
Retrofitting Language Models with
Dynamic Tokenisation

Darius Feher

Supervisor: Dr. Ivan Vulić

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

St. Edmund’s College August 2024

I dedicate this thesis to my supportive family, my late middle school maths teacher who
sparked my interest in maths, and my high school maths teacher whose support and

inspiration helped me reach this point in my academic journey.

Declaration

I, Darius Feher of St. Edmund’s College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose. The code used for developing this project has been written in Python, using standard
machine learning libraries such as Pytorch1 or datasets2. However, the following libraries
were used or extended for specific functionalities:

1. Training scripts from the transformers library from Hugging Face, which were
customised to support dynamic tokenisation;3

2. The Zero-Shot Tokeniser Transfer (ZeTT) library for converting tokenisers to byte-level
and providing utility functions for the hypernetworks;4

3. The Parameter-Efficient Fine-Tuning (PEFT) library for merging and training adapters;5

4. The FastChat library for evaluating models with a custom MT-Bench script.6

The word count for this thesis including tables, figure captions, appendices and footnotes is
14988.

Darius Feher
August 2024

1pytorch.org/
2github.com/huggingface/datasets
3github.com/huggingface/transformers
4github.com/bminixhofer/zett
5github.com/huggingface/peft
6github.com/lm-sys/FastChat

https://pytorch.org/
https://github.com/huggingface/datasets
https://github.com/huggingface/transformers
https://github.com/bminixhofer/zett
https://github.com/huggingface/peft
https://github.com/lm-sys/FastChat

Acknowledgements

First and foremost, I would like to extend my sincere thanks to my supervisor, Ivan Vulić, as
well as to Benjamin Minixhofer. Your guidance, constructive feedback, and support were
instrumental in shaping the direction and outcomes of this dissertation. I am deeply grateful
for the opportunity to work under your supervision, and I appreciate the time and effort you
dedicated to mentoring me throughout this journey. I am looking forward to continuing our
work together on this project.

I want to express my sincere gratitude to the Romanian Ministry of Education, whose
support, facilitated through the Agency for Credits and Scholarships, made it possible for
me to study at the University of Cambridge. Their funding has been crucial in shaping my
educational journey.

Finally, I want to express my appreciation to Andrej, Clare, Elijah, and Sedie (in no
particular order), who were not only my course mates but have also become my friends.
Without you, my experience at Cambridge would not have been nearly as meaningful or
memorable.

Abstract

Large Language Models (LLMs) are the backbone of modern Natural Language Processing
(NLP) applications. They typically rely on subword tokenisation, breaking text into pieces of
words or entire words, for efficient processing. Although this technique proves effective in
representing arbitrary sequences of text, it presents several challenges, including difficulty in
handling sequences of numbers, spelling errors, and susceptibility to certain types of textual
manipulations. Importantly, these subword tokenisers use static vocabularies, which are
biased towards high-resource languages, resulting in over-segmentation in low-resource lan-
guages and inducing unfairness towards these languages. The static nature of the vocabulary
limits the model’s adaptability to new words or evolving language use, requiring periodic
and expensive retraining to update the vocabulary and the embeddings.

To tackle this, we propose a framework for retrofitting language models (LMs) with
dynamic tokenisation, a mechanism that allows the token boundaries to adapt based on the
input text, in LMs pre-trained with subword tokenisation. We repurpose the pre-trained
hypernetwork from Minixhofer et al. (2024), trained for transfer to another static tokeniser,
to enable dynamic tokenisation by predicting token embeddings for any (newly) encountered
token. Implementing dynamic tokenisation at the batch-level for encoders significantly re-
duces token sequence lengths with minimal impact on performance, thus improving inference
speed and ensuring more equitable language representation. In decoders, we apply dynamic
tokenisation at the sample-level which enables for instance chat-based adaptation. Using
an Approximate Nearest Neighbour index, we achieve fast generation with a one million
token vocabulary, demonstrating scalability to even larger, dynamic vocabularies. Overall,
our findings show that dynamic tokenisation significantly improves inference speed and
promotes fairness across languages, overcoming the limitations of static tokenisation and
enabling more equitable and adaptable LMs.

Table of contents

List of figures viii

List of tables xi

Nomenclature xiii

1 Introduction 1
1.1 Contributions . 5
1.2 Thesis Outline . 5

2 Background and Related Work 6
2.1 Tokenisers . 6

2.1.1 Normalisation and Pre-tokenisation 7
2.1.2 Byte-Pair-Encoding . 8
2.1.3 WordPiece . 9
2.1.4 UnigramLM . 10

2.2 Language Models . 12
2.2.1 Language Modelling . 12
2.2.2 Transformers . 14

2.3 Multilingual Models and Tokenisers . 17
2.4 Embedding Initialisation . 18
2.5 Embedding Prediction Using Hypernetworks 18
2.6 Dynamic Tokenisation Related Work . 19
2.7 Summary . 21

3 Methodology 22
3.1 Dynamic Tokenisation with Encoders LMs 22

3.1.1 Decide on a Dynamic Tokenisation 22
3.1.2 Obtain Token Embeddings . 24

Table of contents vii

3.2 Dynamic Tokenisation with Decoders LMs 26
3.2.1 Vocabulary Expansion . 28
3.2.2 Decide on a Tokenisation Function 28
3.2.3 Obtain Token Embeddings and Index Construction 29

3.3 Summary . 31

4 Experimental Setup 32
4.1 Models . 32
4.2 Benchmarks for Encoder LMs Experiments 32
4.3 Benchmarks for Decoder LMs Experiments 33
4.4 Training Data . 34
4.5 Experiments . 34

4.5.1 Encoder LMs . 34
4.5.2 Decoder LMs . 38

4.6 Evaluation Metrics . 39
4.7 Summary . 40

5 Results and Discussion 41
5.1 Encoder LMs . 41

5.1.1 Task Adapter Trained with Original Subword Tokenisation and Em-
beddings . 41

5.1.2 Joint Task and Dynamic Tokenisation Adaptation 45
5.1.3 Disentangling Task Adaptation from Tokenisation Adaptation . . . 49

5.2 Decoder LMs . 52
5.2.1 MMLU . 52
5.2.2 MT-Bench . 54

5.3 Other Results . 55
5.3.1 Verifying the Quality of the Index 55
5.3.2 Hypernetwork Embeddings Caching 56

5.4 Summary . 57

6 Conclusion 58

References 60

Appendix A Prompt templates for MMLU 66

Appendix B Reproducibility Details 68

List of figures

1.1 Illustration of how text is tokenised and converted into embeddings using
XLM-ROBERTA. Each embedding has a size of 768. An underscore
(_) precedes tokens that originally had a space before them, following the
tokenisation convention used by this model. By default, a space is added at
the beginning of the sentence. 2

1.2 Comparison between existing tokenisations. 3
1.3 A high-level workflow of our work on retrofitting LMs with dynamic tokeni-

sation, building upon the work of Minixhofer et al. (2024). 4

2.1 Transformer architecture. Figure sourced from Vaswani et al. (2017). 15
2.2 LoRA reparametrisation. Only A and B are trained. Figure reproduced

from Hu et al. (2021). 16
2.3 Hypernetwork predicts input Eϕbin

and output Eϕbout
embeddings based on

the target tokeniser (Vb,Tb). Figure sourced from Minixhofer et al. (2024). . 19
2.4 Hypernetwork architecture consisting of an HLM which learns to compose

embeddings for each t ∈ Vb (target tokeniser) under the original tokenisation
Ta into a new embedding, Eϕb

(t), amortising over the target tokenisation
function Tb. Figure sourced from Minixhofer et al. (2024). 20

3.1 Dynamic tokenisation applied to encoder LMs. 25
3.2 Dynamic tokenisation approach that can theoretically be applied to decoder

LMs to predict token k +1. ⊕ represents concatenation. 27
3.3 Dynamic tokenisation with expanded vocabulary Vlarge and ANN index I

applied to decoder LMs. 31

List of figures ix

5.1 XNLI accuracy and UNER F1-score trends as the token granularity, con-
trolled by m, shifts from subword-level to word-level across different lan-
guages. The continuous lines represent interpolations between these gran-
ularities, while the dotted lines indicate the upper boundary of accuracy
obtained with the original tokenisation and embeddings. The annotations on
the left and right show the average token sequence length with 0% reduction
(subword-level) and with 100% reduction (word-level). The evaluation was
performed using the task adapter trained on English with original subword
tokenisation and embeddings. 44

5.2 XNLI accuracy trends as the token granularity shifts from subword-level
to word-level across different languages. Dotted lines indicate the upper
boundary of accuracy obtained with the original tokenisation and embeddings.
The evaluation was performed using the task adapter trained on English with
dynamic tokenisation, where m was set to achieve X% relative sequence
reduction on English, and HN embeddings. 46

5.3 XNLI: Adapter trained with 50% (continuous line) compared with the initial
adapter trained with subword tokenisation and original embeddings (dotted
line). 47

5.4 UNER F1-score trends as the token granularity shifts from subword-level to
word-level across different languages. The evaluation was performed using
the task adapter trained on English with dynamic tokenisation, where m

was set to achieve X% relative sequence reduction on English, and HN
embeddings. 47

5.5 UNER: Adapter trained with 75% (continuous line) compared with the
initial adapter trained with subword tokenisation and original embeddings
(dotted line). 48

5.6 XNLI accuracy across different merge levels. Results obtained using the
adapter trained with tokenisers sampled from a Uniform distribution and
HN embeddings. 49

5.7 F1-score accuracy across different merge levels. Results obtained using
the adapter trained on UNER with tokenisers sampled from a different
distributions and HN embeddings. 50

5.8 XNLI: Comparison between adapter trained with 50% sequence reduction
(dotted line) and the adapter trained by sampling tokenisers from a Uniform
distribution (continuous line). 50

List of figures x

5.9 UNER: Comparison between adapter trained with 75% sequence reduction
(dotted line) and the adapter trained by sampling tokenisers from a Uniform
distribution (continuous line). 51

5.10 Tokens processed by the hypernetwork using an HN-specific LRU cache
versus processing all unique tokens without caching. Results obtained on the
validation subset of XNLI English. 57

List of tables

2.1 Comparison of BPE, WordPiece, and UnigramLM Tokenisation Algorithms. 13

3.1 Batch-level dynamic tokenisation showing initial tokenised text and the result
after applying dynamic tokenisation with one merge (m = 1). The token pair
(‘tak’, ‘ing’) is the most frequent and has been merged. The tokens are
obtained using XLM-ROBERTA tokeniser. 24

3.2 Example illustrating how combining merge rules from two BPE tokenisers
results in conflicts when tokenising “ade”. 29

5.1 Accuracy on XNLI validation split when using LoRA trained on XNLI
with original subword tokenisation and embeddings. ∆Acc. (%) represents
the absolute change in accuracy between word-level tokenisation with HN
embeddings (3) and the baseline (1) which uses original tokenisation and
embeddings. ∆Length. (%) represents the average decrease in token sequence
length of the word-level tokenisation over the original tokenisation. FVT
denotes the embeddings obtained using Fast Vocabulary Transfer (§2.4).
Boldface indicates the best result for a language. 42

5.2 F1-score on UNER when using LoRA adapter trained on UNER with original
subword tokenisation and embeddings. The results reported are on the
validation split for ewt and bosque datasets, and test split for pud due
to the availability. 42

5.3 Performance on XNLI/UNER at word-level using adapter trained on XNLI/UNER
with dynamic tokenisation and a pre-determined sequence reduction. Bold-
face indicates the best results, while the top results with sampled tokenisers
for XNLI and UNER are underlined. The rows in grey represent the baselines
obtained with the adapter trained on XNLI/UNER with original tokenisation
and embeddings. 45

List of tables xii

5.4 Performance on XNLI/UNER at word-level using adapter trained on XNLI/UNER
with dynamic tokenisation and tokenisers sampled from P . The rows in grey
represent the baselines obtained with the adapter trained on XNLI/UNER
with original tokenisation and embeddings. 48

5.5 Tokenisation adapters trained on MADLAD-400. Accuracy is computed on
word-level for each tokenisation method. 51

5.6 Results obtained when merging the task adapter with a tokenisation adapter.
The rows in grey represent the baselines obtained with the adapter trained on
XNLI/UNER with original tokenisation and embeddings. 51

5.7 Performance of MISTRAL-7B on the MMLU task under different settings.
∆Length. (%) represents the average decrease in token sequence length over
the original tokenisation. 52

5.8 Performance of MISTRAL-7B-INSTRUCT on MT-Bench under different
settings. 54

5.9 Performance comparison between Faiss and ScaNN indices across different
configurations. 56

B.1 Summary of random seeds used across different experiments. 68
B.2 Configuration details for the Faiss index. 68
B.3 Configuration details for the ScaNN index. 68
B.4 Summary of hyperparameters for LoRA training. 69

Nomenclature

Acronyms / Abbreviations

ANN Approximate Nearest Neighbours

BPE Byte-Pair-Encoding

EM Expectation-Maximisation

FVT Fast Vocabulary Transfer

HN Hypernetwork

LP Longest-Prefix Tokenisation

LoRA Low-Rank Adaptation

MMLU Massive Multitask Language Understanding

MT-Bench Multi-Turn Benchmark

NER Named Entity Recognition

OOV Out-of-vocabulary

UNER Universal Named Entity Recognition

XNLI Cross-lingual Natural Language Inference

Symbols

D Dataset

Dbatch Batch in a dataset

dmodel Dimension of a model

Nomenclature xiv

Eϕ Embeddings function

ϕ Embeddings matrix

T Tokenisation function

V Vocabulary

Chapter 1

Introduction

Large Language Models (LLMs) are the backbone of modern Natural Language Processing
(NLP) applications, enabling advanced language understanding and generation (Zubiaga,
2024). However, their effectiveness heavily relies on their tokenisers, which are responsible
for tokenising the input text (Minaee et al., 2024; Minixhofer et al., 2024). This is a
fundamental step in NLP, and involves breaking raw text into smaller units called tokens,
which are part of the tokeniser’s vocabulary. Since machines can only work with numerical
data, tokens are converted into numerical IDs, which are then used to obtain embeddings
— fixed-size vectors that serve as the model’s representation of a token. These embeddings
capture the semantic properties of the tokens, enabling machine learning (ML) models to
understand and process textual data effectively. This process, from raw text to embeddings,
is outlined in Figure 1.1.

Traditional approaches focussed on character-level, byte-level, subword and word to-
kenisation. Character- (Boukkouri et al., 2020; Tay et al., 2021; Clark et al., 2022) and
byte-level (Xue et al., 2022; Yu et al., 2024) methods have several benefits, such as a small
vocabulary (i.e., the set of individual characters or bytes), an increased robustness to noise
and capability of handling rare words, which is especially useful for low-resource languages
(Xie et al., 2018). Despite these advantages, they suffer from reduced processing speed (i.e.,
throughput) due to the increased length of sequences or the requirement for sequences to
learn how to be effectively pooled (Nawrot et al., 2022; Lee et al., 2017). This impacts
especially the training phase (Clark et al., 2022), where large amounts of data need to be
processed.

On the other hand, word tokenisation methods offer faster processing speeds due to
shorter sequences, but they struggle with out-of-vocabulary (OOV) words (e.g., rare or new
words) and morphological variations. These OOV words are typically replaced with a generic

2

Algorithms solve problems

rit hm s _solve _problems

Tokenisation

109847 2783 18337 7 86869 44402

_AlgoTokens

IDs

Embeddings

[0.13,
-0.36,

..
0.25]

[0.33,
0.15,

..
0.19]

[0.34,
0.13,

..
0.3]

[0.12,
0.11,

..
0.25]

[0.2,
0.06,

..
0.0001]

[0.3,
-0.11,

..
0.24]

Input text

Fig. 1.1 Illustration of how text is tokenised and converted into embeddings using XLM-
ROBERTA. Each embedding has a size of 768. An underscore (_) precedes tokens that
originally had a space before them, following the tokenisation convention used by this model.
By default, a space is added at the beginning of the sentence.

<UNK> token. Additionally, these methods require large vocabularies to cover the variety of
words in a language which can be inefficient.

Given the limitations of character-level and word-level tokenisation, a commonly used
alternative is subword tokenisation. This approach strikes a balance between the two
by breaking down text into smaller, more manageable units, such as pieces of word or
entire words. The goal is to keep common words as they are while breaking down rare
words into smaller, frequently occurring subwords. Techniques like Byte-Pair Encoding
(BPE), as described by Sennrich et al. (2015), and WordPiece, developed by Schuster and
Nakajima (2012), effectively handle OOV words by breaking them into known subword
units, while also maintaining manageable vocabulary sizes and sequence lengths. Figure 1.2
presents an example to illustrate the difference between these three methods, highlighting
the contrast in vocabulary size and token sequence length. Although this technique proves
effective in representing arbitrary sequences of text (Mielke et al., 2021), it presents several
challenges, including difficulty in handling sequences of numbers (Golkar et al., 2023),
spelling errors (Sun et al., 2020; Xue et al., 2022), and susceptibility to certain types of
textual manipulations (Eger and Benz, 2020; Rust et al., 2022).

The challenges of this rigid tokenisation are further exacerbated in multilingual contexts,
where scarce data in certain languages leads to over-segmentation, limiting cross-lingual
transfer (Wang et al., 2021). This induces unfair treatment for certain languages, increasing

3

the inference costs of the language models (LMs) and reducing their performance (Ahia et al.,
2023). Additionally, byte-level tokenisers also show a bias towards Latin scripts, disadvan-
taging non-Latin script languages (Mielke et al., 2021; Petrov et al., 2024). Combined with
the fact that multilingual tokenisers do not perform as well as monolingual ones (Rust et al.,
2020), these issues underscore the need for a more flexible or dynamic tokenisation, that
adapts token boundaries based on the input text, offering a fairer approach across languages.

Character-level tokenisation

A l g o r

i t h m s

_ s o l v

e _ p r o

b l e m s

rit hm s

_solve _problems

_Algo

Subword tokenisation Word tokenisation

_solve _problems_Algorithms

Tokens

(b)

Algorithms solve problems

(c)(a)

Vocabulary size

Tokens sequence length

Input text

Fig. 1.2 Comparison between existing tokenisations.

Furthermore, all these methods are static, meaning they rely on a predefined, fixed
vocabulary that does not adapt to new data once the model is trained. This static nature can
limit the model’s adaptability to new words or evolving language use, requiring periodic and
expensive retraining to update the vocabulary and the embeddings. Considering that LMs
typically rely on static subword tokenisation and given these limitations, our work explores
the potential of retrofitting LMs with dynamic tokenisation through the use of hypernetworks.
Specifically, this approach allows the token boundaries to adapt based on the input text, in
LMs pre-trained with subword tokenisation.

To achieve this objective, we build upon the work of Minixhofer et al. (2024), which
addresses a critical limitation in contemporary LMs: the inability to change the tokeniser after
training, which can limit their efficiency and effectiveness, especially in multilingual settings
or specialised domains like programming. Hence, in their work, they focus on transferring an
LM to an arbitrary, but fixed, tokeniser via zero-shot prediction of the embedding parameters.
For instance, transferring the XLM-ROBERTA LM to the GPT-2 tokeniser, while preserving

4

the performance on the downstream tasks. To achieve this, a hypernetwork (HN) — a type of
network that generates the parameters for another network (Ha et al., 2016) — is trained on a
diverse set of tokenisers to predict the embedding for every token of the new tokeniser. See
§2.5 for more details regarding the HN training and architecture.

Unlike Minixhofer et al.’s (2024) approach, which uses an HN to predict the embeddings
for the tokens in the arbitrary, but fixed, target tokeniser, our method repurposes the pre-
trained HN to predict the embeddings of the tokens obtained by applying our dynamic
tokenisation. Additionally, while their approach is limited to a static, fixed vocabulary after
transfer, we are adapting our vocabulary to new tokens as they appear in the input text. The
key benefit of using an HN is that it requires training only once for a given model, enabling it
to predict embeddings for any new token afterwards. Without HNs, implementing dynamic
tokenisation would require expensive and impractical retraining of the model’s embedding
parameters, making real-time adaptation unfeasible. Thus, in our work, the first step is to
(1) decide on a tokenisation (i.e., a way to break the text into tokens), and then (2) using the
same pre-trained hypernetwork from Minixhofer et al. (2024), embed the tokens under the
current tokenisation technique. The process workflow is highlighted in Figure 1.3.

Input Text

Dynamic Tokenisation

Hypernetwork

Language Model

Output

T1 T2 TnT3

E1 E2 EnE3
Token

Embeddings

Our work

Tokens

Minixhofer et al.'s (2024)
 work

Fig. 1.3 A high-level workflow of our work on retrofitting LMs with dynamic tokenisation,
building upon the work of Minixhofer et al. (2024).

The significance of this research lies in several key benefits:

• It has the potential to increase throughput by decreasing the tokenised sequences
length. This is particularly important because the memory and time complexity of
attention layers grow quadratically with respect to sequence length (Vaswani et al.,
2017).

1.1 Contributions 5

• It offers a more equitable approach across languages, particularly benefiting low-
resource languages by alleviating the issue of over-segmentation and potentially im-
proving performance;

• It enables the transition from the fixed-size vocabulary of static subword tokenisers to
effectively unbounded vocabularies, enhancing the model’s adaptability to new or
rare words and evolving language use;

1.1 Contributions

A summary of the most important novel contributions is presented below:

• We developed two methods for retrofitting LMs with dynamic tokenisation: a batch-
level method for encoders, and a sample-level technique for decoders (Chapter 3);

• We carefully evaluated these methods and showed that our dynamic tokenisation
techniques significantly reduce token sequences with minimal performance degradation,
depending on the setting, thus improving inference speed and leading to a fairer
representation across languages;

• We demonstrated the effective use of the hypernetwork from Minixhofer et al. (2024)
to manage large-scale vocabularies (one million tokens) with an approximate nearest
neighbour index in decoder models, overcoming the typical parameter overhead by
dynamically retrieving embeddings (Chapter 5).

1.2 Thesis Outline

The thesis is organised as follows:

• Chapter 2 presents the background and related work;

• Chapter 3 introduces the methodology used in this study;

• Chapter 4 details the experimental setup;

• Chapter 5 presents and discusses the results;

• Finally, Chapter 6 outlines the conclusions, impacts, limitations, and future work.

Chapter 2

Background and Related Work

This chapter lays the theoretical foundation required for the discussions and experiments that
follow in this thesis. It begins by exploring different subword tokenisation algorithms (§2.1),
followed by a discussion on language models (LMs) (§2.2). The chapter then highlights
the benefits of using adapters with contemporary LMs. Subsequent sections include a
discussion on multilingual models and tokenisers (§2.3), followed by a review of techniques
for embedding initialisation (§2.4) and prediction, with a specific focus on the hypernetwork
(HN) approach proposed by Minixhofer et al. (2024) (§2.5). The chapter concludes with a
related work (§2.6), summary and problem formulation for dynamic tokenisation, setting the
stage for the subsequent chapters (§2.7).

2.1 Tokenisers

As discussed in Chapter 1, word tokenisers struggle with out-of-vocabulary (OOV) words and
character or byte-level tokenisers produce long sequences, among other issues. Recent devel-
opments like MegaByte (Yu et al., 2024), Canine (Clark et al., 2022), and SpaceByte (Slagle,
2024) aim to eliminate subword tokenisation by using bytes or characters. However, they still
rely on some form of tokenisation, inheriting the associated limitations. Challenges include
the need for sequence pooling (Nawrot et al., 2022), reliance on specific linguistic features,
and difficulties with languages without space delimiters such as Chinese. This can also
introduce biases, especially in low-resource languages where characters may span multiple
bytes, leading to longer processing times, decreased performance, and higher computational
costs (Ahia et al., 2023).

Subword tokenisers, on the other hand, strike a balance between character-level (or byte)
and word-level tokenisers, while introducing their own set of limitations. These include
over-segmentation of rare or misspelled words or a bias towards Latin scripts. Despite

2.1 Tokenisers 7

these drawbacks, subword tokenisers are, at the moment of writing, the most widely used.
Therefore, they will form the focus of the remainder of this section.

Let V denote a vocabulary, and T denote a tokenisation function. A tokeniser can
then be defined by a tuple consisting of these two components, (V ,T).1 The vocabulary
V contains the set of tokens, while the tokenisation function T is used to segment the
input text into smaller units, which are part of V . Importantly, for a given V , there are
multiple ways to encode the same input text into a sequence of tokens (Hofmann et al., 2022),
with T determining the specific encoding method. These two components, V and T , are
usually integral to any tokenisation algorithm, with recent work advocating to decouple them,
allowing any tokenisation function to be applied to any given vocabulary (Uzan et al., 2024).

2.1.1 Normalisation and Pre-tokenisation

Before tokenising a text, an optional pre-processing step takes place, which involves two
stages:

• Normalisation: Text is cleaned up by removing unnecessary whitespace, lowercasing
characters, removing accents, or applying Unicode normalisation steps;2

• Pre-tokenisation: This involves dividing the text into preliminary units, often based
on whitespace and punctuation, using a regular expression (i.e., regex). A widely
used pre-tokeniser is available in the pre-tokenizers module of the Hugging Face’s
tokenizers package,3 as well as the Moses pre-tokeniser, formerly known as a
tokeniser (Koehn et al., 2007).

The resulting pre-tokens serve as the initial units that the tokenisation function T will
further process. To formalise this, we define T (w) := (t1, t2, . . . , tn) as a tokenisation of the
word (i.e., pre-token) w into n subword tokens such that ∀i, ti ∈ V , and the concatenation of
t1, t2, . . . , tn reconstructs w. After tokenisation, the model maps the sequence of (discrete)
tokens t1, . . . , tn to their corresponding embeddings — continuous representation — through
an embedding function Eϕ : V → Rdmodel .4 These embeddings capture semantic properties of
the tokens and enable ML models to process the data effectively. They are parameterised
by a matrix ϕ, used as a lookup table assigning a distinct dmodel-dimensional vector —

1For consistency reasons, we adopt the same notation used by Minixhofer et al. (2024).
2unicode.org/reports/tr15/
3github.com/huggingface/tokenizers/tree/main
4For simplicity, the step of converting tokens to their numerical IDs, as illustrated in Figure 1.1, is omitted

here.

https://unicode.org/reports/tr15
https://github.com/huggingface/tokenizers/tree/main

2.1 Tokenisers 8

representing a row of the matrix — to every element in V . The resulting matrix has a size of
|V|×dmodel.

Having defined tokenisers and their main components, we will now explore different
tokenisation algorithms such as Byte-Pair-Encoding (BPE), WordPiece and UnigramLM.

2.1.2 Byte-Pair-Encoding

Initially introduced as a compression algorithm (Gage, 1994), Byte-Pair-Encoding (BPE)
was later adapted for subword tokenisation by Sennrich et al. (2015) in the context of
neural machine translation. BPE can operate on character-level, but replaces unrecognised
characters (e.g., some emojis) with the <UNK> token, and byte-level, which uses a 256-byte
vocabulary to represent any character, however, producing longer token sequences.

Training

The algorithm starts with a base vocabulary of individual characters or bytes and learns merge
rules by iteratively creating new tokens from the most frequent pair of existing tokens until
a desired vocabulary size is reached, as detailed in Algorithm 1. Additionally, the learned
merge rules,M, are stored in the order they are created.

Algorithm 1 Byte-Pair-Encoding Training Algorithm
1: Input: Corpus of text corpus and desired vocabulary size targetVocabSize
2: Output: Vocabulary V and merge rulesM

3: procedure TRAINBPE(corpus, targetVocabSize)
4: Initialise vocabulary, V , with all unique characters in the corpus
5: InitialiseM← {} ▷ Used to store the merge rules
6: Split corpus into words (i.e., pre-tokens) and then into characters or bytes
7: Compute frequency of each word in the corpus
8: while |V| < targetVocabSize do ▷ Iteratively learn merge rules until the desired vocabulary

size is reached
9: pairFreqs← ComputePairFrequencies(corpus)

10: bestPair← GetMostFrequentPair(pairFreqs) ▷ E.g., bestPair← (‘th’, ‘is’)
11: M←M∪ {GetMergeRule(bestPair)} ▷ E.g.,M←M∪ {(‘th’, ‘is’)}
12: V ← V ∪ {GetMergedPair(bestPair)} ▷ E.g., V ← V ∪ {‘this’}
13: Apply bestPair merge rule to corpus
14: end while
15: return V ,M
16: end procedure

2.1 Tokenisers 9

Tokenisation

To tokenise a text, we first normalise and pre-tokenise it, followed by splitting it into
characters or bytes. We then apply all the learned merge rules inM, in the same order as
they were learned, to obtain the corresponding tokens, which are part of V , as detailed in
Algorithm 2. The BPE tokenisation process is therefore parametrised by the learned merge
table.

Algorithm 2 Byte-Pair-Encoding Tokenisation Algorithm
1: Input: Text text to be tokenised and merge rulesM
2: Output: List of tokens from V

3: procedure TOKENISEBPE(text,M)
4: Initialise tokens← {} ▷ List that will hold the final sequence of tokens
5: Split text into words (i.e., pre-tokens)
6: for each word in words do
7: Split each word into characters or bytes
8: for mergeRule inM do
9: if mergeRule exists in the split of the word then

10: Apply mergeRule to the split of the word
11: end if
12: end for
13: Append processed word to tokens after applying all merge rules inM
14: end for
15: return List of tokens ▷ Final list of tokens reflecting the structure of vocabulary V
16: end procedure

2.1.3 WordPiece

Another popular subword tokeniser is WordPiece, proposed by (Schuster and Nakajima,
2012) for Korean and Japanese text, and also used by models like BERT (Devlin et al., 2018).

Training

The training algorithm of WordPiece is similar to that of BPE, with two main differences:

1. The initial vocabulary consists of all the first characters of each word (i.e., pre-token),
while the characters inside a word are prefixed with a symbol or character such as ‘##’
used by BERT. For instance, the word solve is split into s ##o ##l ##v ##e;

2.1 Tokenisers 10

2. In each iteration, a merge rule is learned. However, instead of choosing the most
frequent pair, WordPiece selects the pair with the highest score according to Equa-
tion 2.1.

score(p1,p2) = Freq(p1,p2)
Freq(p1)×Freq(p2) , (2.1)

where
Freq(p) = frequency of pair p in corpus

Tokenisation

Unlike BPE, which saves both the vocabulary, V , and the merge rules,M, after training,
for use in tokenisation, WordPiece saves only the vocabulary V . During tokenisation,
WordPiece follows a per-word left-to-right longest-match-first strategy (Song et al., 2021).
Specifically it selects the longest possible token in V that is a prefix of the text. This process
is repeated to tokenise any remaining parts of the text. The tokenisation process is detailed
in Algorithm 3. Unlike BPE, WordPiece’s tokenisation is not parameterised, meaning it does
not rely on any learned parameters such as a merge table. Instead, it can be applied to any
predefined vocabulary.

Algorithm 3 WordPiece Tokenisation Function
1: Input: A word w and vocabulary V
2: Output: A list of tokens from the vocabulary V

3: procedure TOKENISEWORDPIECE(w , V)
4: Initialise tokens←{} ▷ Start with an empty list of tokens
5: while w is not empty do ▷ Continue until all characters are processed
6: Find the longest prefix of w that is in V
7: Add the longest prefix to tokens
8: Remove the prefix from w
9: if w is not empty then

10: Prepend “##” to w ▷ Mark the continuation of the word
11: end if
12: end while
13: return tokens ▷ Return the list of tokens
14: end procedure

2.1.4 UnigramLM

Another commonly used tokenisation algorithm is UnigramLM, introduced by Kudo (2018),
which uses a probabilistic approach.

2.1 Tokenisers 11

Training

As opposed to the other two algorithms, UnigramLM starts with a large vocabulary V
including all unique characters and the most frequent substrings in the corpus. Alternatively,
BPE can be run with a sufficiently large number of merges to obtain the initial V . The
model makes an independence assumption between subwords — hence the name — and the
probability of a subword sequence x = (t1, . . . , tn) is given by the individual probabilities:

P (x) =
n∏

i=1
p(ti), ∀i, ti ∈ V ,

∑
t∈V

p(t) = 1 (2.2)

The algorithm uses the Expectation-Maximisation (EM) to optimise the probability
of each subword, p(t). During each iteration, the EM algorithm maximises the marginal
likelihood of the observed data:

L=
|D|∑
s=1

log
(
P
(
X(s)

))
=

|D|∑
s=1

log

 ∑
x∈C

X(s)

P (x)

 (2.3)

where P (x) is the probability of a subword sequence x and CX(s) is the set of all possible
decompositions of X(s) in V . The vocabulary is then reduced by iteratively removing
subwords that minimally impact the overall likelihood until the desired vocabulary size is
achieved. This process is summarised in Algorithm 4.

Algorithm 4 UnigramLM Training Algorithm
1: Input: Corpus of text corpus and desired vocabulary size targetVocabSize
2: Output: Vocabulary V and subword probabilities p(t)

3: procedure TRAINUNIGRAMLM(corpus, targetVocabSize)
4: Initialise seed vocabulary V with all unique characters and most frequent substrings in corpus
5: Initialise subword probabilities p(x) for each subword x in V
6: while |V| > targetVocabSize do ▷ Iteratively reduce vocabulary size
7: Use EM algorithm to optimise p(t) given the current V
8: Compute lossi for each subword ti ▷ Loss indicates the likelihood reduction when ti is

removed
9: Sort subwords by lossi

10: Retain top η% of subwords ▷ Keep essential subwords, e.g., η = 80
11: Ensure that all single-character subwords are retained to avoid OOV issues
12: end while
13: return V , p(t) ▷ Returns a vocabulary V and probabilities for all tokens in V
14: end procedure

2.2 Language Models 12

Tokenisation

After training, we obtain a vocabulary V and p(t),∀t ∈ V , allowing us to tokenise a sentence
s using UnigramLM parametrisation as follows:

T (s) :=argmax
C∈Cs

(log(P (C)))

=argmax
C∈Cs

log
∏

t∈C

p(t)

=argmax
C∈Cs

∑
t∈C

log (p(t))

(2.4)

where Cs represents all possible decompositions of s in V . However, for efficiency, the
Viterbi algorithm (Viterbi, 1967) is used to find the most likely sequence of subwords.
Therefore, the UnigramLM tokenisation is parameterised by the probabilities learned for
each token t ∈ V .

Summary of Tokenisers

In this section we reviewed three widely used subword tokenisers algorithms: BPE, Word-
Piece and UnigramLM. Since no single tokenisation method is perfect for all applica-
tions (Mielke et al., 2021), it is crucial to understand the similarities and differences between
existing approaches. Table 2.1 provides a concise comparison of these tokenisers.

2.2 Language Models

Language Models are the backbone of modern NLP applications, excelling at tasks involving
the understanding or generation of natural language by learning patterns from large corpora
of text. The previous section on tokenisers (§2.1) sets the stage for understanding how
tokenisation choices impact LMs. Hence, in this section, we explore the fundamentals of
language modelling, followed by an overview of transformer architecture, including encoders
and decoders.

2.2.1 Language Modelling

Language modelling, the task at the core of LMs, involves learning the structure and patterns
within languages by predicting the next word given the previous words in a sequence, serving
as a self-supervised objective. This approach is known as causal language modelling (CLM).

2.2 Language Models 13

Aspect BPE WordPiece UnigramLM

Training Process

Initial vocabulary Small, consisting of indi-
vidual characters or bytes

Small, consisting of indi-
vidual characters, prefix-
ing mid-word characters
with ‘##’

Large, includes all
unique characters and
most frequent substrings

Training Goal Learn merge rules M
and iteratively increase
vocabulary V

Learn merge rules M
and iteratively increase
vocabulary V

Learn subword probabili-
ties and iteratively reduce
vocabulary

Key Difference in
Training

Merges most frequent to-
ken pairs

Merges token pairs based
on a score (Equation 2.1)
which favours pairs that
occur together more of-
ten than would be ex-
pected by chance based
on their individual fre-
quencies

Uses EM algorithm to
maximise likelihood and
reduces vocabulary by re-
moving lowest probabil-
ity tokens

Type of output V ,M V V , p(t),∀t ∈ V

Tokenisation Process

Encoding strategy Applies learned merge
rules to text

Longest-match-first
search for subwords in
vocabulary

Uses Viterbi algorithm to
find the most likely sub-
word sequence

Worst-Case time
complexity for
encoding a word w

O(|w| log(|w|)), where
|w| is the length of the
word. This assumes an
efficient implementation
using priority queue and
linked list.

O(|w|), where |w| is the
length of the word

O(|w| · |V|), where |V| is
the vocabulary size

Parametrisation Merge tableM No parametrisation p(t)∀t ∈ V

Table 2.1 Comparison of BPE, WordPiece, and UnigramLM Tokenisation Algorithms.

In a broader sense, language modelling also includes other self-supervised objectives applied
to text, such as masked language modelling (MLM) and others. In this study, we focus on
CLM and MLM, which are detailed below.

Causal Language Modelling

CLM trains models to predict the next token given previous tokens, useful for text generation
tasks (Radford et al., 2019). The joint probability of a token sequence x = (t1, t2, . . . , tn) is
modelled as:

P (x) = p(t1)
n∏

i=2
p(ti | t1, t2, . . . , ti−1) (2.5)

2.2 Language Models 14

Masked Language Modelling

MLM, unlike CLM, masks tokens and trains the model to predict them using bidirectional
context, suitable for tasks like classification and question answering (Devlin et al., 2018).

2.2.2 Transformers

The development of the transformer architecture represented a significant advancement in
language modelling. It relies on a key component, the attention mechanism, which enables
efficient parallel processing and effectively captures long-term dependencies (Vaswani et al.,
2017). This mechanism allows the model to focus selectively on tokens that are most relevant
for understanding context. Specifically, each token from a sequence x = (t1, t2, . . . , tn) is
mapped to a high-dimensional vector, creating an input matrix X . Before computing the
scaled dot-product, X is projected into queries (Q), keys (K), and values (V) using learnable
matrices. The scaled dot-product attention is then computed as:

Attention(X) = softmax
(

QK⊤
√

dmodel

)
V (2.6)

An advantage of the transformer architecture is its flexibility to be used as an encoder
(left side of Figure 2.1), decoder (right side of Figure 2.1) or encoder-decoder. Given the
emphasis of this thesis on encoders and decoders, a brief overview of these components is
provided next.

Encoders

The encoders in transformer architecture process an entire sequence at once, using embed-
dings as input. These embeddings pass through layers of self-attention and feed-forward
networks, creating a representation that captures contextual information suitable for tasks
like text classification or question answering. Additionally, a common pre-training task for
encoders is Masked Language Modelling (MLM) and models like BERT (Devlin et al.,
2018) use next sentence prediction (NSP) as an additional task.

Decoders

Decoders are commonly used for autoregressive generation tasks such as text generation,
using CLM to generate tokens sequentially. Starting with a special start token (e.g., <s>),
decoders use masked self-attention to focus only on previously generated tokens.

2.2 Language Models 15

Fig. 2.1 Transformer architecture. Figure sourced from Vaswani et al. (2017).

Importantly, the embeddings may or may not be shared between input and output. From
now on, we will denote the entire set of embedding parameters as ϕ, with ϕin representing
the input embeddings and ϕout the output embeddings, if differentiation is necessary.

To generate a token, the softmax function is applied at each iteration to the output of the
dot-product between the final hidden state vector hk from the decoder at time step k and
the transpose of the output embedding matrix Eϕout . This produces a probability distribution
over the vocabulary:

pk = softmax(hk ·E⊤
ϕout) (2.7)

The resulting probability distribution is used to sample the next token (Ippolito et al.,
2019), either by selecting the most likely token or using other strategies like nucleus (Holtz-
man et al., 2019) or top-k sampling (Fan et al., 2018).

Large Language Models

Large Language Models (LLMs) are transformer-based models that have been scaled up
through pre-training on large amounts of text corpora. These models require a large number
of parameters, often ranging from hundreds of millions to billions, in order to learn complex
patterns and structure in natural language.

2.2 Language Models 16

Low-Rank Adaptation

Given the large size of these LLMs, it is expensive to fine-tune them through transfer-learning
for each downstream task. Low-Rank Adaptation (LoRA) offers a computationally efficient
solution by modifying the original model’s weight matrices with low-rank updates (Hu
et al., 2021). By optimising a small set of parameters, LoRA reduces the risk of overfitting,
thus enhancing performance even with limited data, particularly beneficial in the context of
low-resource languages.

Formally, LoRA reparametrises the weight matrix W ∈Rd×k by adding low-rank modifi-
cations:

h = Wx+αBAx (2.8)

where B ∈ Rd×r and A ∈ Rr×k represent low-rank matrices, with r≪ min(d,k) and α

represents the scaling factor.

x

d

Pre-trained
Weights

𝑊 ∈ ℝ𝑑×𝑑
𝐴 = 𝒩(0, 𝜎2)

𝐵 = 0

r

h

Fig. 2.2 LoRA reparametrisation. Only A and B are trained. Figure reproduced from Hu
et al. (2021).

A benefit of LoRA is its capacity to merge adapters, useful for multi-task and transfer
learning. Different methods exist for merging: Linear/Task Arithmetic (Ilharco et al.,
2022) merges adapters with equal ranks using weighted sums; Concatenation (Xu et al.,
2024; Kong et al., 2024) allows adapters of different ranks to be combined by stacking their
matrices; or TIES (Yadav et al., 2023) merges adapters by pruning and aligning weights
based on majority sign masks.

Importantly, LoRA is just one instance from the parameter-efficient fine-tuning (PEFT)
techniques, with others such as prefix tuning and bottleneck adapters also being widely
recognised (c.f. Pfeiffer et al., 2023).

2.3 Multilingual Models and Tokenisers 17

2.3 Multilingual Models and Tokenisers

Having presented the details of tokenisation and language models, it is important to address
their application and development in a multilingual context. Models such as MBERT — a
multilingual version of BERT pre-trained on 104 languages (Devlin et al., 2018), XLM-
ROBERTA (Conneau et al., 2020) — pre-trained on 100 languages — or BLOOM —
pre-trained on 46 natural languages and 13 programming ones, are trained to learn universal
representations across languages. They often use byte-level tokenisers, which not only enable
them to handle any language, regardless of the script, but also facilitate knowledge transfer
between languages (Yuan et al., 2023).

The performance of these multilingual models heavily depends on their tokeniser, and it
is known that these models suffer from “curse of multilinguality,” where beyond a certain
number of languages, performance decreases on both monolingual and cross-lingual tasks.
A major concern is the large vocabulary size required to support multiple languages. For
example, XLM-ROBERTA and MBERT use vocabularies of≈ 250,000 tokens to cover 100+
languages, averaging ≈ 2500 unique tokens per language. These large vocabularies require a
significant allocation of model parameters to embedding layers: between 47% (base model)
and 71% (large) for XLM-ROBERTA, and 52% for MBERT (Chung et al., 2020). In
contrast, their monolingual counterparts allocate 14−31% for ROBERTA, and 9−21% for
BERT, depending on the model size (i.e., base or large). Another model, XLM-V, uses a
1M vocabulary that, despite improving performance, takes 93% of the model’s parameters
and poses challenges with softmax computation and memory requirements (Liang et al.,
2023).

This setup raises questions not only about the efficiency of multilingual models, but also
their ability to represent all languages equitably. Additionally, research indicates that mono-
lingual tokenisers outperform their multilingual counterparts (Rust et al., 2020). However,
transferring to a monolingual tokeniser introduces challenges in generating embeddings for
new tokens in Vnew. While it is possible to train these embeddings from scratch, this approach
can be expensive. An alternative is to initialise new token embeddings through heuristic
methods and refine them via continued training (§2.4), or employ advanced techniques that
predict embeddings without the need to necessarily continue training (§2.5). The following
sections will explore some of these techniques.

2.4 Embedding Initialisation 18

2.4 Embedding Initialisation

To transfer an LM to a new tokeniser, different embedding initialisation techniques exist.
Let us denote the source tokeniser as (Va,Ta) with embedding parameters ϕa, and the target
tokeniser as (Vb,Tb) with embeddings ϕb. One such approach, Fast Vocabulary Transfer
(FVT), initialises each new token tnew for all tnew ∈ (Vb \Va) based on the embeddings of
tokens from the source tokeniser that tnew decomposes into under Ta (Gee et al., 2024):

Eϕb
(tnew) = 1

|Ta(tnew)|
∑

t∈Ta(tnew)
Eϕa(t) (2.9)

Other approaches (Minixhofer et al., 2022; Liu et al., 2024; Tran, 2020) require auxiliary
embeddings, Eϕaux : Vaux → Rdaux , where Vaux significantly overlaps with Va and Vb, i.e.,
|Vaux ∩Va| ̸≪ |Va| and |Vaux ∩Vb| ̸≪ |Vb|. Using Eϕaux , tokens from both Va and Vb are
embedded into a unified semantic space. Embeddings for the target vocabulary ϕb are then
initialised as a weighted average of the source embeddings ϕa, where the weights are assigned
based on tokens’ similarity in the auxiliary embedding space Eϕaux .

A similar method, FOCUS (Dobler and De Melo, 2023), uses an auxiliary embedding
space, Eϕaux — with the requirement that |Vaux∩Vb| ̸≪ |Vb|— to initialise the embeddings
of new tokens tnew ∈ Vb \Va. This is done by computing a weighted combination of the
embeddings of overlapping tokens from Va∩Vb:

Eϕb
(tnew) =

∑
t∈(Va∩Vb)

w(t, tnew) ·Eϕa(t) (2.10)

where w(t, tnew) are weights computed based on the similarity of tokens in the auxiliary
embedding space Eϕaux , using cosine similarity and sparsemax (Martins and Astudillo,
2016). Additionally, FOCUS and FVT directly copy the embeddings for overlapping to-
kens, Eϕb

(t) = Eϕa(t) for all t ∈ Va∩Vb. However, recent studies show that copying the
overlapping tokens’ embeddings is not necessarily the optimal initialisation in the new
tokeniser (Minixhofer et al., 2024).

2.5 Embedding Prediction Using Hypernetworks

Instead of relying on heuristics, more advanced methods use neural networks to predict or
generate the weights for the (new) token embeddings. This shift from heuristic initialisation
to generative models allows for flexible adaptation to new tokenisers, as it uses learned
patterns and relationships across the entire vocabulary. Previous work employed neural

2.6 Dynamic Tokenisation Related Work 19

networks to predict the embeddings of rare (Schick and Schütze, 2019) or OOV (Pinter et al.,
2017) words in traditional word models, an approach later adapted by Schick and Schutze
(2020) for BERT models.

A hypernetwork is a specialised neural network that generates the weights (i.e., param-
eters) for another network (Ha et al., 2016). This concept underpins the previous works,
thus, we can view them as embedding prediction hypernetworks. However, the HN proposed
by Minixhofer et al. (2024), which is relevant to this thesis, offers a significant advance-
ment. Unlike previous methods that were limited to extending existing tokenisers, this
HN allows for the transfer of an LM to any arbitrary, but fixed tokeniser. Additionally, it
is objective-agnostic, meaning it can be applied to encoder, decoder, or encoder-decoder
models.

This HN is trained by sampling a diverse set of UnigramLM tokenisers, enhancing its
ability to generalise well to other tokenisers. The primary objective during training is to find
the optimal parameters θ for the hypernetwork H , allowing Hθ to map a given tokeniser
(Vb,Tb) to corresponding embeddings parameters ϕb for a given pre-trained LM (c.f. §3.1
from Minixhofer et al., (2024), for more details about HN training). Figure 2.3 illustrates the
information flow during this training process.

LMψtext x
Tokenizer
(𝒱b, Tb)

Hypernetwork

Hθ

logits
Input Embedding

Eϕb

Output Embedding
Eϕb

Fig. 2.3 Hypernetwork predicts input Eϕbin
and output Eϕbout

embeddings based on the target
tokeniser (Vb,Tb). Figure sourced from Minixhofer et al. (2024).

Additionally, for each sampled tokeniser, tokens t from Vb are decomposed using the
source tokenisation function Ta. The resulting embeddings, Eϕa (Ta (t)), are fed to the Hyper-
network Language Model (HLM) (c.f. §3.2 from Minixhofer et al., (2024), for more details
about HLM architecture). The HLM’s role is to learn how to compose these embeddings into
one, Eϕb(t). The process is illustrated in Figure 2.4. The trained hypernetwork H can then be
used to generate embeddings for any new token t.

2.6 Dynamic Tokenisation Related Work

Previous adjacent works on both encoder and decoder LMs focussed on adapting tokenisers to
specific domains or languages by expanding the vocabulary to include relevant tokens (Sachi-
dananda et al., 2021; Balachandran, 2023; Cui et al., 2023; Fujii et al., 2024). New token

2.6 Dynamic Tokenisation Related Work 20

▁the

▁flowerbeds

Token n

Vocabulary

𝒱b

▁among
…

(▁the)Eϕa

(▁flower)Eϕa
(bed)Eϕa

(s)Eϕa

(▁a)Eϕa
(mong)Eϕa

(…)Eϕa

<pad>

<pad> HLMθ (▁the)Eϕb

(▁flowerbeds)Eϕb

(▁among)Eϕb

(…)Eϕb

… … …

(i) decompose with original tokenizer

(ii) embed with original embeddings

Ta
Eϕa

compose into new embeddings

Hypernetwork

Hθ

HLMθ

HLMθ

HLMθ

Predicted

Embeddings

ϕb
Tokenization

Function

Tb

(…)Eϕa
(…)Eϕa

<pad>

Fig. 2.4 Hypernetwork architecture consisting of an HLM which learns to compose em-
beddings for each t ∈ Vb (target tokeniser) under the original tokenisation Ta into a new
embedding, Eϕb

(t), amortising over the target tokenisation function Tb. Figure sourced
from Minixhofer et al. (2024).

embeddings are typically obtained via heuristics (Sachidananda et al., 2021), but they often re-
quire additional fine-tuning to achieve optimal performance. As the vocabulary size increases,
the embedding matrix grows, sometimes accounting for up to 93% of the model’s parame-
ters (Liang et al., 2023), limiting the number of new tokens that can be effectively added.
While this approach makes tokenisation more adaptable, the need to fine-tune embeddings
for each domain or language highlights the requirement for a more dynamic solution.

In contrast, the Copy-Generator (CoG) method by Lan et al. (2023), redefines text
generation by copying and pasting text segments (i.e., phrases or words) from an existing
large text collection, conditioned on the phrases generated previously. These phrases can
be considered as the “vocabulary” for generation, enabling the model to generate multiple
tokens at once, instead of relying only on a predefined set of tokens. Moreover, CoG offers
training-free adaptation to new knowledge sources or domain-specific text collections. The
only requirement for CoG is the offline training of an index, which can include up to a few
billion encoded phrases, and a phrase encoder based on a multi-layer perceptron. Another
approach similar to CoG is Nearest Neighbor Speculative Decoding or NEST (Li et al.,
2024). It selects spans based on a confidence score derived from the retrieval process, and
then uses speculative decoding to decide whether to accept the entire span or only parts of
it, enabling multiple tokens prediction. However, NEST often generates factual errors due
to its reliance on the quality of passage and token retrieval, and it struggles with in-context
examples. Similarly, CoG faces limitations in generation diversity and maintains similar
latency to Transformers, as finding phrases is computationally expensive with such a large
index.

2.7 Summary 21

Unlike these methods, which consider multi-token generation, our approach focuses only
on the next token generation, as the HN is pre-trained specifically to generate embeddings
for tokens rather than entire sentences.

2.7 Summary

Previous sections provided an overview of different subword tokenisation algorithms such
as BPE, WordPiece or UnigramLM, and their integration into LMs in both monolingual
and multilingual contexts. This highlighted a limitation stemming from LMs’ use of static
vocabularies and tokenisation functions. In monolingual models, these static elements
often lead to a lack of adaptability to evolving language use or domain-specific texts. In
multilingual settings, the challenges are exacerbated, as the requirement to handle many
languages results in inefficient parameters allocation. Static vocabularies in such contexts
struggle to offer fair linguistic coverage, often favouring high-resource languages. This not
only reduces the model’s effectiveness across diverse languages, but also induces unfair
treatment for low-resource ones. These issues underscore the need for a more flexible
tokenisation that can update the vocabulary and tokenisation function in real-time, ensuring a
fairer language representation and enhancing the adaptability of language models in diverse
linguistic environments.

Problem Formulation

Dynamic tokenisation can be defined as the process where the vocabulary V and tokenisation
function T are continuously updated or adapted based on the input text’s characteristics. This
contrasts with static tokenisation, where V and T remain unchanged post-training. Dynamic
tokenisation allows real-time updates to V and T , during inference or fine-tuning, to better
adapt to different languages or domain-specific terms.

More formally, let the initial tokeniser be (Vinit,Tinit). As the LM operates with new
text data D, the tokenisation function Tinit is updated to Tnew, which aims to provide a more
compact representation for data D. The update process can be represented by the function U :

Tnew(D) = U(Tinit(D)) (2.11)

The following chapter provides details regarding our methodology for dynamic tokenisation.

Chapter 3

Methodology

This chapter presents the methodology we used for retrofitting language models (LMs) with
dynamic tokenisation. It is organised into two main sections: the first describes the methodol-
ogy for encoder LMs (§3.1), and the second covers decoder models (§3.2). The architectural
differences between encoders and decoders (§2.2.2) guided the separate methodologies:
encoders are typically used for text understanding, and decoders for text generation, allowing
us to apply dynamic tokenisation at various levels within the system’s architecture.

3.1 Dynamic Tokenisation with Encoders LMs

As discussed in the previous chapters, dynamic tokenisation changes the traditional static
encoding process by adaptively adjusting token boundaries based on the input text (see
Figure 1.3). To retrofit or adapt an LM pre-trained with subword tokenisation to dynamic
tokenisation, we need to perform two steps: (1) decide on a tokenisation; and (2) obtain the
token embeddings.

3.1.1 Decide on a Dynamic Tokenisation

Let D represent the input data to be tokenised. For the first step, we introduce the update
function U , which dynamically maps the tokens obtained under the initial tokenisation
scheme, Tinit, to tokens derived from a new tokenisation function, Tnew. This aims to reduce
over-segmentation of the subwords, thus resulting in a more compact representation for D,
where |Tinit (D) |> |Tnew (D) |.

Given that during fine-tuning or inference phases, the LM operates at the batch-level, U
is specifically applied at this level on Dbatch. This approach is important as it allows U to
dynamically adapt the tokenisation to the unique linguistic features in each batch. The goal

3.1 Dynamic Tokenisation with Encoders LMs 23

of U is to provide a tokenisation that reduces over-segmentation for rare or out-of-vocabulary
(OOV) words while being more equitable across different languages.

To achieve this, we define U (Tinit(Dbatch)) in a similar way to the BPE approach. Specif-
ically, we merge tokens in Tinit(Dbatch) using a process comparable to the one used in BPE
training (Algorithm 1). However, unlike the traditional BPE that identifies the best pair of
tokens to merge from a fixed corpus, our method adapts BPE to work dynamically within
each batch. More precisely, for each batch, Dbatch, tokenised under the initial tokenisa-
tion Tinit (Dbatch), we initialise the vocabulary Vnew with all the unique subword tokens
in Tinit (Dbatch) — this is different than traditional BPE which starts with a character- or
byte-level vocabulary. We then perform a predetermined number of merge operations, m, to
iteratively combine the most frequent adjacent tokens within the batch.

We formally define the update function U as:

U : (Tinit (D) ,m)→ Tnew (D) (3.1)

where m represents the number of merge operations to perform.
In our approach, the “training” data that we use for the BPE-inspired merging process,

Tinit (Dbatch), is the same as the data we aim to tokenise, and, by applying each merge sequen-
tially, we are implicitly tokenising the batch data under the new tokenisation, Tnew (Dbatch).
The implication of this is that we can combine both the training and tokenisation algorithms
of the original BPE into a single algorithm. In addition to this, since the new tokenisation is
applied only to this specific batch data Dbatch, and not used for any other texts, we can avoid
storing and computing the new merge rulesMnew as well as the new vocabulary Vnew. This
simplified version of the process is outlined in Algorithm 5.

Algorithm 5 Dynamic Tokenisation Algorithm
1: Input: Tokenised batch data tokenisedBatch under initial tokenisation, Tinit (Dbatch); number of

merges m
2: Output: Tokenised batch data under a new, dynamically learned tokenisation, Tnew (Dbatch),

3: procedure APPLYDYNAMICTOKENISATION(tokenisedBatch, m)
4: for i← 1 to m do ▷ Perform m merge operations based on batch data
5: pairFreqs← ComputePairFrequencies(tokenisedBatch)
6: bestPair← GetMostFrequentPair(pairFreqs) ▷ Identify the most frequent adjacent pair
7: Apply bestPair merge rule to tokenisedBatch ▷ This modifies the batch in place
8: end for
9: return tokenisedBatch ▷ This represents the initial batch data Dbatch under the new

tokenisation, Tnew (Dbatch)
10: end procedure

3.1 Dynamic Tokenisation with Encoders LMs 24

Importantly, in our approach, we start with a tokenisation at subword-level — the tokens
from the initial tokenisation Tinit. This subword-level is our starting point, or the lower-
bound for the new tokenisation, Tnew, obtained when m = 0. On the other hand, we consider
the word-level (or pre-tokens) as the upper-bound for Tnew. In other words, we do not want
to merge two adjacent tokens which are part of different words such as _the and _computer.
Instead, we want to merge subwords like _computer and s into _computers. In these
examples, ‘_’ precedes tokens that represent the beginning of new words, maintaining clear
word boundaries.

Table 3.1 illustrates a more concrete example of how dynamic tokenisation is applied on
a batch of size 4, after one merge (i.e., m = 1).

Sample ID
in Dbatch

Initial Tokenisation (Tinit) After 1 merge (Tnew after m=1)

1 [‘_Under’, ‘tak’, ‘ing’, ‘_task’, ‘s’] [‘_Under’, ‘taking’, ‘_task’, ‘s’]
2 [‘_Breath’, ‘tak’, ‘ing’, ‘_views’] [‘_Breath’, ‘taking’, ‘_views’]
3 [‘_Over’, ‘tak’, ‘ing’, ‘_the’, ‘_car’] [‘_Over’, ‘taking’, ‘_the’, ‘_car’]
4 [‘_Algo’, ‘rit’, ‘hm’, ‘s’, ‘_solve’,

‘_problems’]
[‘_Algo’, ‘rit’, ‘hm’, ‘s’, ‘_solve’,
‘_problems’]

Table 3.1 Batch-level dynamic tokenisation showing initial tokenised text and the result after
applying dynamic tokenisation with one merge (m = 1). The token pair (‘tak’, ‘ing’) is
the most frequent and has been merged. The tokens are obtained using XLM-ROBERTA

tokeniser.

Finally, the choice of using a BPE-inspired merging approach is motivated by our specific
scenario: we want to start with a vocabulary consisting of the subword tokens in the batch
and expand it with new tokens. This rules out UnigramLM due to its requirement for a
large initial vocabulary (§2.1.4), that is subsequently reduced by removing tokens. While
WordPiece is a feasible option, with the only difference being its scoring mechanism (shown
in Equation 2.1), both methods implicitly tokenise the Dbatch, thus removing any concerns
regarding tokenisation time complexity (see Table 2.1). Given that no tokenisation method is
perfect (Mielke et al., 2021), we opted for BPE in this study and suggest exploring WordPiece
as a potential future experiment.

3.1.2 Obtain Token Embeddings

The second step of our approach is to obtain the embeddings for all the tokens in the
batch. These embeddings are required to convert the discrete tokenised text into continuous

3.1 Dynamic Tokenisation with Encoders LMs 25

vector representations, enabling the pre-trained network to perform effective and efficient
computations.

After mapping the tokens from the initial tokenisation to a more compact tokeni-
sation, Tinit (Dbatch) → Tnew (Dbatch), we need to obtain the embeddings for all tokens
t ∈ Tnew (Dbatch). While Minixhofer et al. (2024) showed that the HN can be used to
transfer an LM to a fixed tokeniser, our work repurposes it as a means to achieve dynamic
tokenisation. This adaptation allows the HN to generate the embedding parameters for any
token, regardless of its presence in the Vinit. Although we could use the original embeddings,
Eϕinit , for tokens that remain unchanged during dynamic tokenisation (since they are part
of Vinit), Minixhofer et al. (2024) showed that copying these tokens’ embeddings is not
necessarily the optimal initialisation in the new tokeniser.

Therefore, for each t ∈ Tnew (Dbatch), we apply the hypernetwork Hθ to obtain its embed-
ding:

Eϕnew (t) = Hθ (t) , ∀t ∈ Tnew (Dbatch) (3.2)

where Eϕnew (t) is the embedding for token t.
We can also view this process as transferring the LM to a new tokeniser (Vnew,Tnew)

for each batch, dynamically adjusting token boundaries based on the specific data within
that batch. Figure 3.1 illustrates the information flow for dynamic tokenisation applied to
encoders.

Batch ,

Hypernetwork

Language Model

Dynamic Tokenise
batch

,

Output

Tokenised

Tokenised

Token embeddings

Legend

Tokenisation-related
 process

Tokenisation-related
 output

Model operation

Tokenise batch

Fig. 3.1 Dynamic tokenisation applied to encoder LMs.

The use of the HN from Minixhofer et al. (2024) is motivated by their results, which show
that the performance is approximately preserved without further training the embedding layer.

3.2 Dynamic Tokenisation with Decoders LMs 26

Besides that, the HN can be applied to obtain embeddings for any token, regardless of its
presence in the initial vocabulary Vinit, making it feasible to apply dynamic tokenisation in
real-time. Other methods for initialising token embeddings, such as FOCUS (Dobler and De
Melo, 2023), WECHSEL (Minixhofer et al., 2022), OFA (Liu et al., 2024), RAMEN (Tran,
2020), or FVT (Gee et al., 2024), require additional training of the embedding layer, making
them unsuitable for our application, especially during inference where real-time processing
is required. In addition to this, the approach used by Schick and Schutze (2020), while using
an HN to predict embeddings, it only works for words already in the vocabulary, rather than
handling OOV tokens, a key requirement for our approach.

3.2 Dynamic Tokenisation with Decoders LMs

Theoretically, the same dynamic tokenisation procedure used for encoder LMs can be applied
to decoders. This involves expanding the initial vocabulary Vinit with the new tokens obtained
when encoding the input with dynamic tokenisation, resulting in Vinit∪Vnew, used to encode
the data and generate the next token. We then compute a probability distribution over the
tokens in Vinit∪Vnew, following the procedure outlined in §2.2.2. Figure 3.2 illustrates how
dynamic tokenisation could be applied to decoders.

However, while encoders typically operate at batch-level, decoders are mostly used for
autoregressive tasks like text generation or completion (e.g., chatbots), and therefore do not
generally operate at the batch-level. Based on this, we introduce a method for decoders that
operates without requiring data in batches, unlike the approach used for encoders.

There are several applications of decoder LMs that could benefit from dynamic tokenisa-
tion:

1. In tasks where the LM retrieves documents such as Retrieval-Augmented Genera-
tion (RAG), dynamic tokenisation can adapt to the specific content of the retrieved
documents and the prompt. This is especially useful in domains with technical terms
that a static tokeniser might over-segment (Ding et al., 2024);

2. Chatbot Applications: Particularly useful in dynamic environments like customer
service, dynamic tokenisation can adjust to the evolving topics of discussion and
the unique vocabularies of different users. This adaptability is also advantageous in
multilingual contexts to prevent over-segmentation (Rainey et al., 2023);

3. In tasks such as summarisation, dynamic tokenisation can help adapt token boundaries
based on the input document to be summarised, which is beneficial for handling
domain-specific terms effectively.

3.2 Dynamic Tokenisation with Decoders LMs 27

Batch ,

Tokenise batch

Hypernetwork

Language Model

Dynamic Tokenise
batch

,

Predict token using
Legend

Tokenisation-related
 process or computation

Output

Model operation,
unchanged

Tokenised

Tokenised

Token embeddings

Fig. 3.2 Dynamic tokenisation approach that can theoretically be applied to decoder LMs to
predict token k +1. ⊕ represents concatenation.

While dynamic tokenisation (as applied to encoders) could theoretically enhance decoder
performance in these applications by adapting to specific input data, its effectiveness is
bounded by the vocabulary used. Specifically, it restricts the LM to predict and generate
new tokens only from Vinit∪Vnew, where Vnew is determined based on the input data. To
overcome this limitation, we propose expanding the vocabulary to a larger scale.

In our method, we use an approach that, while similar to CoG (Lan et al., 2023) and
NEST (Li et al., 2024) in its training-free adaptation to a domain or language, differs by using
a large vocabulary of tokens rather than a phrase table. The need for a phrase table, typically
on the order of billions of phrases, is significantly reduced when using a token vocabulary.
We significantly expand the initial vocabulary, resulting in Vlarge, aiming to include more
specialised terms and word variations in English. This expansion increases the granularity of
the tokens from subword-level, closer to word-level, and aligns with our goal for encoders
LMs. Consequently, this results in shorter token sequences, improving the inference speed.
While this expanded vocabulary is statics in nature, it offers similar advantages to a dynamic
one, and more importantly, the integration of the LM together with such a large vocabulary
is possible by using token embeddings generated by the HN from Minixhofer et al. (2024).
Unlike traditional methods, these embeddings do not necessarily require additional training.
More details on this can be found in §4.5.2. Importantly, although the current vocabulary is

3.2 Dynamic Tokenisation with Decoders LMs 28

static, it sets the foundation for future adaptations that could include dynamic vocabulary
adjustments, which are not explored in this study.

Therefore, our approach to adapt a decoder LM pre-trained with subword tokenisation to
a more dynamic tokenisation, requires a few steps: (1) expand the vocabulary to a large size;
(2) decide on a tokenisation; (3) obtain token embeddings and index construction.

3.2.1 Vocabulary Expansion

In the first step, we aim to expand the initial vocabulary of a decoder LM, Vinit, to a
significantly larger vocabulary, Vlarge. To achieve this, we can apply one of the widely used
subword tokenisers such as BPE, WordPiece or UnigramLM on a large corpus to obtain a
vocabulary of |Vlarge|− |Vinit| tokens.1 In our method, we use BPE algorithm to find Vnew

andMnew. We then obtain Vlarge = Vinit∪Vnew.

3.2.2 Decide on a Tokenisation Function

The next step is to decide on a tokenisation function to use with the new vocabulary Vlarge.
Although we have obtained the merge rulesMnew, these rules are only valid for encoding
text from Vnew. The source tokeniser, (Vinit,Tinit), used by the LM could be BPE, Word-
Piece, UnigramLM, or another type, making it challenging to merge it with the new one
(Vnew,Tnew). Even if both tokenisers use BPE, combining their merge tables, Minit and
Mnew, is challenging because the rules in each table are stored in the order they were learned.
There is no guarantee that merging these tables, even with more complex methods than
simple concatenation (e.g., frequency-based merging) can encode all the tokens in Vlarge.
Additionally, even if the two tokenisers are trained on the same corpus, small modifications
in normalisation or pre-tokenisation steps can result in the two merge tables not being able to
be combined without risking the failure to encode all tokens in Vlarge. Table 3.2 shows an
example where merging two BPE tokenisers results in conflicts.

These challenges highlight the complexity involved in merging tokenisers and the need
for a tokenisation function that facilitates merging. To address this, we use a Longest-Prefix
(LP) matching tokenisation function, denoted TLP, similar to the default method used by
WordPiece when the continuation prefix is set to blank (i.e., no character, see §2.1.3). This
was motivated by the work of Uzan et al. (2024), who empirically showed that LP greedy
tokenisation performs surprisingly well compared to other tokenisation functions.

1In practice, the SentencePiece package (Kudo and Richardson, 2018) is often used, particularly for
low-resource languages, because it works without the need for pre-tokenised input

3.2 Dynamic Tokenisation with Decoders LMs 29

Tokeniser 1 Tokeniser 2 Merged Tokeniser

Initial Vocabulary a, b, c, d, e a, b, c, d, e a, b, c, d, e

Merge Tables

Rule 1 ‘a’, ‘b’→ ‘ab’ ‘a’, ‘d’→ ‘ad’ ‘a’, ‘b’→ ‘ab’
Rule 2 ‘ab’, ‘c’→ ‘abc’ ‘ad’, ‘e’→ ‘ade’ ‘ab’, ‘c’→ ‘abc’
Rule 3 ‘d’, ‘e’→ ‘de’ ‘b’, ‘c’→ ‘bc’ ‘d’, ‘e’→ ‘de’
Rule 4 - - ‘a’, ‘d’→ ‘ad’
Rule 5 - - ‘ad’, ‘e’→ ‘ade’
Rule 6 - - ‘b’, ‘c’→ ‘bc’

New Vocabulary a, b, c, d, e, ab, abc,
de

a, b, c, d, e, ad, ade,
bc

a, b, c, d, e, ab, abc,
de, ad, ade, bc

Example tokenise: ‘ade’

Step 1 [‘a’, ‘d’, ‘e’] [‘a’, ‘d’, ‘e’] [‘a’, ‘d’, ‘e’]
Step 2 - [‘ad’, ‘e’] [‘a’, ‘de’]
Step 3 - [‘ade’] -

Table 3.2 Example illustrating how combining merge rules from two BPE tokenisers results
in conflicts when tokenising “ade”.

3.2.3 Obtain Token Embeddings and Index Construction

As it was the case for encoder LMs, we use the same hypernetwork (pre-trained on the
decoder LM) from Minixhofer et al. (2024) to obtain token embeddings for all the tokens
t ∈ Vlarge, using Equation 3.2, with Vlarge.

However, for decoders, the flow for generating the next token is as follows:

Step 1: Input Tokenisation Tokenise the textual prompt x: TLP(x);

Step 2: Input Embeddings Obtain the input embeddings for each token in TLP(x) using
the hypernetwork: Eϕin(TLP(x));

Step 3: LM Processing Forward the tokenised input to the LM;

Step 4: Output Embeddings Obtain the output embeddings for each token in the vocabu-
lary Vlarge: Eϕout(Vlarge);

Step 5: Compute Probability Distribution Compute the probability distribution over the
vocabulary Vlarge using the output embeddings and the last hidden state h:

p = softmax
(
h ·Eϕout(Vlarge)⊤

)
.

3.2 Dynamic Tokenisation with Decoders LMs 30

Step 6: Sample Next Token Sample the next token from the probability distribution p.

The computational bottleneck with this process is in Step 5, where the dot product
is calculated before applying softmax. Specifically, this step requires calculating the dot
product between the last hidden state vector h, which has a shape of (1,dmodel), and the

transposed output embeddings matrix Eϕout

(
Vlarge

)⊤
, which has a shape of (dmodel, |Vlarge|).

This operation is computationally expensive due to the large size of the vocabulary Vlarge, as
we know that |Vlarge| is significantly larger than |Vinit|.

To address this issue, we use an index that supports approximate nearest neighbours
(ANN) search, similar to the methods employed by CoG (Lan et al., 2023) and NEST (Li
et al., 2024). This involves training an index on the output embeddings of all tokens in the
vocabulary, Eϕout

(
Vlarge

)
, a process that can be performed offline since the tokens in Vlarge

are known in advance.
The index then enables efficient and effective nearest neighbour searches. We can use the

last hidden state h as a query to find the k closest tokens. This modifies Step 5 by computing
the dot product only between h and the embeddings of the top k closest tokens, denoted as
Eϕout (Ik(h)), where Ik(h) represents the k nearest tokens, and k is typically a low value.

Using an ANN significantly reduces computational costs because, during generation, the
hypernetwork only needs to generate embeddings for the k nearest tokens rather than for all
tokens in |Vlarge|. Note that the hypernetwork generates embeddings for all tokens in Vlarge

only during index training, and this is not needed anymore during generation.
By using an ANN index with the hypernetwork, we maintain the same number of

parameters in the LM. Thus, our approach avoids the issue seen in other models with large
vocabularies — especially in multilingual contexts — where the embedding layer can account
for up to 93% of the total model parameters (Liang et al., 2023). In our method, the LM keeps
its original embedding matrix for the initial vocabulary, while the hypernetwork dynamically
generates the required token embeddings in real-time. These embeddings can be either
output embeddings determined by the index I or input embeddings for the predicted next
tokens. Thus, instead of having an embedding matrix of size |Vlarge|×dmodel, we have the
initial embedding matrix of size |Vinit|×dmodel. This setup supports the use of very large
vocabularies with the LM and facilitates adaptation to specific languages or domains without
continued training of the LM. The only requirement are: a language- or domain-specific
vocabulary and an index I based on this vocabulary. Figure 3.3 illustrates the updated flow
with the ANN.

3.3 Summary 31

Prompt

Tokenise prompt

Hypernetwork

Language Model

Predict next token using Legend

Tokenisation-related
 process or computation

Model operation, unchanged

Tokenised

Indexing-related process or
computation

Output

Token input embeddings

Fig. 3.3 Dynamic tokenisation with expanded vocabulary Vlarge and ANN index I applied to
decoder LMs.

3.3 Summary

In this chapter, we have detailed the methodology for retrofitting LMs with dynamic to-
kenisation. For encoder LMs, we introduced a batch-level dynamic tokenisation method,
applying the function U to perform a BPE-inspired merging of subword tokens within each
batch, reducing over-segmentation and improving efficiency. In our approach, we repurposed
the hypernetwork from Minixhofer et al. (2024) for dynamic tokenisation, allowing us to
generate the embeddings for all the tokens in the batch. In contrast, our approach for decoder
LMs operates at the sample-level, expanding the initial vocabulary Vinit to a significantly
larger vocabulary Vlarge and using LP tokenisation. To optimise the next token generation,
we integrated an index that supports ANN search, significantly reducing the computational
associated with generating the next token with Vlarge. The hypernetwork from Minixhofer
et al. (2024) was used to generate both input Eϕin and output Eϕout embeddings, during
tokenisation and generation. This approach maintains the model’s parameter allocation while
enabling it to handle very large vocabularies and adapt to specific languages or domains
without requiring continued training for the LM. The adaptation is possible by dynamically
updating the index based on domain-specific terms or the course of the conversation. While
this is not explored in our work, it represents the ultimate goal of dynamic tokenisation.

Chapter 4

Experimental Setup

This chapter presents the experimental setup used in this project including the models (§4.1),
benchmarks (§4.2, §4.3, §4.4), experiments on encoders (§4.5.1) and decoders (§4.5.2), and
evaluation metrics (§4.6).

4.1 Models

We selected XLM-ROBERTA (Conneau et al., 2020) (XLM-R) as a multilingual encoder-
style LM and MISTRAL-7B as the decoder-style LM specifically because pre-trained hy-
pernetworks (HNs) are available for these models.1 We use the base version of XLM-R
and the first version (i.e., v0.1) of MISTRAL-7B (Jiang et al., 2023) (both base and instruct
models) to match the versions used for hypernetwork training, ensuring compatibility in our
experiments.

4.2 Benchmarks for Encoder LMs Experiments

For our encoder LMs experiments we use two datasets: Cross-lingual Natural Language
Inference (XNLI) and Universal Named Entity Recognition (UNER). The decision to use
these datasets was motivated by their multilingual nature, with XNLI focusing on sentence-
level understanding and UNER on token-level.

Cross-lingual Natural Language Inference

The XNLI dataset (Conneau et al., 2018) is a multilingual extension of the Multi-Genre
Natural Language Inference (MultiNLI) dataset (Williams et al., 2017), designed to evaluate

1Available at: github.com/bminixhofer/zett

https://github.com/bminixhofer/zett

4.3 Benchmarks for Decoder LMs Experiments 33

cross-lingual sentence understanding. In this task, models are trained in a source language
and then evaluated in different target languages. The XNLI dataset includes 5010 test and
2490 development sentence pairs (i.e., premises and hypotheses), covering 15 languages,
including Swahili and Urdu, two lower-resource languages.

Universal Named Entity Recognition

The UNER (Mayhew et al., 2023) is another multilingual dataset designed to evaluate and
improve performance of Named Entity Recognition (NER) task. It covers 13 genealogically
and typologically diverse languages, using three coarse-grained entity types: person (PER),
organisation (ORG) and location (LOC).

4.3 Benchmarks for Decoder LMs Experiments

For the decoder LMs experiments, we use two popular benchmarks: Massive Multitask
Language Understanding (MMLU) and Multi-Turn Benchmark (MT-Bench).

Massive Multitask Language Understanding (MMLU)

The MMLU benchmark (Hendrycks et al., 2020) is designed to evaluate a model’s multitask
accuracy. It covers 57 different subjects, including humanities, STEM, social sciences, and
more specialised topics such as law, medicine, and computer science. Each subject contains
multiple-choice questions, with a total of over 14,000 questions aimed at assessing the
model’s world knowledge and problem-solving ability.

Multi-Turn Benchmark (MT-Bench)

MT-Bench is designed to evaluate LLMs in multi-turn conversational and instruction-
following scenarios. It consists of 80 multi-turn questions across eight categories. It is
particularly useful for assessing a model’s performance in open-ended tasks where user
interaction and instruction-following are important. To assess the performance of the model,
LLM-as-a-Judge is used, which reduces the need for human involvement by using stronger
LLMs as judges (Chiang and Lee, 2023). In our work, we use corrected version of MT-
Bench.2

2Corrections taken from github.com/InflectionAI/Inflection-Benchmarks

https://github.com/InflectionAI/Inflection-Benchmarks

4.4 Training Data 34

4.4 Training Data

The corpus used for both encoder and decoder LMs is MADLAD-400 (Kudugunta et al.,
2024), derived from CommonCrawl and covering 419 languages with 5 trillion tokens in
the noisy split and 2.8 trillion tokens in the clean partition. In particular, we use the clean
English subset for our experiments, which provides high-quality data. The details of how
this dataset is used in our project are discussed below.

4.5 Experiments

Since the methodology for encoders differs from that of decoders, we perform different
experiments for each, which we outline below. Appendix B presents a summary of the
hyperparameters we used for training different adapters and evaluating decoders LMs.

4.5.1 Encoder LMs

The experiments we perform for encoders aim to evaluate the effectiveness of dynamic
tokenisation as well as its impact on the sequence length, which in turn affects inference
speed. We conduct all the experiments on the XNLI and UNER datasets. The adapters are
trained on English, and their performance is evaluated in a cross-lingual setting. For XNLI,
we evaluate on 13 different languages, as in the work of Minixhofer et al. (2024): Arabic,
Bulgarian, German, Greek, English, Spanish, French, Hindi, Russian, Swahili, Turkish, Urdu,
Vietnamese. Similarly, for UNER, we train our adapters on English, “en_ewt” training split,
and evaluate on 4 languages: English, German, Portuguese and Russian.3

1) Training a task adapter with original subword tokenisation

Given that LMs — in our case XLM-R — are typically trained on large corpora for general
language understanding, task adaptation is required to achieve strong performance on down-
stream tasks like XNLI or UNER. Therefore, in our first experiment, we train a task-specific
LoRA adapter (e.g., on XNLI or UNER) with the original tokenisation (and embeddings),
and then evaluate it with different tokenisations:

Original tokenisation with original embeddings This setup evaluates the performance
with the same tokenisation settings used during the adapter’s training;

3The limitation to these languages is due to the HN’s training constraints, which has not been pre-trained on
the other 9 languages available in UNER.

4.5 Experiments 35

Original tokenisation with hypernetwork embeddings We apply the update function with
m = 0, U(Tinit(Dbatch),m), keeping the original tokenisation (i.e., no merges) but re-
placing the embeddings with those generated by the hypernetwork. Tinit represents the
initial subword tokenisation;

Word tokenisation with hypernetwork embeddings This is equivalent to applying the up-
date function U(Tinit(Dbatch),m) with m→∞ set to obtain word-level (pre-token)
granularity. In practice, we pre-tokenise the text using a pre-tokeniser to define word
boundaries, instead of specifying m;

Interpolation between subword- and word-level By adjusting m in U(Tinit(Dbatch),m),
we evaluate different token granularities between subword-level (original tokenisation,
lower-bound) and word-level (upper-bound). This allows us to evaluate how varying
degrees of token granularity impact model performance;

Word tokenisation with Fast Vocabulary Transfer embeddings As a baseline, we com-
pare word-level tokenisation using Fast Vocabulary Transfer embeddings (Equation 2.9)
to HN embeddings.

In our setup, the batch size not only determines the number of examples processed at the
same time, but also influences which subwords are merged by U to create new tokens. We
set the batch size to 32 for all experiments.

2) Joint task and dynamic tokenisation adapter training

Unlike the first experiment which trained an adapter with the original tokenisation, in this ex-
periment we train an adapter on XNLI or UNER with our proposed dynamic tokenisation.The
motivation behind this is to assess whether exposing the model to HN embeddings, rather
than just the original ones, leads to performance improvements. Importantly, we keep the
embedding layer parameters frozen when training the adapter. We explore two approaches to
applying dynamic tokenisation during training.

In the first approach, we use a pre-determined number of merges m and apply the
function U(Tinit(Dbatch),m) for each batch during training. However, since the correlation
between m and sequence compression varies across languages and datasets (e.g., 140 merges
for 100% sequence reduction in XNLI English, 160 for UNER), we use percentage reduction
as a metric instead. We train adapters with dynamic tokenisation that reduces sequence length
by 0%, 25%, 50%, 75%, and 100% of the maximum possible reduction (in English), where
100% corresponds to the difference between the initial sequence length — with subword-level
tokenisation, Tinit — and the sequence length achieved with word-level tokenisation. For

4.5 Experiments 36

instance, if the average initial sequence length is 100 and word-level tokenisation reduces
it to 80, a 25% reduction corresponds to 25

100 · (100− 80) = 5 tokens. We hypothesise that
training the adapter with dynamic tokenisation will improve previous results by exposing the
model to specific token granularities and hypernetwork-generated embeddings.

In the second approach, instead of using a fixed number of merges m and applying the
function U(Tinit(Dbatch),m) consistently across the training batch, we introduce stochasticity
into the tokenisation process. Specifically, we explore the impact of sampling different
tokenisers from various distributions, such as Uniform, Gaussian, Student’s t and Cauchy
during training:

• Uniform Distribution: We sample the number of merges m uniformly from the range
[0,mmax]:

m∼ U(0,mmax) (4.1)

mmax is determined based on the datasetD and represents the merge level which yields
word-level tokenisation.

• Gaussian (Normal) Distribution: We sample m from a Gaussian distribution with
mean µ and variance σ2:

m∼N (µ,σ2) (4.2)

• Generalised Student’s t-Distribution: We sample m from a Student’s t-distribution
with location parameter µ, scale parameter γ and degree of freedom ν:

m∼ T (µ,γ,ν) (4.3)

• Cauchy Distribution: We sample m from a Cauchy distribution with location parame-
ter µ and scale parameter γ. This is a special case of T , where ν = 1, yielding heavier
tails than T with ν > 1:

m∼ Cauchy(µ,γ) (4.4)

The motivation for choosing these distributions is based on their properties. The uniform
distribution, U, has a constant probability density across all possible tokenisation granularities.
This ensures that the model is uniformly exposed to every merge level m. On the other side,
the Gaussian distribution concentrates its probability mass around the mean µ, allowing
for deviations controlled by σ2. The Student’s t-distribution, T , has heavier tails than the
Gaussian, increasing the likelihood of sampling more extreme tokenisers. Finally, the Cauchy
distribution, a special case of T with ν = 1, allows for even heavier tails.

4.5 Experiments 37

In our experiments, we sample a tokeniser per batch rather than a tokeniser for each
sample in the batch due to the high computational requirements of the latter. By training the
adapter with tokenisations sampled from these distributions, we hypothesise that the model
will learn to be more robust to the type of dynamic tokenisation used (i.e., the value of m).

The tokenisation function applied during training is then:

U(Tinit(Dbatch),m), m∼ P (4.5)

where P represents the distribution from which m is sampled.
We evaluate the performance of XLM-R across all the merge levels between subword-

and word-level, using the original tokenisation and embeddings from previous experiment as
the baseline.

3) Disentangling task adaptation from tokenisation adaptation

In the previous experiment, we explored training adapters for joint task and dynamic tokeni-
sation adaptation. However, a more modular approach is to disentangle these two and have
two adapters: one for task-specific adaptation (e.g., XNLI or UNER) and another trained
to adapt to different dynamic tokenisation granularities (e.g., different merge levels). This
disentanglement allows for greater flexibility, as the task-specific adapter can be reused with
different tokenisation adapters, and the other way round.

Therefore, we train two adapters: one optimised for the target task using the original
tokenisation and embeddings, and a tokenisation adapter optimised for dynamic tokenisation
independently of the task. To achieve this, we train the tokenisation adapter with the masked
language modelling (MLM) objective, using the clean English subset of the MADLAD-400
corpus to ensure that it learns generalisable tokenisation granularities.

We experiment with training the tokenisation adapter in two scenarios: (1) using word-
level tokenisation to allow specialisation with this granularity, and (2) sampling tokenisers
from either Uniform or Gaussian distributions to enhance robustness across different tokenisa-
tion merge levels, based on insights from previous experiments. As for previous experiments,
we use the HN to obtain the embeddings.

We then explore different methods to merge the two adapters, including linear/task
arithmetic, concatenation and the TIES method (§2.2.2) to integrate the capabilities of both
adapters. Finally, we evaluate the performance of the model with the merged adapter on
word-level tokenisation with HN embeddings, using the original tokenisation and embeddings
as a baseline.

4.5 Experiments 38

4.5.2 Decoder LMs

As described in our methodology for decoders (§3.2), we expand the initial vocabulary of
MISTRAL-7B, Vinit, to a significantly larger vocabulary, Vlarge. Considering that the Oxford
English Dictionary contains around 500,000 English words,4 we expand the initial vocabulary
Vinit to one million (i.e., 1M) entries. We denote this vocabulary as V1M. This doubled size
aims to include more specialised terms and word variations not included in the Oxford
dictionary. Furthermore, the size of this vocabulary is significantly larger than those used
in previous works on vocabulary expansion, allowing us to increase the granularity of the
tokens from subword-level, closer to word-level. We obtain this larger vocabulary by training
a BPE tokeniser on the clean English subset of MADLAD-400 (§4.4), setting the size of the
desired vocabulary to 1M−|Vinit|.

Following the expansion of the vocabulary, we construct an index that supports approx-
imate nearest neighbour (ANN) search. Specifically, we compare two types of indices:
ScaNN (Guo et al., 2020) and Faiss (Douze et al., 2024), as they perform well on ANN
benchmarks.5

The experiments we perform with this new tokeniser and index are on MMLU and
MT-Bench.

1) MMLU

This benchmark focusses on multitask understanding rather than generation. Therefore, for
each prompt p in the dataset, we encode it using the new tokeniser (V1M,TLP), generate
the input embeddings, Eϕin(TLP(p)), and feed these embeddings to the LM. We then apply
softmax to obtain the probabilities and select the token with the highest probability among the
four possible answers: A, B, C or D. We only compare the probabilities of these four tokens,
disregarding other tokens in V1M, as this is the standard original evaluation for MMLU.

We evaluate MISTRAL-7B on MMLU under three different settings: 0-shot, 5-shot with
in-context examples selected from random domains, and 5-shot with in-context examples
selected from the same domain as the test prompt. The model’s performance is compared
with different tokenisation methods to assess the impact of the tokenisation function and
vocabulary used:

Original tokenisation, vocabulary and embeddings The original tokeniser (Vinit,Tinit) and
its corresponding embeddings.

4Available at: oed.com/information/about-the-oed
5Benchmarking results: ann-benchmarks.com

https://www.oed.com/information/about-the-oed
https://ann-benchmarks.com/

4.6 Evaluation Metrics 39

Original tokenisation and vocabulary with HN embeddings The original tokeniser (Vinit,Tinit)
with hypernetwork embeddings Hθ(Vinit,Tinit).

LP tokenisation, original vocabulary, HN embeddings The longest prefix (LP) tokenisa-
tion function function with the original vocabulary (Vinit,TLP) and hypernetwork
embeddings Hθ(Vinit,TLP).

LP tokenisation, 1M vocabulary, HN embeddings The LP tokenisation function with the
expanded 1M vocabulary (V1M,TLP) and corresponding hypernetwork embeddings
Hθ(V1M,TLP).

The specific prompt templates used in these evaluations are provided in Appendix A.

2) MT-Bench

MT-Bench assesses the model’s text generation capabilities given a prompt and since the
base model, MISTRAL-7B, is not optimised to follow instructions, we instead use its instruct-
tuned variant, MISTRAL-7B-INSTRUCT. To obtain the token embeddings, we use the
same HN pre-trained for the base model, as previous work by Minixhofer et al. (2024) has
shown that an HN pre-trained for a base model can be applied to its fine-tuned versions.
Additionally, during the generation process, we use the index to retrieve the top 10 closest
token embeddings, following the process illustrated in Figure 3.3.

We evaluate the model using the same four settings as in MMLU, and we also explore
different decoding strategies, including greedy decoding, temperature scaling (Ippolito et al.,
2019), top-k sampling (Fan et al., 2018), and repetition penalty (Holtzman et al., 2019). For
evaluation, we use GPT-3.5-TURBO-1106 as the judge.

4.6 Evaluation Metrics

Throughout our experiments, we use standard evaluation metrics to assess model performance.
In the encoder experiments, we use accuracy to evaluate the XNLI results, and F1-score
for UNER. Additionally, for the adapter trained on MLM, we use accuracy to assess its
ability to predict masked tokens. For the decoder experiments, we also use accuracy as the
primary metric for MMLU, while for MT-Bench we use a score between 0 and 10, with
10 representing the highest possible score. Across all experiments, except MT-Bench, we
compute the average token sequence length, as we are interested to see the impact of dynamic
tokenisation on sequence length. For index comparison, we use Recall@10 to evaluate
retrieval effectiveness.

4.7 Summary 40

4.7 Summary

In this chapter, we outlined the experimental setup used in this project, including the models,
datasets, benchmarks, experiments and evaluation metrics. We detailed the experiments
conducted on encoder models using the multilingual datasets XNLI and UNER, which
included (1) task-specific adapter training, (3) joint task and dynamic tokenisation adapter
training, as well as (3) the disentangling of task and tokenisation adaptations (§4.5.1). Finally,
we detailed the experiments on decoder models, which involved expanding the vocabulary to
1M entries and constructing an index, evaluated using the MMLU and MT-Bench benchmarks
(§4.5.2).

Chapter 5

Results and Discussion

In this chapter, we present and analyse the results from different experiments on dynamic
tokenisation applied to both encoders (§5.1) and decoders (§5.2), as well as some other
results regarding the approximate nearest neighbour indices evaluation and (§5.3.1) caching
the hypernetwork (HN) embeddings (§5.3.2).

5.1 Encoder LMs

In this section, we present and analyse the results obtained on the three main experiments on
encoder LMs (§4.5.1).

5.1.1 Task Adapter Trained with Original Subword Tokenisation and
Embeddings

Table 5.1 and 5.2 show the performance of XLM-R-BASE with different tokenisation and
embedding configurations on the XNLI and UNER tasks (§4.2).

Impact of tokenisation method. The experiments demonstrate a trade-off between token
granularity, controlled by the number of merges in dynamic tokenisation, U(Tinit(Dbatch),m),
and model performance. Specifically, word-level tokenisation (m→∞) leads to significant
token sequence reductions at the cost of performance. For XNLI, sequence length decreases
by 22.5% on average, while accuracy decreases by 2.8%. Similarly, for UNER, sequence
length is reduced by 26.4% on average, with a corresponding F1-score decrease of 4.2%.
The reductions are relative to the baseline, which uses the original subword tokenisation
and embeddings.1 This novel application of XLM-R to word-level tokenisation addresses

1This chapter uses the terms “original tokenisation” and “subword tokenisation” interchangeably, as well as
“word-level” and “pre-token-level” tokenisation.

5.1 Encoder LMs 42

Tokenisation &
Embeddings

Language Accuracies (%)

ar bg de el en es fr hi ru sw tr ur vi Avg.

(1) original 71.6 76.5 76.9 75.1 84.8 78.0 78.5 68.7 74.9 63.2 72.4 65.4 73.9 73.9

(2) original, HN 71.8 76.5 76.7 75.7 84.1 79.0 78.2 69.6 75.7 61.7 72.1 65.9 73.7 74.0
(3) word, HN 67.1 72.8 74.9 71.5 82.5 77.1 75.6 66.2 72.0 59.2 67.4 64.9 73.4 71.1
(4) word, FVT 64.5 68.9 70.8 68.3 79.7 74.2 71.0 65.2 68.6 54.8 63.3 63.8 73.6 68.2

∆Acc. (%) (1), (3) -4.5 -3.7 -2.0 -3.6 -2.3 -0.9 -2.9 -2.5 -2.9 -4.0 -5.0 -0.5 -0.5 -2.8
∆Length (%) (1), (3) -31.4 -25.1 -22.8 -33.2 -14.7 -17.3 -17.3 -21.8 -28.2 -28.4 -29.4 -17.5 -5.9 -22.5

Table 5.1 Accuracy on XNLI validation split when using LoRA trained on XNLI with
original subword tokenisation and embeddings. ∆Acc. (%) represents the absolute change
in accuracy between word-level tokenisation with HN embeddings (3) and the baseline (1)
which uses original tokenisation and embeddings. ∆Length. (%) represents the average decrease
in token sequence length of the word-level tokenisation over the original tokenisation. FVT
denotes the embeddings obtained using Fast Vocabulary Transfer (§2.4). Boldface indicates
the best result for a language.

Tokenisation &
Embeddings

Language F1-score (%)

en_ewt de_pud pt_bosque pt_pud ru_pud Avg.

(1) original 81.6 78.0 82.3 82.9 69.0 78.8

(2) original, HN 80.9 78.3 80.8 82.3 68.4 78.1
(3) word, HN 77.0 75.8 77.6 77.3 65.5 74.6
(4) word, FVT 67.2 57.0 58.0 58.4 40.7 56.3

∆Acc. (%) (1), (3) -4.6 -2.2 -4.7 -5.6 -3.5 -4.2
∆Length (%) (1), (3) -17.6 -30.5 -24.1 -24.2 -35.8 -26.4

Table 5.2 F1-score on UNER when using LoRA adapter trained on UNER with original
subword tokenisation and embeddings. The results reported are on the validation split for
ewt and bosque datasets, and test split for pud due to the availability.

5.1 Encoder LMs 43

significant challenges such as language imbalance typically seen in subword tokenisers. By
achieving relatively minimal losses in accuracy and F1-score, the approach highlights a
promising direction towards more equitable language representation (Mielke et al., 2021;
Petrov et al., 2024).

Token embeddings comparison. Using original tokenisation with HN embeddings (setting 2)
shows comparable results to original embeddings (setting 1), both in English and cross-lingual
contexts, highlighting the quality of HN embeddings. However, a noticeable performance
gap exists between subword- and word-level HN embeddings (settings 1 and 3). Importantly,
FVT embeddings show a significant decrease in performance compared to HN embeddings.
For instance, FVT achieves an average accuracy of 68.2% compared to 71.1% with word-
level HN embeddings for XNLI, and even more pronounced differences for UNER, with
FVT scoring 56.3% F1 compared to 74.6% with HN embeddings. This suggests that HN
embeddings better capture the required semantic nuances for tasks like NER, where accurate
token representation is important, significantly outperforming FVT.

Interpolations between subword- and word-level. Figure 5.1a and 5.1b show the per-
formance trends when applying dynamic tokenisation with different merge levels m. The
dotted lines represent the performance upper bound achieved using original tokenisation and
embeddings. To account for differences in the merge levels required to achieve word-level to-
kenisation across languages, the results are presented as relative reduction in sequence length
(detailed in §4.5.1). In the XNLI task, most languages maintain a relatively stable accuracy
until around 70% sequence reduction, after which a decline occurs. Conversely, in the UNER
task, significant performance drops begin at a much lower threshold of around 25% sequence
reduction, indicating the sensitivity of token-level tasks — compared to sentence-level —
to changes in token granularity. In both tasks, as sequence reduction increases, the gap
between the upper bound and dynamic tokenisation results widens. In XNLI, languages
like German, Spanish, Swahili, and Urdu show slight performance improvements with a
moderate sequence reduction of 15−25%, compared to no reduction and HN embeddings.

Language family and sequence reduction. Highly analytic languages like Vietnamese,
characterised by a low morpheme-per-word ratio, show smaller reductions. In contrast, syn-
thetic languages, including both agglutinative and fusional types, show significantly greater
sequence reductions. This is because these languages tend to synthesise multiple grammatical
or conceptual elements into single words using affixes. All the languages (except Vietnamese)
in our study are predominantly synthetic — with a few having some analytic characteris-
tics. Additionally, the original vocabulary of XLM-R, contains ≈ 250,000 subwords from
multiple languages, biased towards high-resource languages such as English (Ahia et al.,
2023). This bias affects over-segmentation rates differently across languages, leading to less

5.1 Encoder LMs 44

over-segmentation in languages like English, therefore impacting the sequence reductions
when transitioning from subword- to word-level tokenisations. Further experiments could
investigate the correlation between the initial language-specific subword distribution in the
vocabulary and word-level sequence reductions.

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.553.7

35.7

42.1

35.9

44.7

36.8

51.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.3

48.9

39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(a) XNLI Accuracies

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

F1
 (%

)

33.8

23.5

18.7

15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(b) UNER F1-scores

Fig. 5.1 XNLI accuracy and UNER F1-score trends as the token granularity, controlled
by m, shifts from subword-level to word-level across different languages. The continuous
lines represent interpolations between these granularities, while the dotted lines indicate the
upper boundary of accuracy obtained with the original tokenisation and embeddings. The
annotations on the left and right show the average token sequence length with 0% reduction
(subword-level) and with 100% reduction (word-level). The evaluation was performed using
the task adapter trained on English with original subword tokenisation and embeddings.

5.1 Encoder LMs 45

5.1.2 Joint Task and Dynamic Tokenisation Adaptation

We now address the performance gap observed between dynamic tokenisation (across all
merge levels) with HN embeddings and the original subword tokenisation with original
embeddings.

a) Pre-determined Dynamic Tokenisation Level

Figure 5.2 and 5.4 illustrate the results obtained by training an adapter on the English split
of XNLI/UNER with dynamic tokenisation, applying a pre-determined number of merges.
For instance, in the XNLI task, 100% reduction corresponds to 140 merges, 75%→ 40,
50%→ 20, 25%→ 10, and 0%→ 0. Table 5.3 shows the results of these trained adapters
when evaluated on word-level tokenisation

Evaluated on
Tokenisation & Embeddings Adapter XNLI Accuracy (%) UNER F1-score (%)

en en_ewt

(1) original, original original 84.8 81.6
(2) word, HN original 82.5 77.0

(3) word, HN 0% 82.9 78.7
(4) word, HN 25% 82.6 79.2
(5) word, HN 50% 83.2 79.7
(6) word, HN 75% 83.3 80.5
(7) word, HN 100% 83.7 80.8

Table 5.3 Performance on XNLI/UNER at word-level using adapter trained on XNLI/UNER
with dynamic tokenisation and a pre-determined sequence reduction. Boldface indicates
the best results, while the top results with sampled tokenisers for XNLI and UNER are
underlined. The rows in grey represent the baselines obtained with the adapter trained on
XNLI/UNER with original tokenisation and embeddings.

Training an adapter with dynamic tokenisation minimises the performance gap. For
XNLI, the adapter trained with a 50% sequence reduction is the most effective in reducing the
performance gap on English, while also transferring well across languages, outperforming
the adapter from the previous section (as shown in Figure 5.3). However, some gap remains,
particularly as the sequence reduction approaches 100% (i.e., word-level tokenisation).
Similarly, for UNER, the 75% sequence reduction adapter is the most effective at closing the
gap on English and performs well across languages. However, as for XNLI, some gap remains
as sequence reduction approaches 100%. Additionally, the 100% reduction adapter performs
comparably but slightly lower results overall. These results demonstrate that training the
adapter, while keeping the HN embeddings frozen (i.e., without updating the embedding
layer parameters) leads to improved performance across all languages.

5.1 Encoder LMs 46

Significant improvements for low-resource languages like Urdu and Swahili. The results
with the 50% adapter (Figure 5.2c) show that for Urdu, the performance gap is not only
closed but ‘reversed’ across all merge levels. Similarly, for Swahili, the gap is fully closed
with up to 70% sequence reduction and ‘reversed’ with up to 60% reduction. This results to
substantial gains in overall sequence reduction, enhancing throughput and advancing equity
among language by minimising over-segmentation (Ahia et al., 2023).

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5

53.7

35.7

42.1

35.9

44.7

36.851.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.3

48.9

39.9

48.1
45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(a) 0% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.553.7

35.7

42.1

35.9

44.7

36.851.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.348.9
39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(b) 25% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5

53.7

35.7

42.1

35.9

44.7

36.851.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.348.9
39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(c) 50% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5
53.7

35.7

42.1 35.9

44.7

36.8

51.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.3

48.9
39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(d) 75% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5
53.7

35.7

42.1 35.9

44.7

36.851.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.348.9

39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

(e) 100% Adapter

Fig. 5.2 XNLI accuracy trends as the token granularity shifts from subword-level to word-
level across different languages. Dotted lines indicate the upper boundary of accuracy
obtained with the original tokenisation and embeddings. The evaluation was performed using
the task adapter trained on English with dynamic tokenisation, where m was set to achieve
X% relative sequence reduction on English, and HN embeddings.

5.1 Encoder LMs 47

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5

53.7

35.7

42.1

35.9

44.7

36.851.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.3
48.9

39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

Fig. 5.3 XNLI: Adapter trained with 50% (continuous line) compared with the initial adapter
trained with subword tokenisation and original embeddings (dotted line).

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

F1
 (%

)

33.8

23.5

18.7

15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(a) 0% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

F1
 (%

)

33.8

23.5

18.7

15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(b) 25% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

67.5

70.0

72.5

75.0

77.5

80.0

82.5

F1
 (%

)

33.8

23.5

18.7

15.4
35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(c) 50% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

68

70

72

74

76

78

80

82

F1
 (%

) 33.8

23.5

18.7

15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(d) 75% Adapter

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

68

70

72

74

76

78

80

82

F1
 (%

)

33.8

23.5

18.7

15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(e) 100% Adapter

Fig. 5.4 UNER F1-score trends as the token granularity shifts from subword-level to word-
level across different languages. The evaluation was performed using the task adapter trained
on English with dynamic tokenisation, where m was set to achieve X% relative sequence
reduction on English, and HN embeddings.

5.1 Encoder LMs 48

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

F1
 (%

)

33.8

23.5

18.7

15.430.0

23.5

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
en_pud
pt_bosque
pt_pud
ru_pud

Fig. 5.5 UNER: Adapter trained with 75% (continuous line) compared with the initial
adapter trained with subword tokenisation and original embeddings (dotted line).

b) Sampling Merge Levels

Table 5.4 presents the results of adapters trained using tokenisers sampled from different
distributions, evaluated at word-level. For XNLI, the Uniform distribution is the only one
that achieves accuracy close to the original (1), with all distributions showing improvement
over (2). In contrast, for UNER, the Uniform, Student-t, and Cauchy distributions yield the
same result, all significantly outperforming (2). Consequently, Figure 5.6 shows the accuracy
trends for the Uniform distribution for XNLI, while Figure 5.7 displays the F1-scores across
the three distributions for UNER.

Tokenisation & Embeddings Distribution
P

XNLI Accuracy (%) UNER F1-score (%)

en en_ewt

(1) original - 84.8 81.6
(2) word, HN - 82.5 77.0

(3) word, HN Uniform 84.4 80.8
(4) word, HN Gaussian 83.7 80.8
(5) word, HN Student-t 83.1 79.9
(6) word, HN Cauchy 83.1 80.8

Table 5.4 Performance on XNLI/UNER at word-level using adapter trained on XNLI/UNER
with dynamic tokenisation and tokenisers sampled from P . The rows in grey represent the
baselines obtained with the adapter trained on XNLI/UNER with original tokenisation and
embeddings.

Training an adapter with sampled merge levels significantly enhances robustness and
performance in English, regardless of the tokenisation strategy. Using a Uniform
distribution to sample token granularities almost completely closes the performance gap on
English, as seen in the XNLI task where accuracy remains stable across all merge levels
(Figure 5.6). Similarly, for UNER, the Uniform distribution consistently outperforms other
distributions like Gaussian and Student-t on English (Figure 5.7). This suggests that the

5.1 Encoder LMs 49

model benefits from a balanced exposure to different tokenisation granularities, enhancing
its generalisability.

Sampling merge levels yields better performance than using a fixed number of merges on
English. This is evidenced by the consistent or improved accuracy on XNLI compared to the
50% adapter (Figure 5.8) and F1-scores on UNER compared to the 75% adapter (Figure 5.9).
Importantly, we obtain these improvements without updating the embedding layer during
adapter training, which is an advantage over previous methods, which often rely on initialising
embeddings through heuristics such as FVT (Gee et al., 2024) or FOCUS (Dobler and De
Melo, 2023), and typically require continued training of these embeddings to optimise
performance (Sachidananda et al., 2021; Chung et al., 2020).

Sampling merge levels may negatively impact cross-lingual transfer. While the model re-
mains robust to tokenisation on the source language (i.e., English), we observe a performance
decline on XNLI when evaluating on other languages such as Swahili, Urdu, Spanish, or
Greek compared to the 50% adapter. For UNER, this issue is observed only for Portuguese.
These findings imply that while sampling merge levels can be advantageous for English, it
may hurt performance in cross-lingual contexts. Further investigation is needed to determine
whether the observed decline is specific to the sampling strategy itself, or if it is influenced
by language-specific characteristics, the nature of the task, or other underlying factors.

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5
53.7

35.7

42.1 35.9

44.7

36.8

51.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.348.9

39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

Fig. 5.6 XNLI accuracy across different merge levels. Results obtained using the adapter
trained with tokenisers sampled from a Uniform distribution and HN embeddings.

5.1.3 Disentangling Task Adaptation from Tokenisation Adaptation

Table 5.5 presents the accuracies achieved for masked token prediction after training a LoRA
adapter on the masked language modeling (MLM) task. Given that sampling merge levels
from a Cauchy distribution yields the highest accuracy, we test the integration of this adapter
with a task adapter trained on XNLI/UNER using original tokenisation and embeddings. The
most relevant results of this merging are detailed in Table 5.6.

5.1 Encoder LMs 50

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

68

70

72

74

76

78

80

82

84

F1
 (%

)

33.8

23.5

18.7
15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(a) Uniform distribution

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

F1
 (%

) 33.8
23.5

18.7
15.4

35.2

26.4

33.9 25.5

33.8
21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(b) Gaussian distribution

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level
66

68

70

72

74

76

78

80

82

F1
 (%

)

33.8

23.5

18.7

15.4
35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

(c) Student-t distribution

Fig. 5.7 F1-score accuracy across different merge levels. Results obtained using the adapter
trained on UNER with tokenisers sampled from a different distributions and HN embeddings.

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

60

65

70

75

80

85

Ac
cu

ra
cy

 (%
)

44.5

30.5

46.7

34.9

46.0

35.5
53.7

35.7

42.1 35.9

44.7

36.8

51.2

42.3

50.0

36.6

46.1

33.1

44.3

31.7

41.5

29.348.9

39.9

48.1 45.2

Language
ar
bg
de
el
en
es
fr
hi
ru
sw
tr
ur
vi

Fig. 5.8 XNLI: Comparison between adapter trained with 50% sequence reduction (dotted
line) and the adapter trained by sampling tokenisers from a Uniform distribution (continuous
line).

5.1 Encoder LMs 51

0 20 40 60 80 100

Percentage Reduction in Sequence Length from Subword-level to Word-level

68

70

72

74

76

78

80

82

84

F1
 (%

)

33.8

23.5

18.7
15.4

35.2

26.4

33.9

25.5

33.8

21.6

Language
de_pud
en_ewt
pt_bosque
pt_pud
ru_pud

Fig. 5.9 UNER: Comparison between adapter trained with 75% sequence reduction (dotted
line) and the adapter trained by sampling tokenisers from a Uniform distribution (continuous
line).

Tokenisation Accuracy (%)

original 60.1

Word 61.8
Uniform 62.0
Gaussian 61.9
Student-t 61.9
Cauchy 62.4

Table 5.5 Tokenisation adapters trained on MADLAD-400. Accuracy is computed on word-
level for each tokenisation method.

Adapter 1
(Task)

Adapter 2
(Tokenisation)

Merging
method Weight 1 Weight 2 Accuracy or

F1-score (%)

XNLI-original - - - - 84.8
UNER-original - - - - 81.6

XNLI Cauchy Linear 0.8 0.15 82.61
XNLI Word Linear 0.9 0.15 82.49
XNLI Cauchy Concatenation 0.9 0.5 82.53
XNLI Cauchy TIES 1 1 80.09

UNER Cauchy Linear 0.9 0.2 76.73
UNER Cauchy Concatenation 0.8 0.3 76.94
UNER Cauchy TIES 1 1 76.62

Table 5.6 Results obtained when merging the task adapter with a tokenisation adapter. The
rows in grey represent the baselines obtained with the adapter trained on XNLI/UNER with
original tokenisation and embeddings.

5.2 Decoder LMs 52

Challenges in merging task and tokenisation adapters. For XNLI, the highest achieved
accuracy is 82.61%, only marginally better than the 82.5% achieved at word-level without a
tokenisation adapter and still below the 84.8% — the upper bound obtained in §5.1.1. For
UNER, the merged adapter achieves 76.9%, slightly below the 77.0% achieved without a
tokenisation adapter and significantly lower than the upper bound of 81.6%. Future work
could explore more extensive hyperparameter tuning, other merging methods, and especially
increasing the training data beyond 380M tokens — a limit initially set by computational
constraints. Successfully disentangling task and tokenisation adaptation would facilitate the
integration of multiple task-specific models, removing the need for retraining a model to
achieve optimal performance with dynamic tokenisation.

5.2 Decoder LMs

In this section, we present and analyse the results obtained on the experiments on decoder
LMs (§4.5.2).

5.2.1 MMLU

Table 5.7 shows the results obtained with MISTRAL-7B on MMLU on four main settings.

Tokenisation Embeddings Vocab.
Size

#
Shots

Shots
Selection

Accuracy
(%) ∆Length. (%)

(1) original original 32k 0 - 60.1 0
(2) original original 32k 5 Random 60.1 0
(3) original original 32k 5 Same Domain 61.8 0

(4) original HN 32k 0 - 55.8 0
(5) original HN 32k 5 Random 56.9 0
(6) original HN 32k 5 Same Domain 58.8 0

(7) LP HN 32k 0 - 54.9 -0.7
(8) LP HN 32k 5 Random 55.9 -0.8
(9) LP HN 32k 5 Same Domain 57.8 -1

(10) LP HN 1M 0 - 51.8 -13.6
(11) LP HN 1M 5 Random 54.0 -13.4
(12) LP HN 1M 5 Same Domain 55.9 -13.6

Table 5.7 Performance of MISTRAL-7B on the MMLU task under different settings.
∆Length. (%) represents the average decrease in token sequence length over the original tokeni-
sation.

5.2 Decoder LMs 53

Impact of expanding the vocabulary to V1M . When MISTRAL-7B is evaluated with
Longest-prefix (LP) tokenisation and HN embeddings using the expanded 1M vocabulary,
V1M, we note a decrease in performance of 1.9% in the 5-shot same domain setting, as well
as a reduction in sequence length by 13.6% (settings 12 vs. 9). This reduction is similar to
those observed in encoder LMs (14.7% for XNLI, word-level, Table 5.1), suggesting that
using V1M approaches a word-level granularity. As seen with encoder models, using word-
level tokenisation results in performance degradation, which is likely due to the generated
HN embeddings. Additionally, the reduction in sequence length by 13.6% indicates two
key aspects: (1) similar to what has been noted with encoders, the initial MISTRAL-7B’s
vocabulary is biased towards English, which suggests that even at a subword level, the text
may not be over-segmented; and (2) the large size of V1M might be excessive, resulting in
many unused tokens. This aligns with the Zipf ceiling effect, as detailed by Liang et al.
(2023), where a limited number of tokens are enough to cover 99% of the content, indicating
that V1M likely includes many tokens from the long tail of the Zipfian distribution. Liang
et al. (2023) suggest that a smaller vocabulary could improve performance since tokens from
the long tail often have “problematic embeddings,” as they are trained on significantly less
data. While in our case embeddings are generated rather than trained, a similar issue may
arise for such rare tokens. Investigating the quality of HN embeddings for these long tail
tokens could provide insights into optimal vocabulary sizes and help refine our dynamic
tokenisation method to exclude potentially problematic tokens.

Comparing original and HN embeddings. Unlike the encoder models where the HN
embeddings closely matched the performance to original embeddings when using the original
tokenisation (Table 5.1), in the decoder setting, we see a noticeable difference. With the initial
32k vocabulary (Vinit), the performance using HN embeddings declines by 3% compared
to original embeddings (settings 6 vs. 3). This difference highlights potential challenges
in adapting HN embeddings for decoders, also noted by Minixhofer et al. (2024) when
transferring an LM to a different tokeniser. Although further training of these embeddings
could potentially close or minimise this performance gap, the continuous adaptation to
new tokens — and embeddings — required by dynamic tokenisation makes such retraining
impractical. Therefore, future work could focus on improving the quality of HN embeddings
or making changes to decoder architecture that are more flexible or capable of accommodating
new tokens effectively.

Impact of LP tokenisation. Using LP tokenisation with the same 32k vocabulary, HN
embeddings and in a 5-shot setting from the same domain results in a marginal decrease in
performance and sequence length, about 1% compared to the original tokenisation (settings
9 vs. 6). This slight reduction shows the effectiveness of MISTRAL-7B with the greedy LP

5.2 Decoder LMs 54

tokenisation, maintaining performance nearly at the same level to the model’s original BPE
tokenisation.

5.2.2 MT-Bench

Table 5.8 outlines the results obtained on MT-Bench, which focusses on assessing the
generation capabilities of the model.

Tokenisation Embeddings Vocab.
Size

Next token
search

Repetition
Penalty

Min.
Prob.

Sample
from top 10?

Avg
Score

(1) Original Original 32k exhaustive - - ✗ 7.54
(2) Original Original 32k exhaustive 1.1 - ✗ 7.51
(3) Original Original 32k exhaustive 1.1 0.05 ✓ 7.46

(4) Original HN 32k exhaustive - - ✗ 6.84
(5) Original HN 32k exhaustive 1.1 - ✗ 7.33
(6) Original HN 32k exhaustive 1.1 0.1 ✓ 7.10

(7) LP HN 32k exhaustive - - ✗ 6.50
(8) LP HN 32k exhaustive 1.1 - ✗ 6.92
(9) LP HN 32k exhaustive 1.1 0.05 ✓ 6.92

(10) LP HN 1M ScaNN index - - ✗ 6.26
(11) LP HN 1M ScaNN index 1.1 - ✗ 6.73
(12) LP HN 1M ScaNN index 1.1 0.05 ✓ 6.64

(13) LP HN 1M exhaustive - - ✗ 5.24
(14) LP HN 1M exhaustive 1.1 - ✗ 5.54
(15) LP HN 1M exhaustive 1.1 0.05 ✓ 6.53
(16) LP HN 1M exhaustive 1.1 0.02 ✓ 6.52

Table 5.8 Performance of MISTRAL-7B-INSTRUCT on MT-Bench under different settings.

Consistency with MMLU result patterns. Similar to the MMLU results, original embed-
dings generally outperform HN embeddings (settings 1 vs. 4). Changing the tokenisation
from original to LP with HN embeddings slightly lowers performance (settings 4 vs. 7). A
similar decline is observed using V1M compared to Vinit (settings 7 vs. 10).

Token repetition issue. An issue observed in settings with HN embeddings is token repeti-
tion, particularly for prompts from domains requiring creativity (e.g., writing). To address
this, we introduced a repetition penalty and top-k sampling with minimum probability thresh-
old. This significantly improved model performance, almost closing the gap between the
setting using original and HN embeddings with Vinit (settings 1 vs. 5).

The problem of token repetition is more amplified when using V1M and exhaustive search,
mostly because the generation is not limited to selecting from the top-k tokens and the token
space is about 31 times larger. Using repetition penalty and top-k sampling significantly

5.3 Other Results 55

improved performance. Additionally, the gap is only 0.19 when comparing V1M and Vinit

with LP tokenisation (settings 11 and 8).
Finally, the repetition issue may also stem from the MISTRAL-7B model itself, as multiple

reports highlighted similar problems occurring during generation.2

ANN vs Exhaustive Search. Contrary to our expectations, the results indicate that using
an ANN index outperforms exhaustive search (setting 11 vs 15). This result aligns with
findings from other studies, such as those by Xu et al. (2023), who suggest that the slight
“inaccuracies” introduced by the ANN index search adds as a level of noise or variability,
which acts like a regularisation technique.

Problematic tokens? After analysing the results generated by our model with V1M, we
identified some tokens that usually result in an infinite cycle of repetition — up to the
maximum length. Examples include PN, mt, mss, nss, Massacre, triphosphate, and some
proper nouns like Hilbert. This issue may stem from the fact that embeddings for these
tokens are suboptimal, as they fall within the long tail of the Zipfian distribution. This
observation also highlights a disadvantage of such a large vocabulary, as it includes some
tokens that are not needed.

End of sequence issue. We noticed that the model sometimes attempts to end a sequence,
but fails to generate the end-of-sequence token (i.e., </s>). Instead, it repeatedly generates
tokens that resembles </s>, such as </s/></s/><s/></s/></s/></s/></s/></s/>. This
may be linked to how the HN was trained, specifically the method of packing samples without
adjusting the attention mask, which could be problematic (Krell et al., 2021).

5.3 Other Results

This section outlines the results of evaluating different indices and the improvements gained
from implementing an HN-specific cache.

5.3.1 Verifying the Quality of the Index

To find the optimal hyperparameters and identify the most suitable index for our use case,
we first create a dataset of 1000 texts or prompts, each consisting of 128 tokens, extracted
from the clean English subset of MADLAD-400 (§4.4). We then train an index using the 1M
output embeddings generated by the HN: Hθ (V1M,TLP).

We evaluate the index quality using Recall@10. Each prompt p from the dataset is
tokenised using (V1M,TLP) to generate input embeddings with the HN, Eϕin(TLP(p)). These

2huggingface.co/mistralai/Mistral-7B-v0.1/discussions/29

https://huggingface.co/mistralai/Mistral-7B-v0.1/discussions/29

5.3 Other Results 56

embeddings are fed into the model to obtain the last hidden state h. We then check if the
token predicted using an exhaustive search, Equation 5.1, appears within the top 10 tokens
retrieved by the index, I10(h).

Next token = argmax
i

[
softmax

(
h ·Eϕout(V1M)⊤

)]
i

(5.1)

where i maps to tokeni in V1M.
Table B.3 and B.2 from Appendix B show the hyperparameters we used for our indices.

Based on the performance results on our prompt dataset, as detailed in Table 5.9, we selected
the ScaNN index from row (5) for its optimal Recall-to-speed ratio.

Index Nprobe Leaves to search Pre-reorder
Neighbours

Recall@10
(%)

Seconds/
Query

(1) Faiss 10 - - 83.3 0.22
(2) Faiss 15 - - 88.2 0.33
(3) Faiss 20 - - 90.6 0.44
(4) ScaNN - 500 200 74.0 0.02
(5) ScaNN - 1000 2000 93.6 0.03

Table 5.9 Performance comparison between Faiss and ScaNN indices across different config-
urations.

5.3.2 Hypernetwork Embeddings Caching

In all our experiments, we implemented a Least-Recently-Used (LRU) cache for storing
HN embeddings to enhance efficiency and reduce overhead. This approach was particularly
motivated by the frequent repetition of certain tokens across batches in encoder experiments.
Common words like “the” or “and” appear in nearly every utterance, making it practical to
cache their embeddings rather than regenerate them for each batch.

The benefits are clear, shown in Figure 5.10: using an HN-specific LRU cache signifi-
cantly reduces the number of tokens requiring embeddings per batch.

5.4 Summary 57

0 10 20 30 40 50 60 70 80

Batch Number
0

50

100

150

200

250

300

To
ke

ns
 P

ro
ce

ss
ed

Non-LRU
LRU

Fig. 5.10 Tokens processed by the hypernetwork using an HN-specific LRU cache versus
processing all unique tokens without caching. Results obtained on the validation subset
of XNLI English.

5.4 Summary

In this section, we presented and discussed the results obtained by applying dynamic tokeni-
sation to encoder and decoder LMs.

The key findings are:

• Using a hypernetwork with word-level tokenisation, without any additional training,
yields a sequence length reduction of 22.5% on XNLI (26.2% on UNER) on average
while preserving accuracy to 2.8% on XNLI (4.2% UNER) (§5.1.1). This significantly
improves LM throughput;

• We showed that the accuracy gap can be fully closed for English, across all merge levels
m, by training a task adapter (on XNLI/UNER) using tokenisation levels sampled from
a Uniform distribution — with HN embeddings (§5.1.2);

• Using a large vocabulary such as V1M yields similar sequence reduction on English as
word-level, reducing sequence length by 13.6% on the MMLU task, while performance
decreases by only 1.9%;

• For MT-Bench, we showed that generating tokens from V1M using LP tokenisation
and HN embeddings results in a score of 6.73, producing tokens closer to word-level,
improving inference speed at a slight performance decrease of 0.19 compared to using
a 32k vocabulary with LP tokenisation. Additionally, using an ANN index enables
better performance and faster speed compared to exhaustive search when using a large
vocabulary (§5.2.2);

Chapter 6

Conclusion

This thesis has investigated different ways of retrofitting language models with dynamic
tokenisation, adapting token boundaries dynamically based on the input. To do so, we
repurposed the hypernetwork (HN) from Minixhofer et al. (2024) for dynamic tokenisation.
We used the HN for all experiments to generate token embeddings on-the-fly, with minimal
computational overhead (c.f. §5 from Minixhofer et al., 2024 for more details). First, we
applied dynamic tokenisation to encoder LMs at the batch-level (§3.1). This approach
achieved up to 35.8% sequence reduction with word-level boundaries for some languages
(Table 5.2), maintaining the average performance within a 3− 4% margin. Subsequent
training with a LoRA adapter using our dynamic tokenisation and HN embeddings, closed
the performance gap almost completely on English across all merge levels (§5.1.2). For
decoder LMs, we implemented dynamic tokenisation at sample-level (§3.2), expanding the
English vocabulary to 1M tokens and using Longest-Prefix (LP) tokenisation. This setup
significantly reduced sequence lengths, thus improving inference speeds, as seen on MMLU
(§5.2.1). In generation tasks, we used an ANN index and achieved fast generation with a
V1M, demonstrating scalability to even larger, dynamic vocabularies (§5.2.2).

Impact

Retrofitting LMs with dynamic tokenisation has significant impact:

1. It reduces sequence lengths across languages, leading to fairer representation and
significantly improved computational efficiency associated with inference;

2. It allows the model to adapt to new domain- or language-specific vocabulary without
retraining the embeddings layer, aligning with continual learning paradigms (Wu et al.,

59

2024). Effectively, it results in an unbounded vocabulary which is determined based
on the input data;

3. Successfully integrating a 1M token vocabulary with an ANN index in a zero-shot
setting demonstrates the potential of large-scale vocabulary adaptation for decoder
LMs with minimal computational overhead. This approach removes the need to store
or retrain all embeddings, addressing a key issue in previous models where embeddings
took the majority of model’s parameter allocation (Chung et al., 2020).

Limitations and Future Directions

While this study introduced dynamic tokenisation in LMs, there are some limitations and
several promising directions for future research:

• Dynamic tokenisation is currently not applicable during the training phase of LMs
because it relies on an HN, which requires a pre-trained LM to learn to predict
embeddings for any new token. Future research should explore integrating dynamic
tokenisation, using a different method, into the initial LM training to enhance model
adaptability;

• The disentanglement of task and tokenisation adaptation did not match the performance
of the joint approach (§5.1.3). Future efforts could potentially explore alternative merg-
ing methods, and longer training (more than 380M tokens). Successfully disentangling
them would facilitate the integration of task-specific models with different dynamic
tokenisation levels without the need for fine-tuning;

• For decoder LMs experiments, we noted a token repetition issue which can be associ-
ated either with the HN embeddings or the MISTRAL-7B (§5.2.2). Future work should
investigate the root cause of this issue and improve the HN if the issue is related to the
embeddings. Additionally, further experiments with other LLMs would be beneficial
to ensure generalisability of the results;

• Our method for decoder LMs expands the initial vocabulary but remains static during
inference, limiting the model’s adaptability. Future work should focus on enabling real-
time vocabulary adjustments to better handle evolving language use or domain-specific
terms, which is the ultimate goal of dynamic tokenisation;

References

Ahia, Orevaoghene, Sachin Kumar, Hila Gonen, Jungo Kasai, David R Mortensen, Noah A
Smith, and Yulia Tsvetkov (2023). “Do all languages cost the same? tokenization in
the era of commercial language models”. In: arXiv preprint arXiv:2305.13707. DOI:
10.18653/v1/2023.emnlp-main.614.

Balachandran, Abhinand (2023). “Tamil-Llama: A New Tamil Language Model Based on
Llama 2”. In: arXiv preprint arXiv:2311.05845. DOI: 10.48550/arXiv.2311.05845.

Boukkouri, Hicham El, Olivier Ferret, Thomas Lavergne, Hiroshi Noji, Pierre Zweigenbaum,
and Junichi Tsujii (2020). “CharacterBERT: Reconciling ELMo and BERT for word-level
open-vocabulary representations from characters”. In: arXiv preprint arXiv:2010.10392.
DOI: 10.48550/arXiv.2010.10392.

Chiang, Cheng-Han and Hung-yi Lee (2023). “Can Large Language Models Be an Alternative
to Human Evaluations?” In: arXiv preprint arXiv:2305.01937. DOI: 10.48550/arXiv.2305.
01937.

Chung, Hyung Won, Thibault Fevry, Henry Tsai, Melvin Johnson, and Sebastian Ruder
(2020). “Rethinking embedding coupling in pre-trained language models”. In: arXiv
preprint arXiv:2010.12821. DOI: 10.48550/arXiv.2010.12821.

Clark, Jonathan H, Dan Garrette, Iulia Turc, and John Wieting (2022). “Canine: Pre-training
an efficient tokenization-free encoder for language representation”. In: Transactions of
the Association for Computational Linguistics 10, pp. 73–91. DOI: 10.1162/tacl_a_00448.

Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov (2020). “Unsupervised Cross-lingual Representation Learning at Scale”. In:
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 8440–8451. DOI: 10.18653/v1/2020.acl-main.747.

Conneau, Alexis, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman,
Holger Schwenk, and Veselin Stoyanov (2018). “XNLI: Evaluating cross-lingual sentence
representations”. In: arXiv preprint arXiv:1809.05053. DOI: 10.48550/arXiv.1809.05053.

Cui, Yiming, Ziqing Yang, and Xin Yao (2023). “Efficient and effective text encoding for
chinese Llama and Alpaca”. In: arXiv preprint arXiv:2304.08177. DOI: 10.48550/arXiv.
2304.08177.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding”. In: arXiv
preprint arXiv:1810.04805. DOI: 10.48550/arXiv.1810.04805.

Ding, Yujuan, Wenqi Fan, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng
Chua, and Qing Li (2024). “A survey on rag meets llms: Towards retrieval-augmented
large language models”. In: arXiv preprint arXiv:2405.06211. DOI: 10.48550/arXiv.2405.
06211.

https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.48550/arXiv.2311.05845
https://doi.org/10.48550/arXiv.2010.10392
https://doi.org/10.48550/arXiv.2305.01937
https://doi.org/10.48550/arXiv.2305.01937
https://doi.org/10.48550/arXiv.2010.12821
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.48550/arXiv.1809.05053
https://doi.org/10.48550/arXiv.2304.08177
https://doi.org/10.48550/arXiv.2304.08177
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.2405.06211
https://doi.org/10.48550/arXiv.2405.06211

References 61

Dobler, Konstantin and Gerard De Melo (2023). “FOCUS: Effective Embedding Initialization
for Monolingual Specialization of Multilingual Models”. In: Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 13440–13454.
DOI: 10.18653/v1/2023.emnlp-main.829.

Douze, Matthijs, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou (2024). “The faiss
library”. In: arXiv preprint arXiv:2401.08281. DOI: 10.48550/arXiv.2401.08281.

Eger, Steffen and Yannik Benz (2020). “From hero to zéroe: A benchmark of low-level
adversarial attacks”. In: Proceedings of the 1st conference of the Asia-Pacific chapter of
the association for computational linguistics and the 10th international joint conference
on natural language processing, pp. 786–803.

Fan, Angela, Mike Lewis, and Yann Dauphin (2018). “Hierarchical neural story generation”.
In: arXiv preprint arXiv:1805.04833. DOI: 10.48550/arXiv.1805.04833.

Fujii, Kazuki, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hat-
tori, Hirai Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki (2024). “Continual
Pre-Training for Cross-Lingual LLM Adaptation: Enhancing Japanese Language Capa-
bilities”. In: arXiv preprint arXiv:2404.17790. DOI: 10.48550/arXiv.2404.17790.

Gage, Philip (1994). “A new algorithm for data compression”. In: The C Users Journal 12.2,
pp. 23–38.

Gee, Leonidas, Andrea Zugarini, Leonardo Rigutini, and Paolo Torroni (2024). “Fast vocab-
ulary transfer for language model compression”. In: arXiv preprint arXiv:2402.09977.
DOI: 10.48550/arXiv.2402.09977.

Golkar, Siavash, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud
Krawezik, Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, Bruno
Régaldo-Saint Blancard, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho (2023).
“xVal: A continuous number encoding for large language models”. In: arXiv preprint
arXiv:2310.02989. DOI: 10.48550/arXiv.2310.02989.

Guo, Ruiqi, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar (2020). “Accelerating large-scale inference with anisotropic vector quantization”.
In: International Conference on Machine Learning. PMLR, pp. 3887–3896.

Ha, David, Andrew Dai, and Quoc V Le (2016). “Hypernetworks”. In: arXiv preprint
arXiv:1609.09106. DOI: 10.48550/arXiv.1609.09106.

Hendrycks, Dan, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt (2020). “Measuring massive multitask language understanding”. In:
arXiv preprint arXiv:2009.03300. DOI: 10.48550/arXiv.2009.03300.

Hofmann, Valentin, Hinrich Schuetze, and Janet B Pierrehumbert (2022). “An embarrassingly
simple method to mitigate undesirable properties of pretrained language model tokeniz-
ers”. In: Association for Computational Linguistics. DOI: 10.18653/v1/2022.acl-short.43.

Holtzman, Ari, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi (2019). “The curious case
of neural text degeneration”. In: arXiv preprint arXiv:1904.09751. DOI: 10.48550/arXiv.
1904.09751.

Hu, Edward J, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen (2021). “LoRA: Low-rank adaptation of large language
models”. In: arXiv preprint arXiv:2106.09685. DOI: 10.48550/arXiv.2106.09685.

Ilharco, Gabriel, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig
Schmidt, Hannaneh Hajishirzi, and Ali Farhadi (2022). “Editing models with task arith-
metic”. In: arXiv preprint arXiv:2212.04089. DOI: 10.48550/arXiv.2212.04089.

https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.48550/arXiv.1805.04833
https://doi.org/10.48550/arXiv.2404.17790
https://doi.org/10.48550/arXiv.2402.09977
https://doi.org/10.48550/arXiv.2310.02989
https://doi.org/10.48550/arXiv.1609.09106
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.18653/v1/2022.acl-short.43
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.48550/arXiv.1904.09751
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2212.04089

References 62

Ippolito, Daphne, Reno Kriz, João Sedoc, Maria Kustikova, and Chris Callison-Burch (2019).
“Comparison of Diverse Decoding Methods from Conditional Language Models”. In:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 3752–3762. DOI: 10.18653/v1/P19-1365.

Jiang, Albert Q, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample,
Lucile Saulnier, et al. (2023). “Mistral 7B”. In: arXiv preprint arXiv:2310.06825. DOI:
10.48550/arXiv.2310.06825.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, et al. (2007).
“Moses: Open source toolkit for statistical machine translation”. In: Proceedings of the
45th annual meeting of the association for computational linguistics companion volume
proceedings of the demo and poster sessions. Association for Computational Linguistics,
pp. 177–180.

Kong, Rui, Qiyang Li, Xinyu Fang, Qingtian Feng, Qingfeng He, Yazhu Dong, Weijun
Wang, Yuanchun Li, Linghe Kong, and Yunxin Liu (2024). “LoRA-Switch: Boosting
the Efficiency of Dynamic LLM Adapters via System-Algorithm Co-design”. In: arXiv
preprint arXiv:2405.17741. DOI: 10.48550/arXiv.2405.17741.

Krell, Mario Michael, Matej Kosec, Sergio P Perez, and Andrew Fitzgibbon (2021). “Efficient
sequence packing without cross-contamination: Accelerating large language models
without impacting performance”. In: arXiv preprint arXiv:2107.02027. DOI: 10.48550/
arXiv.2107.02027.

Kudo, Taku (2018). “Subword Regularization: Improving Neural Network Translation Mod-
els with Multiple Subword Candidates”. In: Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 66–75. DOI:
10.18653/v1/P18-1007.

Kudo, Taku and John Richardson (2018). “Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing”. In: arXiv preprint
arXiv:1808.06226. DOI: 10.48550/arXiv.1808.06226.

Kudugunta, Sneha, Isaac Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati,
Romi Stella, Ankur Bapna, and Orhan Firat (2024). “Madlad-400: A multilingual and
document-level large audited dataset”. In: Advances in Neural Information Processing
Systems 36.

Lan, Tian, Deng Cai, Yan Wang, Heyan Huang, and Xian-Ling Mao (2023). “Copy Is All
You Need”. In: arXiv preprint arXiv:2307.06962. DOI: 10.48550/arXiv.2307.06962.
eprint: 2307.06962.

Lee, Jason, Kyunghyun Cho, and Thomas Hofmann (2017). “Fully character-level neural
machine translation without explicit segmentation”. In: Transactions of the Association
for Computational Linguistics 5, pp. 365–378. DOI: 10.1162/tacl_a_00067.

Li, Minghan, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Wen-tau Yih, and Xi
Victoria Lin (2024). “Nearest Neighbor Speculative Decoding for LLM Generation and
Attribution”. In: arXiv preprint arXiv:2405.19325. DOI: 10.48550/arXiv.2405.19325.

Liang, Davis, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad,
Luke Zettlemoyer, and Madian Khabsa (2023). “XLM-V: Overcoming the vocabulary bot-
tleneck in multilingual masked language models”. In: arXiv preprint arXiv:2301.10472.
DOI: 10.48550/arXiv.2301.10472.

Liu, Yihong, Peiqin Lin, Mingyang Wang, and Hinrich Schütze (2024). “OFA: A Frame-
work of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual

https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.48550/arXiv.2310.06825
https://doi.org/10.48550/arXiv.2405.17741
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.48550/arXiv.2107.02027
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.48550/arXiv.2307.06962
2307.06962
https://doi.org/10.1162/tacl_a_00067
https://doi.org/10.48550/arXiv.2405.19325
https://doi.org/10.48550/arXiv.2301.10472

References 63

Continued Pretraining”. In: Findings of the Association for Computational Linguistics:
NAACL 2024, pp. 1067–1097. DOI: 10.18653/v1/2024.findings-naacl.68.

Martins, Andre and Ramon Astudillo (2016). “From softmax to sparsemax: A sparse model
of attention and multi-label classification”. In: International conference on machine
learning. PMLR, pp. 1614–1623.

Mayhew, Stephen, Terra Blevins, Shuheng Liu, Marek Šuppa, Hila Gonen, Joseph Marvin
Imperial, Börje F Karlsson, Peiqin Lin, Nikola Ljubešić, LJ Miranda, et al. (2023).
“Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark”.
In: arXiv preprint arXiv:2311.09122. DOI: 10.48550/arXiv.2311.09122.

Mielke, Sabrina J, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias
Gallé, Arun Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. (2021). “Between
words and characters: A brief history of open-vocabulary modeling and tokenization in
NLP”. In: arXiv preprint arXiv:2112.10508. DOI: 10.48550/arXiv.2112.10508.

Minaee, Shervin, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher,
Xavier Amatriain, and Jianfeng Gao (2024). “Large Language Models: A Survey”. In:
arXiv preprint arXiv:2402.06196. DOI: 10.48550/arXiv.2402.06196.

Minixhofer, Benjamin, Fabian Paischer, and Navid Rekabsaz (2022). “WECHSEL: Effective
initialization of subword embeddings for cross-lingual transfer of monolingual language
models”. In: Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 3992–
4006. DOI: 10.18653/v1/2022.naacl-main.293.

Minixhofer, Benjamin, Edoardo Maria Ponti, and Ivan Vulić (2024). “Zero-Shot Tokenizer
Transfer”. In: arXiv preprint arXiv:2405.07883. DOI: 10.48550/arXiv.2405.07883.

Nawrot, Piotr, Jan Chorowski, Adrian Łańcucki, and Edoardo M Ponti (2022). “Efficient
transformers with dynamic token pooling”. In: arXiv preprint arXiv:2211.09761. DOI:
10.18653/v1/2023.acl-long.353.

Petrov, Aleksandar, Emanuele La Malfa, Philip Torr, and Adel Bibi (2024). “Language model
tokenizers introduce unfairness between languages”. In: Advances in Neural Information
Processing Systems 36.

Pfeiffer, Jonas, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti (2023). “Modular
deep learning”. In: arXiv preprint arXiv:2302.11529. DOI: 10.48550/arXiv.2302.11529.

Pinter, Yuval, Robert Guthrie, and Jacob Eisenstein (2017). “Mimicking word embeddings
using subword RNNs”. In: arXiv preprint arXiv:1707.06961. DOI: 10.48550/arXiv.1707.
06961.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
(2019). “Language models are unsupervised multitask learners”. In: OpenAI blog 1.8,
p. 9.

Rainey, Joshua P, Brenna E Blackburn, Chance L McCutcheon, Courtney M Kenyon, Kevin J
Campbell, Lucas A Anderson, and Jeremy M Gililland (2023). “A multilingual chatbot
can effectively engage arthroplasty patients who have limited English proficiency”. In:
The Journal of Arthroplasty 38.7, S78–S83. DOI: 10.1016/j.arth.2023.04.014.

Rust, Phillip, Jonas F Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux,
and Desmond Elliott (2022). “Language modelling with pixels”. In: arXiv preprint
arXiv:2207.06991. DOI: 10.48550/arXiv.2207.06991.

Rust, Phillip, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych (2020). “How
good is your tokenizer? on the monolingual performance of multilingual language mod-
els”. In: arXiv preprint arXiv:2012.15613. DOI: 10.18653/v1/2021.acl-long.243.

https://doi.org/10.18653/v1/2024.findings-naacl.68
https://doi.org/10.48550/arXiv.2311.09122
https://doi.org/10.48550/arXiv.2112.10508
https://doi.org/10.48550/arXiv.2402.06196
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.48550/arXiv.2405.07883
https://doi.org/10.18653/v1/2023.acl-long.353
https://doi.org/10.48550/arXiv.2302.11529
https://doi.org/10.48550/arXiv.1707.06961
https://doi.org/10.48550/arXiv.1707.06961
https://doi.org/10.1016/j.arth.2023.04.014
https://doi.org/10.48550/arXiv.2207.06991
https://doi.org/10.18653/v1/2021.acl-long.243

References 64

Sachidananda, Vin, Jason S Kessler, and Yi-An Lai (2021). “Efficient Domain Adaptation
of Language Models via Adaptive Tokenization”. In: arXiv preprint arXiv:2109.07460.
DOI: 10.48550/arXiv.2109.07460.

Schick, Timo and Hinrich Schutze (2020). “BERTRAM: Improved Word Embeddings
Have Big Impact on Contextualized Model Performance”. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 3996–4007. DOI:
10.48550/arXiv.1910.07181.

Schick, Timo and Hinrich Schütze (2019). “Attentive mimicking: Better word embeddings
by attending to informative contexts”. In: arXiv preprint arXiv:1904.01617. DOI: 10.
48550/arXiv.1904.01617.

Schuster, Mike and Kaisuke Nakajima (2012). “Japanese and korean voice search”. In: 2012
IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE, pp. 5149–5152. DOI: 10.1109/ICASSP.2012.6289079.

Sennrich, Rico, Barry Haddow, and Alexandra Birch (2015). “Neural machine translation of
rare words with subword units”. In: arXiv preprint arXiv:1508.07909. DOI: 10.48550/
arXiv.1508.07909.

Slagle, Kevin (2024). “SpaceByte: Towards Deleting Tokenization from Large Language
Modeling”. In: arXiv preprint arXiv:2404.14408. DOI: 10.48550/arXiv.2404.14408.

Song, Xinying, Alex Salcianu, Yang Song, Dave Dopson, and Denny Zhou (2021). “Fast
WordPiece Tokenization”. In: Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 2089–2103. DOI: 10 . 18653 / v1 / 2021 . emnlp -
main.160.

Sun, Lichao, Kazuma Hashimoto, Wenpeng Yin, Akari Asai, Jia Li, Philip Yu, and Caiming
Xiong (2020). “Adv-bert: Bert is not robust on misspellings! generating nature adversarial
samples on bert”. In: arXiv preprint arXiv:2003.04985. DOI: 10.48550/arXiv.2003.04985.

Tay, Yi, Vinh Q Tran, Sebastian Ruder, Jai Gupta, Hyung Won Chung, Dara Bahri, Zhen
Qin, Simon Baumgartner, Cong Yu, and Donald Metzler (2021). “Charformer: Fast
character transformers via gradient-based subword tokenization”. In: arXiv preprint
arXiv:2106.12672. DOI: 10.48550/arXiv.2106.12672.

Tran, Ke (2020). “From english to foreign languages: Transferring pre-trained language
models”. In: arXiv preprint arXiv:2002.07306. DOI: 10.48550/arXiv.2002.07306.

Uzan, Omri, Craig W Schmidt, Chris Tanner, and Yuval Pinter (2024). “Greed is all you need:
An evaluation of tokenizer inference methods”. In: arXiv preprint arXiv:2403.01289.
DOI: 10.48550/arXiv.2403.01289.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”. In: Advances in
neural information processing systems 30.

Viterbi, Andrew (1967). “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm”. In: IEEE transactions on Information Theory 13.2, pp. 260–
269. DOI: 10.1109/TIT.1967.1054010.

Wang, Xinyi, Sebastian Ruder, and Graham Neubig (2021). “Multi-view subword regulariza-
tion”. In: arXiv preprint arXiv:2103.08490. DOI: 10.48550/arXiv.2103.08490.

Williams, Adina, Nikita Nangia, and Samuel R Bowman (2017). “A broad-coverage challenge
corpus for sentence understanding through inference”. In: arXiv preprint arXiv:1704.05426.
DOI: 10.48550/arXiv.1704.05426.

Wu, Tongtong, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza
Haffari (2024). “Continual Learning for Large Language Models: A survey”. In: arXiv
preprint arXiv:2402.01364. DOI: 10.48550/arXiv.2402.01364.

https://doi.org/10.48550/arXiv.2109.07460
https://doi.org/10.48550/arXiv.1910.07181
https://doi.org/10.48550/arXiv.1904.01617
https://doi.org/10.48550/arXiv.1904.01617
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.48550/arXiv.1508.07909
https://doi.org/10.48550/arXiv.1508.07909
https://doi.org/10.48550/arXiv.2404.14408
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.18653/v1/2021.emnlp-main.160
https://doi.org/10.48550/arXiv.2003.04985
https://doi.org/10.48550/arXiv.2106.12672
https://doi.org/10.48550/arXiv.2002.07306
https://doi.org/10.48550/arXiv.2403.01289
https://doi.org/10.1109/TIT.1967.1054010
https://doi.org/10.48550/arXiv.2103.08490
https://doi.org/10.48550/arXiv.1704.05426
https://doi.org/10.48550/arXiv.2402.01364

References 65

Xie, Jiateng, Zhilin Yang, Graham Neubig, Noah A Smith, and Jaime Carbonell (2018).
“Neural cross-lingual named entity recognition with minimal resources”. In: arXiv preprint
arXiv:1808.09861. DOI: 10.48550/arXiv.1808.09861.

Xu, Frank F, Uri Alon, and Graham Neubig (2023). “Why do nearest neighbor language
models work?” In: International Conference on Machine Learning. PMLR, pp. 38325–
38341.

Xu, Jingwei, Junyu Lai, and Yunpeng Huang (2024). “MeteoRA: Multiple-tasks Embedded
LoRA for Large Language Models”. In: arXiv preprint arXiv:2405.13053. DOI: 10.48550/
arXiv.2405.13053.

Xue, Linting, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel (2022). “Byt5: Towards a token-free future with pre-
trained byte-to-byte models”. In: Transactions of the Association for Computational
Linguistics 10, pp. 291–306. DOI: 10.1162/tacl_a_00461.

Yadav, Prateek, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal (2023).
“Resolving interference when merging models”. In: arXiv preprint arXiv:2306.01708 1.
DOI: 10.48550/arXiv.2306.01708.

Yu, Lili, Dániel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike
Lewis (2024). “Megabyte: Predicting million-byte sequences with multiscale transform-
ers”. In: Advances in Neural Information Processing Systems 36.

Yuan, Fei, Shuai Yuan, Zhiyong Wu, and Lei Li (2023). “How Vocabulary Sharing Facilitates
Multilingualism in LLaMA?” In: CS Department, Carnegie Mellon University.

Zubiaga, Arkaitz (2024). Natural language processing in the era of large language models.
DOI: 10.3389/frai.2023.1350306.

https://doi.org/10.48550/arXiv.1808.09861
https://doi.org/10.48550/arXiv.2405.13053
https://doi.org/10.48550/arXiv.2405.13053
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.48550/arXiv.2306.01708
https://doi.org/10.3389/frai.2023.1350306

Appendix A

Prompt templates for MMLU

This appendix contains the prompt templates we used for MMLU evaluation (§4.5.2).

Prompt Template: 0-shot

“The following are multiple choice questions (with answers) about 〈TOPIC〉.
〈QUESTION〉
〈ANSWERS〉
Answer:”

Prompt Template: 5-shot from Random Domain

“The following are multiple choice questions (with answers).
This question is about 〈TOPIC_1〉 and refers to the following information.
〈QUESTION_1〉
〈ANSWERS_1〉
Answer: 〈ANSWER_1〉
.
.
.
This question is about 〈TOPIC_5〉 and refers to the following information.
〈QUESTION_5〉
〈ANSWERS_5〉
Answer: 〈ANSWER_5〉

67

This question is about 〈TOPIC〉 and refers to the following information.
〈QUESTION〉
〈ANSWERS〉
Answer: ”

Prompt Template: 5-shot from the Same Domain as the Current Question

“The following are multiple choice questions (with answers) about 〈TOPIC〉.
This question refers to the following information.
〈QUESTION_1〉
〈ANSWERS_1〉
Answer: 〈ANSWER_1〉
.
.
.
This question refers to the following information.
〈QUESTION_5〉
〈ANSWERS_5〉
Answer: 〈ANSWER_5〉

This question refers to the following information.
〈QUESTION〉
〈ANSWERS〉
Answer:”

Appendix B

Reproducibility Details

A summary for the hyperparameters we used for training and evaluation in this project is
shown in Tables B.4, B.1, and B.2 to B.3.

Experiment Python’s
random

torch numpy.random

Encoder experiments 42 42 42

Decoder experiments
on MMLU

0 1234 1234

Decoder experiments
on MT-Bench

1234 1234 1234

Table B.1 Summary of random seeds used across different experiments.

Attribute Value

Dimension 4096
Nlist 50
Nprobe 30
Quantizer IndexFlatL2
Index IndexIVFFlat
Metric Inner Product

Table B.2 Configuration details for the
Faiss index.

Attribute Value

Num. neighbours 200
Num. leaves 2000
Num. leaves to search 250
Training Sample Size 1,000,000
Dim. per block 3
Anisotropic quantization 0.2
Reorder 200
Metric Dot product

Table B.3 Configuration details for the ScaNN
index.

69

Hyperparameter 1) Task Adapter
with Original
Subword
Tokenisation,
XNLI

2) Joint Task
and Dynamic
Tokenisation
Adapter, XNLI

1)Task Adapter
with Original
Subword
Tokenisation & 2)
Joint Task and
Dynamic
Tokenisation
Adapter, UNER

3) Disentangling
Task Adaptation
from
Tokenisation
Adaptation

Matrix Rank r 32 128 256 256

Scaling Factor α 64 256 512 512

Dropout 0.3 0.3 0.3 0.3

Epochs 10 {10, 15} 15 3

Learning Rate 3×10−4 1×10−4 3×10−4 1×10−4

Batch Size 32 32 32 32

Optimiser AdamW AdamW AdamW AdamW

Optimiser
Parameters

ϵ = 10−8,
β1 = 0.9,
β2 = 0.999

ϵ = 10−8,
β1 = 0.9,
β2 = 0.999

ϵ = 10−8, β1 = 0.9,
β2 = 0.999

ϵ = 10−8,
β1 = 0.9,
β2 = 0.999

Scheduler Linear, no
warmup steps

Linear, no
warmup steps

Linear, no warmup
steps

Linear, no
warmup steps

Max Sequence
Length

128 128 128 512

Token Masking
Probability

N/A N/A N/A 15%

Table B.4 Summary of hyperparameters for LoRA training.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Tokenisers
	2.1.1 Normalisation and Pre-tokenisation
	2.1.2 Byte-Pair-Encoding
	2.1.3 WordPiece
	2.1.4 UnigramLM

	2.2 Language Models
	2.2.1 Language Modelling
	2.2.2 Transformers

	2.3 Multilingual Models and Tokenisers
	2.4 Embedding Initialisation
	2.5 Embedding Prediction Using Hypernetworks
	2.6 Dynamic Tokenisation Related Work
	2.7 Summary

	3 Methodology
	3.1 Dynamic Tokenisation with Encoders LMs
	3.1.1 Decide on a Dynamic Tokenisation
	3.1.2 Obtain Token Embeddings

	3.2 Dynamic Tokenisation with Decoders LMs
	3.2.1 Vocabulary Expansion
	3.2.2 Decide on a Tokenisation Function
	3.2.3 Obtain Token Embeddings and Index Construction

	3.3 Summary

	4 Experimental Setup
	4.1 Models
	4.2 Benchmarks for Encoder LMs Experiments
	4.3 Benchmarks for Decoder LMs Experiments
	4.4 Training Data
	4.5 Experiments
	4.5.1 Encoder LMs
	4.5.2 Decoder LMs

	4.6 Evaluation Metrics
	4.7 Summary

	5 Results and Discussion
	5.1 Encoder LMs
	5.1.1 Task Adapter Trained with Original Subword Tokenisation and Embeddings
	5.1.2 Joint Task and Dynamic Tokenisation Adaptation
	5.1.3 Disentangling Task Adaptation from Tokenisation Adaptation

	5.2 Decoder LMs
	5.2.1 MMLU
	5.2.2 MT-Bench

	5.3 Other Results
	5.3.1 Verifying the Quality of the Index
	5.3.2 Hypernetwork Embeddings Caching

	5.4 Summary

	6 Conclusion
	References
	Appendix A Prompt templates for MMLU
	Appendix B Reproducibility Details

