
LanGWM: Language Grounded World
Model

Nanze Chen

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

St Edmund’s College September 2024

Declaration

I, Nanze Chen of St Edmund’s College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

Signed Nanze Chen Date 14 August, 2024

Word Count: 14998

Software Declaration: Standard Python packages for machine learning applications were
employed such as TensorFlow, Keras, PyTorch, NumPy, and Matplotlib.

Various software libraries and repositories were leveraged in this work:

• LanGWM(private code shared by Poudel et al. (2023)) is our baseline. Modification
and development are done on top of the original LanGWm pipeline.

• iGibson 1.0(https://svl.stanford.edu/igibson/1.0/docs/installation.html - Shen et al.
(2021)) is used, without modification, as simulation environment

• Grounding DINO (https://github.com/IDEA-Research/GroundingDINO - Liu et al.
(2023)) is loaded, without modification, to use its pretrained visual backbone to
generate visual-language embedding.

• DINO (https://github.com/facebookresearch/dino?tab=readme-ov-file - Caron et al.
(2021)) is loaded, without modification, to use its pretraiend visual backbone to
generate visual embedding.

• DreamerV2 (https://github.com/danijar/dreamerv2 - Hafner et al. (2020)) is incorpo-
rated into LanGWM, with modification in architecture, as the world model module.

• BERT (https://huggingface.co/docs/transformers/en/model_doc/bert - Devlin et al.
(2018)) is loaded with pretrained checkpoints, without modification, to generate lan-
guage embedding.

iv

• DETR (https://github.com/Visual-Behavior/detr-tensorflow/tree/main - Carion et al.
(2020)) is refered for building our transformer-based detection decoder.

• ChatGPT (https://chat.openai.com/ - OpenAI (2024)) is used for checking the gram-
matical errors and reducing redundancy in Chapter 5. ChatGPT has not created any of
the content. It was only asked to delete words and correct grammatical mistakes on top
of the original text I wrote.

Nanze Chen
September 2024

Acknowledgements

I would like to express my sincere gratitude to my supervisors at Toshiba Europe Ltd., Dr.
Rudra P.K. Poudel and Dr. Svetlana Stoyanchev, for their unwavering support and valuable
insights throughout this project. I am particularly grateful to Rudra for his continuous
guidance and collaboration in designing the experiments, and for his concern about my
well-being. I vividly recall him saying, "I hope to see you happy next week," after one of our
meetings, which had a significant positive impact on me. I would also like to thank Svetlana
for her critical thinking during our discussions. Her objective evaluations of my experimental
designs provided me with the clarity to approach my work with a more balanced perspective,
preventing overconfidence and encouraging careful consideration of all aspects.

I am also deeply appreciative of my internal supervisor at the University of Cambridge
Department of Engineering, Brian Sun. His valuable suggestions have been instrumental
not only in advancing my experiments but also in improving the quality of this dissertation.
Reflecting on the journey, I realize that some of his advice, which I did not fully appreciate
at the time, could have significantly smoothed the progress of my project and enhanced the
significance of my experimental results.

I would like to extend my heartfelt thanks to my girlfriend, Yanyu Zhong, for her invaluable
support. Her insights from a software engineer’s perspective have been extremely helpful in
my cooperating and coding. I am also grateful for her emotional support, her willingness
to listen to my challenges, and her understanding of my struggles. Even though we are
physically distant, we have worked hard to stay connected and support each other throughout
this journey.

A special thank you to my family for their unwavering financial and emotional support.
Studying at Cambridge has brought me closer to my dreams, and I could not have achieved
this without your generosity and encouragement.

I am also grateful to my study companions, Fengzhe Zhang, Junyi Qian, and Weijia Ai. Your
advice and encouragement kept me going even during the most challenging times. I also

vi

extend my thanks to all the friends I have met in the MLMI program, who have made this
year a memorable experience. We have endured the most difficult year of my life so far, and
I am thankful for the camaraderie we shared.

Finally, I would like to thank Cambridge and all the professors who have imparted valuable
knowledge, challenged me through examinations, and placed the pressures that have shaped
me into who I am today. Though the journey was arduous, the challenges have spurred my
growth, far beyond where I stood a year ago.

Abstract

Navigating to a specific coordinate in an unfamiliar room is a straightforward task for humans,
as they can quickly orient themselves by observing their surroundings. However, this task
poses a significantly greater challenge for robots. In recent years, reinforcement learning
(RL) has made substantial progress, with deep reinforcement learning (DRL) demonstrating
considerable potential in addressing complex tasks. A particularly noteworthy advancement
is the concept of World Models, which focuses on constructing an internal representation
of the environment within the agent’s mind, allowing it to predict future and plan actions
accordingly. Since their introduction in 2017, World Models have surpassed traditional model-
free reinforcement learning approaches in various tasks, often requiring even less training
time. Nevertheless, current World Models are still far from achieving a true understanding
of their environments. This is evident from experiments on visual control tasks, where
even state-of-the-art World Models struggle in unfamiliar settings. If these models can
comprehended the semantic meaning of the environment, they should be able to quickly
adapt to new surroundings, much like humans do.

This project aims to explore how to enhance World Models in the aspect of understanding of
environmental semantics. We hypothesize that language information is crucial for enabling
World Models to grasp the contextual meaning of environments, as language provides a
powerful means of efficiently describing surroundings. In this context, the existing LanGWM:
Language Grounded World Model framework has introduced an approach that integrates
language and visual inputs, utilizing a masked auto-encoder training method. Building upon
this foundation, our project further refines the training methodology of the environment
encoder and investigates various components within LanGWM’s training pipeline. These
efforts represent an advancement in the LanGWM framework and underscore areas for future
improvement.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Contribution . 3
1.2 Roadmap . 3

2 Background 5
2.1 Robotics Indoor Navigation Task . 6

2.1.1 Reinforcement Learning . 6
2.1.2 Experiment Environment . 7
2.1.3 PointGoal Navigation Task . 9
2.1.4 Out-of-distribution Tasks for Robotics 13

2.2 World Model . 14
2.2.1 Model-based RL v.s. Model-free RL 14
2.2.2 The Development of World Model 16

2.3 Encoders for Feature Extraction . 18
2.3.1 Transformer-based Feature Extraction 19
2.3.2 Large Language Model . 20
2.3.3 Vision Transformer . 20
2.3.4 Masked Autoencoders . 22

2.4 Conclusion . 23

3 Methodology 25
3.1 Language Grounded World Model . 25

3.1.1 Architecture . 26
3.1.2 Training and Testing Skills . 32

x Table of contents

3.1.3 Baseline Performance . 33
3.1.4 Limitation . 35

3.2 Methods to Improve . 35
3.2.1 Multi-decoder Implementation . 36

3.3 Conclusion . 38

4 Experiments and Results 39
4.1 Experiment Setup . 39

4.1.1 Dataset . 39
4.1.2 Robot selection . 40
4.1.3 Detection Data Generation . 41

4.2 Main Experiments . 43
4.2.1 Baseline Replication . 43
4.2.2 Segmentation Decoder Experiment 43
4.2.3 Detection Decoder Experiment . 47
4.2.4 Pipeline Analysis with Pretrained Grounding DINO 50
4.2.5 Language Grounding Effectiveness Experiment 54

4.3 Ablation Studies . 56
4.3.1 Depth Loss Masking . 56
4.3.2 Encoder Size Experiment . 59
4.3.3 MAE Effectiveness Experiment 60

4.4 Conclusion . 60

5 Conclusion and Future Work 63
5.1 Future Work . 64

References 67

Appendix A Pipeline Configuration 73
A.1 Segmentation Decoder . 73
A.2 Detection Decoder . 74
A.3 Training Configuration . 74
A.4 Testing Configuration . 75

List of figures

1.1 Levels of Causal Inference . 4

2.1 Agent-Environment Interaction . 6
2.2 iGibson 1.0 . 7
2.3 TurtleBot . 9
2.4 PointGoal Navigation Task Demonstration 10
2.5 Made-up Scene V.S. Simulated Indoor Scene 12
2.6 Model-Based RL’s Advantage in Data Efficiency 15
2.7 PlaNet’s Training Task . 17
2.8 ViT Model Overview . 21
2.9 Masked Auto-Encoder . 22

3.1 LanGWM Pipeline . 26
3.2 Object Masking and Language Prompt Generating 27
3.3 Language-grounded Representation Learning 29
3.4 LanGWM World Model . 30
3.5 DETR Architecture . 37

4.1 Detection Data Generation . 42
4.2 (Depth+Segmentation) Decoders Training Loss 44
4.3 (Depth+Segmentation) Decoders Training Result Visualization 46
4.4 (Depth+Detection) Decoders Training Loss 47
4.5 (Depth+Detection) Decoders Training Result Visualization 49
4.6 (LanGWM + Grounding DINO) Pipeline Architecture 50
4.7 (LanGWM + Grounding DINO - Task Observation Encoder) Pipeline Archi-

tecture . 52
4.8 (LanGWM + Grounding DINO - Multi-modal Feature Encoder) Pipeline

Architecture . 52

xii List of figures

4.9 (LanGWM + Grounding DINO - both Encoder) Pipeline Architecture . . . 53
4.10 Invalid Depth Examples in iGibson 1.0 . 57

List of tables

2.1 Simulated robots provided by iGibson 1.0 and their DOF 9

3.1 Baseline OOD Task Result . 34

4.1 Results of Reproducing the Baseline Result 43
4.2 (Depth+Segmentation) Decoder Experiment 45
4.3 (Depth+Detection) Decoder Experiment 48
4.4 Pipeline Analysis Experiment Results . 51
4.5 Language Grounding Effectiveness Experiment Results 55
4.6 Effect of Depth Loss Masking Techniques on PointGoal Navigation Perfor-

mance . 58
4.7 Encoder Size Experiment Results . 59
4.8 MAE Effectiveness Experiment . 60

Chapter 1

Introduction

Do machine learning models make decisions based on their knowledge of the world, or do
they rely solely on experience? This question has long puzzled machine learning scientists
and sparked considerable debate. Some argue that most traditional architectures depend on
regression to derive insights from training data, meaning these models lack a true under-
standing of general concepts within the data. Conversely, other scientists believe that using
observed features to make decisions demonstrates a form of understanding, suggesting that
models will gradually develop a deeper comprehension of the world as they encounter more
data.

One might question the importance of this issue as long as the model makes correct decisions.
This concern is negligible for simple tasks, such as text style transfer, where models rely on
statistical methods to predict the most likely next word given preceding words. Similarly, in
image classification, despite the higher dimensionality of the data, the primary mechanism
remains statistical, identifying the most likely class label based on image features. In these
scenarios, models do not grasp the meaning behind labels or text; the distinction between
"person" and "label 0" is irrelevant to the model.

However, as we assign machine learning models with increasingly complex and realistic
tasks, this distinction becomes critical. For instance, in autonomous driving, the model must
not only detect the presence of a person but also discern if the person is real or an image
on a billboard. It has to predict if the person will obstruct the vehicle’s path and determine
how to maneuver to avoid a collision. Here, treating "person" as equivalent to "label 0" is
inadequate, as the former entails understanding motion, 3D shape, ethical implications, and
more.

2 Introduction

While larger models and datasets might improve performance on complex tasks, this approach
is both costly and unreliable in unforeseen situations or attacks. Unseen scenarios, considered
out-of-distribution tasks, challenge models that rely on familiar features. Attacks on machine
learning models exploit their dependency on observed features, highlighting the limitations
of regression-based approaches. Ultimately, we aim for models to think like humans,
comprehending the semantic meaning of every input.

Understanding the global concept and semantic meaning of the objects that might appear in
the input aligns with the idea of the World Model. The concept of the World Model was first
proposed by Jürgen Schmidhuber in his paper "Recurrent World Models Facilitate Policy
Evolution," published in NeurIPS ‘18(Ha and Schmidhuber, 2018). Inspired by the human
brain’s mental model, Jürgen defined the World Model as a special kind of model-based RL
algorithm. In the architecture of World Model RL, an agent has a model that can simulate
the world. In this "simulated world," it can "imagine" how its actions will interact with the
surrounding environment and thus plan its actions accordingly.

As a World Model, the ability to imagine is crucial. But what does "imagine" entail in this
context? According to Judea Pearl’s book, "The Book of Why," there are different levels of
causal inference that shed light on this concept(Pearl and Mackenzie, 2018). At the bottom
level is "association," which involves linking causes to effects based on past experiences,
akin to what regression models do. The mid-level is "intervention," where one interacts
with the environment to understand the outcomes, typical of RL models. The highest level
is "counterfactual reasoning," which involves making decisions even under conditions that
have not been encountered during training (see Figure 1.1. This highest level, counterfactual
reasoning, is the essence of imagination in a World Model.

To enhance a World Model’s ability to truly understand and represent its environment, it must
move beyond simple feature matching and association. While many large models today excel
at traditional out-of-distribution (OOD) tasks, their success often stems from encountering
similar features across datasets, rather than a genuine understanding of novel scenarios. For
instance, models trained on the COCO dataset may perform well on the ImageNet dataset, but
this is not a true OOD task since both datasets consist of real-world images with overlapping
features. The key challenge, therefore, is to develop World Models that can form robust,
high-level representations of their environments, allowing them to generalize effectively to
entirely new and unseen situations.

Building upon the foundation of the existing LanGWM (Language Grounded World Model)
framework, which integrates language and visual inputs using a masked auto-encoder train-
ing method, our project re-evaluates the role of semantic understanding in World Models,

1.1 Contribution 3

particularly in the context of out-of-distribution (OOD) PointGoal navigation tasks. We
propose an enhanced training pipeline that moves beyond pixel-wise depth reconstruction,
incorporating segmentation and detection tasks to better capture high-level semantic infor-
mation. By integrating these elements into the LanGWM framework, we aimed to develop
a model capable of more robust environment comprehension. Although our experiments
revealed limitations in the current architecture, especially with the task observation encoder
and multi-modal feature encoder, our findings highlight the potential of language grounding
to improve performance in novel environments. These insights pave the way for refining
World Models to better mimic the human-like ability to adapt to unfamiliar settings.

1.1 Contribution

• Implementation of New Decoders and Design New Training Tasks for LanGWM
Pipeline: Implemented segmentation decoder and detection decoder for the LanGWM
pipeline. Design the associated training task details, such as loss calculation and data
generation.

• Identification of Limitations in Current Architecture: Conducted experiments that
identified significant limitations in the current LanGWM pipeline.

• Demonstration of Language Grounding Potential: Perform experiments that show
the potential of language grounding to enhance the performance of World Models in
novel environments.

1.2 Roadmap

The thesis is organized as follows:

• In Chapter 2, we offer background knowledge in the field of robotics indoor navigation
task, world model, and encoder for feature extraction. These are some basic knowledge
necessary for understanding our tasks.

• In Chapter 3, we introduce LanGWM pipeline and our methods of implementing
segmentation decoder and detection decoder.

• In Chapter 4, we introduce all the experiments that we have done.

• In Chapter 5, we conclude this project and discuss the future work.

4 Introduction

Fig. 1.1 Levels of causal inference in Judea Pearl’s book "The Book of Why" (Pearl
and Mackenzie, 2018). It reveals the essence of "imagination" in a World Model is to do
counterfactual reasoning, which, in another word, requires the model to tackle situation not
existed in the dataset.

Chapter 2

Background

In this chapter, we begin by discussing the out-of-distribution (OOD) PointGoal Naviga-
tion tasks faced by our robotic system, emphasizing the importance of a comprehensive
environment embedding for effective task performance. An environment embedding, or
environment representation, is generally an encoding of all the environment information,
such as RGB visual input, radar depth information, robot’s orientation, and so on. The ability
to navigate accurately in the challenging OOD scenarios hinges not only on the quality of the
environment representation but also on the efficiency the environment encoder. This forms
the basis for our motivation to explicitly train an environment encoder capable of capturing
both the physical and semantic details necessary for successful navigation.

Following this, we introduce the concept of the World Model, tracing its origins in model-
based reinforcement learning where it was initially used to simulate and predict environmental
dynamics for agents. In the LanGWM pipeline, the World Model plays a crucial role, and
our approach focuses on training a more effective environment encoder that can provide a
comprehensive representation of the environment, enabling the World Model to better predict
environmental dynamics and generalize across diverse and unseen settings.

Finally, we explore how advancements in transformer architectures, particularly transformer
encoders, have revolutionized the extraction of global features from input data. Unlike
traditional regression methods, which often fall short in capturing complex, high-dimensional
relationships, transformer-based encoders excel in producing rich, multi-modal environment
embeddings. This capacity to integrate information across different modalities, such as visual
and linguistic data, directly informs our decision to employ a multi-modal transformer-based
encoder, ensuring that our environment embeddings are both comprehensive and effective
for the tasks at hand.

6 Background

Fig. 2.1 A general flowmap showing the interaction between agent and environment. At time
t, the agent will output action command at to the robot, which is a part of the environment.
Then, the environment will capture reward(Rt) and environment state (st) at time t (Amiri
et al., 2018).

2.1 Robotics Indoor Navigation Task

2.1.1 Reinforcement Learning

In the context of RL, there are always two essential roles: the agent and the environment.
The agent usually means the RL model, while the environment encompasses everything
else, including the robot itself and the physical environment the robot interacts with. During
training or inference, the agent will decide what is the next action and then send the commands
to the robot’s motors. In response, the environment provides state (or observations) in return
of the action, such as RGB images from the robot’s camera and its current location if provided,
as well as rewards that evaluate how effectively the action contributes to completing the
task. Through this process, the RL model learns to associate actions with rewards given
observations. Since the strategy the RL model learns evolves over time, the agent will
perform different actions given even the same observations and therefore receiving different
reward. Therefore, RL model training requires dynamically collected data throughout the
process (Sutton and Barto, 2018).

2.1 Robotics Indoor Navigation Task 7

Fig. 2.2 The 3D demo of the 15 simulated room in iGibson 1.0. All the objects in iGibson
1.0 is interactive and reconstructed from real images (Shen et al., 2021).

2.1.2 Experiment Environment

Simulation Environment

However, performing RL training in the real world can be prohibitively costly in terms of
resources, which is why simulation environments are widely used. A simulation environment
is essentially a virtual environment created through computer programming. Usually, a
simulation environment will mimic the environment the agent will interact with after training.
For example, RL models trained to play video games often operate in simulated environments
that replicate the game but at faster speeds and with parallelism. Similarly, as in many other
robotics tasks, the simulation environment mimics the real world.

Reproducing physical laws is a critical aspect of accurately mimicking the real world, a
task accomplished by physics simulators, which are a fundamental component of simulation
environments. Physics simulators model the physical interactions within a simulation
environment—including object collisions, fluid dynamics, and force applications—thereby
enabling an accurate replication of real-world dynamics (Coumans et al., 2013; Lee et al.,
2018; Liang et al., 2018; Todorov et al., 2012). Notable examples of physics simulators are
Bullet and MuJoCo, renowned in robotics research for their capability to simulate detailed
interactions in real-time (Coumans et al., 2013; Todorov et al., 2012).

Besides physics simulators, simulation environments also consists of virtual sensor simu-
lations, thus providing a comprehensive development framework. These environments are

8 Background

crucial for training robots in tasks ranging from basic navigation to complex manipulation.
AI2Thor and Habitat are well-known examples, especially for object manipulation and navi-
gation within large-scale indoor environments, respectively (Kolve et al., 2017; Savva et al.,
2019). However, these environments often face limitations, such as restricted interactivity or
reliance on predefined actions that oversimplify the physics of interactions, rendering them
less effective for tasks requiring full physical simulation.

In our work, we use iGibson 1.0 (see Figure 2.2), which is an advanced simulation envi-
ronment that stands out for its ability to simulate large-scale, realistic indoor scenes with
full interactivity. It integrates a robust physics engine, high-quality sensor simulations, and
domain randomization capabilities. For our project, which involves the OOD PointGoal
Navigation task, iGibson 1.0 provides 15 fully interactive scenes with a total of 108 rooms
and a large number of objects with various appearances and features. This ensures that
LanGWM can be trained on a wide range of scenarios and also can be tested in held-out
scenes1. Its ability to provide multi-modal information about the scene, including RGB
images, depth, and segmentation, is also crucial for training a powerful environment encoder.

Robot

Robots play a crucial role in embodied AI research, serving as the carrier of agents that
interact with simulated environments to perform various tasks. In the iGibson 1.0 simulation
environment, several robots have been implemented to support diverse research goals, as
shown in Table 2.1. These robots range from simple, two-degree-of-freedom (DOF) platforms
to more complex systems with multiple actuators and sensors.

In our baseline, the TurtleBot serves as the primary robotic agent (see Figure 2.3). The
TurtleBot is a widely-used, open-source mobile robot platform, popular in both education
and research for its affordability and versatility. Typically, TurtleBot models, such as the
TurtleBot 2 and TurtleBot 4, feature a differential drive system with two wheels, allowing for
smooth navigation. The robot has a compact, cylindrical shape, making it well-suited for
maneuvering in indoor environments. The TurtleBot is equipped with various sensors that
enable it to perform tasks like Simultaneous Localization and Mapping (SLAM), autonomous
navigation, and obstacle avoidance. For instance, it often includes an RGB-D camera or
LiDAR for capturing detailed 3D representations of its surroundings. These sensors are
critical for tasks that require real-time environmental perception and interaction, making the

1Held-out scenes represents scenes whose features (e.g. floor plan, furniture, texture, wall papers) are totally
different from previous viewed scene, which is fit for evaluating model’s ability to handle OOD tasks.

2.1 Robotics Indoor Navigation Task 9

TurtleBot an ideal platform for developing and testing algorithms in autonomous robotics
(TurtleBot, 2024).

Agent Name DOF

Mujoco Ant 8
Mujoco Humanoid 17
Husky Robot 4
Minitaur Robot 8
Quadrotor 6
TurtleBot 2
Freight 2
Fetch 10
JackRabbit 2 & 7
LocoBot 2

Table 2.1 Simulated robots provided by iGibson 1.0
and their DOF. Fig. 2.3 TurtleBot

2.1.3 PointGoal Navigation Task

The PointGoal navigation task represents a significant benchmark in the field of embodied
AI, where an agent is required to navigate to a indoor target location using relative goal
coordinates and sensory inputs such as RGB-D images. This task assesses the agent’s
abilities in perception, planning, and navigation, making it a comprehensive test of an agent’s
environmental understanding and adaptability. The primary challenge is for the agent to
effectively interpret sensory data to perceive its surroundings, devise a route from its current
position to the goal, and dynamically adjust its path as new sensory information is received.

The ability to navigate efficiently within an indoor environment is fundamental to the
development of personal robots. It has been a focal point of research in computer vision
for many years, as noted by (Nilsson et al., 1984). Savva et al. (2017) introduced three
primary indoor goal-directed navigation tasks: PointGoal, ObjectGoal, and RoomGoal.
Anderson et al. (2018) further defined these tasks, explaining that in PointGoal navigation,
the agent must navigate to a specific location. While this task is straightforward in an empty
environment, it poses significant challenges in cluttered, unexplored spaces. ObjectGoal
requires the agent to find an object of a specific category, such as a refrigerator or keys, using
prior knowledge about the object’s appearance and typical location. AreaGoal involves

10 Background

navigating to a specific area type, like a kitchen or garage, also relying on the agent’s
understanding of typical spatial layouts.

Fig. 2.4 PointGoal Navigation Task Demonstration. This is a demonstration of PointGoal
navigation task from our later experiment. The right image shows a top view travel map of a
robot. The blue point is the starting point and the green point is the destination. The thin
blue line is the robot’s trajectory. We can see the robot failed to reach its destination as it
struggle to go through a door. The left image is one frame of the RGB input that the robot
takes during the task.

In this work, we focus on PointGoal navigation task (see Figure 2.4). There are two important
metrics for this task:

• Success Rate (SR): The percentage of test episodes that the agent successfully navi-
gates to the goal.

• Success weighted by Path Length (SPL): A success score that weighted the success
rate inversely with the path length taken by the robot to reach the goal, calculated by:

1
N

N

∑
i=1

Si
li

max(pi, li)
, (2.1)

where N is the total number of test episodes; Si, li, and pi are, respectively, the binary
indicator of success, the shortest path length to the goal, and the length of the path
actually taken by the agent in episode i. The largest possible SPL is 1.0, meaning all
the task is completed with the robot always taking the shortest path to the goal.

2.1 Robotics Indoor Navigation Task 11

Previous Works’ Performance

Although tasks similar to PointGoal navigation long exist before Anderson et al. (2018)
defines then, previous work mainly focus on navigation in made-up 3D simulated maze. The
researchers shows that navigation in real-world environment are much harder than in made-up
maze. In 2017, Savva et al. (2017) evaluated the state-of-the-art (SOTA) RL algorithms and
discovered that they only performed well in simple, three-dimensional generated mazes (Mnih
et al., 2016). To address this limitation, Savva et al. (2017) proposed MINOS (Multimodal
Indoor Simulator), which facilitate the development of multi-modal models for navigation
in more complex indoor environments. The researchers trained four SOTA RL models2 in
MINOS with training hyperparameters were based on those published by Jaderberg et al.
(2016). The final test results indicated that even the best-performing agent achieved only an
80% SR in simple, two-room empty environments, whereas in the more complex 24-room
3D houses, the SR dropped to 20% or lower. In contrast to the nearly 100% SR observed in
the made-up mazes (Mnih et al., 2016), these findings underscore the limitations of the RL
algorithms of that era for deployment in real-world environments.

Subsequent research has increasingly focused on PointGoal Navigation in real-world envi-
ronments. In 2019, Wijmans et al. (2019) introduced an parallel RL training method called
Decentralized Distributed Proximal Policy Optimization (DD-PPO)3, which can train RL
models with much higher efficiency. Researchers utilize it and trained a navigation model
with 2.5 billion steps, which is equivalent to 80 years real-world experience. The naviga-
tion models was tested in PointGoal navigation task and achieves near-perfect autonomous
navigation in unseen environments (OOD tasks): SR exceeding 98% and SPL above 0.94.
Compared to the earlier work by Savva et al. (2017) shown in last paragraph, which also
utilized the Matterport3D dataset, this model and its training methods demonstrated signifi-
cant improvements in navigation performance. Notably, this work leveraged a particularly
rich set of multimodal inputs, including RGB-D images, GPS data (agent’s current location),
compass information (agent’s orientation), and goal location data.

However, subsequent research by Zhao et al. (2021) raised concerns about the reliance
on perfect environmental information, noting that GPS and compass data are typically
unavailable in real indoor environments, and camera inputs are often noisy. Zhao et al. (2021)
found that when visual sensor and execution noise were introduced and GPS and Compass

2The SOTA RL models they trained include Feedforward A3C, LSTM A3C, UNREAL, and DFP (Dosovit-
skiy and Koltun, 2016; Gupta et al., 2017; Mnih et al., 2016).

3The model architecture employed in this work included a vision encoder (with experiments conducted
using three variants: ResNet50, SE-ResNeXt50, and SE-ResNeXt101 (He et al., 2016; Hu et al., 2018)), an
MLP goal encoder, and a navigation agent module that integrated LSTM and PPO (Zhao et al., 2021).

12 Background

Fig. 2.5 Made-up Scene V.S. Simulated Indoor Scene. The left image is the training task
in Asynchronous Methods for Deep Reinforcement Learning (Mnih et al., 2016): An agent
navigating in a made-up 3D maze to collect apple and access goal. The right image is a robot
performing navigation task in iGibson 1.0. The realistic indoor environments have much
more obstacles, thereby is much harder for agents to navigate.

were removed, the SR of the model from Wijmans et al. (2019) dropped to just 0.3%. In
response, Zhao et al. (2021) focused on enabling PointGoal Navigation using only RGB-D
images in noisy environments. They employed Particle SLAM, which combines particle
filtering with SLAM techniques and successfully improved the PointGoal navigation SR to
71.7% under noisy conditions.

The core approach of this work involves using RGB-D images as input and predicts Visual
Odometry, which generaly represents the movement of the robot. This method effectively
replaces the need for Compass and GPS. In a later work, Partsey et al. (2022) further improve
the Visual Odometry Module with larger datasets, data augmentation and better feature
labeling. These enhancement raise the SR from 71.7% to 94% and raise SPL from 0.53 to
0.74, which is close to the "near-perfect" state.

The significance of these two studies lies in training a neural network to accurately extract
physical information about the robot from visual data, thereby significantly enhancing its
navigation capabilities. This approach inspired us to explore training an environment encoder
that extracts both environmental and robot-specific physical information from RGB images,
with the goal of achieving a more comprehensive environment embedding. The detailed
methodology for this approach will be presented in the subsequent section.

2.1 Robotics Indoor Navigation Task 13

2.1.4 Out-of-distribution Tasks for Robotics

The ability to generalize to OOD tasks is crucial for robots to be deployed in real-world
environments. As robots increasingly rely on machine learning models to interact with their
surroundings, the challenge of ensuring reliable performance in unseen scenarios becomes
more pressing. This is especially important in safety-critical applications, such as autonomous
vehicles or drones, where failures could cause traffic accidents. Traditional RL models often
struggle to adapt to new environments that deviate from the data they were trained on, making
OOD generalization a key area of focus in robotics research (Farid et al., 2022).

To test a model in OOD data, we have to first identify what is a OOD dataset. Sinha et al.
(2022) define OOD data as instances where the test data does not follow the same distribution
as the training data. In typical supervised learning tasks, the training and testing datasets are
often a counterexample of OOD dataset: they are split randomly, ensuring that both datasets
are representative of the same overall distribution (DeVries and Taylor, 2018).

However, in robotics, training and testing agents in different environments are often counted
as a OOD task. For example, consider a drone trained to navigate in one living room on vision.
Unlike supervised learning tasks, such as image classification whose dataset always contains
diverse features, the vision features in one room is always limited. If this drone is then
deployed in another living room where the furniture’s types, lighting, and object placements
are all unfamiliar, the distribution of the sensory input it receives will differ significantly
from what it encountered during training. In a 3D world, changes in object placement,
orientation, or even surface textures can result in large shifts in data distribution, making it
much harder for the model to generalize effectively (Cai and Koutsoukos, 2020; Farid et al.,
2022; Sedlmeier et al., 2019, 2020). On one hand, this again reveals the importance to train
robot agent in OOD tasks. On the other hand, this shows the possibility of using iGibson
1.0’s capability of controlling detailed feature in the room to easily create OOD test dataset.

We acknowledge that reliance on OOD tasks in robotics could be reduced if we could collect
sufficiently diverse data to enable RL models to generalize effectively across varied real-
world environments. However, even the most sophisticated simulation environments fall
short of this objective. To tackle this, robotics scientists rigorously train and test a model’s
capability to handle OOD tasks. Meanwhile, they are also exploring strategies to enhance
the generalization of RL models. In the following section, we will explore the history of the
’World Model’ —how RL researchers aspire to incorporate an imagined world within the
agents’ cognition.

14 Background

2.2 World Model

As discussed in the previous sections, researchers are increasingly addressing RL tasks that
account for real-world complexities. In real-world indoor navigation tasks, challenges such
as sensor limitations—including issues with GPS, compass, and radar—must be considered,
alongside unpredictable factors like human movement, arbitrary furniture placement, and
out-of-distribution (OOD) scenarios. As the reliability of inputs decreases and task environ-
ments become more intricate, researchers have shifted their focus towards reducing models’
dependency on specific inputs.

One key solution researchers developed over time is enhancing a model’s ability to imagine
the consequences of its actions based on prior knowledge rather than solely relying on inputs.
This approach has eventually evolved into the concept of the "World Model."

In this section, we will first introduce the precursor to the World Model: Model-based
Reinforcement Learning and compare it with Model-free Reinforcement Learning. We will
then discuss the concept of the World Model and its development trends in recent years.

2.2.1 Model-based RL v.s. Model-free RL

Model-free Reinforcement Learning

Model-Free Reinforcement Learning (MFRL) is distinguished by its direct approach to
learning policies without the need to construct an explicit model of the environment. In
MFRL, the agent learns by interacting with the environment, receiving rewards as feedback,
and gradually improving its policy purely through trial and error. This approach bypasses the
complexities involved in modeling the environment’s dynamics, instead focusing on learning
a mapping from states to actions that maximize cumulative rewards over time. Techniques
such as Q-learning, DQN (Deep Q-Network), and actor critics algorithms fall under this
category (Konda and Tsitsiklis, 2000; Mnih et al., 2015; Watkins and Dayan, 1992).

The primary advantage of MFRL is its simplicity and robustness, particularly in environments
where modeling the dynamics is challenging. However, this simplicity comes at a cost: MFRL
largely relies on data and often requires a large number of interactions with the environment
to achieve good performance, which can be inefficient and time-consuming, particularly in
complex or high-dimensional environments. Based on their properties, MFRL algorithms are
often used in applications that we can build simulation environment easily, such as video
game, Robotics, and autonomous systems.

2.2 World Model 15

Noteably, all the paper we mentioned in last section uses MFRL method, this also explain
why they takes millions or billions of steps to train.

Model-based Reinforcement Learning

In contrast, Model-Based Reinforcement Learning (MBRL) involves building a environment
model for simulating future environment states and task-related rewards, enabling the agent
to plan and optimize its actions more efficiently. By leveraging a learned model, MBRL can
reduce the number of real-world interactions required, improving sample efficiency. This is
particularly advantageous in scenarios where interactions are costly or limited, such as in
energy management or healthcare applications.

Noteably, some model-based RL algorithm can be viewed as an simple intergration of an
environment model with model-free RL controller. For example, in the next section, we will
talk about Dreamer, which uses an RSSM (Recurrent State-Space Model) as the environment
model and an actor-critics controller(Hafner et al., 2019a). In this way, they leverage the
advantage of both model-free and model-based reinforcement learning algorithms. However,
there are also some other algorithms, such as PILCO, which purely rely on its environment
model’s prediction about the future state to find the minimal cost next action, which is more
like directly predicting the next action(Deisenroth and Rasmussen, 2011). Comparing to
other model-free LR or model-based LR that relys on model-free controler, pure model-based
RL significantly reduced the training time (see Figure 2.6).

Fig. 2.6 PILCO is a pure model-based RL algorithm, which purely rely on its environment
model’s to predict the minimal cost next action. The right image shows that PILCO is training
on a real-world cart-pole balancing task, which require the model to balance a hammer that
can freely swing on a cart by controlling the cart’s movement. PILCO learns to complete the
task in just 20 seconds. The left histogram shows that PILCO’s data efficiency comparing to
other RL algorithms.

16 Background

2.2.2 The Development of World Model

If MBRL is so efficient, why isn’t it more widely adopted? There are several key reasons:

1. Complexity of Environment Modeling: Modeling complex, highly dynamic, or high-
dimensional environments is inherently challenging. In such scenarios, model-free
methods are often preferred because they can directly learn the mapping from states to
actions.

2. Accumulation of Model Errors: Model-based RL heavily depends on the accuracy of
its environment model. When the model fails to accurately represent the environment,
the predictions of future states become unreliable. Furthermore, because model-based
methods typically involve predicting multiple future steps (e.g. forecasting the next
five time steps from the current state), any inaccuracies in the model can compound
over time, leading to significant errors in the agent’s decision-making process.

3. Computational Complexity: The inclusion of an environment model in model-based
RL adds to the computational burden. For example, the environment model used in the
PILCO algorithm employs Gaussian Processes, which have a computational complexity
of O(n3). This makes model-based RL computationally intensive, often requiring
significantly more time and resources to train compared to model-free approaches.

For decades, RL researchers have been dedicated to addressing the challenges of modeling
complex environments. As early as the 1980s, foundational studies on feedforward neural net-
works (FFNs) emerged, demonstrating their powerful capabilities in approximating complex
nonlinear relationships, making them effective for modeling dynamic systems (Munro, 1987;
Nguyen and Widrow, 1990; Robinson and Fallside, 1989; Werbos, 1987, 1989). Building on
this foundation, significant advancements in recurrent neural networks (RNNs) were made
in the 1990s. RNNs evolved from FFNs by introducing recurrent connections with hidden
states, enabling the network to utilize information from previous time steps. This architec-
ture endowed RNNs with the ability to predict time-series data, laying the groundwork for
environment models capable of forecasting future states(Schmidhuber, 1990a,b,c, 1991).

Building on traditional RNNs, Ha and Schmidhuber (2018) later proposed the concept of the
World Model, which consists of a more sophisticated generative model known as the Mixture
Density Network combined with an RNN (MDN-RNN). This model not only remembers and
utilizes past observations but also predicts multiple future possibilities through probability
distributions, effectively handling uncertainty and environmental randomness. With these
advancements, the MDN-RNN surpass simple time-series predictions, leading to more stable
and robust policy transfers in real-world scenarios.

2.2 World Model 17

Fig. 2.7 PlaNet’s Training Task: a) balancing a pole on a moving cart, b) moving a robotic
arm to reach the ball, c) controlling a simulated cheetah to run as fast as possible, d) rotating a
spinning object using a robotic finger, e)catching a moving ball within a cup, and f)controlling
a bipedal robot to walk (Hafner et al., 2019b).

After the concept of the World Model is proposed, more and more advance was made in this
field. Hafner et al. (2019b) proposed the Deep Planning Network (PlaNet), which leverages
a Recurrent State Space Model (RSSM) to predict environment dynamics. This model learns
to separately predict the deterministic state and the stochastic state of the whole environment
state. The deterministic state captures changes in the environment directly caused by the
agent’s actions, while the stochastic state accounts for factors beyond the agent’s control.
This dual structure enables the agent to better understand the relationship between its actions
and subsequent environmental changes.

Compared to the previously mentioned MDN-RNN, the RSSM in PlaNet offers enhanced
predictive capabilities, allowing for more accurate forecasting of future states over multiple
time steps. The PlaNet model was evaluated using six tasks from the DeepMind Control Suite,
a benchmark commonly used for assessing continuous control tasks in RL (see Figure 2.7).
In these tasks, PlaNet demonstrated significant improvements in data efficiency and reduction
of environment interactions compared to traditional model-free RL models. For example, the
performance level that PlaNet achieved in 1,000 episodes is comparable with that achieved
by D4PG in 100,000 episodes. This demonstrates PlaNet’s superiority in efficiently learning
policies that generalize well across various tasks with minimal environmental exposure.

DreamerV2

Another significant advancement in the area of World Models is the development of Dreamer
V2. Given the ability of World Models to simulate environments and predict future states,
researchers have long considered the potential of using these models to replace traditional
simulation environments for training controllers, a concept initially proposed by Sutton
(1990). Unlike traditional simulation environments, which accurately modeling the envi-
ronment and precisely calculate the effects of actions, World Models—exemplified by the
Dreamer series—leverage a technique known as latent imagination. This approach directly

18 Background

predicts the latent embedding of the environment based on the agent’s actions, bypassing
the need for explicit environmental modeling. The potential advantage of latent imagination
is the significant acceleration of the training process if a controller can be trained entirely
within a World Model. However, before Dreamer V2, the accuracy of World Models in
simulating environments was insufficient for standalone training of controllers. As a result,
controllers were typically trained using a combination of both World Models and traditional
simulation environments (Sutton, 1990).

Dreamer V2 represents a breakthrough in this domain.Through several architectural im-
provements, such as the introduction of discrete latent variables, improved KL divergence
balancing, and other enhancements, Dreamer V2 has achieved the capability to train con-
trollers solely within the World Model, without the need for external simulation environments.
This development marks a significant leap forward in the capability of World Models to
simulate environments with sufficient accuracy to support independent training of controllers,
thereby advancing the field of RL.

2.3 Encoders for Feature Extraction

In the previous chapter, we explored a key strategy to enhance a robotics agent’s ability to
adapt to real-world applications with limited inputs and complicated environments: improving
the model’s capacity to predict changes in observations following specific actions. This
approach is central to MBRL, which has evolved significantly over the past decades. As
these models have grown more proficient at accurately simulating environmental changes,
the concept of the ’World Model’ has emerged as a pivotal advancement in this domain.

One crucial factor in enhancing the World Model’s ability to predict future outcomes is
training the environment encoder to extract richer information from limited sensory inputs.
By obtaining environment embeddings that contain more comprehensive data, the World
Model can better understand the relationship between actions and environmental changes
during training. For instance, depth information provides more insights into a robot’s
movements compared to simple RGB data. In recent years, particularly with the advent of
transformers and their associated encoder architectures, substantial progress has been made
in this area. Transformer-based models, known for their robust feature representation and
generalization capabilities, offer significant advantages over traditional regression models
and RNN models.

Given the two primary challenges faced by robotics in real-world tasks—extracting detailed
environmental information from minimal inputs and managing out-of-distribution scenarios—

2.3 Encoders for Feature Extraction 19

transformer-based encoders are emerging as promising tools for environment encoding in
robotic agents. In this chapter, we will begin by discussing the introduction of transformers,
their evolution in different modality, and various training methodologies designed to enhance
the semantic information extraction capabilities of transformer-based encoders.

2.3.1 Transformer-based Feature Extraction

Before the advent of the Transformer, feature extraction in natural language processing
(NLP) and computer vision primarily relied on Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs). RNNs, including their variants such as Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), are designed to capture
temporal dependencies in sequential data through their recurrent structure (Hochreiter and
Schmidhuber, 1997). These networks perform particularly well in tasks involving short texts
or data with clear temporal dependencies. However, the sequential nature of RNN processing
imposes limitations on computational efficiency, and RNNs often struggle with issues such
as gradient vanishing when dealing with long-range dependencies.

CNNs, on the other hand, excel in extracting local features from images by progressively
applying convolutional layers (LeCun et al., 1998). This hierarchical approach allows CNNs
to move from detecting simple edges to complex shapes and eventually to global concepts,
making them highly effective in image classification, object detection, and other vision
tasks. However, CNNs have inherent limitations in capturing global context, particularly in
scenarios that require an understanding of long-range dependencies within images.

The introduction of the Transformer marked a significant shift in feature extraction techniques.
The Transformer’s unique self-attention and multi-head attention mechanisms enable it to
efficiently capture global dependencies and represent multi-dimensional features. The self-
attention mechanism in the Transformer model processes input sequences by splitting them
into tokens and adding positional embeddings to capture the sequential or spacial nature of the
data. Self-attention calculates the relevance of each token within itself and across the entire
sequence, allowing the model to effectively handle long-range dependencies. Additionally,
teniques like layer normalization and residual connection are also utilized in self-attention,
effectively preventing vanishing gradients and stabilizing deep network training.The multi-
head attention mechanism further enhances this process by projecting the input data into
multiple subspaces simultaneously. Each attention head focuses on different aspects of the
sequence, allowing the model to extract a richer set of features and better capture global
contextual information (Vaswani et al., 2017).

20 Background

These structural advantages have allowed the Transformer to significantly outperform tradi-
tional models in various feature extraction tasks, leading to a revolutionary advancement in
the fields of NLP and computer vision.

2.3.2 Large Language Model

After the formal introduction of the Transformer architecture, OpenAI released GPT (Gener-
ative Pretrained Transformer) in 2018, marking the first Transformer-based large language
model. This paper compares GPT with several bi-LSTM-based models, such as ESIM
and CAFE (Chen et al., 2016; Tay et al., 2018). Notably, GPT was initially trained on a
large-scale corpus using a next-word prediction task for self-supervised pretraining, followed
by fine-tuning on smaller datasets for various specific tasks. The GPT model trained in this
manner significantly outperformed bi-LSTM models specifically crafted for each task in 9
out of the 12 tasks examined (Radford et al., 2018). The study highlights that the Transformer
architecture provides a robust structured memory, which is more effective at handling long-
term dependencies in text compared to traditional LSTM-based architectures. This example
also underscores the Transformer’s strong general feature extraction capability, where the
features extracted by the pre-trained Transformer model encompass the information required
for a wide range of tasks.

BERT (Bidirectional Encoder Representations from Transformers) is another prominent
example of the Transformer model and serves as one of the backbones of our architecture.
What distinguishes BERT is its bidirectional encoding and autoencoding training methods.
During BERT’s training process, the model learns bidirectional contextual information by
predicting randomly masked words using a Masked Language Model (MLM). In contrast,
GPT employs an autoregressive approach, generating text exclusively in a left-to-right
sequence. Additionally, BERT incorporates a Next Sentence Prediction (NSP) task, which
is trained in a contrastive learning framework. This task enhances the model’s contextual
understanding by determining whether two sentences are adjacent. These unique training
strategies enable BERT to outperform GPT in many NLP tasks (Devlin et al., 2019).

2.3.3 Vision Transformer

In 2021, researchers introduced the Vision Transformer (ViT), marking a significant inno-
vation in the field of computer vision (CV). ViT applies a pure Transformer architecture to
image data, dividing images into patches and processing them as sequences, akin to how
words are handled in natural language processing (NLP). The application of this approach
was delayed in CV due to the initial dominance of convolutional neural networks (CNNs),

2.3 Encoders for Feature Extraction 21

Fig. 2.8 ViT Model Overview. ViT will split an image into fixed-size patches, linearly
embed each of them, add position embeddings, and feed the resulting sequence of vectors to
a standard Transformer encoder. A MLP head is at the end of the pipeline for classification
task (Dosovitskiy et al., 2021)

which effectively exploited spatial hierarchies in images. Transformers, initially designed for
sequential data, were not straightforward to apply to the inherently two-dimensional nature
of images. Additionally, the computational cost of applying attention mechanisms to every
pixel in an image posed a significant barrier until advances in hardware and the availability
of large-scale datasets made this feasible (Dosovitskiy et al., 2021).

ViTs demonstrate competitive performance compared to traditional CNNs, such as ResNet,
and newer architectures like EfficientNet. When pre-trained on large datasets, such as
ImageNet-21k or JFT-300M, and fine-tuned on task-specific datasets like CIFAR-10 or
Oxford-IIIT Pets, ViTs often surpass state-of-the-art CNNs across various benchmarks,
achieving notable results like 88.55% accuracy on ImageNet.

The success of Vision Transformers (ViTs) in computer vision highlights their effectiveness
as encoders for feature extraction. ViTs utilize a two-stage training process: pre-training and
fine-tuning. In the pre-training stage, ViTs process images as sequences of patches, learning
to recognize and encode visual structures through supervised learning on diverse datasets.
This stage allows the model to develop rich, multi-dimensional visual representations that
serve as a robust foundation for subsequent tasks.

During the fine-tuning stage, the pre-trained ViT model is adapted to specific tasks using
smaller, targeted datasets. This approach enables the model to transfer its broad visual

22 Background

Fig. 2.9 MAE Architecture. The masked auto-encoder training method involving masking
75% of the patches at the beginning use the remaining subset of patches to train the ViT
model in reconstruction task (He et al., 2022).

knowledge to specialized applications, achieving high performance with minimal additional
training. The ability of ViTs to model long-range dependencies within images, combined with
their scalable training process, positions them as powerful encoders not only for computer
vision but also for other domains requiring robust feature extraction from complex data.

2.3.4 Masked Autoencoders

Before introducing Masked Autoencoders (MAE), we need to introduce auto-encoder first.
Auto-encoders are a class of unsupervised learning models that aim to learn efficient represen-
tations of data, typically by compressing the input into a latent space and then reconstructing
the input from this compact representation. These models are composed of two main parts:
an encoder, which compresses the input into a lower-dimensional latent code, and a decoder,
which reconstructs the original input from this code. Auto-encoders have been widely used in
various applications, including dimensionality reduction, anomaly detection, and generative
modeling, demonstrating their versatility in capturing the underlying structure of data (Hinton
and Salakhutdinov, 2006).

MAE leverage the Vision Transformer (ViT) architecture and the auto-encoder training
method in a novel self-supervised training approach inspired by the BERT model from

2.4 Conclusion 23

natural language processing. In this method, images are divided into patches, and a significant
portion of these patches are masked out before being processed by Transformer blocks. The
model is then trained to reconstruct the missing patches, effectively learning to predict the
missing content based on the context provided by the visible patches. This process compels
the model to focus on capturing meaningful, robust features rather than relying on redundant
or superficial patterns present in the data.

The MAE training approach results in a model with exceptional semantic feature extraction
capabilities. By forcing the model to reconstruct masked portions of the input, MAE develops
a deep and holistic understanding of image content, capturing both global context and fine-
grained details. This capability is reflected in its superior performance across a range of
vision tasks, such as image classification, object detection, and semantic segmentation. For
instance, MAE has achieved groundbreaking results on ImageNet-1K, with an accuracy
of 87.8%, surpassing previous models trained solely on this dataset. The richness of the
features learned through this process makes MAE particularly effective in tasks requiring a
comprehensive understanding of the visual data.

Such success in learning robust semantic features can certainly be borrowed to train suc-
cessful environment encoder. By employing a training methodology akin to MAE’s masked
reconstruction, our environment encoder can be trained to capture a comprehensive repre-
sentation of the environment. This enriched environment embedding, in turn, allows the
World Model to better predict environmental dynamics and adapt to diverse, unseen scenarios.
The methodology presented in the following chapter details how the LanGWM pipeline
incorporates these insights, using a multi-modal encoder inspired by MAE’s architecture to
achieve superior performance in navigation tasks.

2.4 Conclusion

In this background section, we first explored the challenges and advancements in robotic
indoor navigation, with a particular focus on out-of-distribution (OOD) PointGoal Navigation
tasks. We discussed how RL, particularly DRL, has been applied to these tasks, highlighting
the critical need for robust environment embeddings and efficient environment encoders.
These elements are essential for enabling robots to navigate unfamiliar environments, aligning
directly with the project’s goal of improving navigation performance through enhanced
environmental understanding.

Next, we delved into the concept of World Models, tracing their evolution from traditional
MBRL. We emphasized how World Models enable agents to internally simulate and predict

24 Background

environmental dynamics, offering a significant advantage over model-free approaches in
various tasks. However, we also noted the current limitations of these models, particularly
their challenges in adapting to new and unfamiliar settings, which is closely related to our
research focus on enhancing the semantic understanding of environments within World
Models.

Finally, we examined the role of encoder architectures, particularly transformer-based models
and Masked Autoencoders (MAE), in feature extraction. These advancements are crucial for
training environment encoders capable of capturing rich, multi-modal information, which
is essential for improving the predictive accuracy and adaptability of World Models. By
integrating these insights, the background section sets the stage for our project’s investigation
into refining the LanGWM framework, with the ultimate goal of enabling robots to better
understand and navigate complex, real-world environments.

Chapter 3

Methodology

3.1 Language Grounded World Model

Our work extends the baseline LanGWM: Language Grounded World Model (Poudel et al.,
2023). The baseline model is based on the assumption that explicitly training the environment
encoder to interpret visual observations through language can lead to a more comprehensive
environment embedding. To validate this assumption, Poudel et al. (2023) developed the
LanGWM pipeline, illustrated in Figure 3.1. This pipeline comprises three major compo-
nents:

1. a language-grounded representation learning process for training the environment
encoder,

2. a world model for action planning,

3. an actor-critic controller for robotic control.

The model is trained on an out-of-distribution PointGoal navigation task within the iGibson
1.0 simulation environment. Essentially, Poudel et al. (2023) investigates a novel training
method aimed at enhancing the environment encoder, which in turn improves both the world
model and the controller.

Since our work builds directly on the baseline architecture, in the subsequent sections, we
will provide a detailed explanation of the pipeline, the training and testing procedures, the
results from the baseline model, and its limitations.

26 Methodology

Fig. 3.1 LanGWM Pipeline. The LanGWM pipeline consists of three main components:
1) language-grounded representation learning, 2) the world model, and 3) the controller.
The simulation environment first provides observations to the environment encoder, which
generates an environment embedding and passes it to the world model. The world model
then integrates the predicted future state with the current state and outputs the state features
to the controller. The controller, in turn, outputs actions to the simulated environment. This
process continues iteratively until the robot reaches its goal or a time restriction is triggered.

3.1.1 Architecture

Language-grounded Representation Learning

The detailed pipeline of the language-grounded representation learning is illustrated in Figure
3.3. It consists of two main components: the task observation auto-encoder and the vision
encoder auto-encoder. Both auto-encoders are designed to train the environment information
encoder.

The task observation encoder is responsible for encoding all task-specific non-sensory
observations, including the robot’s current location, relative destination, and motor velocities.
It first receives task_obs from the simulation environment, encodes it using a multi-layer
perceptron (MLP) encoder, and generates the task observation embedding. This embedding
is then passed through an MLP decoder to reconstruct the original task observation, and a
mean square error (MSE) loss is calculated to assess the accuracy of the reconstruction. The
primary objective of this task observation encoder is to expand the feature dimension of the
task observation so it can be concatenated with the vision embedding in subsequent processes.
It is crucial to ensure that, after dimensionality expansion, the task observation embedding
still retains the original information. If the MLP decoder can successfully reconstruct the task

3.1 Language Grounded World Model 27

Fig. 3.2 Object Masking and Language Prompt Generation. During the object masking
stage, a random object within the RGB observation is selected. A rectangular mask is
then applied to the object and its surrounding area. Simultaneously, a language prompt is
generated using a randomly selected template. The depth information is utilized to determine
the object’s location, and the object’s name and location are inserted into the template to
create the complete prompt. This procedure is repeated until the masked area covers more
than 25% of the observations.

observation, it indicates that the MLP encoder has effectively captured the task observation’s
information during encoding. The MLP encoder and MLP decoder are updated solely based
on the reconstruction of MSE loss.

The vision encoder forms the other component of the environment encoder and is crucial
for validating our assumption. Upon receiving the RGB image and object segmentation map
from the simulation environment, an object masking module in the baseline model randomly
masks objects and their surrounding areas on the RGB images. This module then generates a
paragraph of language description about the masked objects (see Figure 3.2). The primary
objective of object masking is to remove specific objects’ visual information and replace it
with related language information. In subsequent steps, the baseline model is forced to rely
on this language information to infer what is missing in the masked RGB images.

Afterwards, the language description (or text prompt in Figure 3.3) is processed by a pre-
trained BERT model to generate language embeddings. For vision embeddings, the masked

28 Methodology

RGB image is passed through a CNN to produce visual embeddings. Subsequently, an MAE
masking is applied, removing 75% of the visual tokens. The remaining 25% of visual tokens
are concatenated with the language embeddings and passed through the ViT encoder, where
the language and visual information are fused. The LanGWM pipeline then truncates the
language tokens from the ViT encoder’s output. According to Poudel et al. (2023), this
truncation ensures that the subsequent reconstruction does not rely on any language tokens,
thereby forcing the ViT encoder to more effectively integrate language information with
visual information.

After truncation, the remaining embedding is called the "visual environment embedding,"
which is then sent to a ViT decoder. Unlike the standard MAE approach, LanGWM does not
aim to reconstruct the RGB image. Instead, it focuses on reconstructing the scene’s depth
and the reward from the last action. By doing this, Poudel et al. (2023) intends for the ViT
encoder to learn more task-related semantic representations rather than focusing on RGB
details. Finally, the MSE loss is calculated for both the depth and reward reconstructions,
and this loss is used to update the CNN, ViT encoder, and ViT decoder.

The final output of the environment encoder, referred to as the environment embedding,
is produced by concatenating the task observation embedding and the visual environment
embedding.

3.1 Language Grounded World Model 29

Fi
g.

3.
3

L
an

gu
ag

e-
gr

ou
nd

ed
R

ep
re

se
nt

at
io

n
L

ea
rn

in
g.

T
he

la
ng

ua
ge

-g
ro

un
de

d
re

pr
es

en
ta

tio
n

le
ar

ni
ng

pr
oc

es
s

co
ns

is
ts

of
tw

o
m

ai
n

co
m

po
ne

nt
s:

th
e

ta
sk

ob
se

rv
at

io
n

en
co

de
ra

nd
th

e
vi

si
on

en
co

de
r.

T
he

ta
sk

ob
se

rv
at

io
n

en
co

de
rt

ak
es

ta
sk

ob
se

rv
at

io
ns

fr
om

th
e

si
m

ul
at

io
n

en
vi

ro
nm

en
ta

s
in

pu
ta

nd
ut

ili
se

s
an

au
to

-e
nc

od
er

ap
pr

oa
ch

fo
rt

ra
in

in
g.

T
he

ne
tw

or
k

up
da

te
d

by
th

e
lo

ss
is

co
ve

re
d

in
th

e
re

d
ar

ea
.F

or
th

e
vi

si
on

en
co

de
r,

th
e

se
gm

en
ta

tio
n

m
ap

an
d

R
G

B
im

ag
e

ar
e

fir
st

pr
ep

ro
ce

ss
ed

to
ge

ne
ra

te
an

ob
je

ct
-m

as
ke

d
im

ag
e

an
d

th
e

as
so

ci
at

ed
la

ng
ua

ge
pr

om
pt

.T
he

la
ng

ua
ge

em
be

dd
in

gs
an

d
th

e
M

A
E

m
as

ke
d

vi
si

on
em

be
dd

in
g

ar
e

th
en

ge
ne

ra
te

d.
T

he
un

m
as

ke
d

vi
su

al
to

ke
ns

an
d

la
ng

ua
ge

em
be

dd
in

gs
ar

e
co

nc
at

en
at

ed
an

d
pa

ss
ed

th
ro

ug
h

a
V

iT
en

co
de

r.
A

ft
er

th
is

,t
he

la
ng

ua
ge

to
ke

ns
ar

e
tr

un
ca

te
d,

le
av

in
g

th
e

vi
su

al
en

vi
ro

nm
en

te
m

be
dd

in
g,

w
hi

ch
is

us
ed

fo
rd

ep
th

re
co

ns
tr

uc
tio

n
an

d
re

w
ar

d
pr

ed
ic

tio
n.

T
he

au
to

-e
nc

od
er

lo
ss

is
th

en
ca

lc
ul

at
ed

to
up

da
te

al
ln

et
w

or
ks

w
ith

in
th

e
ye

llo
w

ar
ea

.
Fi

na
lly

,t
he

vi
su

al
en

vi
ro

nm
en

te
m

be
dd

in
g

is
co

nc
at

en
at

ed
w

ith
th

e
ta

sk
ob

se
rv

at
io

n
em

be
dd

in
g

to
fo

rm
th

e
fin

al
en

vi
ro

nm
en

te
m

be
dd

in
g.

30 Methodology

Fig. 3.4 LanGWM World Model. The world model in LanGWM is tasked with predicting
future states and providing output features to the subsequent controller. Initially, the envi-
ronment embedding is processed through a multi-modal feature encoder, which compresses
the embedding. This compressed embedding is then passed to the RSSM for future state
prediction. A KL divergence loss is computed between the prior and posterior stochastic
states, which is used to update the RSSM. The RSSM subsequently outputs an integrated
future state embedding. This embedding is then utilized by both the multi-modal feature
decoder head and the reward head to calculate their respective losses, which are used to
update the networks involved in these processes (denoted by the grey area). Finally, the
integrated future state embedding is passed to the controller.

World Model

The second component of the LanGWM architecture is the world model, which is responsible
for future prediction. It receives the environment embedding and utilizes it to predict future
states in the latent space. In the LanGWM, the main component of the world model is RSSM,
similar to DreamerV2.

3.1 Language Grounded World Model 31

Given that the RSSM has limitations in predicting future states in large latent spaces, the
baseline model incorporates a transformer-based multi-modal feature encoder to process
the environment embedding, and compressed the embedding through an average pooling
module.The RSSM uses these compressed embeddings to estimate prior and posterior
stochastic states. The prior stochastic state represents the RSSM’s prediction of future state
randomness, while the posterior stochastic state integrates information from the actual RGB
observation.

To evaluate the RSSM’s ability to predict uncontrollable randomness in future states, a KL
divergence loss is calculated between the prior and posterior states. This loss guides the
update of the RSSM to improve its predictive accuracy. For further details on Dreamer V2,
please refer to Section 2.2.2.

To ensure that the RSSM is learning the correct information, several decoder heads have
been implemented. The RSSM will then output an integrated future state, which integrate the
current environment embedding information and the predicted future information. Base on
the integrated future state, LanGWM employs a reward decoder head to predict rewards and
a transformer-based multi-modal feature decoder to reconstruct the environment embedding.
MSE losses are calculated for these two decoder heads and are used to update the multi-modal
feature encoder, RSSM, multi-modal feature decoder, and reward decoder.

The integrated future state embedding is then passed to the third component of the pipeline,
the controller, which is responsible for executing actions.

Controller

The third component of the pipeline is an actor-critic controller, an MFRL model. It consists
of two primary components: the actor, which determines the actions the robot should take,
and the critic, which evaluates those actions by estimating the expected reward. The actor
updates its policy based on feedback from the critic, which learns to predict the value of the
current state-action pair using the real reward as a reference.

In the PointGoal navigation task, the reward is calculated based on the following principles:

• During each trial within an environment, the robot is initialized at a random starting
position, and a destination point is randomly selected. The robot receives positive
rewards for moving closer to the destination, with a significant reward granted upon
successfully reaching the goal. Conversely, the robot is penalized with negative rewards
if it collides with obstacles or moves further away from the goal. This reward structure

32 Methodology

is designed to encourage the robot to navigate efficiently while avoiding collisions,
thereby testing its ability to adapt its learned behaviours to new, unseen environments.

By balancing exploration and exploitation, the actor-critic framework enables the robot
to learn and refine its movements over time, ultimately improving its ability to reach its
destination. In this pipeline, LanGWM utilizes a standard actor-critic controller that receives
the integrated future state embedding and predicts actions. These predicted actions are then
sent to the simulation environment, iGibson 1.0, to generate the next set of observations. As
the baseline model employs a conventional actor-critic setup, further details on this part are
not discussed.

3.1.2 Training and Testing Skills

As we can see from the previous section, the baseline model is quite complex. Poudel et al.
(2023) implemented specific training and testing procedures, along with various techniques,
to ensure the effectiveness of the pipeline in supporting their assumptions. These procedures
and techniques can be summarized as follows:

Isolating the Environment Encoder’s Training

One of the most notable aspects of the baseline model is that most of the networks are
updated independently. For instance, the Vision Transformer (ViT) encoder and decoder
are not updated using any losses from the world model or controller but solely through
their own auto-encoder loss. This approach by Poudel et al. (2023) aims to support the
assumption that "explicitly training the environment encoder to interpret visual observations
through language can lead to a more comprehensive environment embedding." By isolating
the encoder’s training, the authors ensure that its quality depends entirely on the training
method and architecture.

Explicit Language Training

A key technique employed in this project is language-guided object mask reconstruction,
which aims to enable the ViT encoder to efficiently learn the language grounding of objects.
In comparison, large language models (e.g., GPT, BERT) and large vision encoders (e.g.,
Sora, MAE) typically contain millions or even billions of parameters, are trained on vast
amounts of raw data, and rely on end-to-end learning. While these large models become
very powerful through extensive training, they are not data-efficient and are impractical for
deployment on small robots.

3.1 Language Grounded World Model 33

To demonstrate the efficiency of explicit training, Poudel et al. (2023) specifically designed
the ViT encoder to be smaller than conventional vision encoders, thereby making it more
suitable for resource-constrained environments. (i.e. the LanGWM ViT encoder only have 3
layers and 4 heads by default but the smallest MAE encoder has 6 layers and 8 heads)

However, a potential issue with explicit training is the train-test discrepancy: during testing,
there will be no object masks or language guidance available. If the model becomes overly
dependent on language guidance during training, its performance may degrade in the absence
of such guidance. To address this concern, Poudel et al. (2023) included 25% of non-masking
examples in the training dataset. This technique is intended to reduce the encoder’s reliance
on language guidance, improving its robustness during testing.

Out-of-distribution Testing

To evaluate whether the model learns a comprehensive environment embedding, the testing
was conducted using OOD scenarios. In the OOD PointGoal Navigation task, our model was
trained across five distinct simulation environments and subsequently tested in three entirely
different environments. The critical challenge in these OOD tasks is that all elements within
the testing environments—such as furniture, wallpapers, floor textures, and floor plans—differ
entirely from those in the training environments. This stark contrast in environmental
elements rigorously tests the ViT encoder’s ability to generalize its encoding capabilities to
unseen scenarios.

Given the limited object features present in the training datasets, if the ViT encoder can still
generate effective embeddings in the testing environments, it would indicate that the model
is leveraging the language grounding of objects to understand and represent the environment
in a more generalized manner.

3.1.3 Baseline Performance

Poudel et al. (2023) conducted experiments to compare LanGWM with state-of-the-art
(SOTA) RL algorithms (see Table 3.1). Although all models were trained for only 100k
steps—a relatively small number for the PointGoal navigation task—LanGWM outperformed
all other SOTA RL algorithms. Notably, LanGWM’s performance was compared with CURL1,
DreamerV2 + DA, and DreamerV2 + Grounding DINO.

CURL (Contrastive Unsupervised Representations for Reinforcement Learning), a world
model algorithm proposed in 2020, leverages contrastive learning to train its CNN-based

1

34 Methodology

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

RAD 100k 0.6 0.01 0.1 0.00 0.8 0.01 0.5 0.01
CURL 100k 8.0 0.07 0.6 0.01 5.4 0.05 4.7 0.04
DreamerV2 100k 1.8 0.01 0.6 0.01 1.7 0.01 1.3 0.01
DreamerV2 + DA 100k 7.3 0.05 1.6 0.01 7.7 0.05 5.5 0.04
MWM 100k 1.6 0.01 0.5 0.01 2.9 0.02 1.7 0.01
LanGWM 100k 8.3 0.05 2.1 0.01 9.9 0.06 6.8 0.04
LanGWM + Obj Mask + Empty Lang 100k 1.6 0.01 0.5 0.01 2.3 0.01 1.5 0.01
LanGWM - Obj Mask + Empty Lang 100k 1.6 0.01 0.5 0.01 3.0 0.02 1.7 0.01
DreamerV2 + Grounding DINO 100k 48.9 0.45 17.0 0.14 45.4 0.38 37.1 0.33

Table 3.1 This table shows the OOD generalization performances on iGibson 1.0 dataset for
the PointGoal navigation task. SR and SPL are reported. Models have been trained on five
scenes and tested on three held-out scenes. LanGWM outperforms state-of-the-art RL models
CURL, RAD and DreamerV2 on 100k interactive steps. Even though data augmentation
(DA) improves DreamerV2, the proposed language grounded features learning technique
yields even better results (Poudel et al., 2023).

environment encoder, enabling it to extract high-level features from raw pixels. CURL’s
success supported its hypothesis: "If an agent learns a useful semantic representation from
high-dimensional observations, control algorithms built on top of those representations should
be significantly more data-efficient" (Laskin et al., 2020). By utilizing a transformer-based
environment encoder and incorporating the depth reconstruction training task, LanGWM
appears to surpass CURL in feature extraction capability.

For "DreamerV2 + DA"2, the world model and controller are nearly identical to those
used in LanGWM, but LanGWM still surpass "DreamerV2 + DA"’s performance. This
controlled variable experiment allows us to observe the positive impact of language-grounded
environment representation on model performance.

"DreamerV2 + Grounding DINO" refers to replacing the CNN visual encoder in DreamerV2
with a pre-trained Grounding DINO model. Grounding DINO is a transformer-based,
pretrained open-set detection model3, which also utilizes language grounding techniques,
though without explicit training. The performance of this method significantly surpasses that
of any previous SOTA RL methods, including LanGWM. As a result, Poudel et al. (2023)
has identified making LanGWM comparable to "DreamerV2 + Grounding DINO" as a key
area for future work.

2DA stands for data augmentation, which is used to train models to focus on important features and enhance
their robustness. In other words, it improves the model’s feature extraction capability

3An open-set detection model means that the detectable labels are not restricted to those used during training.
In fact, Grounding DINO accepts free-form descriptions of objects, interprets the descriptions, and outputs the
most relevant object bounding boxes in the image.

3.2 Methods to Improve 35

Poudel et al. (2023) have also done ablation studies: "LanGWM + Obj Mask + Empty Lang"
and "LanGWM - Obj Mask + Empty Lang". The significant performance drop shows the
importance of language guidance.

3.1.4 Limitation

Although LanGWM outperforms all the SOTA RL models, several limitations in the baseline
have been identified:

Pixel-wise Reconstruction

Since language represents abstract global concepts, the environment encoder and decoder may
struggle to reconstruct detailed depth information using language guidance. For example,
a language prompt might describe the presence of a chair in the foreground, but such a
description does not convey the detailed shape or specific features of the chair. Training the
environment encoder-decoder to reconstruct the pixel-wise depth of a masked chair could
cause the model to struggle with recognizing chairs in different styles, hindering its ability to
generalize to unseen scenarios. Additionally, reconstructing the pixel-wise depth may not be
necessary for the PointGoal Navigation task, but it requires a significant amount of network
resources, which could also impede the network’s ability to learn the mapping between RGB,
language, and depth.

Lack of Ablation Studies on Many Architectural Components

The original LanGWM architecture is highly complex, involving the training of five networks
from scratch. The baseline primarily focuses on investigating the impact of the environment
encoder while treating other components as black boxes, under the assumption that an RL
algorithm built on a more powerful environment encoder will inevitably perform better.
However, some parts of the architecture seem to lack clear justification, and the baseline does
not evaluate their effectiveness through ablation studies. This omission leaves uncertainty
regarding the contribution of each component to the overall performance of the model.

3.2 Methods to Improve

In the previous section, which introduced the baseline, we discussed its strengths as well as
some potential limitations. In this section, we will focus on how we plan to further improve
LanGWM. We hypothesize that the pixel-wise reconstruction of depth is the primary

36 Methodology

hindrance to LanGWM’s performance. Therefore, we plan to incorporate more abstract
semantic decoders into the ViT encoder, including a segmentation decoder and a detection
decoder. These decoders focus on extracting classification information and the rough location
of objects, which should alleviate the encoder’s struggle with pixel-wise reconstruction.

3.2.1 Multi-decoder Implementation

Segmentation

The segmentation decoder in our pipeline consists of two major components: a transformer
block and a multilayer perceptron (MLP) head. The transformer block receives embeddings
from the encoder and refines the information by attending to various spatial and contextual
relationships within the image. The refined tokens from the transformer block are passed to
the MLP head, which outputs a tensor of shape [Batch size, Image Height, Image Width,
Number of Classes], where in our case, the number of classes is 63. This means that for each
input image, the decoder produces 63 single-channel images, with each channel representing
the logit for each pixel belonging to one of the 63 possible classes.

The final segmentation prediction is obtained by applying a softmax function across these
63 channels and selecting the most likely class for each pixel. The segmentation task is
optimized by calculating a cross-entropy loss between the predicted segmentation maps and
the ground truth, which allows for updating both the ViT encoder and the segmentation
decoder.

Unlike depth decoding tasks that require highly detailed reconstructions, the segmentation
task focuses on identifying regions corresponding to different objects rather than on pixel-
level details. This focus aligns more naturally with the level of detail provided by language
prompts. By reducing the complexity of the prediction task, the segmentation decoder allows
the encoder to concentrate on extracting more abstract, high-level semantic features from the
observations. As a result, the encoder can learn a richer and more comprehensive representa-
tion of the environment, which is expected to enhance the performance of downstream tasks,
such as RL, by providing a more robust and semantically meaningful understanding of the
environment.

Detection

The detection decoder implemented in our pipeline refers to the architecture of the DETR
(DEtection TRansformers) model, as illustrated in Figure 3.5. In this architecture, it is
necessary to predefine the number of bounding boxes to be predicted. For our application,

3.2 Methods to Improve 37

Fig. 3.5 DETR Architecture. The image illustrates the unique architecture of DETR. Our
implementation adopts DETR’s concept of object queries, which are learnable positional
embeddings (Carion et al., 2020).

we predefined 30 bounding boxes, considering that the maximum number of objects within
the robot camera’s view typically does not exceed 20. Consequently, 30 learned positional
embeddings, referred to as object queries, are generated. These object queries serve as the
initial input for the decoder to attend to the visual environment embeddings generated by the
ViT encoder.

The decoder processes these embeddings through multiple transformer layers, ultimately
refining them into output embeddings, which are subsequently passed through a shared feed-
forward network (FFN). This FFN is responsible for predicting either an object detection,
which includes both the class and bounding box of an object, or a "no object" class, indicating
the absence of an object for that particular query.

During the loss calculation phase, it is essential to match the predicted bounding boxes
with the target boxes, as the predicted boxes are not output sequentially. The DETR model
employs the Hungarian matching algorithm, which is an O(n3) algorithm that enforces
permutation invariance and guarantees that each target element has a unique match. However,
due to limitations in computational resources, we opted for a Nearest Neighbor Matching
algorithm, which is an O(n2) algorithm that matches the predicted bounding boxes to the
closest target bounding boxes.

Once the matching is complete, the label cross-entropy loss, GIoU loss4, and L1 loss5 are
calculated to update the ViT encoder and detection decoder.

4GIoU Loss is an extension of the IoU metric, used to evaluate the overlap between predicted and ground
truth bounding boxes in object detection. While IoU is calculated as Intersection Area

Union Area , GIoU improves upon IoU
by considering the area of the smallest enclosing box that covers both the predicted and ground truth boxes.
This penalizes cases where the boxes do not overlap, optimizing bounding box predictions more effectively,
especially when boxes are not perfectly aligned.

5L1 Loss in object detection measures the absolute difference between the predicted and ground truth
bounding box coordinates (e.g., centre, width, height). It is used to minimize discrepancies in location and size

38 Methodology

By training the encoder to generate embeddings that are specifically useful for object detec-
tion, the decoder enhances the model’s ability to capture higher-level semantic information,
such as the presence and position of objects, rather than merely processing low-level pixel
data. This approach ensures that the encoder learns to identify and represent essential features
that are critical for comprehending the overall structure and context of the environment.

3.3 Conclusion

In this chapter, we have detailed the methodology behind the LanGWM, a sophisticated ap-
proach that leverages language-grounded representation learning to enhance the performance
of environment encoders in RL tasks. By integrating language with visual observations,
LanGWM creates a comprehensive environment embedding that has demonstrated superior
performance in OOD navigation tasks when compared to other SOTA RL models. The
methodology outlines the architecture of the model, including the environment encoder,
world model, and controller, and highlights the unique training techniques employed to
ensure the model’s robustness and generalization capabilities.

Building upon the strengths of LanGWM, our approach addresses its limitations by intro-
ducing a multi-decoder strategy that includes segmentation and detection decoders. These
decoders focus on abstracting semantic information rather than pixel-wise depth reconstruc-
tion, which we hypothesize to be a limiting factor in the original model. By refining the
encoder’s ability to capture high-level semantic features, our enhancements are expected to
improve the model’s ability to generalize across diverse and unseen environments, ultimately
leading to more effective and resource-efficient RL outcomes.

between the predicted and actual bounding boxes. While L1 Loss is simple and effective, it does not directly
consider the overlap between boxes.

Chapter 4

Experiments and Results

In this chapter, we will present the experimental section in two parts. The first part focuses on
the most critical experiments, including the reproduction of baseline results, the evaluation
of the effectiveness of the proposed decoders, and a pipeline analysis of LanGWM. It is
important to note that some of our proposed methods yielded insignificant experimental
results. However, through the experiments detailed in the first part, we gradually identified
the underlying reasons for these outcomes.

The second part primarily addresses ablation studies that were not covered in the first part.
These ablation studies were instrumental in examining and eliminating potential issues while
highlighting the LanGWM framework’s specific properties.

4.1 Experiment Setup

This section will introduce some experiment setups, including dataset, simulated robot, and
detection data generation. Please check Section A for the pipeline configuration.

4.1.1 Dataset

This project utilised iGibson 1.0 as the simulation environment for the PointGoal Navigation
task. Five interactive 3D scenes built into iGibson 1.0 were used: Beechwood_0_int, Benev-
olence_0_int, Merom_0_int, Pomaria_0_int, and Wainscott_0_int. Our pipeline controls a
simulated robot to navigate within these scenes, collecting observations from the environment
at each time step, including:

1. Task Observation: Robot’s current location, relative destination, and motor velocity.

40 Experiments and Results

2. RGB observation: RGB three-channel image taken by robot’s camera.

3. Depth observation: Depth map in the same shape as the RGB image, including the
depth information of every pixel of the RGB image.

4. Instance segmentation map: The segmentation map of each object in the observation.
Each pixel shows its correlated object ID.

5. Segmentation map: The segmentation map of each class of objects in the observation.
Each pixel shows its correlated class ID.

6. Reward: The reward of the last action. The reward will be None if the scene has just
been initiated

7. is_first: A boolean value showing whether this observation is the first observation after
this run of the experiment is initiated.

8. is_last: A boolean value showing whether this observation is the last observation of
this run. This could be caused by finishing the task or reaching the time limit.

9. is_terminated: A boolean value showing whether this observation is terminated because
of reaching the time limit.

At each time step, a set of the above data is generated and temporarily stored in memory.
Once a run is completed, the observations are transferred and saved to disk. During training,
batches are formed by extracting 50 time steps from 16 different runs, which are then used
for the training process.

During evaluation and testing, observations are not extracted from the saved data but gen-
erated in real time. The evaluation and testing phases utilise three different environments
that share no common features with the training environments: Ihlen_0_int, Ihlen_1_int, and
Rs_int.

4.1.2 Robot selection

For our experiments, we have kept the baseline selection of the TurtleBot as the agent. This
choice is motivated by several factors:

• Ease of Training: The TurtleBot has only 2 DOF, making it one of the simplest robots
to control and train. Its simplicity reduces the complexity of the learning problem,
allowing us to focus more on the development and evaluation of the environment
encoder.

4.1 Experiment Setup 41

• Compact Size: With dimensions of 354 x 354 x 420 mm, the TurtleBot is the most
miniature robot implemented in iGibson 1.0. This compact size makes it more ma-
noeuvrable in tight spaces, which is advantageous for the PointGoal Navigation task.
More giant robots might struggle to navigate through narrow passages or cluttered
environments where the destination point could be difficult to reach.

• Focus on Environment Encoding: Larger, more complex robots often have arms or
other appendages that can appear in the camera’s field of view, introducing additional
variables into the perception process. While handling such complexities is a common
challenge in robotics, for this study, we aim to isolate the performance of the environ-
ment encoder and the PointGoal navigation task. By using the TurtleBot, we can avoid
the complications that arise from self-occlusions or extraneous visual data, allowing us
to maintain a more explicit focus on the core objectives of our research.

4.1.3 Detection Data Generation

As the simulation does not provide the detection-related data, we implemented the following
procedures to generate the bounding boxes and label ground truth:

1. Extract all unique object IDs from the instance segmentation map.

2. For each object ID, determine the minimum x, minimum y, maximum x, and maximum
y coordinates in the instance segmentation map.

3. Calculate the x_center, y_center, width, and height of the object, and save these values
as the bounding box ground truth.

4. Identify the corresponding area in the segmentation map and extract the associated
class label for each object, saving these as the class label ground truth.

These four steps are repeated for each time step to generate the detection data. Figure 4.1
shows a simple visualisation of this process. Saving the bounding box in the format [x_center,
y_center, width, height] facilitates Nearest Neighbor Matching, as the distance between
bounding boxes can be easily calculated using the distances between [x_center, y_center].

42 Experiments and Results

Fig. 4.1 Detection Data Generation. Generating detection bounding boxes based on
segmentation data

4.2 Main Experiments 43

4.2 Main Experiments

4.2.1 Baseline Replication

The first step of the main experiment is to reproduce the baseline result. After receiving the
baseline code from Poudel et al. (2023), three reproducing attempts were made with the same
setting. Training the baseline model for one time, which contains one depth decoder head
and one reward decoder head, requires about 12 hours of training on a single A100 GPU.

As shown in Table 4.1, the first two attempts not only failed to reproduce the baseline result
but also achieved a lower success rate than other RL algorithms (see Table 3.1). The third
attempt, however, outperformed the baseline result. After consulting Poudel et al. (2023),
we received confirmation that such randomness is normal. However, as we don’t want our
experiment to be affected by such randomness, We trained the baseline model again with the
random seed fixed to be 1. Although the model performance after fixing the random seed is
lower than the baseline result, we will still treat this result as an experimental baseline.

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

Baseline Result 100k 8.3 0.05 2.1 0.01 9.9 0.06 6.8 0.04
Reproducing Attempt 1 100k 2.0 0.02 3.2 0.02 6.4 0.04 3.9 0.03
Reproducing Attempt 2 100k 1.4 0.01 1.1 0.01 2.5 0.02 1.7 0.01
Reproducing Attempt 3 100k 7.9 0.04 3.3 0.02 11.2 0.05 7.4 0.04
Reproducing Attempt 4 (fixed random seed) 100k 2.0 0.02 3.2 0.02 6.4 0.04 3.9 0.03

Table 4.1 Results of reproducing the baseline model performance as reported in Poudel
et al. (2023). The table compares the SR and SPL across three reproduction attempts and
one attempt with a fixed random seed.

4.2.2 Segmentation Decoder Experiment

Although depth information is highly valuable for navigation tasks, there is a significant issue
in our pipeline: restoring the depth information of an object from a masked RGB image based
on language prompts may be overly challenging, as language does not inherently convey
depth information. If the model is forced to predict depth accurately on the training set, it
may overfit to the training data and fail to generalise to OOD test sets.

To address this, we propose introducing an additional loss to train the encoder to capture more
general environmental information. The first approach we are exploring is segmentation.
Compared to depth prediction, segmentation prediction requires only a rough understanding
of where an object is located in the RGB input. By training the model on segmentation, we

44 Experiments and Results

expect it to better understand the relationship between the location of objects and navigable
paths. An environment embedding that includes this information should enable the World
Model module to make more effective action planning.

Building on the original pipeline, we implemented a new Segmentation decoder. Like
the Depth decoder head, the Segmentation decoder head receives the same masked visual
environment embedding and reconstructs the segmentation of the entire image. With the
addition of the segmentation decoder, the training process now requires approximately 15
hours on an A100 GPU.

Figure 4.2 shows that all three decoder heads are learning but have not yet converged. Figure
4.3 provides examples of depth and segmentation predictions, including both successful and
unsuccessful cases. These examples show that while the depth prediction is not precise, it
generally aligns with the ground truth. The segmentation decoder performs well in predicting
large objects such as walls, floors, and bookshelves. However, it struggles with interpreting
overlapping objects.

Our empirical understanding is that the segmentation decoder is particularly effective at
identifying walls and floors because these are the most common objects in the scenes,
allowing the decoder to learn these concepts better. Given that the encoder’s output now
includes information for three different semantic prediction tasks (i.e. depth, segmentation,
and reward), we conclude that the addition of the segmentation decoder has made the ViT
encoder more comprehensive in its representations.

Fig. 4.2 (Depth+Segmentation) Decoders Training Loss. The training losses for all three
decoders are converging, indicating that the ViT encoder and decoders have successfully
learned.

However, as shown in Table 4.2, the model’s performance in the PointGoal Navigation task
declined after the segmentation decoder was implemented. The consistent performance drop

4.2 Main Experiments 45

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

Experimental Baseline 100k 2.0 0.02 3.2 0.02 6.4 0.04 3.9 0.03
LanGWM (depth+seg) 100k 1.6 0.01 0.8 0.00 1.6 0.01 1.3 0.01

Table 4.2 (Depth+Segmentation) Decoder Experiment. The experimental baseline con-
sistently performs across different environments, while the LanGWM model with added
segmentation demonstrates lower SR and SPL values.

across all three testing environments suggests that this is not simply a training failure due to
randomness. We propose two empirical assumptions to explain this phenomenon:

1. Although segmentation prediction is more abstract than depth prediction, it is still pixel-
wise. Reconstructing masked areas in pixel space may be too complex, especially given
the 75% MAE masking area and the difference in input-output modalities. Training
the ViT encoder with such a challenging task may increase the convergence difficulty,
leading to the observed performance drop.

2. The information provided by segmentation may not benefit the PointGoal Navigation
task. If the environment encoder includes irrelevant information in the embedding, it
becomes more challenging for the world model and controller to extract the relevant
information. Consequently, this could result in worse overall performance.

46 Experiments and Results

Fig. 4.3 (Depth+Segmentation) Decoders Training Result Visualization. The images
above show observations at three different time steps. From top to bottom, the five images
represent RGB input, observed segmentation, predicted segmentation, observed depth, and
predicted depth. We observed the following: 1) While the segmentation decoder performs
well predicting large objects, such as floors and walls, it struggles with small, overlapping
objects. However, it consistently produces meaningful results. 2) The depth decoder provides
results that, while somewhat vague, are still meaningful.

4.2 Main Experiments 47

4.2.3 Detection Decoder Experiment

Based on the assumptions mentioned above, we implemented a detection decoder in the
pipeline. Since the detection task requires the encoder and decoder to understand spatial
relationships strongly and does not predict results in pixel space, we hypothesised that
training on the detection task could improve our model’s performance in the PointGoal
Navigation task. The detection decoder processes the masked visual environment embedding
and predicts bounding boxes and labels through two MLP heads.

After adding the detection decoder, the pipeline required 36 hours to complete 80k training
steps on an A100 GPU, which reached the Cambridge HPC’s running time restriction. Given
the limited computational resources and the need for fairness in model comparison, we
decided to proceed with the results as they are.

Fig. 4.4 (Depth+Detection) Decoders Training Loss. The training losses for the Reward
decoder, Depth decoder, and the three training losses for the Detection decoder are converging,
indicating that the ViT encoder and decoders have successfully learned.

Figure 4.4 shows a result similar to Figure 4.2, where most of the losses are decreasing but
have not yet fully converged. Figure 4.5 presents examples of depth and detection predictions
(only bounding boxes with confidence scores above 80% are shown).

We observed that the detection decoder performs well in predicting large, frequently seen
objects such as doors, walls, floors, and bookshelves, while often ignoring smaller objects

48 Experiments and Results

like chairs. There are instances of overlapping and redundant bounding boxes, a known
limitation of the Nearest Neighbor Matching algorithm, which cannot prevent multiple
predicted bounding boxes from matching with a single target box.

Despite this, the detection decoder is generating meaningful results, indicating that the ViT
encoder has learned to encode the rough locations of objects within the visual environment
embedding. However, the depth predictions appear much noisier compared to when the depth
decoder is trained alone or in combination with the segmentation decoder.

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

Experimental Baseline 100k 2.0 0.02 3.2 0.02 6.4 0.04 3.9 0.03
LanGWM (depth+detect) 100k 3.2 0.02 0.8 0.00 1.6 0.01 1.8 0.01

Table 4.3 (Depth+Detection) Decoder Experiment. The results indicate that the addition of
the detection decoder, despite increasing the complexity of the model and the training time,
did not enhance the model’s performance in the PointGoal Navigation task.

However, as shown in Table 4.3, training with the detection decoder did not improve the
model’s performance in the PointGoal Navigation task. Adding such a complex decoder,
coupled with the significantly increased training time, without contributing to the navigation
task, highlights a critical issue. Considering all the experimental results and the observed
deterioration in the depth decoder’s performance when trained alongside the detection
decoder, we propose four empirical assumptions to explain this phenomenon:

1. The ViT encoder may be too small to interpret physical environment information
effectively across multiple modalities.

2. The ViT encoder may be underfitting and require a longer training schedule to converge
fully.

3. Abstract and general object representation might not benefit the PointGoal Navigation
task.

4. There may be problematic components within the LanGWM pipeline affecting perfor-
mance.

4.2 Main Experiments 49

Fig. 4.5 (Depth+Detection) Decoders Training Result Visualization. The images above
show observations at three different time steps. From top to bottom, the four images represent
bounding box ground truth, predicted bounding box, observed depth, and predicted depth.
We observed the following: 1) The detection decoder performs well in predicting frequently
seen objects such as floors, walls, and doors, consistently producing meaningful results. 2)
The depth predictions are noisier than the results shown in Figure 4.3.

50 Experiments and Results

Fig. 4.6 (LanGWM + Grounding DINO) Pipeline Architecture. The architecture to
test whether there are problematic components in LanGWM’s original pipeline. In this
architecture, we solely replace the ViT encoder with pre-trained Grounding DINO. If the
LanGWm pipeline has no problems, it should show a high SR according to Table 3.1.

4.2.4 Pipeline Analysis with Pretrained Grounding DINO

At this point, we have not only conducted the experiments mentioned above but also per-
formed several ablation studies (see Section 4.3). Unfortunately, none of these experiments
yielded satisfactory results. Throughout this process, we focused on improving the ViT
encoder’s training to enhance the model’s performance while treating the other components
of the pipeline as a black box. However, given the results of all the experiments conducted,
we began to question the reliability of the overall LanGWM pipeline.

To validate this concern, we conducted an experiment using LanGWM + Pretrained Ground-
ing DINO. In this experiment, we kept all other components the same but replaced the original
ViT encoder with a pre-trained Grounding DINO model. We then trained the remaining
components and tested the model on the PointGoal Navigation task. An overview of the
modified architecture is shown in Figure 4.6.

As shown in the baseline experiment (see Table 3.1), DreamerV2 + Grounding DINO achieve
an average accuracy of 37.1%. However, our LanGWM + Pretrained Grounding DINO

4.2 Main Experiments 51

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

LanGWM + Grounding DINO 100k 2.4 0.02 0.4 0.00 1.6 0.02 1.47 0.01
LanGWM + Grounding DINO - task_obs encoder 100k 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00
LanGWM + Grounding DINO - multi-modal feature encoder 100k 37.6 0.25 13.2 0.08 44.0 0.25 31.6 0.19
LanGWM + Grounding DINO - both encoders 100k 54.0 0.47 14.8 0.10 53.2 0.40 40.7 0.32

Table 4.4 SR and SPL for different pipeline configurations in the LanGWM model using
a pre-trained Grounding DINO.

experiment has only achieved an average accuracy of 1.5% (see Table 4.4). Based on that,
we conclude that some components in the LanGWM are problematic.

After carefully reviewing the LanGWM pipeline, we concluded two components whose
effectiveness seems to be unclear:

1. The task observation MLP auto-encoder module.

2. The multi-modal feature auto-encoder module.

After consulting with the baseline author, we learned that the task observation MLP auto-
encoder is intended to isolate the training of the environment encoder from other parts of
the model. The purpose of the multi-modal feature auto-encoder is to compress visual and
task observation information to a size that is manageable for the RNN in the world model.
However, the baseline paper did not include ablation studies to validate the impact of these
components on task performance. Therefore, we developed three new pipelines to examine
their effects.

Task Observation Auto-Encoder Effectiveness Examination

In the first pipeline, we removed the task observation auto-encoder. In this setup, the task
observation MLP encoder is now updated based on the losses from the world model’s decoder
heads. The detailed pipeline is shown in Figure 4.7. This experiment allows us to assess
whether the task observation auto-encoder negatively impacts the pipeline.

The experiment results are presented in Table 4.4. Although the task success rate (SR)
decreased slightly after removing the task observation auto-encoder, the change was lim-
ited. Therefore, we believe that the impact of the task observation encoder on the model’s
performance warrants further investigation.

52 Experiments and Results

Fig. 4.7 (LanGWM + Grounding DINO - Task Observation Encoder) Pipeline Archi-
tecture. This architecture is designed to assess whether the Task Observation Encoder is a
problematic component of the LanGWM pipeline.

Fig. 4.8 (LanGWM + Grounding DINO - Multi-modal Feature Encoder) Pipeline
Architecture. This architecture is designed to assess whether the Multi-modal Feature
auto-encoder is a problematic component of the LanGWM pipeline.

4.2 Main Experiments 53

Fig. 4.9 (LanGWM + Grounding DINO - both Encoder) Pipeline Architecture. This
architecture is designed to assess whether the two auto-encoders are both problematic.

Multi-Modal Feature Auto-Encoder Effectiveness Examination

In the second pipeline, we removed the multi-modal feature auto-encoder while retaining
the task observation auto-encoder. Inspired by the architecture of DreamerV2, we also
added a task observation decoder head to control the number of decoder heads. The detailed
pipeline is shown in Figure 4.8. The experiment results are presented in Table 4.4. This
pipeline achieved a success rate (SR) of 31.6%, a significant improvement that suggests the
multi-modal feature auto-encoder has a negative impact on performance.

Upon reviewing the multi-modal feature decoder’s training loss in the previous experiments,
we observed that the loss consistently decreased and often converged. Despite this, the multi-
modal feature auto-encoder’s negative effect on performance is evident. We hypothesise that
this negative impact may be due to the world model’s inability to effectively extract useful
information from the embeddings produced by the transformer, given that the world model is
just an RNN. However, this assumption requires further validation.

54 Experiments and Results

Removing Both Auto-Encoder

Finally, we built a pipeline without any auto-encoders. In this setup, the world model decoder
heads’ losses directly update the task observation MLP encoder. As shown in Table 4.4, this
pipeline achieved the highest success rate (SR) of 40.7

When compared to the experiment involving the multi-modal auto-encoder, it is evident that
the removal of the task observation auto-encoder further improved performance.

Summary

The series of experiments conducted revealed significant flaws within the LanGWM pipeline,
particularly in its multi-modal feature auto-encoder. Initial experiments replacing the ViT
encoder with a pre-trained Grounding DINO led to a drastic reduction in performance,
indicating potential issues with the pipeline itself rather than just the encoder.

Upon further investigation, it was determined that the task observation MLP auto-encoder
was not detrimental to the model’s performance, as its removal will not significantly affect
the task performance. Conversely, removing the multi-modal feature auto-encoder resulted
in a substantial performance improvement (31.6% SR), highlighting its negative impact on
the pipeline. This suggests that the multi-modal feature auto-encoder may be hindering the
RNN-based world model’s ability to effectively extract and utilize information from the
transformer-generated embeddings.

A final experiment, removing both auto-encoders, yielded the highest task success rate
(40.7%), closely aligning with the baseline performance of DreamerV2 + Grounding DINO.
This indicates that the exclusion of these auto-encoders allows the pipeline to function more
effectively, particularly by enabling the world model’s decoder heads to directly update the
task observation MLP encoder.

The findings suggest that the inclusion of the multi-modal feature auto-encoder in the
LanGWM pipeline introduces a significant bottleneck. Further research is required to explore
potential alternatives for effective multi-modal feature integration within the pipeline. But
now, we can conclude that these components were likely the primary reasons for the earlier
experiments failing to produce valuable results.

4.2.5 Language Grounding Effectiveness Experiment

Building on the insights from the previous pipeline experiment, where we identified signifi-
cant performance improvements by removing both auto-encoders, we refined the original

4.2 Main Experiments 55

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

LanGWM + Grounding DINO - both encoders 100k 54.0 0.47 14.8 0.10 53.2 0.40 40.7 0.32
LanGWM + DINO - both encoders 100k 41.2 0.38 14.0 0.12 38.4 0.34 31.2 0.28

Table 4.5 Language Grounding Effectiveness Experiment Results. This table presents
the Success Rate (SR) and Success weighted by Path Length (SPL) for the LanGWM
pipeline when using two different pre-trained vision transformers: Grounding DINO, which
incorporates language information, and DINO, which is purely vision-based.

pipeline. In this experiment, we aimed to investigate the impact of incorporating language
information into visual environment embeddings on the performance of an out-of-distribution
(OOD) PointGoal navigation task. Specifically, we compared two pre-trained vision trans-
formers (ViTs): Grounding DINO, which is trained with both language and vision, and DINO,
which is solely trained on vision data. The goal was to determine whether language-enhanced
embeddings, provided by Grounding DINO, offer any advantage over purely vision-based
embeddings from DINO in navigating OOD environments.

Both pre-trained models were integrated into the LanGWM pipeline, with their respective
encoders replacing the original ViT encoder. To ensure a fair comparison, we maintained
consistent architecture and training protocols across both setups, only varying the pre-
trained models used. The results are presented in Table 4.5. The LanGWM + Grounding
DINO configuration achieved an average SR of 40.7% and an SPL of 0.32 across the three
environments, outperforming the LanGWM + DINO setup, which achieved an average SR of
31.2% and an SPL of 0.28.

The results suggest that incorporating language information into the visual embeddings
via Grounding DINO can enhance the model’s ability to generalise to OOD environments,
as evidenced by the higher success rates and SPL metrics. This outcome aligns with the
broader hypothesis that language-grounded embeddings could lead to a more comprehensive
understanding of the environment. However, it is important to note that the difference in
performance may also be partially attributed to the specific architectures and fine-tuning
processes of the pre-trained models.

The sizes of the two models were comparable, with the Grounding DINO using a Swin-T
backbone with 29 million parameters and the DINO model utilising a ViT-S/16 backbone with
21 million parameters. This comparability in size suggests that the observed performance
differences are likely due to the nature of the pre-trained embeddings rather than discrepancies
in model capacity.

56 Experiments and Results

While this experiment does not directly prove or disprove our original assumption regarding
pixel-wise depth reconstruction as a hindrance, it provides valuable insights into the potential
benefits of language grounding in visual embeddings. The fact that the language-vision
pre-trained model outperforms the vision-only model in OOD tasks suggests that abstract,
language-driven information can contribute to better environmental understanding and task
performance. Further research is needed to explore this relationship and refine the methods
for incorporating language information into visual models.

4.3 Ablation Studies

In this section, we will present the various attempts we have undertaken to enhance the
performance of our pipeline and identify the factors that may be hindering its effectiveness.
These efforts encompass multiple aspects, including addressing invalid data issues returned
by iGibson 1.0, experimenting with different encoder sizes, and evaluating the effectiveness
of MAE masking. Although none of these experiments led to significant breakthroughs,
we made several important observations that warrant discussion. We will now outline
the motivations, experimental setups, and conclusions drawn from these ablation studies,
shedding light on the intricate details of our investigative process.

4.3.1 Depth Loss Masking

The first aspect we aimed to improve is the depth decoder, as depth information is crucial
for navigation tasks. Even though we have developed other decoders, we decided not to
remove the depth decoder due to its importance. However, if the depth decoder is already
struggling to reconstruct masked objects, introducing additional semantic prediction tasks
could exacerbate the challenges faced by the ViT encoder. To address this, we investigated
and developed two types of depth reconstruction loss masking: Object Mask Loss Masking
and Invalid Depth Masking, which will be introduced in the following sections.

Object Mask Loss Masking Methodology

Object masking involves randomly obscuring objects in a room and generating a language
prompt that describes the masked objects. This approach encourages the model to rely
on language information to reconstruct the masked objects, thereby facilitating language
grounding. However, since the language prompts are abstract and lack depth information,
forcing the model to reconstruct depth for these masked areas can result in irreducible high
loss. To mitigate this, we applied language-guided loss masking by saving the object masks

4.3 Ablation Studies 57

Fig. 4.10 Invalid Depth Examples in iGibson 1.0. The upper and lower rows depict two
examples of invalid depth returned by iGibson 1.0. In each row, the left image represents
the RGB observation, the middle image shows the depth observation, and the right image
displays the travel map. Both examples illustrate that unmodeled areas, such as the regions
outside of a front door or window, return a depth value of zero. In the depth observation
images, it appears as though the highlighted depth suddenly disappears. The locations where
invalid depth is observed are marked by red arrows on the travel map.

from the early stages of the pipeline and reapplying them during loss calculation. We expect
this will allow the depth decoder to ignore the irreducible loss associated with the masked
areas and focus on reconstructing depth from the available RGB information, enhancing
overall model performance.

Invalid Depth Loss Masking Methodology

During the investigation of the robot’s actions, we observed certain behaviours that were
difficult to interpret. For instance, when the robot was navigating toward a destination
behind a door, it would repeatedly change direction upon detecting the door in its RGB
observation. To understand this behaviour, we manually controlled the robot and analysed
its observations in the simulated environment. This investigation revealed that the depth
observations contained significant amounts of invalid depth data. Specifically, areas like the

58 Experiments and Results

glass sections of windows and regions outside main doors consistently returned a depth value
of zero.

We hypothesise that these zero-depth readings occur because iGibson 1.0 returns a depth of
zero for unmodeled regions. We also suspect that the robot’s tendency to avoid doors stems
from the model learning to associate the RGB features of a door with these low (zero) depth
values, leading the model to interpret doors as obstacles it needs to avoid. Although sombody
could argued that the model might learn to interpret zero depth as invalid, this is unlikely in
our context due to the short training schedule and the separation between the vision encoder’s
training and the subsequent task-related training.

To address this issue, we implemented invalid depth loss masking during the depth recon-
struction loss calculation. By masking out all minimum depth values as invalid, we instructed
the loss function to ignore these areas, allowing the model to focus on reconstructing valid
depth information and thereby improving its overall performance.

Experiments

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

Experimental Baseline 100k 2.0 0.02 3.2 0.02 6.4 0.04 3.9 0.03
LanGWM (depth) + Invalid Depth Mask 100k 5.2 0.03 0.4 0.00 5.6 0.03 3.7 0.02
LanGWM (depth) + Object Mask 100k 4.4 0.03 2.4 0.01 4.0 0.01 3.6 0.02
LanGWM (depth) + both Masks 100k 4.0 0.03 0.8 0.00 6.8 0.03 3.9 0.02

Table 4.6 Effect of Depth Loss Masking Techniques on PointGoal Navigation Perfor-
mance. This table presents the SR and SPL for various configurations of the LanGWM
model with different depth loss masking strategies: Invalid Depth Masking, Object Mask
Loss Masking, and a combination of both.

The experiment results (see Table 4.6)indicate that neither the Invalid Depth Mask nor
the Language-Guided Mask triggered significant improvements in performance across the
evaluated environments. The Success Rate (SR) and Success per Length (SPL) metrics
remained largely unchanged, with slight variations that do not suggest a meaningful impact
from the applied masking strategies.

From the current point of view, it is plausible that the lack of significant effect can be
attributed to the task observation encoder and multi-modal feature encoder. The presence
of these encoders may overshadow the impact of more subtle adjustments, such as depth
loss masking. Further investigation is required to explore this hypothesis and identify more
effective modifications.

4.3 Ablation Studies 59

4.3.2 Encoder Size Experiment

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

LanGWM (depth+seg) (Encoder_S) 100k 1.6 0.01 0.8 0.00 1.6 0.01 1.3 0.01
LanGWM (depth+seg) (Encoder_M) 100k 0.4 0.00 0.0 0.00 0.0 0.00 1.3 0.01
LanGWM (depth+seg) (Encoder_L) 100k 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00
LanGWM (depth+detect_S) (Encoder_S) 100k 3.2 0.02 0.8 0.00 1.6 0.01 1.8 0.01
LanGWM (depth+detect_S) (Encoder_M) 100k 2.8 0.02 1.2 0.01 4.4 0.03 2.8 0.02
LanGWM (depth+detect_S) (Encoder_L) 100k 1.2 0.01 0.4 0.00 0.8 0.01 0.8 0.01

Table 4.7 Encoder Size Experiment Results. This table compares the SR and SPL across dif-
ferent encoder configurations (Encoder_S, Encoder_M, and Encoder_L) within the LanGWM
pipeline. The models were tested with two decoder setups: depth paired with segmentation
and depth paired with detection.

Previously, we expressed concerns that our ViT encoder might be too small to effectively
integrate multi-modal information, which typically requires larger encoders to handle the
increased complexity and variety of data sources. To address this concern, we conducted an
experiment to assess how increasing the encoder’s size impacts the model’s performance.

In this experiment, we tested three encoder configurations: Encoder_S with 3 layers and 4
heads, Encoder_M with 6 layers and 8 heads, and Encoder_L with 12 layers and 10 heads.
The experiments were carried out using pipelines that included both a depth decoder paired
with a segmentation decoder and a depth decoder paired with a detection decoder. The result
can be seen in Table 4.7.

The results of the encoder size experiment indicate a clear trend: as the encoder size in-
creases, the performance consistently declines. Specifically, the models with larger encoders
(Encoder_M and Encoder_L) perform worse compared to those with smaller encoders
(Encoder_S).

Regardless of the influence of the task observation encoder and the multi-modal feature
encoder, there are two primary explanations for this phenomenon. First, the larger encoders
may be underfitting due to the fixed training schedule and the limited amount of training
data available. The increased complexity of the larger models could require more extensive
training to fully capture the nuances of the data. Second, it is possible that the larger encoders
extract features that are too high-level for the downstream world model and actor-critic
components to effectively interpret, leading to a mismatch between the encoder output and
the requirements of the subsequent processing stages. Further investigation is needed to
validate these assumptions and to determine the optimal encoder size for this task.

60 Experiments and Results

4.3.3 MAE Effectiveness Experiment

Models Ihlen_0_int Ihlen_1_int Rs_int Env Avg
Steps SR SPL SR SPL SR SPL SR SPL

LanGWM (depth+seg) 100k 1.6 0.01 0.8 0.00 1.6 0.01 1.3 0.01
LanGWM (depth+seg-MAE Masking) 100k 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00

Table 4.8 MAE Effectiveness Experiment. This table shows the Success Rate (SR) and
Success weighted by Path Length (SPL) for the LanGWM model with and without MAE
masking.

Previously, concerns were raised about the potential conflict between applying both object
masking and MAE masking in our pipeline. Specifically, while we aim to explicitly train the
model to reconstruct masked objects using language prompts, the simultaneous application
of MAE masking introduces uncertainty: will the model rely on the language prompt to
reconstruct the masked object, or will it utilise the tokens discarded by the MAE masking
algorithm?

To address this concern, we conducted an experiment to explore the effectiveness of MAE
masking. We removed the MAE masking process in a pipeline with a depth decoder and
segmentation decoder. In this setup, after the CNN transformed images into image tokens, all
tokens were directly passed to the ViT encoder for processing, allowing us to observe how
the encoder’s performance would change when solely focused on reconstructing the masked
object without the interference of MAE masking.

As shown in Table 4.8, the results of this experiment revealed that removing MAE masking
completely disabled LanGWM’s ability to navigate robots, as indicated by a 0.0% SR and
SPL across all environments. However, analysis of the loss curves showed that both the
segmentation prediction loss and depth reconstruction loss converged to the same levels as
they did in the standard (depth+seg) pipeline with MAE masking. This suggests that, while
the quality of segmentation and depth reconstruction tasks remains consistent regardless of
MAE masking, training with MAE enables the encoder to learn more meaningful semantic
environment representations. These findings underscore the importance of MAE masking in
effectively training the LanGWM pipeline.

4.4 Conclusion

The experiments conducted in this study can be broadly categorised into three main areas:
baseline reproduction, the proposed methods’ experiments, and pipeline analysis using
pretrained models. The baseline reproduction focused on replicating the original LanGWM

4.4 Conclusion 61

results to ensure consistency in the experimental setup. This process revealed significant
randomness in the model’s performance.

In the proposed methods’ experiments, we introduced segmentation and detection decoders
to investigate their impact on enhancing the model’s semantic understanding. The segmen-
tation decoder was expected to help the model capture the spatial relationships between
objects, while the detection decoder aimed to improve the model’s ability to identify and
localise objects within the environment. However, even though the decoders generates some
meaningful segmentation image and detection bounding boxes, these experiments showed
such training methods do not improve PointGoal Navigation task performance at all.

The pipeline analysis was conducted using pretrained models, specifically Grounding DINO
and DINO, to evaluate the impact of various components within the original pipeline on
task performance. This analysis was aimed at understanding how effectively the pipeline
incorporated language information into the visual environment embeddings. The results
highlighted significant flaws in the existing LanGWM pipeline, particularly with the task
observation encoder and the multi-modal feature encoder, both of which were found to have
a detrimental effect on task performance. This finding suggests that these components were
likely the primary reasons for the earlier experiments failing to produce valuable results.
Additionally, we compared the contributions of pretrained Grounding DINO and pretrained
DINO to task performance, and concluded that incorporating language information can
indeed enhance performance in OOD navigation tasks.

Additionally, several ablation studies were performed alongside the main experiments to
investigate the effects of training strategies. These studies, which included experiments like
depth loss masking, encoder size variation, and the effectiveness of MAE (Masked Autoen-
coder) masking, provided further insights into the factors influencing model performance
and helped identify areas for improvement within the pipeline .

Chapter 5

Conclusion and Future Work

In this dissertation, we systematically examined the LanGWM, focusing on extending its
architecture and identifying performance limitations. Our investigation centred on the OOD
PointGoal navigation task, where we hypothesized that the original depth reconstruction task
used for training the language-grounded representation might be a significant bottleneck. To
address this, we introduced new segmentation and detection decoders into the LanGWM
pipeline to enhance the model’s ability to capture high-level semantic information. These
additions aimed to shift the model’s focus away from detailed visual reconstruction towards
a broader, language-grounded understanding.

Our experiments evaluated the LanGWM pipeline through baseline reproduction, the in-
tegration of new decoders, and the analysis of pre-trained models. We identified signif-
icant limitations within the current architecture, particularly in the task observation and
multi-modal feature encoders, which hindered the model’s performance. Additionally, the
integration of segmentation and detection tasks did not improve PointGoal navigation per-
formance as anticipated, underscoring the challenges of effectively incorporating high-level
semantic information. Despite these obstacles, our findings suggest that language grounding
holds promise for enhancing model performance in novel environments, indicating potential
avenues for further research and optimization.

In conclusion, while the new decoders and training tasks did not produce the expected
performance gains, our research identified critical architectural limitations, highlighted the
potential of language grounding, and laid the groundwork for future efforts to refine and
optimize the LanGWM pipeline.

64 Conclusion and Future Work

5.1 Future Work

Unfortunately, I realized the issues in the original pipeline only in the last two weeks
of the project after spending too much time blindly trying to improve the environment
encoder. Additionally, I lacked the necessary computing resources and time to conduct
further experiments.

From a personal perspective, I believe our project proposal set an ambitious goal. However,
our baseline work lacked a series of critical hypothesis validations. For example, our baseline
pipeline is a complex architecture involving five nearly independent neural networks. The
loss from downstream tasks is not used to update upstream networks, yet all networks require
online training. Additionally, the environment encoder we aim to train involves various types
of information (e.g., language, images, depth, task observation), but we wanted to prove
the high data efficiency of explicit training methods, so we designed a smaller-than-usual
transformer block. We also did not know whether the masked auto-encoding approach
was suitable for cross-modality tasks. For instance, is it reasonable to ask the decoder to
predict object bounding boxes from an image with 75% of its pixels masked out? The
baseline pipeline’s accuracy on the navigation task was less than 10%, with a high variance
in reproduction. Before proposing to add new decoders to the original pipeline, should we
not first ensure the reliability of the existing pipeline?

Given these considerations, I believe the most important future work for LanGWM should
be divided into the following four steps:

1. Test various pipeline structures using pre-trained Grounding DINO. Select the best-
performing and most stable pipeline as the foundation for subsequent experiments.

2. Independently train the environment encoder outside the pipeline using various training
methods. Evaluate the encoder’s generality using decoder tasks (e.g., depth prediction,
segmentation, detection), zero-shot, or few-shot learning.

3. Integrate the pre-trained encoders from the second step into the pipeline and compare
their performance on the PointGoal Navigation task against pre-trained Grounding
DINO. If the performance does not surpass Grounding DINO, does this suggest that
Grounding DINO’s training method is better suited for producing a general environment
representation?

4. Take the best-performing encoders from the third step and train them from scratch in
the pipeline with online training. Compare their performance with other SOTA RL
models.

5.1 Future Work 65

Following these experimental steps will build each phase of our work on a reliable foundation,
likely leading to more significant advancements.

References

Amiri, R., Mehrpouyan, H., Fridman, L., Mallik, R. K., Nallanathan, A., and Matolak, D.
(2018). A machine learning approach for power allocation in hetnets considering qos. In
2018 IEEE international conference on communications (ICC), pages 1–7. IEEE.

Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A., Gupta, S., Koltun, V., Kosecka, J.,
Malik, J., Mottaghi, R., Savva, M., et al. (2018). On evaluation of embodied navigation
agents. arXiv preprint arXiv:1807.06757.

Cai, F. and Koutsoukos, X. (2020). Real-time out-of-distribution detection in learning-
enabled cyber-physical systems. In 2020 ACM/IEEE 11th International Conference on
Cyber-Physical Systems (ICCPS), pages 174–183. IEEE.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020).
End-to-end object detection with transformers. In European conference on computer
vision, pages 213–229. Springer.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and Joulin, A.
(2021). Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 9650–9660.

Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., and Inkpen, D. (2016). Enhanced lstm for
natural language inference. arXiv preprint arXiv:1609.06038.

Coumans, E. et al. (2013). Bullet physics library. Open source: bulletphysics. org, 15(49):5.

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

DeVries, T. and Taylor, G. W. (2018). Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2021). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

68 References

Dosovitskiy, A. and Koltun, V. (2016). Learning to act by predicting the future. arXiv
preprint arXiv:1611.01779.

Farid, A., Veer, S., and Majumdar, A. (2022). Task-driven out-of-distribution detection with
statistical guarantees for robot learning. In Conference on Robot Learning, pages 970–980.
PMLR.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cognitive mapping
and planning for visual navigation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2616–2625.

Ha, D. and Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution.
Advances in neural information processing systems, 31.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019a). Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., and Davidson, J. (2019b).
Learning latent dynamics for planning from pixels. In International conference on machine
learning, pages 2555–2565. PMLR.

Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. (2020). Mastering atari with discrete world
models. arXiv preprint arXiv:2010.02193.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16000–16009.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and
Kavukcuoglu, K. (2016). Reinforcement learning with unsupervised auxiliary tasks.
arXiv preprint arXiv:1611.05397.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Deitke, M., Ehsani,
K., Gordon, D., Zhu, Y., et al. (2017). Ai2-thor: An interactive 3d environment for visual
ai. arXiv preprint arXiv:1712.05474.

Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014.

References 69

Laskin, M., Srinivas, A., and Abbeel, P. (2020). Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International conference on machine learning, pages
5639–5650. PMLR.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lee, J., X. Grey, M., Ha, S., Kunz, T., Jain, S., Ye, Y., S. Srinivasa, S., Stilman, M., and
Karen Liu, C. (2018). Dart: Dynamic animation and robotics toolkit. The Journal of Open
Source Software, 3(22):500.

Liang, J., Makoviychuk, V., Handa, A., Chentanez, N., Macklin, M., and Fox, D. (2018).
Gpu-accelerated robotic simulation for distributed reinforcement learning. In Conference
on Robot Learning, pages 270–282. PMLR.

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., et al.
(2023). Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533.

Munro, P. (1987). A dual back-propagation scheme for scalar reward learning. In Ninth An-
nual Conference of the Cognitive Science Society, pages 165–176. Hillsdale, NJ. Cognitive
Science Society Lawrence Erlbaum.

Nguyen, D. and Widrow, B. (1990). The truck backer-upper: An example of self-learning in
neural networks. In Advanced neural computers, pages 11–19. Elsevier.

Nilsson, N. J. et al. (1984). Shakey the robot, volume 323. Sri International Menlo Park,
California.

OpenAI (2024). Gpt-4. https://openai.com. Accessed: 2024-09-09.

Partsey, R., Wijmans, E., Yokoyama, N., Dobosevych, O., Batra, D., and Maksymets, O.
(2022). Is mapping necessary for realistic pointgoal navigation? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17232–17241.

Pearl, J. and Mackenzie, D. (2018). The book of why: the new science of cause and effect.
Basic books.

Poudel, R. P., Pandya, H., Zhang, C., and Cipolla, R. (2023). Langwm: Language grounded
world model. arXiv preprint arXiv:2311.17593.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language
understanding by generative pre-training.

https://openai.com

70 References

Robinson, T. and Fallside, F. (1989). Dynamic reinforcement driven error propagation
networks with application to game playing. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 11.

Savva, M., Chang, A. X., Dosovitskiy, A., Funkhouser, T., and Koltun, V. (2017). Minos:
Multimodal indoor simulator for navigation in complex environments. arXiv preprint
arXiv:1712.03931.

Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., Straub, J., Liu,
J., Koltun, V., Malik, J., et al. (2019). Habitat: A platform for embodied ai research.
In Proceedings of the IEEE/CVF international conference on computer vision, pages
9339–9347.

Schmidhuber, J. (1990a). Making the world differentiable: On using supervised learning
fully recurrent neural networks for dynamic reinforcement learning and planning in non-
stationary environments. Technische Universität München Tech. Report: FKI-126-90.

Schmidhuber, J. (1990b). An on-line algorithm for dynamic reinforcement learning and
planning in reactive environments. In 1990 IJCNN international joint conference on neural
networks, pages 253–258. IEEE.

Schmidhuber, J. (1990c). Reinforcement learning in markovian and non-markovian environ-
ments. Advances in neural information processing systems, 3.

Schmidhuber, J. (1991). Curious model-building control systems. In Proc. international
joint conference on neural networks, pages 1458–1463.

Sedlmeier, A., Gabor, T., Phan, T., Belzner, L., and Linnhoff-Popien, C. (2019). Uncertainty-
based out-of-distribution classification in deep reinforcement learning. arXiv preprint
arXiv:2001.00496.

Sedlmeier, A., Müller, R., Illium, S., and Linnhoff-Popien, C. (2020). Policy entropy for
out-of-distribution classification. In Artificial Neural Networks and Machine Learning–
ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava,
Slovakia, September 15–18, 2020, Proceedings, Part II 29, pages 420–431. Springer.

Shen, B., Xia, F., Li, C., Martín-Martín, R., Fan, L., Wang, G., Pérez-D’Arpino, C., Buch,
S., Srivastava, S., Tchapmi, L., et al. (2021). igibson 1.0: A simulation environment for
interactive tasks in large realistic scenes. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 7520–7527. IEEE.

Sinha, R., Sharma, A., Banerjee, S., Lew, T., Luo, R., Richards, S. M., Sun, Y., Schmerling,
E., and Pavone, M. (2022). A system-level view on out-of-distribution data in robotics.
arXiv preprint arXiv:2212.14020.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Machine learning proceedings 1990, pages
216–224. Elsevier.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. The MIT
Press, second edition.

References 71

Tay, Y., Tuan, L. A., and Hui, S. C. (2018). Compare, compress and propagate: Enhancing
neural architectures with alignment factorization for natural language inference. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 1565–1575.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033.

TurtleBot (2024). Turtlebot 2. https://www.turtlebot.com/turtlebot2/. Accessed: July 30,
2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Werbos, P. J. (1987). Learning how the world works: Specifications for predictive networks
in robots and brains. In Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, NY.

Werbos, P. J. (1989). Neural networks for control and system identification. In Proceedings
of the 28th IEEE Conference on Decision and Control,, pages 260–265. IEEE.

Wijmans, E., Kadian, A., Morcos, A., Lee, S., Essa, I., Parikh, D., Savva, M., and Batra, D.
(2019). Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. arXiv
preprint arXiv:1911.00357.

Zhao, X., Agrawal, H., Batra, D., and Schwing, A. G. (2021). The surprising effectiveness
of visual odometry techniques for embodied pointgoal navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 16127–16136.

https://www.turtlebot.com/turtlebot2/

Appendix A

Pipeline Configuration

Here we only listed out the most important configuration to our experiment. For more
configuration, please check the Appendix of Poudel et al. (2023).

A.1 Segmentation Decoder

As introduced in the Section 3.2, the segmentation decoder consists a transformer block and
an single layer MLP head. The transformer block uses the following configuration:

1. Number of self-attention layer: 3

2. Number of self-attention head: 2

3. Self-attention embedded dimension: 256

4. MLP layer embedded dimension: [512, 256]

5. Layer normalization Epsilon: 10−6

6. Dropout rate: 0.1

7. Activation function: gelu

The single layer MLP head uses the following configuration:

1. MLP head embedded dimension: 256∗63 = 16128

The transformer block is small comparing to standard size. The specific reason for this will
be analyzed in Section 4.2.3 and Section 4.3.2.

74 Pipeline Configuration

A.2 Detection Decoder

The detection decoder consists a transformer block, a single layer MLP head for predicting
object labels, and a three layer MLP head for predicting bounding box. The transformer
block uses the following configuration:

1. Number of self-attention layer: 3

2. Number of self-attention head: 4

3. Self-attention embedded dimension: 256

4. MLP layer embedded dimension: [2048, 256]

5. Layer normalization Epsilon: 10−6

6. Dropout rate: 0.1

7. Activation function: relu

8. Number of queries (related to position embedding calculation): 30

The single MLP head for predicting object labels has the following configuration:

• MLP head embedded dimension: 63 (number of class labels)

The three layer MLP head for predicting bounding box:

• MLP head embedded dimension: [256, 256, 4]

Most of the above configuration adopt DETR’s original configuration(Carion et al., 2020),
except for the number of self-attention layers and heads. Experiment evaluating the effect of
the self-attention layer will be discussed in Section 4.2.3.

A.3 Training Configuration

The general training processes are using the following configuration:

1. Training steps: 100k steps

2. Train run time limit: 500 steps

3. Prefill training data: 5000 steps

4. Networks training interval: every 5 steps

A.4 Testing Configuration 75

A.4 Testing Configuration

1. Number of Evaluation Trails: 250

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Contribution
	1.2 Roadmap

	2 Background
	2.1 Robotics Indoor Navigation Task
	2.1.1 Reinforcement Learning
	2.1.2 Experiment Environment
	2.1.3 PointGoal Navigation Task
	2.1.4 Out-of-distribution Tasks for Robotics

	2.2 World Model
	2.2.1 Model-based RL v.s. Model-free RL
	2.2.2 The Development of World Model

	2.3 Encoders for Feature Extraction
	2.3.1 Transformer-based Feature Extraction
	2.3.2 Large Language Model
	2.3.3 Vision Transformer
	2.3.4 Masked Autoencoders

	2.4 Conclusion

	3 Methodology
	3.1 Language Grounded World Model
	3.1.1 Architecture
	3.1.2 Training and Testing Skills
	3.1.3 Baseline Performance
	3.1.4 Limitation

	3.2 Methods to Improve
	3.2.1 Multi-decoder Implementation

	3.3 Conclusion

	4 Experiments and Results
	4.1 Experiment Setup
	4.1.1 Dataset
	4.1.2 Robot selection
	4.1.3 Detection Data Generation

	4.2 Main Experiments
	4.2.1 Baseline Replication
	4.2.2 Segmentation Decoder Experiment
	4.2.3 Detection Decoder Experiment
	4.2.4 Pipeline Analysis with Pretrained Grounding DINO
	4.2.5 Language Grounding Effectiveness Experiment

	4.3 Ablation Studies
	4.3.1 Depth Loss Masking
	4.3.2 Encoder Size Experiment
	4.3.3 MAE Effectiveness Experiment

	4.4 Conclusion

	5 Conclusion and Future Work
	5.1 Future Work

	References
	Appendix A Pipeline Configuration
	A.1 Segmentation Decoder
	A.2 Detection Decoder
	A.3 Training Configuration
	A.4 Testing Configuration

