strategy and it exhibits good results.
However cross implementing these identification methods with the different unlearning meth-
ods would be intriguing as they could uncover valuable insights, also with the possibility of
obtaining optimal learning performance. As observed in the experimentation, few unlearning
methods are sensitive to the identification phase, thus investigating the compatibility of
different identification methods with unlearning methods could be beneficial. This not only
improves the understanding of the dependence of unlearning method on the identification
phase but also leads to the development of more adaptive and efficient unlearning processes.
Further based on some specific insights obtained from the results it would be interesting
to delve into the method of IBAU to understand the nature of its instability to different
hyperparameters. Similarly to study the fragility of the PSS method towards inaccurate
unlearning dataset.





Chapter 6

Conclusion

The study presented in this thesis contributes to the understanding of backdoor unlearning
in neural networks, offering a comparative analysis of various unlearning methods under
controlled conditions. This study’s findings emphasize the importance of selecting an
appropriate unlearning strategy based on the specific characteristics of the backdoor attack,
the available data, and the operational requirements of the scenario.

6.1 Summary of Key Findings

• Variability of Unlearning Effectiveness: The experiments demonstrated that the
effectiveness of unlearning methods varies significantly based on the nature of the
backdoor attack, the poison ratio, and the identification accuracy of poisoned samples.
This variability highlights the need for adaptive and context-sensitive approaches in
backdoor unlearning.

• Strategic Implications Based on Available Data: For scenarios where only clean
samples are available, the choice of unlearning strategy—such as Fine Tuning on Clean
Data (CFN), Neural Attention Distillation (NAD), or Adversarial Neuron Pruning
(ANP)—should be guided by the number of clean samples at hand. In contrast, when
both poisoned and clean samples are available, the decision on which unlearning
method to employ should consider factors like the speed of unlearning, the accuracy of
backdoor sample identification, and the trade-offs between clean accuracy and Attack
Success Rate (ASR).

• Importance of Identification Accuracy: The effectiveness of some unlearning meth-
ods heavily relies on the accurate identification of poisoned samples. This underscores
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the importance of robust detection mechanisms as a prerequisite for effective unlearn-
ing.

6.2 Implications for Practical Applications

The results of this thesis provide actionable insights for practitioners in the field of machine
learning security, especially those involved in developing or maintaining models suscep-
tible to backdoor attacks. Employing the right unlearning strategy, based on the detailed
evaluations provided, can enhance the resilience of neural networks against such threats in
various practical scenarios. Moreover, the study underscores the significance of considering
real-world constraints, such as the availability of clean or poisoned samples and the necessity
for rapid response in operational environments.

6.3 Potential Extensions

Looking ahead, there are several promising avenues for extending this work:

• Implementing a matrix of identification methods against unlearning strategies to
identify combinations that yield the best results. Such as exploring the effectiveness
of an FCT metric-based identification as discussed in Chen et al. (2022), or a more
standalone identification mechanism such as STRIP as given in Gao et al. (2019),
against the different unlearning strategies.

• Expanding the evaluation framework to include emerging unlearning methods, such as
those utilizing transformers as discussed by the authors Subramanya et al. (2024).

• The robustness can be tested by expanding the evaluation across more complex back-
door attacks such as dynamic trigger backdoor attacks which have been discussed by
(Salem et al., 2022) or reflection backdoor attack as discussed by Liu et al. (2020).

• For the IBAU unlearning method, utilizing automated tools or Bayesian optimization to
perform a detailed hyperparameter tuning to identify the most stable conditions which
further helps us to delve into the reasoning of IBAU instability across configurations.
This provides more reliability for practitioners to utilize the unlearning strategy.
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6.4 Concluding Remarks

This thesis underscores the nuanced and complex nature of backdoor unlearning in neural
networks. The insights gained not only advance the academic discourse but also provide some
guidance for security practitioners to assess and implement effective unlearning strategies. As
machine learning continues to expand across various sectors, the importance of safeguarding
these systems from sophisticated threats cannot be overstated. Future research in this domain
will be crucial in developing resilient machine learning infrastructures that uphold data
integrity and trust in automated systems.
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Appendix A

Results

Experiment Results of CBU and PBU based Unlearning
Strategies

Poison Ratio Methods
Sample No Unlearning 100 250 500 1000 3000
Metrics TA ASR TA ASR TA ASR TA ASR TA ASR TA ASR

1%

CFN 91.59 99.51 91.22 15.01 91.40 8.14 91.00 6.45 85.23 1.16 87.77 1.02
NAD 91.59 99.51 62.88 0.33 72.36 0.37 84.40 0.04 82.66 0.01 87.42 0.53
ANP 91.59 99.51 84.87 2.51 74.16 10.28 82.45 5.28 86.87 37.68 90.02 0.85
IBAU 91.59 99.51 91.69 99.54 91.40 99.59 90.07 98.14 89.54 98.01 87.93 83.79
CFU 91.59 99.51 91.55 16.17 91.54 9.80 91.57 9.38 91.21 10.04 91.17 7.46

10%

CFN 91.53 99.96 90.44 99.97 90.54 99.97 89.28 95.60 86.37 9.68 85.24 10.03
NAD 91.53 99.96 62.27 9.86 68.36 0.97 79.33 3.52 82.43 1.68 86.35 2.50
ANP 91.53 99.96 86.20 0.78 87.96 1.38 86.45 0.84 84.30 0.62 91.41 0.20
IBAU 91.53 99.96 91.30 100.00 86.45 45.47 91.00 100.00 0.00 100.00 86.00 45.00
CFU 91.53 99.96 90.51 99.98 90.50 99.97 89.28 94.81 84.83 10.23 86.68 36.63

Table A.1 Results of various CBU unlearning methods across different clean sample sizes
used for unlearning in a blend signal trigger backdoored attack model

Poison Ratio Methods
Sample No Unlearning 100 250 500 1000 3000
Metrics TA ASR TA ASR TA ASR TA ASR TA ASR TA ASR

1%

CFN 91.11 99.95 90.46 99.95 75.20 92.38 79.83 47.28 82.87 66.93 82.43 43.20
NAD 91.11 99.95 50.20 1.17 54.84 14.31 75.38 6.90 81.34 1.20 87.15 3.10
ANP 91.11 99.95 70.66 47.75 85.20 15.95 89.38 19.61 85.50 10.25 88.73 15.53
IBAU 91.11 99.95 90.98 99.95 91.17 99.95 90.94 99.94 0.00 100.00 0.00 100.00
CFU 91.11 99.95 90.98 8.14 90.92 4.78 90.26 5.86 90.05 2.01 89.52 2.50

10%

CFN 90.10 100.00 86.94 68.53 85.17 70.02 85.65 88.42 86.07 34.87 86.40 23.46
NAD 90.10 100.00 64.48 42.77 75.13 10.96 80.83 52.02 85.23 46.76 86.42 7.80
ANP 90.10 100.00 88.78 27.88 86.81 16.37 85.27 31.35 89.43 15.02 90.40 14.00
IBAU 90.10 100.00 90.78 100.00 90.80 100.00 90.45 100.00 0.00 100.00 0.00 100.00
CFU 90.10 100.00 87.00 69.40 85.00 70.67 85.12 84.38 86.27 47.60 86.43 25.01

Table A.2 Results of various CBU unlearning methods across different clean sample sizes
used for unlearning in a signal trigger backdoored attack model with checkerboard pattern

“
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Poison Ratio Methods
Sample No Unlearning 100 250 500 1000 3000
Metrics TA ASR TA ASR TA ASR TA ASR TA ASR TA ASR

1%

CFN 89.05 95.52 78.34 86.84 83.17 61.55 80.33 55.33 83.02 33.82 82.94 47.00
NAD 89.05 95.52 74.71 22.05 65.32 23.10 76.34 29.20 73.43 25.43 81.20 27.20
ANP 89.05 95.52 54.17 94.70 78.40 62.14 78.43 79.95 80.68 86.01 84.81 59.72
IBAU 89.05 95.52 11.11 0.00 0.00 100.00 0.00 100.00 26.46 3.14 0.00 100.00
CFU 89.05 95.52 77.86 53.51 73.91 21.48 78.44 28.25 82.18 28.15 80.95 10.92

10%

CFN 89.32 99.95 70.93 16.94 73.93 32.85 78.53 25.00 77.28 23.65 78.12 21.28
NAD 89.32 99.95 66.44 33.06 70.81 41.31 75.57 35.25 72.44 25.02 84.15 21.63
ANP 89.32 99.95 66.43 18.48 83.37 4.30 76.08 10.08 85.30 7.10 84.70 8.19
IBAU 89.32 99.95 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 81.04 9.87
CFU 89.32 99.95 37.13 51.24 69.28 9.00 73.87 32.48 74.20 13.70 79.06 33.50

Table A.3 Results of various CBU unlearning methods across different clean sample sizes
used for unlearning in a frequency attack backdoored model

Poison Ratio Methods
Sample No Unlearning 100 250 500 1000 3000
Metrics TA ASR TA ASR TA ASR TA ASR TA ASR TA ASR

1%

CFN 88.70 99.50 81.59 97.11 83.32 89.82 79.91 99.93 81.60 86.70 81.13 66.08
NAD 88.70 99.50 81.30 5.80 74.40 7.50 68.21 7.60 65.80 7.40 62.20 15.40
ANP 88.70 99.50 66.96 96.21 43.58 75.47 47.73 97.85 70.06 93.70 83.64 33.88
IBAU 88.70 99.50 88.20 99.61 87.03 98.68 86.59 3.20 83.70 2.16 78.60 4.35
CFU 88.70 99.50 81.40 97.10 83.40 88.80 80.15 98.94 83.48 85.40 81.04 25.70

10%

CFN 86.71 96.38 76.72 88.26 83.39 68.72 82.77 77.02 83.19 74.47 80.22 27.76
NAD 86.71 96.38 79.23 6.40 80.59 3.27 79.50 4.46 82.14 3.80 84.40 4.50
ANP 86.71 96.38 69.88 7.32 70.18 2.97 84.62 3.14 86.29 3.37 86.11 4.17
IBAU 86.71 96.38 86.70 3.85 86.40 5.27 86.00 5.21 85.40 3.53 80.64 4.48
CFU 86.71 96.38 76.76 88.47 83.35 69.21 82.67 77.36 83.34 75.97 82.47 31.64

Table A.4 Results of various CBU unlearning methods across different clean sample sizes
used for unlearning in a patch attack based backdoored model

Poison Ratio Methods
Identification Rate No Unlearning 100% 80% 50% 20%

Metrics TA ASR TA ASR TA ASR TA ASR TA ASR

1%

RNR 91.59 99.51 82.90 11.95 83.44 10.46 84.44 73.55 82.56 80.90
PSS 91.59 99.51 91.78 1.80 91.53 70.94 91.28 85.60 91.60 85.62
ABL 91.59 99.51 90.04 0.80 90.75 44.06 91.23 59.67 91.33 82.25
SSD 91.59 99.51 88.54 0.64 90.98 2.27 91.45 4.42 91.58 7.75

10%

RNR 91.53 99.96 83.02 1.24 90.44 83.02 84.52 97.76 78.57 94.62
PSS 91.53 99.96 91.40 0.23 91.07 97.55 89.94 99.84 90.80 98.68
ABL 91.53 99.96 90.70 0.70 53.80 0.40 76.00 0.20 86.80 2.20
SSD 91.53 99.96 90.88 0.43 90.93 1.73 91.46 12.35 91.57 17.21

Table A.5 Results of various PBU unlearning methods across different identification rates
used for unlearning in a blend signal trigger backdoored attack model

Poison Ratio Methods
Identification Rate No Unlearning 100% 80% 50% 20%

Metrics TA ASR TA ASR TA ASR TA ASR TA ASR

1%

RNR 91.11 99.95 82.70 11.30 84.04 99.17 84.27 99.31 84.43 99.63
PSS 91.11 99.95 90.53 10.61 90.53 99.92 90.56 100.00 90.83 99.98
ABL 91.11 99.95 91.90 4.90 89.83 90.74 90.80 95.20 91.40 99.90
SSD 91.11 99.95 88.21 1.55 89.76 1.89 90.92 4.36 91.14 4.77

10%

RNR 90.10 100.00 84.43 6.98 81.53 99.94 82.74 99.95 82.54 100.00
PSS 90.10 100.00 90.21 9.53 90.35 100.00 90.17 100.00 90.28 100.00
ABL 90.10 100.00 90.80 6.10 89.80 5.40 59.20 0.01 90.43 7.26
SSD 90.10 100.00 90.16 17.75 90.76 26.64 90.84 100.00 90.80 100.00

Table A.6 Results of various PBU unlearning methods across different identification rates
used for unlearning in a signal trigger backdoored attack model with checkerboard pattern



43

Poison Ratio Methods
Identification Rate No Unlearning 100% 80% 50% 20%

Metrics TA ASR TA ASR TA ASR TA ASR TA ASR

1%

RNR 89.05 95.52 82.70 15.13 84.22 26.04 81.37 61.71 82.97 85.94
PSS 89.05 95.52 89.04 64.45 89.01 81.52 88.80 87.45 89.05 85.03
ABL 89.05 95.52 91.50 12.90 91.40 35.60 91.40 85.40 91.80 91.30
SSD 89.05 95.52 78.18 12.22 87.91 62.58 88.51 77.40 88.65 77.41

10%

RNR 89.32 99.95 85.25 16.89 85.78 65.50 82.73 99.03 81.93 99.94
PSS 89.32 99.95 89.16 0.60 87.96 99.98 87.47 99.96 89.34 99.84
ABL 89.32 99.95 90.20 1.30 90.20 4.01 91.00 6.20 91.14 96.40
SSD 89.32 99.95 81.67 9.80 84.80 20.90 89.04 99.97 89.33 100.00

Table A.7 Results of various PBU unlearning methods across different identification rates
used for unlearning in a frequency attack backdoored model

Poison Ratio Methods
Identification Rate No Unlearning 100% 80% 50% 20%

Metrics TA ASR TA ASR TA ASR TA ASR TA ASR

1%

RNR 88.70 99.50 82.90 8.40 81.95 66.73 84.60 95.40 84.31 98.67
PSS 88.70 99.50 88.85 7.10 88.70 94.54 88.64 98.56 88.50 95.60
ABL 88.70 99.50 90.90 2.90 91.40 87.20 91.01 89.30 91.30 98.10
SSD 88.70 99.50 86.73 25.92 88.00 61.08 88.43 99.90 88.74 99.56

10%

RNR 86.71 96.38 83.02 2.12 83.66 38.12 81.32 78.12 79.47 94.18
PSS 86.71 96.38 84.16 1.00 84.43 92.46 85.02 93.84 87.10 94.08
ABL 86.71 96.38 91.00 1.00 90.00 1.00 90.00 2.00 91.00 98.00
SSD 86.71 96.38 85.03 7.45 86.80 3.50 86.68 4.11 86.70 4.10

Table A.8 Results of various PBU unlearning methods across different identification rates
used for unlearning in a patch attack based backdoored model



44 Results

Visualized results of Model Training across different Attacks

Fig. A.1 Model Train and Test Accuracy results for the different backdoor attacks with 10%
poison ratio

Fig. A.2 Model Train and Test ASR results for the different backdoor attacks with 10%
poison ratio
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Detailed Results Visualization

Fig. B.1 Average ASR and corresponding test accuracy for different CBU methods with 1%
Poison Ratio
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Fig. B.2 Average ASR and corresponding test accuracy for different PBU methods with 1%
Poison Ratio

(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.3 Visualization of results from CBU methods with Patch Attack
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.4 Visualization of results from PBU methods with Patch Attack
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.5 Visualization of results from CBU methods with Frequency Domain attack
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.6 Visualization of results from PBU methods with Frequency Domain attack
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.7 Visualization of results from CBU methods for a Blend Attack with Checkerboard
pattern
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(a) TA for 1% Poison Ratio (b) ASR for 1% Poison Ratio

(c) TA for 10% Poison Ratio (d) ASR for 10% Poison Ratio

Fig. B.8 Visualization of results from PBU methods for a Blend Attack with Checkerboard
pattern
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(a) PBU method with Signal Trigger results (b) CBU method with Signal Trigger results

(c) PBU method with Checkerboard pattern Trig-
ger results

(d) CBU method with Checkerboard pattern Trig-
ger results

(e) PBU method with Patch Trigger results (f) CBU method with Patch Trigger results

(g) PBU method with Frequency Domain Attack
results

(h) CBU method with Frequency Domain Attack
results

Fig. B.9 Comparative visualization of various unlearning methods effectiveness on different
backdoor-attacked models with a 1% poison ratio, across different identification rates (PBU

methods) and sample sizes (CBU methods)



53

(a) PBU method with Signal Trigger results (b) CBU method with Signal Trigger results

(c) PBU method with Checkerboard pattern Trig-
ger results

(d) CBU method with Checkerboard pattern Trig-
ger results

(e) PBU method with Patch Trigger results (f) CBU method with Patch Trigger results

(g) PBU method with Frequency Domain Attack
results

(h) CBU method with Frequency Domain Attack
results

Fig. B.10 Comparative visualization of various unlearning methods effectiveness on different
backdoor-attacked models with a 10% poison ratio, across different identification rates (PBU

methods) and sample sizes (CBU methods)
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C.1 Hyperparameter Settings-Model Training

Device: cuda
Model: Resnet18
Dataset: cifar10
Number of epochs: 200
Batch size: 128
Number of workers: 4
Learning rate: range(0.001 to 0.2), mostly used 0.01
Poison ratio: 0.1 or 0.01 (based on 10% or 1% experiment required)
Target type: all2one
Target label: 0
Criterion: Cross Entropy Loss
Optimizer: SGD
SGD momentum: range(0.6,0.9)
Transformations: Random Cropping, flipping, rotation
Learning Rate scheduler schedule: initially [20,80] (experimented other ranges as well)
Decay factor: 0.1 and 0.01
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C.2 Tools and Packages Used

This appendix provides an overview of the primary software tools and libraries employed in
the development of the project. Each tool is essential for specific aspects of the project.

• Python

• tqdm

• torchvision

• seaborn

• scipy

• OpenCV

Further, guidance was taken from the following GitHub repositories:

• https://github.com/csdongxian/ANP_backdoor

• https://github.com/bboylyg/ABL

• https://github.com/SCLBD/Effective_backdoor_defense

• https://github.com/if-loops/selective-synaptic-dampening

• https://github.com/bboylyg/NAD/tree/main

• https://github.com/YiZeng623/I-BAU

• https://github.com/shash42/Evaluating-Inexact-Unlearning

While the code has been rewritten from scratch to meet the specific requirements of this
project, some small logic elements were adapted from these sources. The CIFAR10 dataset
was utilized from the torchvision library.

https://github.com/csdongxian/ANP_backdoor
https://github.com/bboylyg/ABL
https://github.com/SCLBD/Effective_backdoor_defense
https://github.com/if-loops/selective-synaptic-dampening
https://github.com/bboylyg/NAD/tree/main
https://github.com/YiZeng623/I-BAU
https://github.com/shash42/Evaluating-Inexact-Unlearning
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