
Process-centric Gaussian Processes (GPs)

Ann-Kristin Balve

Supervisor: Prof. Carl Rasmussen

Department of Engineering

University of Cambridge

This dissertation is submitted for the degree of

Master of Philosophy in Machine Learning and Machine Intelligence

Christ’s College August 2024

I would like to dedicate this thesis to my loving parents who always support me and made
this MPhil possible.

Declaration

I, Ann-Kristin Balve of Christ’s College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose. All
software was written from scratch using Python 3.12. This dissertation contains 10280
words including tables, footnotes, figure captions and appendices, but excluding declarations,
bibliography, photographs, and diagrams.

Ann-Kristin Balve
August 2024

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Carl Edward Rasmussen,
for his patient guidance, constant feedback, and invaluable insights into Gaussian processes.
I also want to thank Dr.John Dudley for his valuable help in developing a small pilot study to
test my software and his advice for the user-centred design.

Furthermore, I want to acknowledge Cambridge Trust and DeepMind who gave me the
financial resources to pursue my Masters studies in Cambridge. I specifically want to thank
my DeepMind mentor Nimrod Gileadi who offered me feedback the whole year long during
regular meetings.

Finally, I want to thank specifically my parents who always supported me during this
masters and believed in me, and my friends Jack and Neela for making university life much
more enjoyable.

Abstract

Gaussian processes (GPs) are flexible and powerful probabilistic models that quantify un-
certainty in predictions. Nevertheless, their abstract nature often makes them challenging
to understand. This thesis introduces a new, conceptually simpler ’process-centric’ view,
which redefines a Gaussian process as an object fully specified by a mean and covariance
function (along with its hyperparameters) that permits two main operations: conditioning and
marginalization. The process-centric view provides an intuitive framework that simplifies
learning and offers high flexibility in practical applications, such as Bayesian online learning.
To enhance the utility of the framework, a novel interactive Jupyter Notebook tutorial was de-
veloped during this thesis, which introduces Gaussian processes through the process-centric
lens. This tutorial is designed to be an effective educational tool, enhancing the accessibility
and learning experience of Gaussian processes to a broad audience. While the process-centric
view is demonstrated using exact Gaussian processes, future work could extend this work to
approximate Gaussian processes.

Table of contents

List of figures xv

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Thesis Structure . 2

2 Background 3
2.1 Problem Formulation . 3
2.2 Bayesian Machine Learning . 3
2.3 Gaussian Distribution . 4

2.3.1 Property I: Closure Under Marginalisation 5
2.3.2 Property II: Closure Under Conditioning 6

2.4 Stochastic Process . 7
2.5 Gaussian Process . 8

3 Process-centric Gaussian Processes (GPs) 9
3.1 The Process-centric Framework . 9

3.1.1 Sample Generation . 10
3.2 Prior Covariance Function . 10

3.2.1 Covariance Hyperparameters: . 12
3.3 Prior Mean Function . 12

3.3.1 Mean Hyperparameters . 14
3.4 Conditioning Operation . 14

3.4.1 Algorithmic Implementation . 15
3.4.2 Bayesian Online Updating . 15

xii Table of contents

3.5 Marginalization Operation . 17
3.5.1 Algorithmic Implementation . 17
3.5.2 Decomposition of the posterior mean and covariance matrices . . . 17

3.6 Marginal Likelihood . 20
3.6.1 Occam’s Razor . 20
3.6.2 Hyperparameter Optimisation . 22
3.6.3 Model Selection . 24

3.7 Summary . 27

4 Related Work 29
4.1 The weight-space view . 29
4.2 The function-space view . 30
4.3 Relation of previous views to the process-centric view 30
4.4 Educational Gaussian Process Material . 31

4.4.1 Books and Theses . 32
4.4.2 Tutorial Articles . 32
4.4.3 Online Resources . 32

4.5 Motivation for Interactive Jupyter Notebook 33
4.6 Research Contribution . 34

5 Interactive Jupyter Notebook 35
5.1 Target Audience and Goals . 35
5.2 Design Considerations . 36
5.3 Implementation Details . 37

5.3.1 Packages . 37
5.3.2 Code Structure . 38

5.4 Jupyter Notebook Content . 38
5.4.1 Bivariate Gaussian Distribution (V1) 40
5.4.2 Property I of Gaussians: Marginalization Property (V2) 40
5.4.3 Property II of Gaussians: Conditioning Property (V3) 42
5.4.4 Specifying a prior GP (V4) . 43
5.4.5 Conditioning a GP (V5) . 43
5.4.6 Marginalization of a GP (V6) . 44
5.4.7 Hyperparameter Optimisation (V7) 45

5.5 Deployment . 47
5.6 User Testing and Evaluation . 47

Table of contents xiii

5.7 Summary . 48

6 Discussion and Conclusion 49
6.1 Main Contributions . 49
6.2 Limitations . 50
6.3 Directions for Future Work and Open Questions 51
6.4 Conclusion . 52

Appendix A Results of the small user survey 57

List of figures

2.1 3D Visualisation of the Bivariate Gaussian Distribution 5
2.2 Contour Plots of the Bivariate Gaussian Distribution 6
2.3 Ten realisations of Brownian motion . 7

3.1 Ten samples drawn from a zero-mean Gaussian process for four different
kernels (RBF, Linear, Sine and White noise kernel). 12

3.2 Ten Samples drawn from four different mean functions (Zero, Sine, Linear,
Step mean) with RBF-kernel . 13

3.3 Demonstration of Bayesian Online Updating 16
3.4 Posterior covariance matrix and mean vector decompositions for a white

noise and RBF kernel with sinusoidal mean function. 19
3.5 Decomposition of (negative) log marginal likelihood: model fit vs complexity 22
3.6 Gaussian process regression and corresponding covariance matrices for dif-

ferent lengthscales . 23
3.7 Illustration of local optima on the marginal likelihood contour plot 24
3.8 Two explanations of noisy sinusoidal data 25
3.9 Demonstrating the role of the log marginal likelihood for model selection . 26

5.1 Error handling of the interactive software 37
5.2 Overall Notebook Structure . 39
5.3 Interactive Plot V1: Bivariate Gaussian Distribution 40
5.4 Interactive plot V2: Marginalization Property 41
5.5 Interactive plot V3: Conditioning Property 42
5.6 Interactive Plot V4: Specifying a prior GP 43
5.7 Interactive Plot V5: Conditioning a GP on Observations 44
5.8 Interactive Plot V6: Marginalizing a Posterior GP 45
5.9 Interactive Plot V7: Hyperparameter Optimisation 46

xvi List of figures

A.1 Survey Results: process-centric definition 57
A.2 Survey Results: Alternative Media . 58
A.3 Survey Results: Notebook User Experience 58
A.4 Survey Results: Role of medium choice for conceptual learning 59
A.5 Survey Results: Learning of different concepts 59

List of tables

3.1 Overview of different Prior Covariance Functions commonly used with
Gaussian processes . 11

3.2 Overview of different Prior Mean Functions for Gaussian processes 13
3.3 Optimised Hyperparameters of each model 26

5.1 Features and Learning Goals of Figure V1 40
5.2 Features and Learning Goals of Figure V2 41
5.3 Features and Learning Goals of Figure V3 42
5.4 Features and Learning Goals of Figure V4 43
5.5 Features and Learning Goals for Figure V5 44
5.6 Features and Learning Goals for Figure V6 45
5.7 Features and Learning Goals for Figure V7 46

Nomenclature

Vectors are denoted by boldface (m), matrices by capital boldface (K). Functions are written
in italicised font (m and k). Individual elements of vectors are denoted by subscripts, (xi).
Reference to the test set is made by subscript asterisk (x∗).

ℓ characteristic lengthscale

f or f (x) vectorized latent function values

D data set: D = {(xi,yi) | i = 1, . . . ,N}

σ2
f signal variance

σ2
n noise variance

D dimension of the input space

f or f (x) a function

k(x,x′) covariance function evaluated at x and x′

m(x) mean function evaluated at x

N number of training points

Chapter 1

Introduction

Gaussian Processes (GPs) are probability distributions over functions, commonly used for
regression and classification problems by incorporating prior knowledge. They provide a
probabilistic framework that quantifies uncertainty in predictions by assigning probabilities
to an infinite array of potential functions that fit given data points. GPs are applied in various
domains, such as error reduction in reinforcement learning (Deisenroth, Fox, and Rasmussen,
2013), the analysis of astronomical time-series data (Foreman-Mackey et al., 2017), or black-
box optimization in Machine Learning (Snoek et al., 2012). These applications demonstrate
the flexibility of GPs in addressing complex real-world problems. However, Gaussian
processes are often perceived as difficult to understand due to their mathematical complexity
and abstract nature. Despite the availability of foundational texts that offer deep insights
into GPs (Rasmussen, 1997; Williams and Rasmussen, 2006), these resources may be less
accessible to practitioners with limited mathematical backgrounds.

We address this challenge by developing a novel view on Gausssian processes that we
call ’process-centric’. The process-centric view is introduced by Hensman and Rasmussen
(2024) which sets a foundational starting point for this project. This new view defines a
GP as an object defined by a mean and covariance function and permits two operations:
marginalization and conditioning. The main contributions of this thesis for the Gaussian
Process literature include:

• The Development of the conceptual Framework: This thesis introduces the process-
centric view from a theoretical perspective, highlights key properties, and sets it in
relation to previous views.

• Practical Exposition of Examples: In addition to a theoretical process-centric frame-
work, this thesis delivers an interactive software that serves as a pedagogical tool to

2 Introduction

improve the conceptual understanding of process-centric GPs through visualisations
and practical examples.

1.1 Thesis Structure

This thesis is structured as follows. Chapter 2 introduces the key concepts: the multivariate
Gaussian distribution, its main properties, and stochastic processes to lay the theoretical
foundations for the process-centric view. Chapter 3 develops the process-centric view on
GPs, focusing on the role of mean and covariance functions, and explaining key operations
of marginalization and conditioning. The chapter is concluded by a discussion of the role
of the marginal likelihood for model selection. Chapter 4 places the process-centric view
within a broader context of the Gaussian process literature, and motivates the need for more
accessible educational resources. Chapter 5 describes the design and implementation of the
interactive Jupyter Notebook that was developed as part of this research, highlighting its
key features and role as an educational tool. Finally, chapter 6 summarizes key findings,
discusses the limitations of the current approach, and suggests directions for future work.

Chapter 2

Background

This chapter describes the theoretical background for process-centric Gaussian processes.
It begins with the problem formulation and an explanation of the multivariate Gaussian
distribution, including its properties. It then discusses stochastic processes, concluded with a
brief introduction to Gaussian processes.

2.1 Regression Problem Formulation

Let D be a dataset of N data points, D = {(xi,yi) | i = 1, . . . ,N}, where xi ∈ RD is a D-
dimensional input vector and yi ∈ R is a scalar output. Suppose that the observed output yi is
a function of the input xi and additive Gaussian noise εi. The goal is to infer the function f

and make a prediction y∗ for a new input value x∗.

yi = f (xi)+ εi, εi ∼N (0,σ2
n) (2.1)

We can vectorize the inputs X, observations y, and function values f = f (X). Then, the
likelihood p(y | f) which expresses the probability of the observations under the model can
be computed using:

p(y | f) =
N

∏
i=1

p(yi | f (xi)) =N (y | f,σ2
n I) (2.2)

2.2 Bayesian Machine Learning

Traditional regression aims to obtain a single best solution to the problem in Equation 2.1
that maximises the fit to the training data. The Bayesian view takes an alternative approach

4 Background

of learning from data by assigning probabilities to different solutions which quantify our
uncertainty about the learned relationship. For example, multiple models could explain the
data, but a simpler model might be more probable than a complex one. Let us specify our
model to be the function f . Then p(f) is the prior probability distribution that expresses
our prior beliefs about possible functions values. As data is observed, we can update our
knowledge which is captured in the posterior distribution p(f | y). Using Bayes’ rule, the
posterior is obtained by combining the prior with the likelihood function which is formalised
in the following expression:

p(f ,y) = p(f)p(y | f) = p(y)p(f | y) (2.3)

Note that the normalisation constant p(y), also known as the marginal likelihood, ensures
that the posterior is a valid probability distribution. In the following, the Gaussian distribution
will be discussed which lays the foundation for Gaussian processes.

2.3 Multivariate Gaussian Distribution

The multivariate Gaussian distribution of a D-dimensional vector of real-valued random
variables x = (x1,x2, · · · ,xD)

T is given as:

p(x|m,Σ) = N(x|m,Σ) =
1

(2π)D/2|Σ|1/2 exp
(
−1

2
(x−m)T

Σ
−1(x−m)

)
(2.4)

It is fully specified by a mean vector m and covariance matrix Σ:

E[x] = m and E[(x−m)(x−m)T] = Σ (2.5)

The covariance Σ ∈ RD×D is a symmetric positive definite matrix and determines the
distribution’s shape and orientation while the mean vector m ∈ RD is the center of the
distribution. For the bivariate Gaussian distribution which is a special case of the multivariate
Gaussian with D = 2, the random variables x1 and x2 are jointly Gaussian:

p(x1,x2) = p

([
x1

x2

])
=N

([
m1

m2

]
,

[
σ2

1 c

c σ2
2

])
(2.6)

Figure 2.1 shows the probability density of a bivariate Gaussian distribution, visualised
using a 3D surface plot. In the following sections, two important properties of the Gaussian

2.3 Gaussian Distribution 5

Fig. 2.1 3D visualization of the joint bivariate Gaussian distribution p(x1,x2) with zero mean,
unit variance, and a correlation coefficient c = 0.5. The marginal distributions p(x1) and
p(x2) are shown in green and black, respectively. Brown dots indicate samples drawn from
the distribution.

distribution will be discussed which are closure under marginalisation and conditioning.
These properties are vital for Gaussian processes as they make them tractable. We will
specifically discuss the bivariate case for ease of visualisation.

2.3.1 Property I: Closure Under Marginalisation

If a set of variables x1,x2, . . . ,xD is jointly Gaussian distributed, the marginal distribution of
any subset, such as p(x1), can be obtained by integrating out variables we are not interested
in. This process simplifies to considering only the relevant entries in the mean vector m and
covariance matrix Σ. For the bivariate case, the marginal distribution of x1 simplifies to a
univariate Gaussian distribution, given as:

p(x1) =
∫

p(x1,x2)dx2 =N (m1,σ
2
1) (2.7)

This property, known as closure under marginalization, implies that the resulting marginal
distribution remains Gaussian. Thus, the marginalization of a bigger Gaussian distribution
does not change the Gaussian nature of the smaller subset. The marginal distributions for a

6 Background

bivariate case are depicted in green and black in Figure 2.1 and Figure 2.2. The latter figure
furthermore illustrates that the marginal p(x1) is independent of the correlation coefficient c

which also follows from Equation 2.7.

2.3.2 Property II: Closure Under Conditioning

Conditioning updates the Gaussian distribution based on observed values of some variables.
The resulting distribution remains Gaussian, which is known as closure under conditioning.
For jointly Gaussian variables x1 and x2, the conditional distribution of x1 given x2 is
computed as:

p(x1 | x2) =N
(
m1 + cσ

−2
2 (x2−m2),σ

2
1 − cσ

−2
2 c
)

(2.8)

Fig. 2.2 Contour plots of bivariate Gaussian distributions with unit variance and zero mean
for correlation coefficient c = 0 (left), c = 0.5 (center), and c = 0.9 (right). The joint density
is shown using a red-to-blue heatmap with elliptical contour lines. Marginals for p(x1) and
p(x2) are shown in black and green, respectively. Each light-blue arrow represents the unit
eigenvector v of the covariance matrix scaled by the factor 2

√
λ where λ is the corresponding

eigenvalue. Brown lines show conditional distributions p(x1 | x2) for different values of x2

Both marginalizing and conditioning a bivariate Gaussian result in a univariate Gaussian
distribution. However the difference is that conditioning fixes the value of one dimension
while marginalization simply ignores that dimension. An illustration of conditional dis-
tributions for three covariance matrices with different correlation values c can be seen in

2.4 Stochastic Process 7

Figure 2.2. For uncorrelated variables (c = 0), the conditional distribution is equivalent
to the marginal in Equation 2.7. In contrast, highly correlated variables (c = 0.9) yield a
more peaked conditional distribution with a smaller variance. This reflects a reduction in
uncertainty because observing x2 provides valuable information about the distribution of x1.
Notably, while the observed value of x2 shifts the conditional mean, it does not affect the
conditional variance that is solely determined by the covariance of the joint distribution.

2.4 Stochastic Process

While probability distributions, such as the multivariate Gaussian, characterise a finite set of
random variables, many real-world systems that evolve over a continuous index set, such as
time, are best modelled using functions. Such systems can be described using a stochastic
process which is a collection of random variables {X(t) : t ∈ T} indexed by parameter t

that belongs to some index set T . One example is Brownian motion which models the
random motion of particles in a fluid medium while randomly bumping into other particles
(Uhlenbeck and Ornstein, 1930). It can be described by the Wiener process which samples a
random distance ∆d from a Gaussian distribution ∆d∼N (0,∆t) that determines the position
evolution as d(t +∆t) = d(t)+∆d. Ten Brownian motion sample functions can be inspected
in Figure 2.3 where each sample function is a possible realization of Brownian motion. Both
Gaussian processes and Brownian motion are types of stochastic processes and Brownian
motion can in fact be re-expressed as a Gaussian process with zero mean m(t) = 0 and a
covariance function k(t, t ′) = min(t, t ′) that depends on the minimum of two time points
(Pavliotis, 2014).

Fig. 2.3 Ten realisations of Brownian motion

8 Background

2.5 Gaussian Process

Gaussian processes combine concepts from both probability distributions and stochastic
processes to model functions. Specifically, a Gaussian process is defined as a stochastic
process whereas every finite collection of its random variables has a multivariate Gaussian
distribution. While the multivariate Gaussian distribution lives on a finite input domain and
is specified by vectors or matrices, the Gaussian process lives on an infinite input domain
with functions as arguments. In that way, the Gaussian process can be seen as an extension
of a multivariate Gaussian distribution with an infinitely large index set. Thus, the two main
properties of Gaussians - conditioning and marginalisation - still hold for Gaussian processes
which makes their computation practical. In the following section, the process-centric view
on Gaussian processes as a novel conceptual framework is introduced.

Chapter 3

Process-centric Gaussian Processes (GPs)

In this chapter, the process-centric view on Gaussian processes (GPs) is defined, providing
a new framework to implement and think about GPs. This view is conceptually simpler
and focuses on the main GP properties (the mean and covariance function) and operations
(marginalization and conditioning). We discuss the role of the prior Gaussian process as a way
to encode prior knowledge. Specifically, the effect of the prior mean and covariance functions
on the shape of prior GP samples is illustrated. Furthermore, the two main GP operations,
conditioning and marginalization, are explained and important practical implications are
highlighted. This chapter concludes with an interpretation of the log marginal likelihood and
its role for hyperparameter and model selection.

3.1 The Process-centric Framework

Definition 1. According to the process-centric view, a Gaussian process is an
object, fully specified by a mean function m and covariance function k (and possibly its
hyperparameters θ) and allows two main operations: marginalization and conditioning.

Let p(f) =N (m,k) be a Gaussian process (GP) that encodes prior assumptions about
a function f . This prior Gaussian process is fully specified by a mean function m and
covariance function k and can be marginalized or conditioned. When conditioning a GP on
observations D = {(xi,yi) | i = 1, . . . ,N} via the likelihood function, we obtain a new GP
that reflects the updated belief about the function f along with an evaluation metric, the
marginal likelihood. When marginalizing a GP, we evaluate the Gaussian process at a finite
set of input locations x, yielding Gaussian distributed finite function values f = f (x) which
are defined by a mean vector m(x) and covariance matrix k(x,x). It is important to note the

10 Process-centric Gaussian Processes (GPs)

notation difference between bold face letters for vectors and matrices (m, K respectively)
and italicised font for functions (m and k).

3.1.1 Sample Generation

To gain a better intuition on the shape of Gaussian processes, it is useful to generate random
functions. Random samples from a joint Gaussian distribution N (m,K) can be drawn by
first computing the Cholesky decomposition of the covariance matrix, yielding the lower
triangular matrix L:

L = cholesky(K) =⇒ LL⊤ = K (3.1)

Second, the matrix multiplication of L with a vector z of Gaussian distributed independent
entries is taken and the mean vector m is added to obtain a sample vector y

z∼N (0, I), y = Lz+m =⇒ y∼N (m,K) (3.2)

We can therefore draw samples from a Gaussian process after having marginalized a GP
which will be useful in the following sections where we illustrate the role of prior GPs on
the shape of random sample functions. The pseudo algorithm implementing Equation 3.1-
Equation 3.2 can be inspected in Algorithm 1.

Algorithm 1 Gaussian Sample
Require: m,K

1: L← cholesky(K),
2: z← rand_gaussian(D,1),
3: y← Lz+m
4: return y

3.2 Prior Covariance Function

For Gaussian processes, the covariance function k(x,x′) (or kernel) is one of the two ways to
encode prior knowledge about the function that we wish to model. It is a function of a pair
of inputs x,x’ and describes the change of their corresponding function outputs f (x), f (x’)
with varying spatial separation:

k(x,x’) = E[(f (x)−m(x))(f (x’)−m(x’)] (3.3)

3.2 Prior Covariance Function 11

A valid covariance function for Gaussian processes has to be positive definite and
symmetric: k(x,x′) = k(x′,x) (Williams and Rasmussen, 2006). Positive definite means that
if a covariance function is evaluated at a finite set of points, the resulting covariance matrix
K is positive definite if and only if it has only positive eigenvalues λi > 0.

Each covariance function encodes different assumptions about the properties and shape
of possible functions fitting the data. An overview of four different covariance functions is
given in Table 3.1.

Kernel Name Formula Structure Type

RBF kSE(x,x′) = σ2
s exp

(
− (x−x′)2

2ℓ2

)
local variations

Periodic kPer(x,x′) = σ2
s exp

(
−2sin2(π|x−x′|)/p

ℓ2

)
repeating functions

Linear kLin(x,x′) = σ2
s x · x′ linear functions

White Noise kWN(x,x′) = σ2
f δ (x− x′) uncorrelated noise

Table 3.1 Overview of different Prior Covariance Functions commonly used with Gaussian
processes

The Radial Basis Function (RBF)1 and periodic kernel are examples of stationary kernels2.
The RBF kernel is the most popular kernel function and assigns high similarity values to
inputs that are close to each other. It has convenient properties such as infinite differentiability
with mean square derivatives and is therefore suitable for modelling smooth and continuous
functions (Williams and Rasmussen, 2006). For modelling exactly repeating functions, the
periodic kernel, derived by David Mackay in MacKay et al. (1998), is an appropriate choice.
An example for a non-stationary kernel is the linear kernel or ’dot product kernel’(Williams
and Rasmussen, 2006, Section 4.2). It essentially performs Bayesian linear regression.
Finally, the white noise (WN) kernel draws independent samples from a Gaussian random
variable which means that it models no covariances but only the variance on the diagonals. In
fact, a RBF kernel with a lengthscale approaching zero is equivalent to a white noise kernel.

The interested reader should refer to Duvenaud (2014) for a detailed overview of more
kernel functions, such as the Matérn or rational quadratic kernel, as well as composite
covariance functions. Since sums or products of two kernels are still valid kernels, new kernel
combinations can be constructed by multiplication and addition (Williams and Rasmussen,

1The RBF kernel is also known as the Gaussian kernel or squared exponential function
2Stationary kernels depend only on the distance between two inputs whereas non-stationary kernels depend

directly on the input coordinates.

12 Process-centric Gaussian Processes (GPs)

Fig. 3.1 Ten samples drawn from a zero-mean Gaussian process for four different kernels
(RBF, Linear, Sine and White noise kernel).

2006, Subsection 4.2.4.). Figure 3.2 shows ten samples drawn from these four covariance
functions with zero mean.

3.2.1 Covariance Hyperparameters:

Each covariance function is parametrised by hyperparameters θ that determine its shape. The
two most common hyperparameters are:

• the characteristic lengthscale ℓ specifying the distance from which two points become
uncorrelated (i.e. extrapolation on the x-axis) and

• the signal variance σ2
f , modelling the average distance of the function away from its

mean (i.e. amplitude on the y-axis).

When modelling noisy training data y= f (x)+ε with i.i.d. Gaussian noise ε ∼N (0,σ2
n),

the noise variance hyperparameter σ2
n is added to the covariance as a diagonal matrix. The

covariance of the noisy outputs can now be interpreted as adding a white noise kernel to the
’signal’. This gives us:

ky(y,y′) = k(x,x′)+σ
2
n δ (x− x′)

where δ (x− x′) is the Kronecker delta function. The hyperparameters can be either
manually set or selected by maximising the marginal likelihood (section 3.6).

3.3 Prior Mean Function

Another way of incorporating knowledge into the Gaussian process is by defining a prior
mean function m(x). The mean function represents the average behaviour of the Gaussian
process when drawing many samples and is given by:

3.3 Prior Mean Function 13

m(x) = E[f (x)]

Prior kernel selection often assumes a zero mean m(x) = 0 which simplifies the formu-
lation and works well enough in many scenarios. However, in the absence of observations
or an uninformative covariance function, the posterior mean function becomes equivalent
to the prior mean (subsection 3.5.2). Especially when modelling non-stationary data, the
asymptotic behaviour of a function should be specified via a non-zero mean function. This is
particularly important for extrapolation when modelling far-away data points. For example,
Hwang et al. (2023) shows that zero-mean functions for supernovae reconstructions may
result in unphysical estimates, therefore advocating for careful mean function selection for
nonstationary signals.

Mean Function Formula Structure Type

Zero m(x) = 0 no data trend
Linear m(x) = x linear data trends
Periodic m(x) = sin(x) periodic data trends
Step m(x) = 1(x > 0) step changes

Table 3.2 Overview of different Prior Mean Functions for Gaussian processes

A variety of mean functions, as shown in Table 3.2, can be used to model linear, periodic,
or step data trends respectively. Furthermore, it should be noted that while defining a
covariance function requires the fulfillment of constraints on the kernel definition, such as
positive definiteness, mean functions can be defined more freely without special requirements.
Ten samples drawn from these mean functions can be seen in Figure 3.2.

Fig. 3.2 Ten Samples drawn from four different mean functions (Zero, Sine, Linear, Step
mean) with RBF-kernel

14 Process-centric Gaussian Processes (GPs)

3.3.1 Mean Hyperparameters

Similarly to the covariance function, a mean function can be defined by hyperparameters
θ . Specifying hyperparameters for a linear mean function for example might be useful if
we assume a certain slope or offset. However, we fixed the hyperparameters due to the
unpopularity of defining non-stationary mean functions. Furthermore, optimizing the mean
hyperparameters may result in overfitting for reasons mentioned when discussing the log
marginal likelihood in subsection 3.6.2.

3.4 Conditioning Operation

We discuss now the conditioning operation which involves the updating of prior beliefs
about a function based on observed data. We can use Equation 2.3, to express the joint
distribution of the observations y and function f as the product of the prior Gaussian process
over functions p(f) =N (f |m,k) and the Gaussian likelihood p(y | f) =N

(
y | f,σ2

n I
)
. This

is equivalent to the product of the marginal likelihood p(y) = Z|y and the posterior Gaussian
process over functions p(f | y) =N (f | m|y,k|y). The posterior GP has the same properties
as the prior GP and is defined by a (posterior) mean m|y and covariance function k|y. It
can be seen as an updated prior after observing data. The likelihood p(y | f) as defined in
Equation 2.2 encodes the probability of the observation vector given the function evaluations
at the inputs. Gaussian process regression can be summarised with the following main
mathematical formulation:

N (f |m,k)N (y|f,σ2
n I) = Z|yN (f |m|y,k|y), (3.4)

m|y(x) = m(x)+k(x,x)[K+σ
2
n I]−1(y−m), (3.5)

k|y(x,x’) = k(x,x’)−k(x,x)[K+σ
2
n I]−1k(x,x’), (3.6)

Z|y =N (y |m,K+σ
2
n I). (3.7)

This formulation places all knowns (the prior GP and the likelihood) on the left hand side
and all unknowns (the posterior GP and the log marginal likelihood) on the right hand side.
While the covariance term depends only on the inputs, the mean also depends on the outputs.
A detailed interpretation of each term is provided in subsection 3.5.2.

3.4 Conditioning Operation 15

3.4.1 Algorithmic Implementation

Algorithm 2 GP_conditioning

Require: m(· | θ),k(·, · | θ),X,y
1: K[n,m]← k(xn,xm | θ)
2: L← chol(K)
3: A(·)← L−1k(X, · | θ)
4: b← L−1(y−m(X))
5: m|y(·)←m(· | θ)+A(·)⊤b
6: k|y(·, · | θ)← k(·, · | θ)−A(·)⊤A(·)
7: logZ|y←−1

2b⊤b−∑ logdiag(L)− n
2 log2π

8: return m|y(· | θ),k|y(·, · | θ), logZ|y

The algorithmic implementation of the conditioning operation from Equations 3.4-3.7 can
be inspected in Algorithm 2. It takes a prior mean m and covariance function k as input, both
parametrised by their function-specific hyperparameters θ , as well as the input matrix X and
observation vector y. Using the Cholesky decomposition for numerical stability and efficient
matrix inversion, the posterior mean and covariance functions, as defined in Equations 3.5-
3.6 are computed which are lambda functions in our Python implementation. The algorithm
also returns the log marginal likelihood as in Equation 3.7.

3.4.2 Bayesian Online Updating

A Gaussian process (GP) can either be updated with the whole data set at once or in an
online fashion using data batches. Let y1,y2 be vectorised subsets of the data. Here, we
use the posterior GP from the previous iteration p(f | y1) as the new GP prior, and combine
it with the Gaussian likelihood of the current data batch p(y2 | f). Using Bayes’ rule from
Equation 2.3, we obtain the posterior GP p(f | y1,y2) and the normalizing constant p(y2 | y1).
This formulation is given as:

p(f ,y2 | y1) = p(f | y1)p(y2 | f) = p(y2 | y1)p(f | y1,y2) (3.8)

The posterior we obtain is equivalent to the formulation in Equation 3.4. However, the
normalising constant is now different as it depends on y1:

N (f |m|y1,k|y1)N (y2 | f,σ2) = p(y2 | y1)N (f |m|y,K|y) (3.9)

16 Process-centric Gaussian Processes (GPs)

To obtain the log marginal likelihood of all observations y, we can simply add the log
normalizing constants of both batches:

log p(y) = log p(y1)+ log p(y2 | y1) (3.10)

An example for Bayesian online updating for (noise-free) synthetically generated sinu-
soidal data can be seen in Figure 3.3. In each iteration, the Gaussian process is conditioned
on a new data point, using the posterior of the previous iteration as a new prior.

Fig. 3.3 Incremental conditioning of a Gaussian process with a zero mean and RBF covariance
function (θ = {ℓ= 1,σ2

n = 0.001,σ2
f = 1}) as a prior. Five data points were sampled from

a noise-free sine function, depicted in green. In each iteration, the Gaussian process is
conditioned on a new observation (red circles). The new posterior mean and ±2 standard
deviations are depicted as a dotted blue line and filled area. As new data are incorporated
into the Gaussian process model, the negative log marginal likelihood (log_Z) is updated.

3.5 Marginalization Operation 17

3.5 Marginalization Operation

A Gaussian process is an infinite collection of random variables, but when predicting outputs
for certain test locations, we aim to obtain a finite set of random variables that can be worked
with. Since a Gaussian process can be seen as a Gaussian distribution with an infinitely
long mean vector and infinite by infinite covariance matrix, the marginalization property for
multivariate Gaussian distributions, as defined in subsection 2.3.1 also holds for Gaussian
processes. This means that the marginal distribution of a Gaussian process is obtained by
simply ignoring all random variables we are not interested in.

Marginalization evaluates the Gaussian process f at a finite set of input locations x which
yields a Gaussian distributed finite vector of function values f = f (x). Thus, marginalization
allows to move from an infinite-dimensional object, a stochastic process specified by a mean
and covariance function, to a finite-dimensional object, a distribution, specified by a finite
mean vector m(x) and covariance matrix k(x,x).

f ∼N (m,k) =⇒ f (x)∼N (m = m(x),K = k(x,x)) (3.11)

3.5.1 Algorithmic Implementation

Marginalization from Equation 3.11 is implemented in Algorithm 3. It takes as inputs a
mean and covariance function and a set of input points X to evaluate and it returns a mean
vector and covariance matrix which are obtained after evaluating both mean and covariance
function at the inputs. The function outputs can then be used for visualisation purposes or for
making predictions.

Algorithm 3 GP_marginal

Require: m(· | θ),k(·, · | θ),X
1: m[n]←m(xn)
2: K[n,m]← k(xn,xm)
3: return m,K

3.5.2 Decomposition of the posterior mean and covariance matrices

Figure 3.4 show two different posterior Gaussian process models, conditioned on 10 training
points, sampled from noise-free sinusoidal data. The marginalised mean and ±2 standard
deviation are shown on the left (plot a and d) and were obtained by evaluating the posterior

18 Process-centric Gaussian Processes (GPs)

mean and covariance function at the test locations using Equation 3.5 and Equation 3.6
respectively and Equation 3.11. Both models were defined with a sinusoidal prior mean
function, but differ in their prior covariance specification. The first model (top) is defined
by a RBF prior covariance function, whereas the second model (bottom) is defined by a
white noise kernel. On the right side, the decomposition of both covariance matrix and mean
vector can be inspected on a red-blue colorscale. Red colors indicate low values whereas
blue values indicate high values. Note that the colorscales between covariance matrix and
mean vector differ as the mean vector can take negative values, but the covariance matrix has
to be positive semi-definite. In the following, these plots will be explained in more detail.

We can obtain the posterior covariance matrix by evaluating the posterior covariance
function from Equation 3.6 on test inputs. For a single test point x∗, the posterior covariance
can be decomposed into the difference between the following two terms:

• The term k(x∗,x∗) represents the variance of the output at the test point x∗ under the
prior covariance function.

• The term k(x∗,x)[K+σ2
n I]−1k(x,x∗) quantifies the contribution of the training data to

the variance at the test point x∗.

By subtracting the data-dependent term from the prior variance, we obtain the posterior
variance k|y(x∗,x∗) reflecting to what extent the uncertainty decreases after observing data.
A greater similarity between both terms corresponds to more confident predictions. For
example, at test locations near the training points, the posterior variance under the RBF
kernel is low since the prior and data highly agree with each other. However, for test locations
far away from the training data, the uncertainty increases and reverts to the prior. In the case
of the white noise kernel, the posterior equals the prior since the white noise kernel does not
model correlations in the data, and thus no additional knowledge is gained from observing
data (see plot e)

Using the equation for the posterior mean function from Equation 3.5, we can similarly
obtain the posterior mean m|y(x∗) by decomposing it into two terms:

• The prior mean m(x∗) reflects the expected function value at the test point x∗ under the
prior mean function.

• The data contribution term k(x∗,x)[K+σ2
n I]−1(y−m) describes to what extent the

data explains the average function value.

3.5 Marginalization Operation 19

Fig. 3.4 Two Gaussian process Posterior Models for noise-free sinusoidal data after condi-
tioning on 10 test points. Figure (a) and (d) depict the marginalised mean and ± standard
deviation of the posterior Gaussian process using 200 data points. Both models were specified
with a prior sinusoidal covariance function but with different kernels (top: prior RBF kernel
with ℓ= 1, σ f =1, σn = 0.001 and bottom: white noise kernel with σ f =1, σn = 0.001). The
covariance matrix and mean vector decompositions can be seen on the right which were
obtained by plotting the components of Equation 3.6 and Equation 3.5 respectively, evaluated
at the test data. Red colors indicate low values whereas blue colors indicate high values. Note
that the colorscales between covariance matrix and mean vector differ as the mean vector can
take negative values, but the covariance matrix has to be positive semi-definite. This figure
was inspired by an illustration from Schulz et al. (2018)

20 Process-centric Gaussian Processes (GPs)

The sum of both terms yields the posterior mean. While a zero mean function only
incorporates data-dependent knowledge about expected function values, a non-stationary
mean function includes certain prior assumptions about the expected function values. The
effect of the prior mean becomes especially evident for extrapolation. For example, in the
case of a sinusoidal prior mean function and in the absence of data, the posterior mean equals
the prior mean, exhibiting periodic trends rather than reducing to zero (see Figure 3.4c).
Finally, in case of an uninformative covariance function (aka the white noise kernel), the prior
and posterior mean vectors are equivalent since the data contribution term from Equation 3.5
is zero. These considerations demonstrate that defining a prior mean can have practical
advantages in some cases.

3.6 Marginal Likelihood

As shown in Equation 3.4, the conditioning operation returns the logarithm of the marginal
likelihood p(y) which reflects how well the posterior Gaussian process explains the data
under the prior GP. It marginalizes over the latent function values at a set of locations which
justifies the name ’marginal likelihood’.

p(y) =
∫

p(y | f)p(f)df (3.12)

The marginal likelihood can also be seen as the probability of generating the observations
y when randomly drawing function values f from the prior. While simple priors can only
explain a small number of datasets with high probability, overcomplex priors spread their
probability mass on too many datasets. This trade-off between minimizing model complexity
and minimizing model misfit is known as Occams razor (Rasmussen and Ghahramani, 2000),
and is explained further in the following subsection.

3.6.1 Occam’s Razor

Occams razor is best described by considering the analytical solution for the log marginal
likelihood. We now write the log marginal likelihood as log p(y | X,θ) and explicitly
highlight that it is conditioned on the input matrix X and the hyperparameters θ . The
analytical solution for the log marginal likelihood is then given as:

3.6 Marginal Likelihood 21

log p(y|X,θ) =−1
2
(y−m)⊤(K+σ

2
n I)−1(y−m)− 1

2
log
∣∣K+σ

2
n I
∣∣− n

2
log2π (3.13)

Besides a constant term, this expression contains two main terms:

• The Data Fit Term (−1
2(y−m)⊤(K+σ2

n I)−1(y−m)) measures how well the model
fits the observed data y. A larger value indicates a better data fit.

• The Model Complexity Term (−1
2 log

∣∣K+σ2
n I
∣∣) penalizes more complex models. A

smaller value (mind the negative sign) indicates a more complex model.

Maximising the sum of both terms reflect this trade-off between data fit and complexity,
preferring the least complex model able to explain the data.

An example visualisation of Occams Razor

Figure 3.5a visualises this trade-off for different lengthscales by showing the complexity, data
fit term, and marginal likelihood in green, red, and blue respectively for different lengthscales.
As we consider a minimisation problem of the negative log marginal likelihood, smaller
values are better. With increasing lengthscale, the data (un-)fit term increases while the
complexity penalty decreases, corresponding to an over-simplified model. A very small
lengthscale improves the fit but at the cost of a higher complexity penalty.

This effect is further illustrated by choosing three lengthscales (ℓ = 0.1, ℓ = 0.8, and
ℓ= 1.5) and inspecting their corresponding posterior GP mean and ±2 standard deviations
in Figure 3.6a. We can also see their prior covariance functions evaluated at the test points
(yielding the matrix K) in Figure 3.6b. A medium-sized lengthscale (ℓ= 0.8) minimises the
negative log marginal likelihood, optimally balancing fit and complexity. In contrast, a too
small (ℓ = 0.1) or too large (ℓ = 1.5) lengthscale results in over-, or underfitting. We can
also see in Figure 3.6b that overfitting stems from a prior covariance matrix K that is almost
diagonal, whereas an underfitted GP considers too many neighboring points.

Finally, let us discuss the effect of the data set size that can be inspected in Figure 3.5b.
The plot visualises the negative log marginal likelihood per data point for three different
datasets. As we can see, when increasing the data set size, the log marginal likelihood
becomes more peaked and discourages overcomplex models with too short lengthscales
stronger.

The important observations made in this section emphasize the importance of hyperpa-
rameter selection which is discussed in the following.

22 Process-centric Gaussian Processes (GPs)

(a) (b)

Fig. 3.5 Figure a) shows the decomposition of the log marginal likelihood (blue) into the
model fit (red) and complexity component (green) for different lengthscales and N=8 training
inputs. Corresponding visualisations of the posterior GP for different lengthscales can be
seen in Figure 3.6a. Figure b) depicts the log marginal likelihood per data point for a small
(blue), medium (orange) and large (light-green) dataset.

.

3.6.2 Hyperparameter Optimisation

So far, the hyperparameters θ and model (defined by a mean and covariance function)
were fixed. The formula for this level of inference is given in the main GPR formulation
in Equation 3.4. However, as discussed in subsection 3.6.1, the kernel hyperparameters
strongly affect the complexity and fit of the posterior Gaussian process and should therefore
be carefully selected. In practise, the best fitting hyperparameters are learned by maximising
the marginal likelihood with respect to the hyperparameters Equation 3.14. This is an
approximation, also known as Type II Maximum Likelihood and usually done using gradient-
based methods.

∂ log p(y | X,θ)

∂θ j
=

1
2

y⊤K−1 ∂K
∂θ j

K−1y− 1
2

tr
(

K−1 ∂K
∂θ j

)
=

1
2

tr
(
(αα

⊤−K−1)
∂K
∂θ j

)
where α = K−1y. (3.14)

The contour plots of the log marginal likelihood for different hyperparameter combina-
tions of the RBF kernel can be inspected in Figure 3.7. They were obtained using noisy
sinusoidal data (noise=0.5). As visible in plot b) there can be multiple local optima which
correspond to different explanations of the data. Keeping the noise fixed, the same data can
either be explained by a more complex model (with lower lengthscale), or a a less complex

3.6 Marginal Likelihood 23

(a) Posterior Gaussian process regression with mean and ±2 standard deviations.

(b) Prior covariance function evaluated on the test points.

Fig. 3.6 Gaussian process regression and corresponding covariance matrices for the length-
scales: ℓ = 0.1, ℓ = 0.8, and ℓ = 1.5. The data was drawn from a noise-free sinusoidal
function.

24 Process-centric Gaussian Processes (GPs)

model (with higher lengthscale). The global optimum is the more complex model that notably
improves the data fit which can be seen by a higher signal variance. Moreover, for the simpler
model with a lower signal variance, the model becomes almost invariant of the lengthscale
since the model explains the data mainly by noise.

It should be noted that we only considered the optimisation of the covariance hyperpa-
rameters. Optimising the hyperparameters of the mean function would improve the data
fit term without adding complexity penalties as the complexity term from the log marginal
likelihood in Equation 3.13 is independent of the mean. The resulting risk for overfitting
might contribute to the unpopularity of hyperparameter optimisation of the mean function.

(a) (b) (c)

Fig. 3.7 Contour plots of the negative log marginal likelihood for different hyperparameter
combinations after optimizing the third hyperparameter. Local optima are marked with a
white cross. The optimized hyperparameters are θ = {σ2

f = 1.07, ℓ= 0.45,σn = 0.347}. (a)
Lengthscale vs. noise variance (σ2

f = 1.07), (b) Lengthscale vs. signal variance (two local
optima, σn = 0.347), (c) Noise vs. signal variance (ℓ= 0.45).

3.6.3 Model Selection

Another application of the marginal likelihood is model selection. Let us define model M

to be a choice of a covariance function. The goal of model selection is to identify the most
suitable covariance function for the given data. Let p(y | X,M) be the Type II maximum
likelihood of the selected model. Using Bayes’ rule, this gives us a way to define the posterior
probability of a model p(M | y,X) that quantifies how likely the model is given the observed
data:

p(M | y,X) =
p(y | X,M)p(M)

p(y | X)
(3.15)

3.6 Marginal Likelihood 25

Fig. 3.8 Two explanations of the sinusoidal (noisy) data with a fixed noise level. The left plot
corresponds to a more complex model with (θ = {σ2 = 1.07, l = 0.45,σn = 0.347}) (global
optimum) and Plot b) corresponds to a simpler model with: (θ = {σ2 = 0.36, l = 8,σn =
0.347}) (local optimum)

Here, p(M) represents now the prior probability of the model (or ’hyperprior’). Assuming
a discrete set of possible models with equal prior probabilities (i.e. a uniform prior), this
simplifies the model selection process to choosing the model that maximizes the Type II
maximum likelihood.

To illustrate this, we revisit the noisy sinusoidal data example from subsection 3.6.2. The
outcomes of hyperparameter optimization are shown in Figure 3.9b, and the corresponding
Type II maximum likelihoods for different covariance functions are compared in Figure 3.9d.
It is important to note that the preferences for different models can change before and
after hyperparameter optimization. Initially, with fixed hyperparameters for all kernels
(e.g., θ = {ℓ= 1,σ2

n = 1,σ2
f , p = 1}), the RBF kernel minimizes the negative log marginal

likelihood, as shown in Figure 3.9a. However, after optimizing the hyperparameters, the
marginal likelihood suggests a preference for the periodic kernel over the RBF kernel.

Although the RBF kernel fits the training points well, its variance increases far away
from the data, reflecting higher uncertainty for extrapolation. In contrast, the periodic kernel
generalizes better and produces lower uncertainty estimates even for data points far from the
training set, which aligns with the sinusoidal nature of the underlying function. On the other
hand, both the white noise and linear kernels perform poorly, yielding large variances and
inaccurate predictions, highlighting their inadequacy in modeling smooth, non-linear data
due to their inability to capture non-linear patterns.

26 Process-centric Gaussian Processes (GPs)

(a) GPR before hyperparameter optimisation

(b) GPR after hyperparameter optimisation.

(c) Log marginal likelihood before optimisation (d) Log marginal likelihood after optimisation

Fig. 3.9 Comparison of Gaussian process regression (GPR) for different covariance kernels
before (Figure a) and after (Figure b) hyperparameter optimisation. The corresponding log
marginal likelihood values can be inspected in Figures c and d.

Table 3.3 Optimised Hyperparameters of each model

Kernel varSigma lengthscale noise period

RBF 1.07 0.46 0.35 -
Periodic 0.95 0.91 0.32 2.17
Linear 0.00 - 1.04 -
White 0.74 - 0.74 -

3.7 Summary 27

3.7 Summary

This chapter provides an in-depth demonstration of the process-centric view on Gaussian
processes. It highlights the role of the prior GP and hyperparameters to encode assumptions
about a function f and demonstrates the conditioning and marginalization operation through
a choice of visualisations and examples. We also show the role of the log marginal likelihood
in providing a natural trade-off between model fit and complexity, making it suitable for
model selection.

Chapter 4

Related Work

In this chapter, a higher-level overview of two common views on Gaussian processes (GPs),
the weight-space and function-space views, is provided. This is followed by a discussion
on how the process-centric view relates to previous views. The chapter concludes with
a literature-based motivation for the development of a novel ’process-centric’ interactive
Gaussian process software. This software was created during this thesis and is designed to
simplify learning through intuitive visualizations, facilitating accessibility of ’process-centric’
Gaussian processes to both initial learners and practitioners.

4.1 The weight-space view

The weight-space view interprets Gaussian processes as an extension of Bayesian linear
regression. In this view, a function f is modelled as a weighted sum of a D-dimensional
input vector x with the weights w which is given by f (x) = xT w. Then, a Gaussian prior
with zero mean and covariance Σp is placed on the weights w∼N (0,Σp). To increase the
model’s flexibility, the input vector is transformed into a higher-dimensional space using the
basis function φ(x). When using a (possibly) infinite number of basis functions, the Bayesian
linear regression model corresponds to a Gaussian process. For a detailed mathematical
derivation, the reader should refer to Section 2.1. in Williams and Rasmussen (2006)

This view is advantageous for those familiar with parametric models and Bayesian statis-
tics, as it offers a clear transition from parametric to non-parametric modeling. However, it
indirectly tackles Gaussian process regression and involves a lengthy mathematical derivation.
Therefore, it might be more challenging to understand for those less familiar with concepts
such as parametrics, basis functions, or the kernel trick. The weight-space view is less related
to the process-centric view and thus, this thesis does not discuss it in detail.

30 Related Work

4.2 The function-space view

The function-space view tackles Gaussian processes directly by modeling probability distri-
butions over unknown functions rather than weights (Williams and Rasmussen, 2006, Section
2.2). It specifies a Gaussian process prior over all possible functions f (x) ∼ GP(m,k) in
the same way as described under the process-centric view in Equation 3.4. It then infers the
posterior predictive distribution p(f∗ | x∗,X,y)∼N (f̄∗,V(f∗)) for a new test point x∗ which
is given by the predicted function value f̄∗ = k⊤∗ (K+σ2

n I)−1y and the predictive variance
V(f∗) = k(x∗,x∗)−k⊤∗ (K+σ2

n I)−1k∗. We can see from this notation that inference involves
three evaluations of the prior covariance function: k∗ is the vector of covariances between
the test point and N training points, K contains the covariance matrix between all training
points, and k(x∗,x∗) is the variance of the test point. Note that for multiple test locations X∗,
this vector becomes a covariance matrix between all test inputs.

This view aligns closely with the process-centric view that focuses on the interpretation
of a Gaussian process as a stochastic process that can also be seen as a single random variable
in function space (aka ’random function’) (Lamperti, 2012, Chapter 1). Nevertheless, both
views focus on different types of objects and thus differ in terms of their interpretation which
is discussed in detail in the following section.

4.3 Relation of previous views to the process-centric view

The relation between the three different views can be demonstrated by re-expressing the
covariance function k(x,x′), evaluated at x and x′, in terms of the basis functions φ(x) and
φ(x′) respectively. This expression is a dot product with respect to the covariance function
Σp:

k(x,x′) = φ(x)⊤Σpφ(x′).

We write shorthand φ(x∗) = φ∗ for a test input x∗ and Φ = Φ(X) to be an aggregation
of all columns φ(x) of the training data. To make predictions, we can then obtain the
following expressions for the covariance matrices: K = Φ⊤ΣpΦ, k∗ = φ⊤∗ ΣpΦ, , and
k(x∗,x∗) = φ⊤∗ Σpφ∗. Note that these correspond to the components of the posterior predictive
distribution in section 4.2.

Since the posterior predictive distribution is equivalent to a marginalised posterior Gaus-
sian process from the process-centric view, this effectively shows the connection between all
three views. In the following, the focus will be on the relation between the function-space
and process-centric views, as more direct approaches toward Gaussian processes.

4.4 Educational Gaussian Process Material 31

While the function-space view focuses on the posterior distribution of the test outputs,
the process-centric view is defined in terms of a joint distribution of the training and test
outputs (Equation 2.3). The latter definition has an intuitive interpretation that when using
Bayes’ rule, this allows placing all known variables on one side (the likelihood and prior) and
all unknowns on the other side (marginal likelihood and posterior). In practical terms, both
views start by defining a Gaussian process prior but then differ in terms of their computations.
While the function-view conditions on both training and test inputs to obtain the posterior
predictive distribution which is a multivariate Gaussian distribution, the process-centric view
conditions on the training inputs to obtain a posterior Gaussian process. While the latter is an
infinite-dimensional object defined in terms of functions, the posterior predictive distribution
is a finite-dimensional object defined in terms of a vector and matrix.

Directly obtaining a finite-dimensional object can be more practical by providing pre-
dictions for test points without requiring further computations. Nevertheless it might be
conceptually less intuitive that prior and posterior are of different types (stochastic process
vs. probability distribution). In that way, the process-centric view provides a more unified
treatment of the prior and posterior since both are defined in terms of Gaussian processes.
The resulting model is more flexible for training as the posterior Gaussian process can now
be used as a new prior for online updating of sequentially arriving data (see section 3.4) and
for testing as the posterior Gaussian process can be evaluated at any test point section 3.5.

In summary, the process-centric view obtains the same result from the (function-space)
posterior predictive but splits the process into conditioning on training points and marginal-
ization at the test points. In that way, the process-centric view provides a new straightforward
interpretation of Gaussian processes by focusing on its properties (the mean and covariance
function) and operations (marginalization and conditioning).

4.4 Educational Gaussian Process Material

Gaussian process models are widely used in a variety of domains, ranging from applications
in robotics (Deisenroth, Fox, and Rasmussen, 2013) and astronomy (Foreman-Mackey et al.,
2017) to Bayesian optimization (Snoek et al., 2012). They have also been applied in the
development of AlphaGo, a program that successfully defeated the Go world champion (Chen
et al., 2018). Despite their versatility and the extensive literature on Gaussian processes, they
often remain difficult to understand due to their mathematical complexity and abstract nature.
This section provides an overview of educational Gaussian process literature, highlighting
key resources.

32 Related Work

4.4.1 Books and Theses

A number of academic textbooks (MacKay et al., 1998; Murphy, 2022; Williams and
Rasmussen, 2006) and PhD theses (Duvenaud, 2014; Rasmussen, 1997) written by subject
experts offer in-depth theoretical underpinnings into Gaussian processes. These resources
include extensive mathematical derivations which require a strong background in calculus,
linear algebra, and statistics, While they are invaluable for experienced practitioners, they
focus on mathematical detail rather than intuitive understanding which imposes substantial
barriers for many readers.

4.4.2 Tutorial Articles

Tutorial articles by Schulz et al. (2018) and Wang (2023) offer concise explanations of
Gaussian processes, targeting a broader audience, including Gaussian process novices. These
articles are more accessible as they provide a high-level overview of key mathematical
concepts. Moreover, they emphasize intuitive understanding through visual illustrations
and practical examples. For instance, Schulz et al. (2018) explains the posterior predictive
distribution by visually decomposing the mean vector and covariance matrix into their
components. Likewise, Wang (2023) uses 3D visualisations to illustrate how conditional
distributions are obtained by slicing through a bivariate Gaussian distribution.

4.4.3 Online Resources

Online tutorials focus on a less academic audience and provide probably the most hands-on
explanations as they often include code snippets, (possibly interactive) visualizations, and
practical examples. This section covers various formats of online resources available for
Gaussian processes. These include: interactive tutorials, static tutorials, and audiovisual
materials.

Interactive Tutorials

Interactive tutorials include comprehensive step-by-step explanations of Gaussian processes,
combining text, mathematical explanations, and interactive graphs with modifiable param-
eters. For instance using the software from Deisenroth, van der Wilk, and Luo (2020,
December) and Görtler et al. (2019), users can explore the behaviour of the covariance matrix
by adjusting hyperparameter values via a slider, or they can condition a Gaussian process by
clicking on data points. John (2021) provides a single interactive figure that illustrates the

4.5 Motivation for Interactive Jupyter Notebook 33

main properties and operations of Gaussian processes. This software allows users to more
freely explore Gaussian processes by customizing plotting options and specifying data and
covariance properties at the same time. However, the extensive availability of interactive
elements without accompanying textual explanations may be confusing and overwhelming
for Gaussian process novices.

Static Tutorials

As static alternatives, Roelants (2019) and Wang (2023) provide Gaussian process tutorials
based on Jupyter Notebooks and cover similar content as its interactive counterparts while
additionally showing code snippets. This format is particularly targeted towards software
developers or data analysts that are mainly interested in the coding implementation of
Gaussian processes. Another advantage of Jupyter Notebook-based tutorials is the possibility
of direct code execution using web services such as Google Colab or Binder.

Audiovisual Materials

An alternative to merely written content are audiovisual resources on social media or online
learning platforms, such as YouTube or Moodle. These offer a multi-sensory learning style
that might facilitate learning (Fuady and Mutalib, 2018). For example, Richard Turner
((Turner, 2016)) provides an excellent video lecture on Gaussian processes. In addition to
verbal explanations, he includes vivid visual animations in his presentation that illustrate how
multivariate Gaussians extend to Gaussian processes when the index set becomes infinitely
large. A written summary of this lecture is provided by Geten (2019).

4.5 Motivation for Interactive Jupyter Notebook

Visual explanations have been consistently shown to enhance conceptual learning in STEM
subjects (Bobek and Tversky, 2016), highlighting the value of a visual-based approach in
educational tools. Just (2010) demonstrates that interactive visualizations can significantly
improve both learning outcomes and student motivation compared to static images. However,
interactivity is not guaranteed to enhance learning and its effectiveness depends on several
factors, including the student’s prior knowledge (Park et al., 2009) and the complexity of the
topic being taught (Patwardhan and Murthy, 2015). To optimize learning, Patwardhan and
Murthy (2015) suggest incorporating ’interactivity enriching features’ to guide the learner’s
exploration. An example for this would be to restrict the numerical range of sliders.

34 Related Work

Given these findings, the integration of interactive visual elements into educational
resources should be done thoughtfully, ensuring that such features genuinely enhance the
learning experience. Jupyter Notebooks are particularly well-suited for this purpose. As
interactive programming tools, they allow for the seamless combination of code, text, and
visuals. This format has been widely adopted in education across fields like computer science
(Al-Gahmi et al., 2022), artificial intelligence (Nelson and Hoover, 2020), and big data (Yuen
and Robbins, 2014), where active engagement with the content is crucial. The ability to
execute code in real-time, visualize results, and adjust parameters engages students more,
leading to higher learning outcomes (Amoudi and Tbaishat, 2023). This suggests that an
interactive tool built within a Jupyter Notebook could effectively support the learning of
complex concepts such as the process-centric view of Gaussian processes.

4.6 Research Contribution

This thesis contributes to the Gaussian process literature by developing a new process-centric
view as introduced in Hensman and Rasmussen (2024). This view is conceptually easier to
understand than existing views. An interactive Jupyter Notebook that has been developed
during this thesis complements a theoretical explanation with carefully designed interactive
visualizations, allowing the users to explore the process-centric view dynamically. By
integrating interactive elements, the notebook not only facilitates a deeper understanding
of the process-centric approach but also aims to enhance user engagement and learning
outcomes, directly addressing the need for a more intuitive explanation of Gaussian processes.

Chapter 5

Interactive Jupyter Notebook

This chapter introduces the process-centric view on Gaussian processes through an interactive
software based on Jupyter Notebook. The motivation for an interactive notebook stems from
the assumption that interactive learning improves both user motivation and learning outcomes
(Just, 2010). Therefore, in addition to providing a detailed conceptual framework of the
process-centric view in chapter 3, as introduced by Hensman and Rasmussen (2024), an
interactive tutorial software was designed with a focus on interactive visualisations that
enable the user to dynamically change plot outputs and learn parameter-output relationships
which might improve the conceptual understanding of Gaussian processes. This chapter
covers a description of the target audience, design considerations, implementation details,
as well as a detailed overview of the Jupyter Notebook content. This chapter concludes
by discussing deployment and the results of a small user study conducted as part of this
project. The notebook can be accessed here: Interactive Gaussian Process Tutorial (or via
this URL: https://github.com/annkristinbalve/process-centric-gp_tutorial/blob/main/Tutorial_
Colab_Final.ipynb).

5.1 Target Audience and Goals

The Jupyter Notebook is designed as educational material for process-centric Gaussian
processes. Gaussian processes are flexible models for quantifying uncertainty and are widely
used. Nevertheless, they are often poorly understood. The interactive notebook is designed
to enhance the learning experience and improve the conceptual understanding of Gaussian
processes by introducing a new ’process-centric’ view.

The novel software is designed for a wide target audience of both Gaussian process
’newcomers’ and more advanced learners. This includes, but is not limited to: final and

https://github.com/annkristinbalve/process-centric-gp_tutorial/blob/main/Tutorial_Colab_Final.ipynb
https://github.com/annkristinbalve/process-centric-gp_tutorial/blob/main/Tutorial_Colab_Final.ipynb
https://github.com/annkristinbalve/process-centric-gp_tutorial/blob/main/Tutorial_Colab_Final.ipynb

36 Interactive Jupyter Notebook

penultimate undergraduate and postgraduate computer science and engineering students
at higher education institutions, as well as Machine Learning researchers and other users
interested in learning about Gaussian processes.

5.2 Design Considerations

This section covers the key design considerations to improve both the user experience and
usability of the ’process-centric GP Jupyter Notebook’. The design of the notebook was
guided by principles defined from Nielsen (1994) and Kosslyn (2006). Each of the interactive
visualisation, numbered V1-V7, will be introduced in section 5.4. The most important design
considerations for the Jupyter Notebook are summarised in the following:

• Appropriate Background Knowledge: Even though we assume a university-level
mathematics background of the user, basic probability concepts are covered in an
initial background section to ensure that the starting point for learning about Gaussian
processes is given.

• Relevant Graphics: The notebook only introduces one interactive figure per concept
aiming to provide a compact summary of each concept.

• Consistency in the Design: Different colored boxes for important definitions, formulas,
and plot descriptions are given which helps maintaining a structured interface.

• Pleasurable User Experience: The notebook includes severeal features that aim to
provide a ’fun’ and more pleasurable experience, such as renderable 3D plots.

• Status visibility: All plots were optimised to reduce running time. Nevertheless, some
plots (V5-V6), that involve GP conditioning, may take longer to update and therefore
contain status information (’Updating Plot’ vs. ’Plot Updated’).

• Constraints: To maintain a valid interpretation and minimise errors, the correlation
slider from the bivariate distributions (V2-V3) were restricted to allow only positive
semi-definite matrices. Furthermore, kernel hyperparameters are disabled if not needed
(i.e. greying out the period hyperparameter for the white noise kernel).

• Error Handling: In case the user nevertheless specified an invalid covariance matrix,
a warning message is displayed (see Figure 5.1).

5.3 Implementation Details 37

Fig. 5.1 Example for error handling when the user enters a correlation value resulting in a
non-positive semi-definite covariance matrix. A short error message is displayed stating the
problem and resolution which might be more solution-oriented than the lengthy scipy default
error messages.

It should be noted that there there are trade-offs between user experience and usability
(Sharp and Rogers, n.d.) in the sense that some features perceived as more ’pleasurable’
might be less clear for concept learning. A 2D plot might be preferred over a 3D plot when
summarising information such as local or global optima, although being aesthetically less
pleasing. A best trade-off between both objectives was aimed to achieve, however it is not
guaranteed to work for everyone.

5.3 Implementation Details

This section provides an overview of the technical implementation details of the Jupyter
Notebook, including package versions, notebook structure, and deployment.

5.3.1 Packages

The software is entirely Python-based, utilizing Python 3.12.4. The starting point for the
interactive figures was the matplotlib visualizations, as shown in Chapter3. To transition
from static to interactive visualizations, these were reimplemented using plotly, which
generates highly interactive plots. plotly allows users to inspect individual data points, hide
plot traces via mouse clicks on the legend, or render 3D plots. Another advantage of plotly
is its seamless integration with Jupyter widgets (ipywidgets), which are designed to create
dynamic controls for Jupyter Notebooks, such as dropdown menus, tabs, and sliders.

To create a more immersive learning experience for users, both tools were combined,
yielding highly interactive plots with modifiable plot displays through plotly and adjustable
input parameters through ipywidgets. Additional packages used include numpy for matrix

38 Interactive Jupyter Notebook

manipulations, scipy to draw samples from a multivariate Gaussian, and autograd for
hyperparameter optimization.

Specific package versions can be accessed in the requirements.txt file on GitHub
(here).

5.3.2 Code Structure

The notebook is organized with a modular architecture to ensure clarity and maintain separa-
tion of content. The main components are as follows:

• tutorial.ipynb: The primary Jupyter Notebook file containing the core instructional
content.

• means.py: Contains the mean functions for Gaussian processes (zero_mean, lin_mean,
sine_mean, step_mean).

• kernels.py: Contains the covariance functions for Gaussian processes (rbf_kernel,
lin_kernel, periodic_kernel, white_kernel).

• gp_functions.py: Implements key Gaussian process operations, including GP_marginal,
GP_conditional, GP_conditional_optimised, and draw_samples.

• data.py: Contains functions to generate synthetic sinusoidal data and testing points.

• widgets_helper.py: Provides helper functions for managing interactive widgets.

• visualisations.py: Includes plotting functions for both static and interactive visu-
alizations.

5.4 Jupyter Notebook Content

In this section, an in-depth illustration of each interactive visualisation is given in the order
of their appearance in the notebook. The Notebook contains both text, main formulas, and
code to generate the visualisations. An overview of the content can be found in Figure 5.2.
Sections including interactive visualisations (V1-V7) are highlighted with a box. We also
discuss the purpose of each visualisation for Gaussian process learning.

https://github.com/annkristinbalve/process-centric-gp_tutorial/blob/main/requirements.txt

5.4 Jupyter Notebook Content 39

Fig. 5.2 Overall Notebook Structure: Sections that include interactive visualisations (V1-V7)
are highlighted with boxes.

40 Interactive Jupyter Notebook

5.4.1 Bivariate Gaussian Distribution (V1)

This interactive 3D plot (Figure 5.3) is a vivid depiction of a bivariate Gaussian distribution
for two random variables x1 and x2 . Their marginal distributions are shown in green p(x1)

and black p(x2) respectively. 100 samples drawn from the joint are visible as brown scatter
points. The plot can be rendered with mouse interaction or touch.

Fig. 5.3 Interactive 3D Bivariate Gaussian Plot (V1): The plot shows the probability density
for a bivariate Gaussian. The marginal distributions for x1 and x2 are shown in green and black
respectively. Samples drawn from this multivariate distribution are shown as brown dots.
The user can render the plot through mouse interaction or touch. Furthermore, individual
probability density values of the surface plot can be inspected by hovering over the plot.

Table 5.1 Features and Learning Goals of Figure V1

Feature Learning Goal

Renderable 3D plot of a bivariate Gaussian
distribution

Understand the shape of a multivariate
Gaussian distribution

5.4.2 Property I of Gaussians: Marginalization Property (V2)

This interactive 2D contour plot demonstrates the marginalization property for two random
variables. The plot displays the marginal distributions for each variable alongside a red-to-

5.4 Jupyter Notebook Content 41

blue heatmap representing probability density. Users can adjust the means m1 and m2, as well
as the covariance parameter c to observe their effects on the joint and marginal distribution.

Fig. 5.4 Interactive 2D Bivariate Gaussian Plot (V2): This figure shows the joint probability
density on a red-to-blue colorscale and the corresponding marginal distributions along each
axis . The user can adjust the means m1, m2 and covariance parameter c between two random
variables x1 and x2. Furthermore, the mean (dark-blue) and scaled eigenvectors 2

√
λu (cyan

and magenta) show the center and shape of the distribution.

Table 5.2 Features and Learning Goals of Figure V2

Feature Learning Goal

Adjustable mean and covariance sliders Understand relations between joint and
marginal distributions.

42 Interactive Jupyter Notebook

5.4.3 Property II of Gaussians: Conditioning Property (V3)

The interactive 2D contour plot in Figure 5.5 demonstrates the conditioning property of a
bivariate Gaussian distribution. This plot allows users to explore how conditional distributions
change for different covariance matrices and observed values. The user can dynamically
adjust these parameters to observe their impact on the conditional distribution.

Fig. 5.5 Interactive 2D Bivariate Gaussian Plot (V3): This figure illustrates the concept of
conditioning by showing how the conditional distribution p(x1 | x2 changes with different
correlation values c and observations x2. The user can adjust these parameters interactively.

Table 5.3 Features and Learning Goals of Figure V3

Feature Learning Goal

Inputs x2 and correlation c slider Understand how observed values and co-
variance affect the conditional distribution.

5.4 Jupyter Notebook Content 43

5.4.4 Specifying a prior GP (V4)

Figure 5.6 demonstrates how different prior assumptions, specified through mean functions,
covariance functions, and covariance hyperparameters, influence the resulting Gaussian
process. Users can interactively explore how these parameters shape sample functions drawn
from a prior GP. Additionally, the effect of covariance hyperparameters on the GP’s prior
covariance matrix is shown.

Fig. 5.6 Interactive Plot V4: This figure illustrates how prior mean functions, covariance
functions, and hyperparameters influence samples drawn from a Gaussian process. Users can
explore how different prior assumptions shape the sample functions (left) and observe how
covariance-specific hyperparameters affect the GP’s prior covariance matrix (right).

Table 5.4 Features and Learning Goals of Figure V4

Feature Learning Goal

Kernel and mean selection menus Understand how different GP priors influ-
ence sample functions.

Covariance hyperparameter sliders Explore the impact of hyperparameters on
the prior covariance matrix.

5.4.5 Conditioning a GP (V5)

Figure 5.7 illustrates the conditioning operation for a Gaussian process. The figure shows the
posterior mean and ±2 standard deviations at different steps of conditioning. Initially, the

44 Interactive Jupyter Notebook

prior (step-0) is visualized. Users can condition the GP prior on new data points by moving
the slider from left to right, with each step corresponding to a batch update.

Fig. 5.7 Interactive Plot V5: This plot visualizes the effect of conditioning a prior Gaussian
process (GP) on observations. It shows the evolution of the posterior mean and uncertainty
(±2σ) as new data points are incorporated step by step. Users can adjust the batch size to
explore scenarios involving streaming data. The plot also displays the negative log marginal
likelihood (log_Z) at each step, reflecting the model fit as conditioning progresses.

Table 5.5 Features and Learning Goals for Figure V5

Feature Learning Goal

Step-slider Understand the role of conditioning in re-
ducing uncertainty.

Covariance and mean drop-down menus Explore how prior assumptions affect the
posterior mean and covariance.

Batch-size Understand the implications of batch size
on online updates in GPs.

5.4.6 Marginalization of a GP (V6)

Figure 5.8 illustrates the role of marginalizing a posterior Gaussian process (GP) in making
predictions. This interactive figure allows users to observe the GP’s fit at selected test points,

5.4 Jupyter Notebook Content 45

along with a detailed visualization of the covariance matrix and mean vector components.
The figure helps foster an intuitive understanding of how posterior mean and covariance are
calculated and how the posterior distribution changes at different test locations.

Fig. 5.8 Interactive Plot V6: This plot illustrates the concept of marginalization by illustrating
how a posterior Gaussian process can be used to obtain predictions at certain test locations.
The plots on the right also provide an interpretation of the prediction process by visualizing
the components of the covariance matrix and mean vector.

Table 5.6 Features and Learning Goals for Figure V6

Feature Learning Goal

Input-value slider Effect of different test locations on
marginalisation for both extrapolation and
interpolation

Covariance and mean drop-down Gain an intuitive understanding of how the
posterior mean and covariance are calcu-
lated and how the prior GP affects predic-
tions

5.4.7 Hyperparameter Optimisation (V7)

The interactive figure V7 features three 3D plots of the (negative) log marginal likelihood
surface as a function of different RBF kernel hyperparameters. Each plot can be rendered,
zoomed in, and rotated. Furthermore, in the first tab (see Figure 5.9) , two local optima can
be inspected when fixing the signal variance to σn = 0.35.

46 Interactive Jupyter Notebook

Fig. 5.9 The negative log marginal likelihood surface can be inspected on a 3D surface that
can be rendered and rotated via touch or mouse interaction. Furthermore, two local optima
can be seen when setting the signal variance to σn = 0.35.

Table 5.7 Features and Learning Goals for Figure V7

Feature Learning Goal

Render 3D plots of log marginal likelihood Understand role of log marginal likelihood
for hyperparameter selection

5.5 Deployment 47

5.5 Deployment

For the Notebook deployment, Google Colab was chosen as it provides free computing
resources, alleviates dependency problems, and can be run directly on the browser. This
makes the notebook more accessible as the user does not have to install new packages or
locally store files. The notebook can be directly loaded using GitHub. Initially, alternatives
to Colab were considered, specifically Render, a cloud application that can similarly be
connected to Github, but unlike Colab it automatically installs packages. Due to a very slow
loading time for our Jupyter Notebook (>5min) which mainly involved package conflicts
with Plotly, deployment through Render was not further pursued. Furthermore, alternatives
to Notebooks were tested such as Plotly Dash which creates Python-based Dashboards.
However, deployment outside of a local server usually involves commercial platforms (e.g.
Heroku, Dash Enterprise). Moreover, the Dash-based notebook lacked efficiency and most
plot updates took much more than 200ms. These practical considerations as well as the
proven advantages of using Jupyter Notebooks for educational purposes, as discussed in
Chapter 4, subsection 4.4.3, led to the choice of using Jupyter Notebooks.

5.6 User Testing and Evaluation

A very small qualitative pilot study with 9 participants was conducted to gather feedback
on the interactive tutorial. The results can be inspected in Appendix A. Even though
not being representative due to a small sample size and convenience sampling, they give
some indications on the usability of an interactive Jupyter Notebook tutorial as well as
the perception of the process-centric GP view. Interestingly, 7 out of 9 users reported that
they found the process-centric view definition more intuitive than the weight-space view
or function-space view definition of Gaussian processes. 5 participants furthermore self-
evaluated an improved understanding of the marginalisation operation after completing the
tutorial. The interactive elements and visualisations were in general perceived as helpful and
participants reported that they enjoyed completing the tutorial. Nevertheless, it should be
noted that the notebook might be more suitable for experienced learners as some ’GP novices’
reported that they felt like being ’thrown into the deep’. Furthermore, some participants
would have preferred a different format over a Jupyter Notebook, such as a web-page or
video which should be considered in future research.

48 Interactive Jupyter Notebook

5.7 Summary

Overall, this chapter introduces a novel software for Gaussian processes which might be a
useful educational tool for learning about Gaussian processes. Considering its length and
depth, it should be used as a supplementary material to lectures instead of a stand-alone tool.

Chapter 6

Discussion and Conclusion

The thesis introduced the process-centric view as a new framework for understanding and
implementing Gaussian Processes (GPs). This view is introduced in Hensman and Rasmussen
(2024) and describes Gaussian processes as stochastic processes specified by a mean and
covariance function with two main operations: conditioning and marginalisation. This
chapter summarises the main contributions of this thesis for the Gaussian process literature
and discusses limitations and potential directions for future research.

6.1 Main Contributions

The main contribution of this thesis is the exposition of the process-centric view, both with
respect to theory and practise.

Development of a novel ’process-centric’ GP framework: This thesis develops a
conceptually simpler ’process-centric’ view of Gaussian processes. Furthermore, the small
user survey shows some indications that the process-centric definition might be helpful in
understanding GPs. By building on intuition rather than mathematical derivation, this new
framework provides a more accessible entry point for newcomers to the field of Gaussian
processes, particularly those with less mathematical backgrounds. The process-centric view
might therefore also encourage a deeper engagement with and application of Gaussian
processes.

Demonstrating the inherent flexibility of GPs: Moreover, we demonstrate how the
process-centric framework introduces a highly flexible framework. Clearly distinguishing
between conditioning and marginalisation implies a natural separation between training and
testing which has several practical advantages. Notably, the conditioning operation can
handle any number of data points and allows a posterior GP to become a prior GP for a

50 Discussion and Conclusion

following iteration. This feature highlights the suitability of the process-centric framework
for Bayesian online learning with streaming data. Learning at real-time is for example crucial
to guarantee safety of physical systems such as autonomous vehicles (Lederer et al., 2021;
McAllister et al., 2017). Moreover, online learning reduces memory usage since a GP can
discard incoming data after conditioning as it retains all information.

Highlighting the role of the underappreciated mean function: We highlight the role
of the mean function as a way to encode prior knowledge. The mean function has been
historically underappreciated and the majority of the scientific literature assumes zero-mean,
focusing instead on the covariance function. However, specifying a non-zero prior mean
function has important implications for solving real-world problems with non-stationary data
trends, such as in cosmology (Hwang et al., 2023). We demonstrate the key role of the mean
function for specifying asymptotic behaviour of functions, particularly for extrapolation
problems using simple examples.

Encouraging Gaussian Process Learning through interactive software: The devel-
opment of interactive visualizations represents another key contribution of this dissertation.
These visualizations are integrated into an interactive Jupyter Notebook, which is accessible
on Github. The notebook serves as a practical demonstration of the theoretical discussion of
the process-centric view. This makes such rather complex concepts more tangible and easier
to grasp. The small user study indicates that especially the Notebook’s visualisations may
improve learning of Gaussian processes. This software is also well suited for integration into
a lecture environment by serving as a supplementary educational tool.

6.2 Limitations

While the current demonstration of process-centric Gaussian processes is promising, it has
certain shortcomings. These include the accessibility constraints of the interactive software,
a limited variety of data, and a lack of extensive empirical evidence for the effectiveness of
the process-centric view as a superior framework for Gaussian processes.

Accessibility of Notebook: The Jupyter Notebook requires code execution, which
might pose challenges for users without programming proficiency or for smartphone users.
Although Google Colab provides a convenient cloud-based environment, the need for a
Google account may limit accessibility of the tutorial. Another important limitation is
running time which is especially reduced in the cloud environment. These factors can
potentially impair the usability of the notebook and should be addressed in future work.

6.3 Directions for Future Work and Open Questions 51

Data Choice: The thesis primarily utilizes a dataset of 10 synthetically generated sinu-
soidal data points. While this is effective for illustrative purposes, it limits the exploration of
Gaussian processes to small and periodic data. In real-world scenarios with larger datasets,
exact Gaussian process regression faces scalability issues, as it requires inverting an N×N co-
variance matrix. Thus, future work should demonstrate the application of the process-centric
view to more varied real-world examples.

Limited user studies: Moreover, while we postulate that the new process-centric frame-
work for GPs is easier to understand, this claim is based on mainly theoretical considerations
rather than empirical validation. The lack of comprehensive user testing means that the
effectiveness of the process-centric view in enhancing conceptual understanding of Gaussian
processes remains to be conclusively demonstrated.

6.3 Directions for Future Work and Open Questions

In this section, we outline key directions for future research that arise from the limitations
and contributions of this thesis. The main areas for further investigation include extending
the process-centric view, exploring hyperparameter learning, and enhancing educational tools
and empirical validation.

Approximate Gaussian processes: This thesis focuses on exact Gaussian processes,
which scale poorly with large datasets due to the O(N3) complexity of inverting the co-
variance matrix K (see Equation 3.6). Approximate methods, which introduce M pseudo
data points (M≪ N), offer a more scalable alternative by reducing the computational cost
to O(N2M). For a detailed discussion of sparse approximation methods, see Snelson and
Ghahramani (2005), Bui et al. (2017), and Williams and Rasmussen (2006, Chapter 8). The
process-centric view can be extended to approximate Gaussian processes by introducing an
approximation operation that results in a more efficient GP. As the approximated GP is still
Gaussian, the key operations of marginalization and conditioning retain which is due to the
closure (or consistency) property. Additionally, extending this framework to non-Gaussian
likelihoods, such as in Gaussian process classification, is a promising avenue for future
research.

Hyperparameter Considerations: The process-centric view naturally supports online
learning, but the current implementation assumed fixed hyperparameters. Further work could
extend online learning to sequential hyperparameter learning, especially in the streaming
data context to further enhance GP flexibility. Methods for combining hyperparameter
optimization in a streaming data setting together with sparse approximate Gaussian processes

52 Discussion and Conclusion

are for example showcased in Huber (2014) and Bui et al. (2017). Additionally, the role
of the mean function hyperparameters, which was not discussed in this thesis, could be
explored. While being cautious with overfitting, future work should extend the consideration
of hyperparameters to the mean function.

Further Development of Educational Material and User Testing: Finally, to increase
the accessibility and impact of the educational tools developed in this project, future work
could focus on transforming the Jupyter Notebook into more user-friendly formats, such as
instructional videos or a standalone web application. These resources would address the
limitations of the Colab environment and make the material available to a broader audience.
Furthermore, empirical studies are needed to validate the effectiveness of the process-centric
framework. For example, comparative studies could assess the learning outcomes of students
using the process-centric view versus traditional approaches, providing concrete empirical
evidence of its educational benefits.

6.4 Conclusion

In conclusion, this thesis has developed a theoretical and practical framework for process-
centric Gaussian processes, providing simple, intuitive explanations and interactive plots.
A summary of this work, containing both theory and practical examples, is provided in a
Colab-hosted Juypter Notebook.

References

Al-Gahmi, A., Zhang, Y., & Valle, H. (2022). Jupyter in the classroom: An experience
report. Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education-Volume 1, 425–431.

Amoudi, G., & Tbaishat, D. (2023). Interactive notebooks for achieving learning outcomes in
a graduate course: A pedagogical approach. Education and Information Technologies,
28(12), 16669–16704.

Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive
research: principles and implications, 1, 1–14.

Bui, T. D., Yan, J., & Turner, R. E. (2017). A unifying framework for gaussian process pseudo-
point approximations using power expectation propagation. Journal of Machine
Learning Research, 18(104), 1–72.

Chen, Y., Huang, A., Wang, Z., Antonoglou, I., Schrittwieser, J., Silver, D., & de Freitas, N.
(2018). Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.

Deisenroth, M. P., Fox, D., & Rasmussen, C. E. (2013). Gaussian processes for data-efficient
learning in robotics and control. IEEE transactions on pattern analysis and machine
intelligence, 37(2), 408–423.

Deisenroth, M. P., van der Wilk, M., & Luo, Y. (2020, December). A practical guide to
gaussian processes. https://infallible-thompson-49de36.netlify.app/

Duvenaud, D. (2014). Automatic model construction with gaussian processes [Doctoral
dissertation].

Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R. (2017). Fast and scalable
gaussian process modeling with applications to astronomical time series. The Astro-
nomical Journal, 154(6), 220.

Fuady, R., & Mutalib, A. A. (2018). Audio-visual media in learning. Journal of K6 Education
and Management, 1(2), 1–6.

Geten, Y. (2019). Gaussian processes: A comprehensive introduction [Accessed: 2024-08-08].
https://yugeten.github.io/posts/2019/09/GP/

Görtler, J., Kehlbeck, R., & Deussen, O. (2019). A visual exploration of gaussian processes
[https://distill.pub/2019/visual-exploration-gaussian-processes]. Distill. https://doi.
org/10.23915/distill.00017

Hensman, J., & Rasmussen, C. E. (2024). Gaussian process modelling [Unpublished draft].

https://infallible-thompson-49de36.netlify.app/
https://yugeten.github.io/posts/2019/09/GP/
https://doi.org/10.23915/distill.00017
https://doi.org/10.23915/distill.00017

54 References

Huber, M. F. (2014). Recursive gaussian process: On-line regression and learning. Pattern
Recognition Letters, 45, 85–91.

Hwang, S.-g., L’Huillier, B., Keeley, R. E., Jee, M. J., & Shafieloo, A. (2023). How to use
gp: Effects of the mean function and hyperparameter selection on gaussian process
regression. Journal of Cosmology and Astroparticle Physics, 2023(02), 014.

John, T. (2021). Interactive visualization of gaussian processes [Accessed: 2021-01-01].
http://www.infinitecuriosity.org/vizgp/

Just, G. A. (2010). The effect of online interactive visuals on undergraduate mathematics
learning. Northern Illinois University.

Kosslyn, S. M. (2006). Graph design for the eye and mind. OUP USA.

Lamperti, J. (2012). Stochastic processes: A survey of the mathematical theory (Vol. 23).
Springer Science & Business Media.

Lederer, A., Conejo, A. J. O., Maier, K. A., Xiao, W., Umlauft, J., & Hirche, S. (2021). Gaus-
sian process-based real-time learning for safety critical applications. International
Conference on Machine Learning, 6055–6064.

MacKay, D. J., et al. (1998). Introduction to gaussian processes. NATO ASI series F computer
and systems sciences, 168, 133–166.

McAllister, R. T., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla, R., & Weller, A.
(2017). Concrete problems for autonomous vehicle safety: Advantages of bayesian
deep learning.

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT press.

Nelson, M. J., & Hoover, A. K. (2020). Notes on using google colaboratory in ai education.
Proceedings of the 2020 ACM conference on innovation and Technology in Computer
Science Education, 533–534.

Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.

Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer
simulations regardless of prior knowledge levels? Computers & Education, 52(3),
649–655.

Patwardhan, M., & Murthy, S. (2015). When does higher degree of interaction lead to higher
learning in visualizations? exploring the role of ‘interactivity enriching features’.
Computers & Education, 82, 292–305.

Pavliotis, G. A. (2014). Stochastic processes and applications. Texts in applied mathematics,
60.

Rasmussen, C., & Ghahramani, Z. (2000). Occam’s razor. Advances in neural information
processing systems, 13.

Rasmussen, C. E. (1997). Evaluation of gaussian processes and other methods for non-linear
regression [Doctoral dissertation, University of Toronto Toronto, Canada].

http://www.infinitecuriosity.org/vizgp/

References 55

Roelants, P. (2019). Gaussian processes (1/3) - from scratch. https://peterroelants.github.io/
posts/gaussian-process-tutorial/

Schulz, E., Speekenbrink, M., & Krause, A. (2018). A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology,
85, 1–16.

Sharp, H. R., & Rogers, Y. (n.d.). Y. & preece, j.(2007). Interaction design: beyond human-
computer interaction.

Snelson, E., & Ghahramani, Z. (2005). Sparse gaussian processes using pseudo-inputs.
Advances in neural information processing systems, 18.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25.

Turner, R. (2016). Machine learning tutorial: Gaussian processes [Accessed: 2024-08-08].
https://www.youtube.com/watch?v=92-98SYOdlY

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of brownian motion. Physical
Review, 36, 823–841.

Wang, J. (2023). An intuitive tutorial to gaussian processes regression. Computing in Science
& Engineering.

Williams, C., & Rasmussen, C. (2006). Gaussian processes for machine learning (Vol. 2).
MIT press Cambridge, MA.

Yuen, T. T., & Robbins, K. A. (2014). A qualitative study of students’ computational thinking
skills in a data-driven computing class. ACM Transactions on Computing Education
(TOCE), 14(4), 1–19.

https://peterroelants.github.io/posts/gaussian-process-tutorial/
https://peterroelants.github.io/posts/gaussian-process-tutorial/
https://www.youtube.com/watch?v=92-98SYOdlY

Appendix A

Results of the small user survey

A small user survey with nine computer-affine undergraduate and postgraduate STEM
students was conducted. A written participant consent form was obtained prior to the study.
The most interesting results are shown in the following. Although not being representative
due to a very small sample size (N=9), they give some indications of the usability of an
interactive Jupyter Notebook.

Fig. A.1 7 out of 9 Users reported after completing the tutorial to prefer the process-centric
definition for being most intuitive.

58 Results of the small user survey

Fig. A.2 4 out of 9 Participants would prefer an interactive web page over a Notebook.

Fig. A.3 8 out of 9 Participants agree or fully agree that they enjoyed the process of learning
about GPs.

59

Fig. A.4 7 out of 9 participants reported that the visualisations helped with the understanding.

Fig. A.5 The tutorial was most helpful in improving participant’s understanding of the
marginalization operation.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Thesis Structure

	2 Background
	2.1 Problem Formulation
	2.2 Bayesian Machine Learning
	2.3 Gaussian Distribution
	2.3.1 Property I: Closure Under Marginalisation
	2.3.2 Property II: Closure Under Conditioning

	2.4 Stochastic Process
	2.5 Gaussian Process

	3 Process-centric Gaussian Processes (GPs)
	3.1 The Process-centric Framework
	3.1.1 Sample Generation

	3.2 Prior Covariance Function
	3.2.1 Covariance Hyperparameters:

	3.3 Prior Mean Function
	3.3.1 Mean Hyperparameters

	3.4 Conditioning Operation
	3.4.1 Algorithmic Implementation
	3.4.2 Bayesian Online Updating

	3.5 Marginalization Operation
	3.5.1 Algorithmic Implementation
	3.5.2 Decomposition of the posterior mean and covariance matrices

	3.6 Marginal Likelihood
	3.6.1 Occam's Razor
	3.6.2 Hyperparameter Optimisation
	3.6.3 Model Selection

	3.7 Summary

	4 Related Work
	4.1 The weight-space view
	4.2 The function-space view
	4.3 Relation of previous views to the process-centric view
	4.4 Educational Gaussian Process Material
	4.4.1 Books and Theses
	4.4.2 Tutorial Articles
	4.4.3 Online Resources

	4.5 Motivation for Interactive Jupyter Notebook
	4.6 Research Contribution

	5 Interactive Jupyter Notebook
	5.1 Target Audience and Goals
	5.2 Design Considerations
	5.3 Implementation Details
	5.3.1 Packages
	5.3.2 Code Structure

	5.4 Jupyter Notebook Content
	5.4.1 Bivariate Gaussian Distribution (V1)
	5.4.2 Property I of Gaussians: Marginalization Property (V2)
	5.4.3 Property II of Gaussians: Conditioning Property (V3)
	5.4.4 Specifying a prior GP (V4)
	5.4.5 Conditioning a GP (V5)
	5.4.6 Marginalization of a GP (V6)
	5.4.7 Hyperparameter Optimisation (V7)

	5.5 Deployment
	5.6 User Testing and Evaluation
	5.7 Summary

	6 Discussion and Conclusion
	6.1 Main Contributions
	6.2 Limitations
	6.3 Directions for Future Work and Open Questions
	6.4 Conclusion

	Appendix A Results of the small user survey

