
Learning to Forget with Diffusion
Hypernetworks

José Miguel Lara Rangel

Supervisor: Prof. David Krueger

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Trinity College August 2024

I dreamed of tears cascading upon the earth,
The sun’s rays echoed in the air,

Scorching the backs of men and women,
And feet sowing seeds in the dry soil.

Feathered serpents grew into toys for children,
Playing through fields of sadness,

Suffering was veiled by their illusions.
And we laughed to keep from crying.

Uncertain ways walked with bare feet,
Brimming with faith in the future,

We ventured to sketch a smile,
Following the winding railway of destiny.

Life, remember our steps and tears,
I owe you nothing and you owe me nothing.
Feel your brown soil moistening once more,
As maize springs in the fields of your heart.

Life, embrace me like a Flower,
My eyes see beauty, even among thorns,

Lift that cup filled with the tears of your harvest.
Toast with me to all the moments,

You longed to cradle in your memories,
And to those you begged the heaven to forget.

Life, face up when recalling your path.
Blessed are you among all women,

May God bless the fruit of your spirit and suffering.
Yes, little girl, this is what the wise call living—

And you my Flower, you have danced with life itself.

- I love you Mom

Declaration

I, José Miguel Lara Rangel of Trinity College, being a candidate for the MPhil in Machine
Learning and Machine Intelligence, hereby declare that except where specific reference is
made to the work of others, the contents of this dissertation are original and have not been
submitted in whole or in part for consideration for any other degree or qualification in this,
or any other university. This dissertation is my own work and contains nothing which is
the outcome of work done in collaboration with others, except as specified in the text and
Acknowledgements. This dissertation contains in the main text fewer than 15,000 words
including appendices, bibliography, footnotes, tables and equations and has fewer than 40
figures.

José Miguel Lara Rangel
August 2024

Acknowledgements

This acknowledgment is mainly dedicated to the individuals who directly or indirectly
contributed to the completion of this work.

First, I would like to thank my supervisor, David Krueger, for his time and guidance,
always willing to provide insightful feedback and continuous support throughout this journey.
His expertise was valuable in shaping the direction of this work.

Equally important was my co-supervisor, Usman Anwar, to whom I extend my deepest
gratitude. His constant availability and constructive discussions were instrumental in shaping
and refining this work. His insightful suggestions significantly contributed to the progress of
it.

A special thanks goes to Stefan Schoepf and Jack Foster for their invaluable insights
and their consistently welcoming approach to my questions and ideas. Their willingness to
engage together with the project and provide thoughtful dialogue has greatly enhanced the
quality of this work. Additionally, they provided valuable extracts of code for Section 3.5,
and their previous work on Machine Unlearning has been relevant for this work.

I would also like to acknowledge my dear friend, Fernando Cocoletzi. He was a hidden
figure, hard to contact but whose questions and keen insights were among the most important
I received during this project. My friend, you remain the most impressive genius I have met
so far.

Additionally, I would like to extend my heartfelt appreciation to everyone who has
supported me in various ways throughout this journey. In particular, I am grateful to those
who noticed and felt the absence of my presence during the final weeks of this project. Your
encouragement, patience, and understanding have been invaluable and deeply appreciated.

Finally, I extend my gratitude inward, to the self that has walked this path with unwavering
resolve. For being there in moments of doubt, for finding strength in the quiet hours, and
for persisting when the road seemed steepest—I thank the self that stood by me, a silent
companion through every challenge. To you my always present friend: thank you.

Abstract

In this work we explore the application of hypernetworks, neural networks that learn to
generate parameters for other networks, for the field of Machine Unlearning. We introduce
HyperForget, a framework for Machine Unlearning that leverages the power of hypernetworks
to dynamically generate model parameters capable of selectively forget specific data while
retaining critical knowledge and capabilities.

By integrating diffusion models within the HyperForget framework, we introduce two
approaches for constructing a Diffusion HyperForget Network. These models are capable to
sample unlearned models with different configurations as requested by an user.

We present Proof-of-Concept (POC) scenarios to evaluate the applicability of these
models on different unlearning tasks. The corresponding results indicate the potential
application of this type of models, specifically hypernetworks, for Machine Unlearning.

Finally, we discuss the models limitations and current challenges for their practical
use, including issues related to scalability, potential recovery of forgotten information,
generalization capabilities, and robustness. And comment on future research directions
aiming to refine the HyperForget framework and extend its applicability and potential
benefits.

Overall, the HyperForget framework represents a potential approach for the develop-
ment of adaptive and dynamic Machine Unlearning algorithms that align with modern data
governance and emerging AI standards.

Table of contents

List of figures xiii

List of tables xv

Nomenclature xvii

1 Introduction 1
1.1 An Enquiry Concerning Human Forgetting 1
1.2 From a Nice-To-Have to a Requirement 4
1.3 Outline . 6

2 Background 7
2.1 Machine Unlearning . 7

2.1.1 Exact Unlearning . 9
2.1.2 Approximate Unlearning . 10
2.1.3 Restricted Data Scenarios . 12
2.1.4 Unlearning Algorithms Categorization 13
2.1.5 Catastrophic Unlearning . 15
2.1.6 Unlearning Evaluation and Verification 15
2.1.7 Challenges in Machine Unlearning 18

2.2 Diffusion Models . 19
2.2.1 Denoising Diffusion Probabilistic Models 20
2.2.2 Diffusion Transformer . 23

2.3 Hypernetworks . 24
2.3.1 Diffusion Hypernetworks . 26
2.3.2 Learning To Learn . 28

3 Methodology 35
3.1 HyperForget . 35

xii Table of contents

3.2 Evaluation Procedure and Metrics . 37
3.3 DiHyFo-1 . 40

3.3.1 Training Dataset . 42
3.3.2 Training Process . 44
3.3.3 Training Evaluation . 46

3.4 DiHyFo-2 . 51
3.4.1 Training Dataset . 51
3.4.2 Training Process . 53
3.4.3 Training Evaluation . 54

3.5 Unlearning Evaluation . 59

4 Discussion 67
4.1 Model Limitations . 67
4.2 Conclusion and Future Work . 68

References 71

Appendix A Additional Supporting Results 81

List of figures

2.1 Graphical Representation of Diffusion Process 20
2.2 A DiT Architecture with Adaptive layer norm 24
2.3 Hypernetwork Framework . 25
2.4 G.pt Architecture . 28
2.5 G.pt Training Results . 31
2.6 Evolution of G.pt Prompt Alignment with Error as metric 32
2.7 Comparison of Distribution of Test Losses and Losses in Train Set for G.pt. 33
2.8 Comparison of Distribution of Losses in Train Set and Resampled Train Set

for G.pt in log-scale . 33
2.9 Behaviour of G.pt with re-balanced loss data. 34

3.1 Diffusion HyperForget Process . 36
3.2 DiHyFo Approaches . 37
3.3 Pseudocode for computing MIA score. 39
3.4 DiHyFo-1 Architecture . 41
3.5 Checkpoints Collection for the Optimization Process 42
3.6 Checkpoints collection for De-optimization Process 43
3.7 Pseudocode for Collecting Checkpoints with Bins. 45
3.8 DiHyFo-1 Learning Curves with MNIST-4. 46
3.9 Examples of prompt alignment and correlation obtained by the parameters

generated with DiHyFo-1 for MNIST-4. 48
3.10 Examples of Observed vs Target Losses during training and testing obtained

by the parameters generated with DiHyFo-1 for MNIST-4 49
3.11 DiHyFo-1 Learning Curves with MNIST. 49
3.12 Examples of prompt alignment and correlation obtained by the parameters

generated with DiHyFo-1 for MNIST . 50
3.13 Examples of Observed vs Target Losses obtained during training and testing

of parameters generated by DiHyFo-1 for MNIST 52

xiv List of figures

3.14 DiHyFo-2 Architecture . 53
3.15 DiHyFo-2 Learning Curves on MNIST-4 54
3.16 DiHyFo-2 Learning Curves on MNIST . 54
3.17 Examples of prompt alignment and correlation obtained by the parameters

generated with DiHyFo-2 for MNIST-4. 55
3.18 Examples of Observed vs Target Losses obtained during training and testing

generated with DiHyFo-2 for MNIST-4 56
3.19 Examples of prompt alignment and correlation obtained by the parameters

generated with DiHyFo-2 for MNIST . 57
3.20 Examples of Observed vs Target Losses obtained during training and testing

generated with DiHyFo-2 for MNIST . 58
3.21 Selection of sampled models using DiHyFo-1 and DiHyFo-2 on MNIST-4 . 60
3.22 Selection of sampled models using DiHyFo-1 and DiHyFo-2 on MNIST . . 61
3.23 Comparison of Predictions between DiHyFo-1 and Retrained Model on

MNIST-4 . 64
3.24 Comparison of Predictions between DiHyFo-2 and Retrained Model on MNIST 65

A.1 Comparison of Predictions between DiHyFo-2 and Retrained Model on
MNIST-4 . 81

A.2 Comparison of Predictions between DiHyFo-1 and Retrained Model on MNIST 82
A.3 Behavior of G.pt when trained conditioned on one class loss 83

List of tables

2.1 Categorization of Machine Unlearning Algorithms 14

3.1 Individual Unlearning Performance Metrics on MNIST-4. 59
3.2 Paired Unlearning Performance Metrics on MNIST-4. 59
3.3 Individual Unlearning Performance Metrics on MNIST. 63
3.4 Paired Unlearning Performance Metrics on MNIST. 63

Nomenclature

Acronyms / Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

DNN Deep Neural Network

DDPM Denoising Diffusion Probabilistic Model

DiHyFo Diffusion HyperForget Network

DiT Diffusion Transformer

FIM Fisher Information Matrix

GDPR General Data Protection Regulation

LLMs Large Language Models

MIA Member Inference Attack

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

MU Machine Unlearning

POC Proof-of-Concept

RT BF Right to be Forgotten

SGD Stochastic Gradient Descent

Chapter 1

Introduction

1.1 An Enquiry Concerning Human Forgetting

The principal interest in this work is to equip Machine Learning models with the capacity
to forget. As with any new AI development, we may start by rethinking how this process
functions in humans. Traditionally, when it comes to human memory, the main interest
is on how to remember, often viewing forgetting as negative. However, numerous studies
in education, psychology, and neuroscience highlight that forgetting is just as crucial as
remembering in cognitive processes (Cuddy and Jacoby, 1982; Fawcett and Hulbert, 2020;
Kuhl et al., 2007; Storm et al., 2008).

Forgetting in a healthy brain happens dynamically, not merely as a memory error, and
though often unintentional, it is crucial for human reasoning (Shuang Sha et al., 2024). While
the psychological, biological, and neural mechanisms of forgetting are not fully understood
yet, it is recognized as a key part of the brain’s memory management system, alongside
attention, memory acquisition, and consolidation (Davis and Zhong, 2017; Shuang Sha et al.,
2024). And just as memory is vital for human learning and understanding, forgetting is
equally important, which also applies to Machine Learning and possibly one day to Machine
Understanding and Reasoning.

Similar to what happens at the moment with machines, at some point in history the
human brain was regarded as a biological machine that forms and stores memory, with
most forgetting happening naturally. This natural or passive forgetting includes memory
decay over time, difficulties in information retrieval due to the erosion of cellular memory
traces, or disconnections within the memory engram that render cells unresponsive to recall
mechanisms, as well as the loss of context cues that can make certain memories harder to
recall (Davis and Zhong, 2017).

2 Introduction

While models do not experience natural forgetting as humans, they do exhibit processes
analogous to certain active human forgetting mechanisms, which involves an effort to forget
or suppress certain memories or information (Costanzi et al., 2021; Davis and Zhong, 2017;
Shuang Sha et al., 2024). For instance, intrinsic forgetting in humans refers to the brain’s
ability to weaken memory traces, allowing it to prioritize important information while
pushing less relevant memories to the background. This process helps maintain working
memory capacity, reduces memory overload, and enhances comprehension, decision-making,
and learning (Davis and Zhong, 2017; Shuang Sha et al., 2024). In Machine Learning,
similar processes occur during training, where the model prioritizes and preserves essential
knowledge within its parameters, and regularization techniques are employed to ensure
the model focuses on relevant information, thereby preventing overfitting and information
overload (Jagielski et al., 2022; Kulikovskikh and Prokhorov, 2018; Norman et al., 2007).

Studies on human forgetting have evolved to understand it not merely as a natural process
of the brain but also as one that can be voluntary and conscious. Classical psychology,
influenced by Freud and Jung’s work on ego and repression, suggests that people forget as a
defense mechanism to cope with painful, overwhelming, or distressing experiences (Cohen,
1985; Freud, 1922, 2014; Jung, 2014). Modern approaches recognize both unconscious and
conscious processes, including the deliberate avoidance of thoughts related to traumatic
events. Voluntary forgetting is crucial for mental health, as it allows individuals to manage
undesirable memories and concentrate on more relevant information. This active forgetting
can be triggered by external or internal stimuli, and recent clinical psychology studies suggest
that deficits in active forgetting are associated with psychopathologies such as stress disorders,
depression, and obsessive-compulsive disorder (Costanzi et al., 2021; Geraerts and McNally,
2008; Shuang Sha et al., 2024).

Forgetting can, therefore, be an active, voluntary effort to suppress or discard specific
memories, and there are several methods for this. Motivated forgetting occurs when indi-
viduals consciously engage cognitive mechanisms to suppress certain thoughts, and with
practice, people can learn to manage and reduce the impact of these memories. Directed
forgetting is another cognitive process where individuals are instructed to forget specific
information, which can happen through active suppression (weakening the memory trace)
or retrieval inhibition (blocking the memory from being recalled). In cognitive-behavioral
therapy, cognitive restructuring is used to help individuals change their perspectives on
certain memories. By altering the emotional significance of a memory, its impact can be
reduced, making it easier to forget. Additionally, replacing a distressing memory with a more
neutral or positive one can cause the negative memory to fade into the background over time
(Basden et al., 1993; Costanzi et al., 2021; Marks et al., 1998).

1.1 An Enquiry Concerning Human Forgetting 3

Emotional regulation techniques like mindfulness, meditation, and relaxation exercises
can help manage emotional responses tied to specific memories, aiding in the forgetting
process. Exposure therapy, often used to treat phobias and trauma, involves controlled
exposure to distressing memories or cues, gradually reducing their emotional impact and
making them less intrusive (Costanzi et al., 2021; Gamboa et al., 2017; Van Vugt and Jha,
2011; Zoellner et al., 2011).

Retrieval-Induced Forgetting occurs when actively recalling some memories suppresses
related, non-retrieved ones, helping to focus cognitive resources on the most relevant mem-
ories but sometimes leading to the unintentional loss of valuable information (Davis and
Zhong, 2017; Murayama et al., 2014). Interference-based forgetting, where competing infor-
mation or activities accelerate memory decay, is particularly relevant in contexts requiring
a balance between retaining and discarding information. These forms of active forgetting
are reflected in some approaches to make Machine Learning models to forget (Endress and
Johnson, 2021; Norman et al., 2007; Riemer et al., 2018).

In Machine Learning, the intentional removal of specific data influences from a trained
model is part of an emerging area known as Machine Unlearning (Bourtoule et al., 2021;
Shuang Sha et al., 2024). This process is complex because the influence of data on model
performance and decision-making is significant, and the boundaries of what should be
forgotten must be carefully considered to avoid negative outcomes.

In cognitive psychology, where forgetting is more about retrieval than storage, excessive
forgetting can have severe consequences, such as loss of identity, impaired learning, poor
decision-making, and cognitive decline, as seen in Alzheimer’s disease (Moulin et al., 2002;
Shuang Sha et al., 2024; Wixted, 2004). Similarly, in Machine Learning, unmanaged data
forgetting can degrade model performance. While humans adapt to forgetting through
cognitive strategies, Machine Learning models need careful design and tuning to mitigate
the effects of excessive unlearning. Balancing forgetting is essential for both humans and
machines to ensure memory remains useful.

Just as forgetting and memory are vital in human learning, refining methods for Machine
Learning models to forget is key to create systems that not only learn effectively but also
strategically unlearn and adapt, leading to more robust and ethical AI applications.

This work explores a methodology inspired by human forgetting theories that view
memory as an active reconstruction process. Similar to learning, forgetting can be seen as
a generative process involving a sequence of states with varying levels of forgetting. The
process transitions from lesser to greater forgetting (Fawcett and Hulbert, 2020; Frise, 2018;
Heng and Soh, 2024; Shuang Sha et al., 2024). This perspective positions forgetting as the

4 Introduction

inverse process of learning—an unlearning process. By reconstructing these states, we aim to
place the Machine Learning model in a state where it effectively forgets targeted information.

1.2 From a Nice-To-Have to a Requirement

The need for Machine Learning models to forget their training data has evolved from a
research interest to a crucial requirement in today’s Artificial Intelligence (AI) landscape.
Recent studies highlight the security risks posed by poisoned attacks and backdoor techniques,
where malicious actors manipulate models by introducing poisoned data (Carlini et al., 2024;
Goel et al., 2024; Schoepf et al., 2024). Additionally, adversarial attacks have been used to
reveal whether specific data instances were part of a model’s training set (Cao and Yang,
2015; Marchant et al., 2022; Nasr et al., 2023; Ren et al., 2020), making data forgetting not
just a security measure but a critical defense mechanism.

Moreover, societal biases related to aspects such as race or gender often originate from
features within the training data, which Machine Learning models may unintentionally learn
and propagate (Chen et al., 2024; Dinsdale et al., 2020, 2021). In such cases, unlearning the
data associated with these biases is a strategy to correct model behavior and mitigate bias in
decision-making.

The most compelling reason for implementing forgetting mechanisms, however, comes
from the evolving landscape of data privacy regulations and AI governance. As society
becomes increasingly data-driven, vast amounts of personal information are continuously
collected and processed. The legal implications of handling such data have become a
focal point for regulators, particularly when it pertains to identifiable individuals. Privacy
is recognized as a fundamental human right in documents like Article 12 of the Universal
Declaration of Human Rights (United Nations, 1948) or Article 8 of the European Convention
on Human Rights (Council of Europe, 1950). Further, Article 8 of the EU Charter of
Fundamental Rights explicitly guarantees the protection of personal data:

"Everyone has the right to the protection of personal data concerning him or her. Such
data must be processed fairly for specified purposes and on the basis of the consent of
the person concerned or some other legitimate basis laid down by law. Everyone has the
right of access to data which has been collected concerning him or her, and the right to
have it rectified. Compliance with these rules shall be subject to control by an independent
authority" (European Union, 2000).

As a result, data privacy has become a primary concern for regulators worldwide, leading
to the establishment of constitutional provisions, national laws, or international treaties, that

1.2 From a Nice-To-Have to a Requirement 5

define the legal boundaries for accessing, processing, and utilizing personal data (Zhang
et al., 2023a).

In the current regulatory environment, with emerging AI regulations on the horizon,
frameworks like the European Union’s General Data Protection Regulation (GDPR) have
set a precedent for data privacy protection (Shastri et al., 2019; Voigt and Von dem Bussche,
2017). GDPR grants individuals key rights, including the Right to be Informed (Articles
13-14), which requires immediate notification when data is collected directly, or within a
month if indirectly. The Right of Access (Article 15) allows individuals to request access to
and understand how their data is processed. The Right to Rectification (Article 16) ensures
that inaccuracies in personal data are corrected, maintaining data accuracy. The Right to
Erasure (Article 17), also known as the Right to be Forgotten (RTBF), allows individuals to
request the deletion of their data under specific conditions, with data controllers typically
required to comply within a month. This right balances individual privacy with the legitimate
interests of organizations in processing data for research, freedom of expression, or public
interest. Together, these rights empower individuals to control their personal data and enforce
privacy protections (European Union, 2016).

The RTBF is particularly relevant, allowing individuals to request the deletion of their
data. Initially created in response to search engine data collection (Hoofnagle et al., 2019),
this right now extends to organizations using AI models, requiring them to have mechanisms
to delete data used for training models. Moreover, the recent EU AI Act states that:

"the right to privacy and to protection of personal data must be guaranteed throughout
the entire lifecycle of the AI system... the principles of data minimisation and data protection
by design and by default... are applicable when personal data are processed. Measures taken
by providers to ensure compliance with those principles may include not only anonymisation
and encryption, but also the use of technology that permits algorithms to be brought to the
data and allows training of AI systems without the transmission between parties or copying
of the raw or structured data themselves..." (European Commission, 2024)

But different to search engines, Machine Learning models capture information of their
training data in their parameters. Thus, to align Machine Learning models with ethical
standards and regulatory requirements it is necessary to not only delete stored data but also
to eliminate its influence on the model’s parameters, which directly affects the model’s
capabilities (Bourtoule et al., 2021; Foster et al., 2024b).

On the other hand, regulations governing predictive models and model risk have long
existed, particularly in sectors where their use has had historically significant impacts, such
as credit scoring, insurance underwriting, and financial trading (Bessis, 2011; Gatzert and
Wesker, 2012; King and Tarbert, 2011). But different to traditional statistical models, AI

6 Introduction

models such as Deep Neural Networks (DNNs) and Large Language Models (LLMs) have
shown capabilities for memorizing and reproducing training data, posing new challenges for
compliance with data privacy regulations (Liu et al., 2024a; Zhang et al., 2023a).

As AI continues permeating various aspects of society, the frequency of attacks to
Machine Learning models increase, and personal data sources expand, These mechanisms
are no longer just research interests; they are critical for meeting regulatory, ethical, and
security standards. In this context, this work delves into Machine Unlearning, a growing
field in AI focused on enabling models to forget specific training data while retaining overall
performance. We propose a novel approach using diffusion models and hypernetworks,
offering a potential promising direction for develop AI systems that align with modern AI
and data standards.

1.3 Outline

This dissertation is structured as follows:

• Chapter 2. Introduces the foundational concepts and methodologies in Machine
Unlearning, setting the stage for the following chapters. A high-level overview of
diffusion models is provided, followed by an exploration of hypernetworks and their
potential in developing adaptive Machine Learning methods. The chapter also reviews
key prior works that form the basis for the methods proposed in this dissertation.

• Chapter 3. Presents the HyperForget framework, detailing how hypernetworks can be
applied to Machine Unlearning in classification tasks. Two implementations, DiHyFo-1
and DiHyFo-2, are introduced, each utilizing diffusion models to sample unlearned
neural networks. The chapter explores their unlearning capabilities, demonstrating the
framework’s potential benefits and its promising direction for future research.

• Chapter 4. Examines the limitations of the proposed models and framework, addressing
challenges and implications for broader deployment. The chapter also summarizes
the key insights from this research and suggests directions for future work to further
advance the field of Machine Unlearning.

Chapter 2

Background

This chapter introduces the theoretical foundations for the rest of this work. Section 2.1
covers the core concepts of Machine Unlearning, including definitions, model development
methodologies, evaluation approaches, and current challenges, establishing key terminology
for subsequent chapters.

Section 2.2 explores diffusion models, focusing on their mathematical principles and
their role in generative modeling.

Finally, Section 2.3 examines hypernetworks, discussing their architecture, functionality,
and how they enable dynamic parameter generation. The integration of hypernetworks with
diffusion models is highlighted, setting the stage for subsequent chapters.

2.1 Machine Unlearning

Machine Unlearning focuses on developing algorithms capable of efficiently and effectively
removing the influence of specific data on a model, while ensuring that unrelated model’s
knowledge or capabilities remain unaffected (Liu et al., 2024a). The data to forget can
include specific data points, features, classes, or even entire learning tasks upon request
(Bourtoule et al., 2021; Nguyen et al., 2022).

In this context, the subset of a dataset D that should be forgotten D f is referred to as the
"unlearning target" or "forget set", while the data that should remain unaffected Dr = D\D f

constitutes the "retain set". The primary goal is to remove the influence of the forget set
on the model’s performance while preserving its performance for the retain set (Liu et al.,
2024a). Definition 2 formally defines an unlearning algorithm upon the Definition 1 of a
learning algorithm.

8 Background

Definition 1 (Learning Algorithm) Let Z denote an example space with an associated
power set P(Z). Let D ⊆ Z represent the training dataset, and H the set of all possible
hypothesis or models that map inputs to outputs based on the training data. A learning
algorithm A : P(Z)→ H is a function that takes the training dataset and identifies the best
hypothesis that fits it h ∈ H : A(D) = h by minimizing over time an objective error measure
of the model’s predictions, E : H ×P(Z)→ R, h = argminh′∈HE(h′,D). The final model
obtained can then be used to make predictions or decisions based on new inputs y = h(x),
where x ∈ Z.

Definition 2 (Unlearning Algorithm) An unlearning algorithm is a function U that takes
as input a training set D⊆ Z with two identified disjoint subsets, the forget set D f ⊆ D and
retain set Dr = D\D f , along with a learning algorithm A(D). The output is an unlearned
model U(D,D f ,A(D)) ∈ H, which is expected to perform equivalently or similarly to a
model that has been trained without the forget set, A(D\D f).

Thus, unlearning guarantees that training on a point and subsequently unlearning it
produces a distribution of models similar to what would have been obtained if the point had
never been included in training (Bourtoule et al., 2021; Tarun et al., 2023a). Depending on
how "unlearning" is defined, different objective measures can be established. According to
our definition, unlearning refers to updating a pre-trained model to lose its capabilities on the
forget set while retaining them for the retain set. This leads to the commonly used unlearning
objective measure presented in Definition 3 (Liu et al., 2024a; Nguyen et al., 2022).

Definition 3 (Unlearning Objective Measure) Let u=U(D,D f ,A(D))∈H be an unlearned
model with output after unlearning y f = u(x), x ∈ Z. The goal is to find the parameters that
minimize the expected loss on the forget set post-unlearning while retaining a level λ of error
on the retain set as it was pre-unlearning:

min
θ

(
ED f

(
L (y f | x;θ)

)
+λEDr (L (y | x;θ))

)
(2.1)

Consequently, unlearning is closely related to analyzing the influence of model parameters
or architectural components in the input-output interactions within the model (Liu et al.,
2024a; Zhang et al., 2023b). And the definition of "unlearning" and its objectives characterize
the unlearning problem and establish the design principles underlying unlearning algorithms,
which we now briefly explore.

2.1 Machine Unlearning 9

2.1.1 Exact Unlearning

According to Definition 2, a necessary and sufficient condition for a model to achieve exact
unlearning is that it produces the same results as a model that has not encountered the forget
set during training. More generally, for randomly initialized models, exact unlearning is
achieved when the distribution of unlearned models is identical to the distribution of models
trained on the dataset excluding the forget set (Kurmanji et al., 2024; Thudi et al., 2021).

P(U(D,DF ,A(D))) = P(A(D\D f)) (2.2)

As pointed out by Brophy and Lowd (2021); Ginart et al. (2019); Nguyen et al. (2022) an
issue with this condition is that while two models trained with the same dataset should belong
to the same distribution, defining this distribution is complicated. To avoid the unlearning
algorithm being specific to a particular training dataset, a more general definition for exact
unlearning can be provided in Definition 4. This allows for defining a metric space for the
models and, consequently, for the distributions, which depends on whether we treat a model
as a mapping between inputs and outputs or as architectures defined by specific parameters.
Therefore, we can define and work with unlearning methods over a function space or a weight
space.

Definition 4 (Exact Unlearning) A sufficient and necessary condition for a process U(.) to
be an exact unlearning process is that

∀B⊆ H,D ∈ Z∗,D f ⊂ D : P(U(D,DF ,A(D)) ∈ B) = P(A(D\D f) ∈ B) (2.3)

Indeed, unlearning can be accomplished either by equating the distribution of parameters
of the learned and unlearned models or the distribution of their outputs. 1 However, com-
paring distributions over either of these spaces is computationally expensive. As a result,
common approaches utilize alternative metrics on a point-by-point basis to compute the
distance between the two models (Bourtoule et al., 2021; Chen et al., 2024; Goel et al., 2024;
Nguyen et al., 2022).

The simplest and most effective approach to achieve exact unlearning for a pre-trained
model is to retrain it from scratch after removing the unlearning targets. This guarantees
absolute compliance with Definition 4. As result, retraining is considered the only exact
unlearning method and serves as gold standard for benchmarking most Machine Unlearning
methods (Cao and Yang, 2015; Zhang et al., 2023b).

1In literature this is sometimes refereed as weak exact unlearning (Baumhauer et al., 2022; Nguyen et al.,
2022)

10 Background

Nevertheless, retraining has several practical disadvantages. It requires access to the full
training dataset, which might not always be possible, and can be costly in terms of time
and computational resources. These limitations are more prominent in scenarios involving
multiple or recurrent deletion requests, where the model would need to be retrained from
scratch each time it is required to forget a data point (Chundawat et al., 2023b; Liu et al.,
2024a). In response, Machine Unlearning research has focused on developing methods to
approximate exact unlearning as closely as possible while mitigating its associated drawbacks.

2.1.2 Approximate Unlearning

In principle, neither Definition 4 nor Equation 2.2 requires the unlearning model to be a
model retrained without the unlearning targets, but that it behaves as it had not been exposed
to the forget set during training.

As stated in Definition 5, approximate unlearning methods aim to replicate the behavior
of a retrained model as closely as possible without retraining from scratch, thereby addressing
some of the practical drawbacks of retraining. Common approaches include performing less
computationally intensive operations on the final weights, modifying the model architecture,
filtering outputs, or developing strategies to not require access to training data (Bourtoule
et al., 2021; Chundawat et al., 2023b; Graves et al., 2021; Guo et al., 2019; Sekhari et al.,
2021).

Definition 5 (ε−Approximate Unlearning) Given ε > 0, an unlearning algorithm U per-
forms ε-certified removal of the sample z for a learning algorithm A if

∀B⊆ H,D ∈ Z∗,z ∈ D : e−ε ≤ P(U(D,z,A(D)) ∈ B)
P(A(D\z) ∈ B)

≤ eε (2.4)

Equivalently, for an arbitrary absolute distance metric ||.|| in the weight space or the
output space:

log(P(U(D,z,A(D)) ∈ B)−P(A(D\z) ∈ B))≤ eε (2.5)

Approximate unlearning is often related to Differential Privacy (Definition 6), which
focuses on ensuring that the parameters of a trained model do not leak information about
any particular individual. This presents a stronger condition than approximate unlearning,
requiring that the distribution of parameters remains almost unchanged even after replacing a
sample. Also, most differentially private models suffer a significant loss in accuracy, even
for large values of ε , because the privacy constraints limit the model’s ability to effectively
learn from the data (El Ouadrhiri and Abdelhadi, 2022; Guo et al., 2019; Ji et al., 2014).

2.1 Machine Unlearning 11

Definition 6 (Differential Privacy) For ε > 0, an algorithm U is differentially private if it
performs ε-certified removal of the sample z for a learning algorithm A, accomplishing

∀B⊆ H,D,D′ : e−ε ≤ P(A(D) ∈ B)
P(A(D\z) ∈ B)

≤ eε (2.6)

Notably, Definition 5 describes approximate unlearning with respect to a single sample
z. Providing constant bounds for larger subsets of D is still an open problem, but a relaxed
definition can be provided in Definition 7, by introducing an upper bound on the probability
for maximum divergence, covering potential failures with Definition 5 (Liu et al., 2024a;
Wang et al., 2024b).

Definition 7 ((ε,δ)-Approximate Unlearning) Given ε,δ > 0, an unlearning algorithm
U performs ε-certified removal of a sample z for a learning algorithm A if ∀B ⊆ H,D ∈
Z∗,z ∈ D :

P(U(D,z,A(D)) ∈ B)≤ eεP(A(D\z) ∈ B)+δ (2.7)

and
P(A(D\z) ∈ B)≤ eεP(U(D,z,A(D)) ∈ B)+δ (2.8)

Through these definitions and our previous discussion on exact unlearning, we can identify
desirable conditions for a robust unlearning algorithm, 2 which have been highlighted in
related works (Bourtoule et al., 2021; Chundawat et al., 2023b; Ginart et al., 2019; Golatkar
et al., 2020; Guo et al., 2019; He et al., 2021; Micaelli and Storkey, 2019; Nguyen et al.,
2022; Shuang Sha et al., 2024; Tarun et al., 2023b; Yoon et al., 2022; Zhang et al., 2023b):

1. Completeness (Consistency). An unlearned model should yield the same predictions
as a retrained model. This can be measured by the percentage of matching predictions
on a test dataset, which also serves as an optimization target in unlearning setups.

2. Accuracy. The unlearned model should maintain accuracy similar to the original
model, ideally comparable to a retrained model. In the absence of a retrained model,
comparing the accuracy of the unlearned model with the original on a new test set is
sufficient.

3. Timeliness. The unlearning process should be faster than retraining from scratch.
While there may be a trade-off between completeness and timeliness, unlearning is
preferred when the forget set is small, minimizing time and accuracy impact. For large
forget sets, retraining may be more suitable to prevent performance degradation.

2From this point onward, unless otherwise specified, with unlearning algorithm we refer to an approximate
unlearning algorithm.

12 Background

4. Efficiency. The unlearning algorithm should be lightweight and scalable with data size.
Extra computational costs beyond unlearning time and storage should be minimized,
especially in methods requiring model checkpoints or historical data storage.

5. Provable guarantees. Providing provable guarantees of unlearning is essential to
ensure the forgotten data’s influence is effectively removed.

6. Model-agnostic. The unlearning method should be applicable to various machine
learning models, making it versatile across different architectures and use cases.

7. Verifiability (Privacy guarantees). Implementing a mechanism to verify that the
unlearned model adequately protects users’ privacy is important.

8. Irrecoverably. In strict policy compliance, an unlearned model should not recover
deleted data or associated knowledge. However, in some scenarios, recoverable
forgetting is allowed, offering flexibility and control over specific knowledge while
ensuring data protection.

While these conditions are crucial for policy compliance and model fairness, achieving
them all simultaneously is challenging. When selecting or designing an unlearning algorithm,
it’s important to consider the involved trade-offs. For instance, completeness and accuracy
are vital in applications like medical diagnosis or autonomous driving, where even minor
deviations can have serious consequences (Chatterjee et al., 2024; Nasirigerdeh et al., 2024;
Song et al., 2023). In contrast, scenarios requiring quick data removal may favor faster, less
complete unlearning methods, particularly for small forget sets. Ultimately, the unlearning
strategy should be tailored to the application’s specific needs, the forget set size, and available
computational resources.

2.1.3 Restricted Data Scenarios

As previously discussed, retraining requires full access to training data, and unlearning
algorithms often rely on the entire dataset or subsets of it. However, in some scenarios access
to training data is restricted at different levels or unavailable, even for unlearning purposes.
This requires adapting unlearning algorithms to work with only a portion of the data or none
at all, introducing stricter conditions and new algorithm types:

• Zero-Glance Unlearning: It presents an scenario where only the retain set can be used,
and the unlearning algorithm must rely entirely on a subset of this retained data, Drsub ,
establishing the problem setting as U(Drsub ,A(D)). It often involves approximating the

2.1 Machine Unlearning 13

forget set using indirect methods, such as learning a noise matrix to maximize loss for
forgotten classes (Chundawat et al., 2023b; Tarun et al., 2023b)

• Few-Shot Unlearning: Only a small portion of the forget set is available, leading to
the problem setting U(D,D fsub ,A(D)). It is useful for addressing mislabeled data or
mitigating malicious effects when full access to D f is restricted (Yoon et al., 2022).
Methods include Model Inversion and Influence Approximation, which estimate sample
impact using the Hessian matrix or Fisher Information Matrix, followed by noise
injection to reduce influence (Chundawat et al., 2023b; Nguyen et al., 2022).

• Zero-Shot Unlearning: This method operates without access to both retained and
forget sets (Chundawat et al., 2023b). Existing methods rely on existing model
parameters to simulate unlearning, using noise or modifications to minimize forget
set errors, or applying constrained knowledge distillation to prevent the transfer of
forgotten knowledge (Micaelli and Storkey, 2019).

• Retrieval-Enhanced Unlearning: We have named Retrieval-Enhanced to a group of
approaches that rely on stored metadata or auxiliary data saved during training, distinct
from the actual training data. For example, approximating the steps of SGD used in
retraining from scratch. A relevant concern is scalability, particularly in large models
where metadata storage and retrieval may be challenging (Chundawat et al., 2023b;
Liu et al., 2024a; Nguyen et al., 2022; Thudi et al., 2021)

These methods are crucial for scenarios with restricted data access but introduce new
complexities and trade-offs. Ongoing research should focus on improving robustness, scala-
bility, and providing stronger guarantees of data removal, even in restrictive environments,
while establishing benchmarks and evaluation criteria to assess their effectiveness across use
cases.

2.1.4 Unlearning Algorithms Categorization

Unlearning algorithms can be categorized based on the implementation moment. Pre-training
methods are proactive, embedding unlearning capabilities into the model’s design or training
process. These methods are efficient at removing data points, as forgetting is built into the
model, making them robust and reliable. However, they often require more complex design
and higher computational overhead during training (Bourtoule et al., 2021; Wang et al.,
2024b; Zhang et al., 2023b).

Post-training methods are reactive, applied after the model is trained. These methods are
popular because they can be used on existing models without redesign, allowing for quick

14 Background

updates. However, they may not always fully remove data influence, potentially falling short
of forgetting objectives or policy requirements (Chundawat et al., 2023b; Foster et al., 2024b;
Goel et al., 2024).

Further, we can categorize unlearning algorithms by their scope. Model-Intrinsic methods
are tailored to specific models, e.g., Fisher-based unlearning for DNNs, leveraging the
model’s architecture for effective unlearning but lacking broad applicability (Chen et al.,
2024; Xu et al., 2024).

Model-Agnostic methods work across various models, offering flexibility. While they
provide practical unlearning guarantees, theoretical guarantees are often limited to specific
model classes, such as linear models. Examples include differential privacy, scrubbing func-
tions, and certified removal mechanisms (Golatkar et al., 2020; Guo et al., 2019; Kurmanji
et al., 2024; Nguyen et al., 2022).

On the other hand, Data-Driven approaches involve modifying or configuring the data to
facilitate unlearning or speed up retraining. A notable example is SISA (Sharded, Isolated,
Sliced, and Aggregated), which partitions data into shards, each tied to a specific model.
When unlearning is needed, only the model linked to the shard containing the forget target
requires retraining, greatly accelerating the process (Bourtoule et al., 2021). Other methods
might use data augmentation to prompt the model to ignore certain data or apply influence
functions to relate changes in training data to the model’s parameters (Chen et al., 2024;
Chundawat et al., 2023b; Li et al., 2023; Wu et al., 2022).

Table 2.1 Categorization of Machine Unlearning Algorithms

Request Type Unlearning Level Entity of Application Data Access Requirement Unlearning Properties

Item Exact Model-Agnostic Full Training Data Completeness
Feature Approximate Model-Intrinsic Zero-Glance Accuracy Preservation
Class Data-Driven Few-Shot Timeliness
Task Zero-Shot Lightweight
Stream Metadata Unlearning Guarantee

Verifiability
Irrecoverability

Together with previous discussion, Table 2.1 summarizes the distinct attributes that serve
to categorize an unlearning algorithm. Clearly, an unlearning algorithm can fulfill different
criteria at different degrees. This categorization framework, though not exhaustive, provides
a comprehensive enough structure for understanding and analyzing different unlearning
methods.

2.1 Machine Unlearning 15

2.1.5 Catastrophic Unlearning

As discussed in Section 1.1, similar to cognitive processes in humans, excessive or improper
forgetting in Machine Learning models can significantly reduce their capabilities. It’s crucial
to preserve as much of the original model’s functionality as possible during unlearning.

While some performance degradation is expected in unlearned models compared to the
original or a retrained model, severe losses can lead to catastrophic unlearning, making
the model unusable (Kurmanji et al., 2024; Wang et al., 2024b). This can occur when the
unlearning process inadvertently causes the model to lose essential capabilities or introduces
new vulnerabilities, such as the Streisand effect—where the unlearning process itself or
specific elements of the forget set become identifiable, evidencing the purpose of unlearning
and increasing the risk of adversarial attacks (Foster et al., 2024a,b).

For example, Chundawat et al. (2023a) describes a case where an unlearned model
misclassifies an aircraft as a mushroom, a deliberate misprediction that could leak information
to an attacker. This scenario shows that the model hasn’t truly unlearned the data but has
instead learned to predict incorrect labels for the targeted forget samples.

In critical domains like medicine, finance, or autonomous systems, such failures can have
serious consequences. If a medical model forgets key data, it might missrecognize a condition,
leading to incorrect diagnoses and treatments (Nasirigerdeh et al., 2024), undermining trust
in the model. Such failures not only undermine trust in the model but can also result in
significant harm.

From Definition 7, greater deviation in behavior from a retrained model increases the risk
of catastrophic unlearning. To mitigate this, some studies introduce additional safeguards,
such as evaluating a model’s susceptibility to Membership Inference Attacks (MIA)—a type
of attack where an adversary attempts to determine whether a specific data point was part
of the model’s training data- as a measure of unlearning effectiveness (Foster et al., 2024b;
Tarun et al., 2023a).

Catastrophic unlearning represents a significant challenge in Machine Unlearning, empha-
sizing the need for careful algorithm design and thorough evaluation to prevent compromising
model integrity or introducing new risks, especially the Streisand effect.

2.1.6 Unlearning Evaluation and Verification

Machine Unlearning evaluation focuses on assessing how well an unlearning method meets
the requirements defined in Section 2.1.4. As previously mentioned, the gold standard is a
model retrained from scratch, and common criteria include:

16 Background

• Completeness (Prediction alignment): This measures how closely the unlearned
model’s predictions align with those of a retrained model on the forget, retain, and the
test set, often by comparing output overlaps (Foster et al., 2024a; Zhang et al., 2023b).

• Timeliness: This assesses the time efficiency of the unlearning algorithm compared to
retraining from scratch. An efficient unlearning algorithm should offer a significant
time advantage, especially for large models or datasets

• Relearn Time: The time needed for an unlearned model to recover performance on the
forget set, serving as a proxy for residual information retention, as with more retained
information it is easier to relearn (Nguyen et al., 2022).

• Amnesia Index (AIN). This metric introduces a margin to accuracy to calculate the
relearn time, addressing the variability in relearn time across different models and
datasets when used as a proxy measure of residual information retention. This metric
ranges from 0 to ∞, with values close to 1 indicating good forgetting. Lower values
suggest retained information, and higher values may signal the Streisand effect (Graves
et al., 2021).

• Activation Distance and JS Divergence: These metrics assess how closely the
unlearned model’s parameters and activations align with a retrained model, aligning
with Definition 4 (Foster et al., 2024a; Jeon et al., 2024).

• MIA and Inversion Attacks: These evaluate the model’s resilience to adversarial
attacks aimed at identifying or recovering forget set data. Ideally, the probability of
a successful adversarial attack should be significantly lower in the unlearned model
compared to the original model (Foster et al., 2024b; Graves et al., 2021).

• Zero-Retrain Forgetting: This metric is independent of retraining. It compares the
unlearned model’s predictions to those of an unskilled model, usually set to be a
randomly initialized model, indicating whether the model behaves randomly or retains
patterns on the forget set. Alternatively, fictitious data can be introduced into the
model training, then fine-tuning can be used to simulate the retraining over this set
(Chundawat et al., 2023a; Nguyen et al., 2022).

• Epistemic Uncertainty: This measures the certainty that the current model parameters
are optimal for a given dataset, often using the FIM’s trace to measure the information
contained in the model parameters after unlearning. A drawback of this specific imple-
mentation with FIM is that it assesses overall information reduction, not specifically
the reduction related to the forget set.

2.1 Machine Unlearning 17

Combining these metrics provides a comprehensive view of unlearning effectiveness. For
example, MIA alongside accuracy metrics can help ensure that models are less exposed to
information leaks still maintaining good predictive performance (Becker and Liebig, 2022;
Foster et al., 2024b).

On the other hand, while unlearning evaluation assesses how well an unlearning method
performs, unlearning verification focuses on certifying the actual success of the unlearning
process. This distinction is similar to the difference between model evaluation and stress
testing in traditional Machine Learning. Although some methods overlap, unlearning verifi-
cation emphasizes proving that the model has genuinely forgotten the specified data, while
evaluation offers bounded guarantees useful for algorithm optimization (Nguyen et al., 2022;
Sommer et al., 2020; Wang et al., 2024b). Together, these processes ensure the effectiveness
and reliability of unlearning.

A key aspect of unlearning verification is privacy certification, ensuring no information
from the forget set remains in the model. Popular methods for unlearning verification include:

• Privacy Attacks: Privacy attacks, such as MIA, are used to assess the degree to which
the unlearned model has forgotten data. If an attack’s success rate is bounded by α ,
the model is said to have α-forgotten the data, aligning with Definition 5.

• Feature Injection Test: This test checks if the unlearned model has adjusted its
parameters based on a feature associated with the forget set. This method is particularly
applicable to models with explicit parameters, e.g., linear models (Nguyen et al., 2022).

• Information Leakage: This method compares models before and after unlearning to
measure how much information has leaked, often by analyzing output distributions
(Chen et al., 2021; Guo et al., 2019).

• Backdoor Attacks: By injecting backdoor samples into data, these attacks test whether
the unlearned model can forget these samples effectively. For example, training a
model mixing clean and poisoned data items and then testing whether the poisoned
samples can be forgotten effectively (Goel et al., 2022b; Liu et al., 2022).

• Slow-Down Attacks: These attacks introduce poisoned data subsets to slow down the
unlearning process, used when comparing an unlearned model with a retrained one
is not feasible. Developing metrics to efficiently compute the cost of removing these
subsets remains an open research area (Carlini et al., 2024; Liu et al., 2024b; Marchant
et al., 2022).

18 Background

• Inter-Class Confusion Test: This test swaps the labels of two selected classes in a
data subset, then retrains the model with the swapped labels as the forget set. The
confusion matrix from the unlearned model is analyzed to compute a forgetting score,
determining whether information from the forget set remains inferable (Goel et al.,
2022a,b; Nguyen et al., 2022).

Combining these evaluation and verification methods offers a comprehensive assessment
of an unlearning algorithm’s effectiveness. The interplay between evaluation and verification
ensures unlearning methods achieve real and reliable forgetting. Notably, while the field
of unlearning has gained more attention recently, there is still no universally accepted
frameworks or benchmarks for evaluating unlearning methods rather than the model retrained
from scratch without forgetting targets.

2.1.7 Challenges in Machine Unlearning

As a relatively new area of research, Machine Unlearning faces significant challenges,
particularly the lack of standardized frameworks and benchmarks. Unlike other Machine
Learning fields, there are no universally accepted datasets or evaluation criteria, making
it difficult to assess and compare unlearning methods, which slows progress. Establishing
shared resources and benchmarks is essential for rigorous testing and validation of unlearning
algorithms, facilitating their improvement and broader adoption (Ginart et al., 2019; Liu
et al., 2024a; Wang et al., 2024b).

Currently, most unlearning algorithms focus on data item removal and class unlearning,
often overlooking other requests like feature removal or task-specific unlearning. Addi-
tionally, these methods are mainly developed for computer vision, leaving other domains
with their own complexities underexplored. For instance, the vast data used to train LLMs
complicates the precise definition and localization of unlearning targets or even to define the
scope of the unlearning procedure (Liu et al., 2024a; Zhang et al., 2023a).

From what has been explored so far, one of the most critical challenges is the limited
understanding of how individual data points and model components influence behavior
and final outputs. In some scenarios, even with a small forget set, extensive data removal
may be required to effectively erase its influence. A jointly analysis of both data and
model components is crucial to accurately eliminate unlearning targets and preserve model
capabilities. Methods that attempt to measure the influence of specific training points
on model parameters often involve expensive computational procedures, and while some
research has focused on identifying critical model components for unlearning tasks, such
as layers and neurons, this area remains underexplored, particularly for large-scale models

2.2 Diffusion Models 19

(Bourtoule et al., 2021; Foster et al., 2024a,c; Goel et al., 2024; Liu et al., 2024a; Wang et al.,
2024b)

Additionally, training is an incremental procedure, making each update depended on all
previous updates. When a model is updated based on a particular training point, subsequent
updates implicitly rely on that point, making it difficult to isolate and remove its influence
during unlearning (Bourtoule et al., 2021).

Moreover, the stochastic nature of unlearning algorithms can also lead to variability in
outcomes, complicating efforts to ensure consistency across different runs of the unlearning
process (Nguyen et al., 2022). Additionally, challenges with timeliness—ensuring the
unlearning process is both effective and efficient—and the lack of rigorous criteria for
measuring the persistence of forget set information further complicate the field. More
research is needed to understand and protect against weaknesses and attacks on Machine
Learning and Unlearning systems (Goel et al., 2022a,b; Sommer et al., 2020).

Despite these challenges, Machine Unlearning presents opportunities for innovation.
Unlearning can repair obsolete models by forgetting outdated data that conflicts with evolving
data streams, and can also be applied to out-of-distribution data, imbalanced learning, and
bias mitigation (Chen et al., 2024; Dinsdale et al., 2020; Liu et al., 2024a). Developing
explainable Machine Unlearning algorithms could enhance unlearning verification, facilitate
auditing of removed data, and improve transparency and accountability, thereby building
trust in human-AI interactions (Nguyen et al., 2022; Wang et al., 2024b; Zhang et al., 2024).

These challenges and opportunities mark new frontiers for future exploration in Machine
Unlearning. Addressing these issues will require a multidisciplinary approach, integrating
advances in Machine Learning, privacy, security, and explainability to develop more reliable,
efficient, and broadly applicable methods that enhance the safety and privacy of AI systems.

2.2 Diffusion Models

Since the seminal work of Sohl-Dickstein et al. (2015), later expanded by Ho et al. (2020)
and Song et al. (2020), diffusion models have achieved significant success in various domains,
including image generation (Dhariwal and Nichol, 2021; Saharia et al., 2022), audio synthesis
(Huang et al., 2023; Kong et al., 2020; Zhu et al., 2023), and molecule design (Soleymani
et al., 2024; Xu et al., 2022), positioning them as leading state-of-the-art techniques for
generative modelling.

Diffusion models are a type of deep generative model inspired by diffusion processes in
Stochastic Processes Theory and Non-Equilibrium Thermodynamics (Dobrow, 2016; Sohl-
Dickstein et al., 2015). They operate in two main steps, a forward process that progressively

20 Background

adds noise to the data, gradually degrading it into a simple noise distribution, and a reverse
process that learns to reconstruct the original data from these noisy samples, effectively
transforming random noise back into structured data. Thus, the model acts as a bridge
between random noise and the structured data, which endows it with generative capabilities.

2.2.1 Denoising Diffusion Probabilistic Models

The general setup for a generative modeling problem involves a set of training data x drawn
from an underlying distribution q(x). The goal is to learn to sample from this distribution by
approximating it with a probabilistic model p(x), which can then be used to generate new
samples that resemble the original data.

Following Ho et al. (2020), the generative modelling problem can be transformed into a
supervised learning problem using a Markov Chain. Here, at each time step t ∈ [0,τ], τ ∈ N,
noise is incrementally added to the data, degrading it across τ fidelity levels. The original
data is at the highest fidelity level, x0, and the lowest fidelity level represents pure noise,
making p(xt) easy to sample from. This setup transforms the generative problem into a
regression task, where the goal is to predict higher fidelity data from lower fidelity data, i.e.,
p(xt−1 | xt).

Fig. 2.1 Graphical Representation of Diffusion Process

Forward Process

During the forward process, the initial data x0 is transformed through a Markov Chain, where
at each step t, it is passed through a stochastic encoder q(xt | xt−1) that progressively adds
random noise. This continues until the data is fully degraded into noise. The process is

2.2 Diffusion Models 21

typically modeled using a linear Gaussian approach, which defines a first-order autoregressive
process characterized by a variance schedule β1, ...,βτ , τ ∈ N. Thus, the forward process for
some distribution q(x) is defined by Equation 2.9, where as τ → ∞, the distribution of xτ

converges to an isotropic Gaussian distribution, indicating that the initial data x0 eventually
decays into Gaussian noise.

q(xt | xt−1) = N (xt ;
√

1−βxt−1,βtI) (2.9)

Under the Markov property the joint distribution over all latent states conditioned on the
initial input is defined in Equation 2.10.

q(x1:τ | x0) =
τ

∏
t=1

q(xt | xt−1) (2.10)

A key aspect of the forward diffusion process is that it allows for sampling from any
arbitrary time step t by leveraging the marginals of the linear Gaussian process. Using
a reparameterization trick, a common technique in variational inference and generative
modeling (Ho et al., 2020; Luo, 2022), the process is expressed in closed form as follows:

αt = 1−βt , ᾱ =
t

∏
i=1

αi;

⇒ xt =
√

αtxt−1 +
√

1−αtεt−1

=
√

αtαt−1xt−2 +
√

1−αtαt−1εt−2

= · · ·
=
√

ᾱtx0 +
√

1− ᾱtε

⇒ q(xt | x0) = N (xt ;
√

1− ᾱtx0,(1− ᾱt)I) (2.11)

In this formulation, αt and ᾱt are functions of the variance schedule, and ε represents
the standard Gaussian noise added at each step. This expression shows how data at any time
step xt can be directly related to the initial data x0, with the noise contribution progressively
increasing as t increases.

Reverse Process

The diffusion reverse process learns a decoder pθ (xt−1 | xt) to reconstruct the original data
x0 from the noisy state xτ . It essentially reverses the forward process, denoising the data step
by step to recover the initial structure. This is done by finding the reverse transitions that

22 Background

maximize the likelihood of the forward transitions at each step. Once trained, the reverse
process generates new data from random noise using the optimized denoising parameters θ

and the reverse diffusion Markov chains (Wang et al., 2024a).
Given that Gaussian noise is introduced in the forward process, and assuming that this

added noise at each step is relatively small, the reverse process can be also naturally modeled
as Gaussian. Using Bayes’ rule, the reverse process step is mathematically defined in
Equation 2.12.

q(xt−1 | xt ,x0) = N
(
xt−1; µ̄t(xt ,x0), β̄tI

)
(2.12)

with µ̄t(xt ,x0) =
ᾱt−1βt

1− ᾱt
x0 +

ᾱt(1− ᾱt−1)

1− ᾱt
xt , β̄t =

1− ᾱt−1

1− ᾱt
βt

Here, µ̄t(xt ,x0) represents the mean of the Gaussian distribution, which is a weighted
combination of the current noisy state and the initial data. The variance β̄tI reflects the
uncertainty at each step of the reverse process.

To generate samples from from q(xt−1 | xt) starting from noise, a neural network is trained
recursively to approximate the original data x0 by removing the noise from each xt . Thus, in
the reverse process p, the mean µθ (xt , t) and variance Σθ (xt , t) of the Gaussian distribution
are estimated with the denoising network parameters θ . The generator takes the form in
Equation 2.13, and the joint distribution over all generated variables is in Equation 2.14.

pθ (xt−1 | xt) = N (xt−1; µ̄t(xt , t),Σθ (xt , t)) (2.13)

pθ (x0:τ | xt) = p(xτ)
τ

∏
t=1

pθ (xt−1 | xt) (2.14)

Training the reverse process involves optimizing a variational bound on the negative
log-likelihood of the data. The objective is to minimize the difference between the true data
distribution and the model’s approximation, Equation 2.15

E(− log pθ (x0))≤ Eq

(
− log

pθ (x0:τ)

q(x1:τ | x0)

)
= Eq

(
− log p(xτ)−∑

t≥1

pθ (xt−1 | xt)

q(xt | xt−1)

)
.

(2.15)
This involves the expected negative log-likelihood of the original data under the model’s

distribution and the Evidence Lower Bound (ELBO), which is commonly used in variational
inference to approximate complex distributions (Kingma and Gao, 2024). The goal is to

2.2 Diffusion Models 23

minimize the ELBO, thereby improving the model’s ability to generate realistic data from
noise. The training process iteratively adjusts the parameters θ of the denoising network
to minimize this bound, ensuring that the reverse process accurately reconstructs the data
distribution.

2.2.2 Diffusion Transformer

The implementation of DDPMs used to be dominated by Convolutional Neural Networks
(CNNs), specially the U-Net. But in recent advancement, replacing CNNs with a transformer
have represented a powerful approach for generative modelling.

Transformers, introduced by Vaswani (2017), have revolutionized the way we handle se-
quential data, being highly effective for tasks where understanding context and dependencies
is crucial. They utilize self-attention mechanisms, Equation 2.16, to capture relationships
between different parts of an input sequence X = x1, ...,xn efficiently. This allows transform-
ers to weight the importance of the elements in the input sequence X relative to each other,
capturing long-range dependencies and complex relationships.

Attention(xi) = ∑
j

softmax
(
(WQxi)(WKx j)

T
√

dk

)
WV x j (2.16)

where dk is the dimensionality of the key vectors and WQ, WK , and WV are learned weight
matrices for queries, keys, and values.

A standard transformer layer includes multi-head self-attention and feed-forward neural
networks. The output of the self-attention layer is processed through Equation 2.17, where
each head computes attention using different projections of Q,K, and V

MultiHead(Q,K,V) = Concat(head1, . . . ,headh)WO (2.17)

A Diffusion Transformer (DiT) (Peebles and Xie, 2023), Figure 2.2, integrates the
transformer architecture into the diffusion framework to enhance the modeling of the reverse
diffusion process pθ (xt−1\xt). For this, the input data is first transformed into a form that
can be processed by the model, such as dividing it into fixed-size patches, which are then
transformed into feature vectors. Noise is gradually introduced to the preprocessed feature
vectors and then passed to the model to learn to denoise them.

The self-attention of the transformers allows to capture complex dependencies and
relationships in the data, leading to improved sample quality and coherence. Also, it helps to
reduce the computational overhead associated with traditional diffusion models (Bao et al.,
2023; Fei et al., 2024), and allows to apply diffusion models to larger datasets and more

24 Background

Fig. 2.2 A DiT Architecture with Adaptive layer norm

complex data distributions. The extended use and implementation of transformers has also
impulsed the adaptability of diffusion models to suit multiple generative tasks (Feng et al.,
2024; Ma et al., 2024; Wu et al., 2024).

2.3 Hypernetworks

Hypernetworks are an emerging Deep Learning architectural paradigm where one neural
network (the hypernetwork) generates the parameters of another network (the target network).
This approach has shown promising results to enhance the adaptability, flexibility, compres-
sion, and performance of DNNs in problems like continual learning, transfer learning, weight
pruning, and uncertainty quantification (Chauhan et al., 2023; Li et al., 2020; Volk et al.,
2022; Von Oswald et al., 2019).

Consider a dataset D = {X ,Y} associated with a task T . In the classical Deep Learning
framework the learnable parameters θF of a DNN F(X ;θF) are obtained by solving the
optimization problem in Equation 2.18 (Chauhan et al., 2023).

The searching for the optimal configuration is performed within large search spaces
formed by millions of potential parameters. The input samples x ∈ X are passed through the

2.3 Hypernetworks 25

Fig. 2.3 Hypernetwork Framework

layers of F to obtain predictions y∗ ∈ Y ∗, later compared with the true labels y ∈ Y using a
loss function L(Y,Y ∗), which is optimized by updating parameters until convergence.

min
φ

F(X ;θF) (2.18)

Instead of directly optimizing the parameters of the main network, the hypernetwork
framework (Figure 2.4) uses a separate network to learn to generate the parameters for the
main network, often resulting in a smaller search space and making the optimization more
efficient. Both networks are trained in an end-to-end differentiable manner (Chauhan et al.,
2023; Ha et al., 2016).

Definition 8 (Hypernetwork) A Neural Network G(C;θG) is called a hypernetwork with
learnable parameters θG and context input C if its output are parameters for a second Neural
Network F(X ;θF) that solves a task T with associated data D = {X ,Y}, i.e. θF = G(C;θG).

The context input C for the hypernetwork contains information about the structure of the
parameters of the main network that enables learning to generate its parameters.

During the forward pass at training time, the parameters θ are generated by passing C
through G, which are then inputted to F to process x ∈ X and obtain predictions y∗ ∈Y ∗. The
loss L(Y,Y ∗) is then computed and during the backward pass, the error is back-propagated
through G with the gradients of L computed with respect to θG. Consequently, θG are

26 Background

optimized to generate the θF that best solves task T . This introduces the optimization
problem in Equation 2.19.

At test time, new parameters θ ∗F can be sampled from the optimized hypernetwork and
used to make predictions with F(X ;θ ∗F) on the test data.

min
φ

F(X ;G(C;φ)) (2.19)

Traditional DNN parameters are fixed after training, but hypernetworks offer adaptability
by generating new parameters for networks with dynamic architectures. They can be condi-
tioned on input data for specific requirements or on tasks to generate parameters for multiple
related tasks (Ha et al., 2016; Mahabadi et al., 2021; Oh and Peng, 2022). This ability to
sample diverse parameters also allows for uncertainty-aware models by creating ensembles
of networks, providing a way to quantify prediction uncertainty (Kristiadi et al., 2019).

However, given the early stage of this new paradigm, challenges remain for its broader
adoption. The size and complexity of hypernetworks scale with the target network, making
them less feasible for large models unless optimized strategies are used. Additionally, for
models with smaller parameter spaces than the hypernetwork, training can be computationally
expensive. Reducing hypernetworks to fit various network sizes is still an open problem
(Chauhan et al., 2023).

Layer-wise architecture considerations also pose challenges in finding suitable initial
values for hypernetwork parameters, affecting the effectiveness of the generated parameters
(Li et al., 2020, 2021). Furthermore, there’s a need for a robust framework to assess the
validity, variety, and effectiveness of the generated parameters, ensuring they do not simply
memorize data (Erkoç et al., 2023; Peebles et al., 2022).

This emerging paradigm shows promise but requires further exploration, particularly in
understanding their representational capacity, learning dynamics, generalization capabilities,
and the interpretability of task-specific parameter generation (Chauhan et al., 2023). Address-
ing these challenges could lead to the development of more adaptable models for diverse
applications.

2.3.1 Diffusion Hypernetworks

Neural network training typically involves transforming randomly initialized parameters
(essentially noise) into a structured set that form a specific distribution, resembling the
generative problems solved by diffusion models. This similarity, especially in SGD-based
training, has led to the use of diffusion as a backbone for hypernetworks, approach we call
here diffusion hypernetworks.

2.3 Hypernetworks 27

In experiments, Multi-Layer Perceptrons (MLPs) are commonly chosen as the main
network due to their simplicity, efficiency, and ease of dataset generation for specific applica-
tions. The process usually begins by flattening MLP parameters into one-dimensional vectors,
which are then processed by a diffusion model. The diffusion model learns the distribution
of the parameter space and predicts denoised parameters, handling varying-dimensional data
in an agnostic manner (Erkoç et al., 2023; Wang et al., 2024a).

Gaussian noise is iteratively added to each vector θ during diffusion modeling. The
noisy vector and embedded t serve as inputs for the model, which learns to predict denoised
parameters. Some methods also incorporate conditional generation, using context such as
performance metrics to guide the diffusion model. MSE is often used to train the model by
comparing denoised and input parameters.

The first notable application of this type of model was introduced by Peebles et al. (2022).
This work generated parameters to achieve specific prompted performance metrics from a
dataset created by saving checkpoints from multiple MLP training runs. They used DiT and
DDPM to develop G.pt, a learned optimizer capable of updating parameters (starting from
potentially random noise) to meet target performance levels.

G.pt demonstrates broad generative properties by sampling parameters for various per-
formance levels, unlike recent approaches that focus solely on generating high-performance
parameters. However, it is less precise in achieving target metrics, requires more data, and
involves considerable training overhead compared to other methods (Wang et al., 2024a).

Similarly, Erkoç et al. (2023) employed a DiT to model the distribution of parameters,
saving optimized parameters for multiple MLPs, which were then encoded and processed by
the DiT to unconditionally generate new parameters through DDPM.

Wang et al. (2024a) addressed the computational cost of learning directly from the pa-
rameter space by incorporating an autoencoder to project the parameters into a smaller latent
space, enabling more efficient learning. They used a U-Net for the diffusion process and
created a dataset by training a network to a high-performance state, then saving subsequent
iterations. This approach effectively introduces a soft bias that help the model towards gener-
ating high-performing parameters, although it still faces limitations with diverse parameter
distributions.

Recently, Li et al. (2024) expanded Peebles et al. (2022) ideas by proposing a method for
text-to-model generation, allowing personalized models to be generated directly from text
prompts. For example, within a large dataset like CIFAR-100, a user might need a network
for a specific subset of classes, by inputting text prompt the proposed model can generate the
required customized network.

28 Background

These works show that applying diffusion models as hypernetworks for parameter gen-
eration leverages their generative strengths, providing an efficient framework where the
number of forward passes depends solely on the diffusion process length, regardless of data
dimensionality. While the use of diffusion models as hypernetworks is still emerging with
limited studies, the approach shows significant promise.

2.3.2 Learning To Learn

Now, we explore deeper G.pt (Peebles et al., 2022), as its capabilities for learning from a
varied distribution of parameters makes it a suitable option for our modeling needs.

G.pt allows to generate neural network parameters directly within the parameter space
using a learning-to-optimize approach. It functions as a learned optimizer, indirectly solving
optimization problems traditionally handled by SGD. It uses DiT as a hypernetwork 3

conditioned on a vector of initial parameters, their associated performance metric, and a
target metric value, with the goal of returning updated parameters that meet the target metric.

They explored both Classification and Reinforcement Learning tasks, using metrics like
prediction error, testing loss, and reward. For our purposes, we focus on the Classification
case, using testing loss as the conditional metric.

Fig. 2.4 G.pt Architecture

3We categorize G.pt as a hypernetwork according to Definition 8

2.3 Hypernetworks 29

Training Data

To create the training datasets, Peebles et al. (2022) executed multiple training runs of the
main network, saving N random checkpoints uniformly, including the initial values before
starting the training run. Thus, from each training run m ∈ [0, ...,M],M ∈ N a series of
parameters θm,0,θm,1, ...,θm,N−1 with its corresponding test loss Lm,0,Lm,1, ...,Lm,N−1 are
saved along the training.

Data augmentation in parameters space is performed using permutation augmentation,
which preserves the output of the network (Roeder et al., 2021; Schürholt et al., 2021),
ensuring that the parameter level-augmentation T (θ) is valid, fT (θ)(x) = fθ (x)

They ended up constructing a dataset with 2M checkpoints for MNIST and 11M for
CIFAR-10 as underlying tasks, using MLPs and CNNs, respectively.

pG(θ
∗ | θ ,L ∗,L) (2.20)

Diffusion Transformer Training

To load the data for the training, a saved run is selected uniformly at random, from which
a random tuple (θ ,L ,θ ∗,L ∗) is sampled uniformly, with θ always from a step earlier
than θ ∗, though not necessarily from a consecutive checkpoint. These form the current
parameters θ , current loss L , future parameters θ ∗, and the corresponding future loss L ∗.
The generative model aims to predicts the distribution of updated parameters that achieve the
desired loss, Equation 3.4, effectively producing a learned optimizer.

The parameters are normalized using the normalization scheme of DALL-E 2 (Ramesh
et al., 2022), which scales the data so that the variance of the marginal distribution matches
the variance of ImageNet pixels scaled to [-1,1]. This normalization ensures that the forward
noising process destroys nearly all signal in θ ∗.

As the main neural network F may contain many layers, potentially with different
numbers of parameters in each one, both input parameters θ and θ ∗t are tokenized layer-by-
layer. This involves flattening them into 1D vectors, the flattened parameter vector of the i-th
layer corresponds to the i-th token. Layers with both weight and bias are decomposed into
separate tokens. A maximum number of parameters per token is established and if a layer
contains more parameters, it is decomposed into multiple tokens, ensuring each partition
adheres to this upper bound, which is smaller than the hidden size of the DiT to avoid lossy
compression.

30 Background

The time-step, losses, and the difference between losses are tokenized using a frequency-
based encoding scheme. Then, the tokens are linearly projected to the hidden size of the DiT,
producing a unique set of weights for each token.

During training, Standard Gaussian noise is added t times to the future θ ∗ which is passed
to the DiT conditioned on the additional inputs. The DiT uses the architecture of GPT-2
without causal masking (Radford et al., 2019), and the final layer is a decoder that linearly
projects the i-th token from the DiT’s hidden size back to its original size to produce the
future denoised parameter vector θ ∗t .

A residual connection is added at the end, such that the parameter update θ ∗− θ is
predicted instead of directly predicting θ ∗. The objective metric for the training is the MSE
between the generated parameters and the actual parameters.

L(G) = E(∥θ ∗−G(θ ∗t ,θ ,L
∗,L , t)∥2

2) (2.21)

The model is trained with AdamW (Loshchilov and Hutter, 2017), maintaining an expo-
nential moving average (EMA) of G.pt parameters throughout training. Learned positional
embeddings initialized to zero are used across all tokens.

At inference time, the model can take a starting (potentially random) parameters θ with
its corresponding starting loss L , and sample updated parameters that approximate a desired
loss prompted by the user through denoising an input Gausian noise θ ∗ using DDPM with
fixed variances (Ho et al., 2020).

Evaluation Procedure

During evaluation, the model is prompted with a value close to the best loss found in the
training dataset. Peebles et al. (2022) noted that using a value slightly above or below the
best loss can sometimes yield better results for certain tasks.

The model is evaluated using a prompt alignment metric, defined as the R2 score between
the obtained loss and the target loss (Equation 2.22), averaged over the batch size. This
score is calculated across 20 regularly-sampled prompts and averaged over multiple sampled
networks, using randomly-initialized input parameters to evaluate generalization capabilities.

The obtained losses are also plotted against the desired losses to visualize their alignment,
including a lower bound (usually set to be the best loss during the data generation) and the
identity function.

R2 = 1− ∑
n
i=1(L

∗
i − L̂ ∗

i)
2

∑
n
i=1(L

∗
i − avg)2 + ε

(2.22)

where ε is a small constant to avoid division by zero, and avg is the mean of the targets:

2.3 Hypernetworks 31

0 500 1000 1500 2000
Epoch

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Train Prompt Alignment

0 500 1000 1500 2000
Epoch

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(b) Test Prompt Alignment

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
O

bs
er

ve
d

Lo
ss

All Classes
Lower Bound
Generated
Identity

(c) Train Observed vs Target Loss

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(d) Test Observed vs Target Loss

0 500 1000 1500 2000
Epoch

0.00

0.02

0.04

0.06

Tr
ai

n
M

SE

(e) Train Learning Curve

0 500 1000 1500 2000
Epoch

0.00

0.02

0.04

0.06

Tr
ai

n
M

SE

(f) Test Learning Curve

Fig. 2.5 G.pt Training Results.

32 Background

avg =
1
n

n

∑
i=1

L ∗
i (2.23)

As shown in Figure 2.5, G.pt’s learning curves decrease and converge, with prompt
alignments improving over epochs, albeit with some fluctuations. This indicates a generally
stable, though slightly variable, alignment between prompts and targets. While the model
does not exactly achieve the desired metrics, as noted by Wang et al. (2024a), it effectively
generates parameter updates that correlate well with the target losses. However, it struggles
to extrapolate to losses beyond the training dataset’s range (Peebles et al., 2022).

Experimental Observations

Our experiments suggest that while G.pt can learn to generate parameters using loss, predic-
tion error, or accuracy, it is generally easier to learn with loss. This is likely due to loss values
typically spanning a narrower range, making them more sensitive to parameter changes,
compared to the broader range covered by accuracy and prediction error.

0 500 1000 1500 2000
Epoch

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Train

0 500 1000 1500 2000
Epoch

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(b) Test

Fig. 2.6 Evolution of G.pt Prompt Alignment with Error as metric.

Even when in CIFAR-10 experimental results of Peebles et al. (2022) using prediction
error as a metric was beneficial, this is likely due to the narrow range of prediction error
values for that specific experiment. When comparing performance across different metrics
on the same set, as shown in Figure 2.6, the instances with more samples and a narrower
value range, typically loss, performed better

Additionally, 2.7 highlights a disparity between the distribution of losses found during
testing and those in the training datasets used to produce the results in Figure 2.5. During
testing, metric values tend to be more uniformly distributed, thus, effective learning requires
varied examples across the entire testing range. By resampling the training set to cover a

2.3 Hypernetworks 33

wider range of losses (Figure 2.8), G.pt’s performance improves significantly, as shown in
Figure 2.9.

0.0 0.5 1.0 1.5 2.0
Target Loss

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

(a) Target Losses

0.5 1.0 1.5 2.0 2.5
Train Set Loss

0

200000

400000

600000

800000

Fr
eq

ue
nc

y
(b) Losses in Train Set

Fig. 2.7 Comparison of Distribution of Test Losses and Losses in Train Set for G.pt.

−1 0 1
Train Set Loss

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

(a) Losses in Train Set

−1 0 1
Train Set Loss

0

25000

50000

75000

100000

125000

150000

Fr
eq

ue
nc

y

(b) Losses in Resampled Train Set

Fig. 2.8 Comparison of Distribution of Losses in Train Set and Resampled Train Set for G.pt
in log-scale.

Our findings highlight that G.pt, while capable of generating neural network parameters
for diverse losses, relies heavily on well-composed training data to perform effectively within
the target metric space. In the next chapter, we build on this approach and the concepts
reviewed here to expand the application of diffusion hypernetworks, particularly for Machine
Unlearning.

34 Background

0 250 500 750 1000 1250 1500
Epoch

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Prompt Alignment - Train

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
O

bs
er

ve
d

Lo
ss

All Classes
Lower Bound
Generated
Identity

(b) Observed vs Target Loss - Train

Fig. 2.9 Behaviour of G.pt with re-balanced loss data.

Chapter 3

Methodology

This chapter introduces the core contributions of this dissertation by introducing the HyperFor-
get framework and Diffusion HyperForget Networks, which utilize diffusion hypernetworks
for Machine Unlearning. The chapter is structured to build a comprehensive understanding
of the framework and its potential benefits.

Section 3.1 outlines how hypernetworks can generate parameters tailored for unlearn-
ing, particularly in classification tasks, using diffusion models. We present two POCs
demonstrating their potential application in Machine Unlearning.

Sections 3.3 and 3.4 delve into the architecture, methodology, and design of each model,
followed by evaluations of their parameter generation capabilities.

Finally, Section 3.5 assesses the models’ effectiveness in achieving targeted unlearning,
discussing their strengths, limitations, and potential applications.

3.1 HyperForget

Inspired by the promising results of hypernetworks and the need for pre-trained unlearning
methods, we propose HyperForget, a novel approach that uses hypernetworks to sample
neural networks meeting specific forgetting conditions—such as high performance on the
retain set and low performance on the forget set. To the best of our knowledge, this is the
first application of hypernetworks for Machine Unlearning.

Traditional DNNs have fixed parameters and architectures post-training, requiring com-
plete retraining for any modifications. This rigidity makes them unsuitable for scenarios that
demand dynamic adjustments, like unlearning. By using hypernetworks, HyperForget allows
for dynamic parameter adaptation to forget specific data while preserving key capabilities.
This flexibility makes it well-suited for various unlearning tasks, particularly in scenarios
with frequent forget requests or the need for rapid adaptation.

36 Methodology

Following Definitions 2, 3, and 5, in the HyperForget framework a hypernetwork, named
HyperForget Network (HyFo), is trained to generate parameters that reduce performance on
a specific forget set D f , while preserving performance on the retain set Dr for a given task
T . The goal is to reconstruct a network’s knowledge to maintain effectiveness on Dr, while
forgetting D f , ideally mimicking the behavior of a model retrained without D f .

Additionally, diffusion models, with their ability to model complex distributions and
transitions from noise to structured data, are relevant for our objectives. Intrroducing them in
the HyperForget allows the controlled removal of specific data influences while preserving
the model’s overall integrity, providing a structured approach to gradual unlearning.

Consider a classification task T with a dataset D = {X ,Y}, each example xi ∈ X with an
associated label yi ∈ {1, ...,m},m ∈ N, drawn from an unknown distribution P. And that a
model trained to solve task T is then requested to forget a specific class or subset of classes,
preferably without retraining. This means that the forget set D f ⊂ D contains data with a
specific class label.

Fig. 3.1 Diffusion HyperForget Process

As depicted in 3.1, for this forgetting problem we can employ a diffusion model con-
ditioned on the specific class performance metrics, such as class losses,1 to construct a
Diffusion HyperForget Network (DiHyFo) capable of generating parameters that yield
high-performance on Dr while obtaining low-performance on D f , effectively forgetting the
specified classes.

1Given our discussion on Section 2.3.2 we use losses, but other performance metric can be employed.

3.2 Evaluation Procedure and Metrics 37

We explore two mechanisms for constructing the DiHyFo model, depicted in Figure
3.2. The first model, DiHyFo-1, is built on the learning-to-learn framework of Peebles et al.
(2022), extending it to generate parameters conditioned on class losses and to be able to
learn-to-forget, i.e. learning to de-optimize. Conversely, DiHyFo-2 uses a diffusion model
directly conditioned on the desired class losses.

(a) DiHyFo-1

(b) DiHyFo-2

Fig. 3.2 Two implementations of Diffusion HyperForget Networks.

Notably, unlearned models obtained using HyperForget can be interpreted and evaluated
using the two interpretations of the definition of unlearning, either as an approximation to
exact unlearning on the parameter space or in the output space.

Following Section 2.1.6, the unlearned models are evaluated by comparing them with a
model retrained from scratch without the unlearning targets. While a retrained model should
be constructed for each forget set, DiHyFo models can sample an unlearned models with any
desired forgetting configuration.

3.2 Evaluation Procedure and Metrics

Each model must be evaluated on two key aspects. First, their generative properties as
diffusion hypernetworks need to be assessed. This involves verifying whether the models can
generate appropriate parameters for the main network, enabling it to approximate targeted
performance levels on the classification task for each class. This helps identify limitations in
the models’ generative capabilities and areas for improvement.

Both DiHyFos use MSE as a training metric, so we analyze learning curves to track MSE
evolution, understand the model’s learning behavior and convergence, and identify issues
like overfitting or underfitting.

38 Methodology

To evaluate whether the generated parameters effectively approximate prompted loss
values, we use the prompt alignment metric defined in Section 2.3.2, which is based on an
R2 score (see Equation 2.22). A score close to 1 indicates that the obtained loss closely
aligns with the target loss. Negative values suggest worse alignment than the mean of the
target values. We compute this score separately for each class to assess the model’s ability to
control losses across different classes simultaneously.

As described in Section 2.3.2, the prompt alignment metric is computed over 20 regularly-
sampled prompts and averaged over multiple neural networks sampled with each DiHyFo,
using randomly-initialized input parameters. This metric is effective for evaluating con-
ditional generative tasks, such as those in the learning-to-learn framework (Peebles et al.
(2022)), as it measures how well the model aligns the observed losses with the target losses
in terms of both direction and magnitude.

However, the metric is typically measured in an increasing loss fashion, while our training
datasets exhibit bidirectional loss movements, which can affect how the model learns to align
the losses. In our experiments, we found that observed losses generally aligned correctly with
the direction of the prompted losses, but not in magnitude. Thus, we compute the correlation
between observed and target losses to assess if the model is accurately tracking the target,
providing a complementary metric to the prompt alignment score.

We also plot the observed versus target losses along the identity line (indicating perfect
alignment) and include a lower performance bound—often set to the median or average of
losses from checkpoint collection—as a reference for high performance.

The second aspect to evaluate is the DiHyFo models’ ability to sample unlearned networks.
Following Section 2.1.6, we assess the unlearning properties of networks sampled with each
DiHyFo by comparing them to a main network retrained from scratch without the forget
targets. As previously discussed, this retrained model 2 is typically considered the gold
standard for unlearning evaluation. The closer the behavior of the sampled unlearned model is
to the retrained model, the more effective the unlearning (see Section 2.1.2). This evaluation
helps determine the usefulness of each DiHyFo for unlearning applications, their limitations,
and areas for improvement.

The comparison begins by individually computing the accuracy of each unlearned model
and the retrained model on the retain, forget, and complete test sets. Additionally, we
calculate the MIA score for each model to assesses the likelihood that an adversary could
infer information about the forget set from the unlearned model. Ideally, the unlearned model
should have MIA scores similar to or lower than those of the retrained model.

2This is called retrained model because the in the Machine Unlearning framework it is assumed that we
have an already trained network, which is later required to forget instances of its training data, see Section 2.1
and 2.1.6.

3.2 Evaluation Procedure and Metrics 39

To compute the MIA score, we follow the implementation of Chundawat et al. (2023a),
as in Figure 3.3. The model being evaluated generates prediction probabilities for the retain
and test sets. These probabilities are used to calculate entropy for each set, and the resulting
entropies serve as features for a logistic regression, with labels indicating the origin dataset
of each instance. The logistic regression is trained and then used to predict the membership
status of instances in the forget set. The average of these predictions provides the MIA score,
reflecting how effectively it can infer whether the forget data was partof the training set of
the model being evaluated.

1: Input: Model F , Datasets Dr, and D (retain and test sets)
2: Pr← F(Dr)
3: Pt ← F(D)
4: Xr← [H (Pr),H (Pt)] ▷ H is the entropy measure
5: Yr← [1 (retain),0 (test)]
6: LR← Train Logistic Regression with (Xr,Yr)
7: Ŷf ← LR(H (Pr))

8: MIA← 1
n f

∑
n f
i=1 Ŷ f i

9: Output: MIA

Fig. 3.3 Pseudocode for computing MIA score.

To compare each model’s output space against the retrained model (Section 5), we
measure the overlap in their predictions on each set. For parameter space comparison, we
calculate the Activation Distance between the sampled models and the retrained model.
Following Equation 3.1, the output logits of both models are passed through a softmax
function to generate probability distributions. The difference between these distributions is
computed for each input, followed by calculating and averaging the L2 norm. A lower score
indicates greater similarity in behavior between the models for the same inputs.

softmax(z)i =
ezi

∑
K
j=1 ez j

Activation Distance =

√
K

∑
i=1

(softmax(zmodel1)i− softmax(zmodel2)i)
2 (3.1)

Furthermore, following Foster et al. (2024a), we compute an unlearning score ϕ based
on the Jensen-Shannon Divergence (JSD), which is a symmetric measure constructed using
the Kullback–Leibler divergence (KL) between two probability distributions, P and Q. The
JDS is computed between the softmax outputs of each pair of models being compared across
the entire dataset, Equation . A value close to 1 indicates that both models are very similar.

40 Methodology

JSD(P ∥ Q) =
1
2

KL(P ∥M)+
1
2

KL(Q ∥M) (3.2)

M =
P+Q

2

ϕ = 1− JSD(softmax(Model 1) ∥ softmax(Model 2)) (3.3)

These metrics provide a thorough assessment of each DiHyFo model’s ability to generate
loss-conditional parameters and their suitability for Machine Unlearning tasks, which remains
our primary goal.

3.3 DiHyFo-1

DiHyFo-1 is a hypernetwork built on a pre-trained DiT, following a similar methodology
to Section 2.2. During training, DiHyFo-1 takes in current parameters θ , future parameters
θ ∗, and their associated class losses L1, ...,Lm and L ∗

1 , ...,L
∗

m for the classification task T .
These inputs are tokenized along with the time-step, and Standard Gaussian noise is added to
the future parameters at each time-step. This allows the model to learn how to denoise them,
generating neural network parameters directly in the parameter space with the desired loss
properties for each class.

DiHyFo-1’s goal is to predict the distribution of updated parameters that achieve the
target loss for each class, as detailed in Equation 3.4. The model’s architecture is illustrated
in Figure 3.4.

pG(θ
∗ | θ ,L ∗

1 , ...,L
∗

m,L1, ...,Lm) (3.4)

At inference, the model receives a set of current parameters (which may be initialized
randomly) along with their associated current and target losses for each class, and returns
updated parameters with the requested loss properties for each class.

For our forgetting goal, specific data considerations are crucial. First, as noted in Section
2.3.2, this architecture performs better when provided with ample examples that capture the
full range of loss evolution.

Additionally, the architecture can learn the parameter evolution for individual classes
(see Appendix A). However, unlike Peebles et al. (2022), which tackles an unconstrained
optimization problem typically addressed with SGD, DiHyFo-1 focuses on a constrained
optimization problem. Since parameter adjustments impact multiple classes, the challenge

3.3 DiHyFo-1 41

Fig. 3.4 DiHyFo-1 Architecture

is to control loss evolution so that the model can increase losses for some classes while
minimizing them for others. This setup presents the optimization problem described in
Equation 3.5.

max
θ

[
∑

c∈Cincrease

E(x,y)∼D [Lc(y, ŷ)]−λ ∑
c∈Cminimize

E(x,y)∼D [Lc(y, ŷ)]
]

(3.5)

subject to θ ∈Θ

The constrained optimization problem defined here aligns directly with the Machine
Unlearning objective in Definition 3. The first term aims to maximize loss on the classes
to forget, reducing their influence, while the second term minimizes loss for the classes to
retain, preserving model performance on those data points.

To create the checkpoint dataset, it’s necessary to track the evolution of class-level losses
in a constrained manner. However, since SGD is inherently an unconstrained optimizer, we
either need to use a constrained optimizer or apply heuristic constraints to collect checkpoints
from the main network. As constrained optimizers are uncommon in neural network training,
we opt for heuristic strategies to collect checkpoints, enabling DiHyFo-1 to learn to generate
parameters sensitive to class losses.

42 Methodology

On the other hand, for forgetting DiHyFo-1 needs to handle bidirectional movements
within the loss range—learning both to optimize and to de-optimize, i.e., to forget. However,
since the underlying diffusion model naturally behaves as an optimizer, it tends to decrease
losses regardless of the prompt. To enable DiHyFo-1 to learn to forget, we provide examples
of movements that increase class losses, allowing it to replicate this process. This can be
achieved by either reversing the order of checkpoint loading during DiT training or by saving
checkpoints from a process where losses are intentionally increased. For our POC, we chose
the latter approach, as it directly demonstrates an actual forgetting process.

With these considerations, DiHyFo-1 is designed to learn both learning and forgetting
processes, enabling it to generate unlearned models with various configurations. Now, we
explore our strategies for checkpoint collection and training.

3.3.1 Training Dataset

To construct the training dataset for DiHyFo-1, we collect checkpoints from multiple training
runs of the main network, saving parameters along with their corresponding class losses. The
process focuses on capturing a diverse range of loss values across different classes.

Fig. 3.5 Checkpoints collection for the Optimization Process.

For our experiments, we use MNIST classification with MLPs as the main network. Since
a simple MLP achieves good results on MNIST early in training, we randomly select a subset
of classes to undersample in each run. This approach helps capture a broader range of class

3.3 DiHyFo-1 43

loss values and behaviors. The MLPs are trained on the dataset, with checkpoints randomly
selected and evaluated for potential saving. As in Section 2.3.2, permutation augmentation is
applied. The process is illustrated in Figure 3.5.

To collect examples from the forgetting process, we follow a similar training procedure.
At a certain point during training, we randomly delete a selection of classes to capture the
associated increase in losses. This is similar to forgetting by fine-tuning the main network
without the classes to be forgotten 3.6.

We now outline the specific criteria for saving checkpoints, focusing on collecting
examples that reflect our target constrained optimization problem. These examples include
parameters that perform well for some classes while underperforming for others.

Fig. 3.6 Checkpoints collection for De-optimization Process.

Initially, we create bins corresponding to different loss levels. This allows us to save
checkpoints where some classes have high losses and others have low losses. To prevent
over-collecting certain loss levels, we set a maximum number of examples for each bin. We
prioritize collecting examples from less frequent loss levels to ensure a balanced dataset. 3

However, the wide range of possible loss values across multiple classes leads to a combinato-
rial explosion of potential loss-level combinations, limiting the practicality of this approach
to simpler classification tasks.

For a first POC, we simplify the scenario by focusing on a classification task with a
small number of classes, m. We designate a subset of classes, r, as pivots (r < m), and only
save checkpoints when the model achieves high performance on these pivot classes, using

3We experimented with probability decay/increase functions for random iteration saving, but found binning
more effective for capturing a broad range of losses

44 Methodology

a threshold γ for accuracy or loss. Lowering this threshold increases variability in pivots
and expands the combinatorial possibilities. The remaining m− r classes are allowed to vary
across the full range of possible loss values. In this setup, forget targets can be any subset of
the m− r classes, while the retain set must always includes the pivot classes.

During each training run, a random iteration is reviewed. If the pivots’ performance
exceeds γ and the corresponding bin isn’t full, the checkpoint is saved. This strategy simplifies
the problem by focusing on generating parameters for arbitrary losses in m− r classes while
maintaining high performance on the pivots. Figure 3.7 summarizes this checkpoint-saving
strategy.

For a second POC, we relax the constraints by increasing the number of classes and
using fewer pivots or none at all. Instead of using bins to categorize class-level losses, we
implement checkpoint-saving conditions that balance the need for diverse loss examples with
computational efficiency.

Given that intermediate loss values are less critical for our forgetting objectives, we prior-
itize capturing high and low performing parameter updates. We apply diverse undersampling
rates and increase the random selection rate during early training epochs, where the model’s
rapid parameter adjustments lead to varied loss behaviors. In later epochs, where changes
are more incremental, the selection rate is reduced to focus on capturing significant shifts
in loss. This approach ensures our dataset includes key learning moments while avoiding
redundancy.

For our first POC we consider a modified MNIST with four classes, MNIST-4, using {0,1}
as pivots. We save 150 checkpoints during each training run for 25 epochs of a two-layer
MLP with two hidden units and ReLU activation. Our pivot criteria is γ = 80 on accuracy,
and we vary the learning rate, undersampling rates and bins maximums across the training
runs. We saved about 1.9M checkpoints in total.

For our second POC we considered MNIST with classes {5-9} as pivots and a two-layer
MLP with seven hidden units. We save 200 checkpoints per each training run for a total of
3.7M checkpoints saved. Other details are similar to the first POC.

3.3.2 Training Process

The training process begins with the loading of data by selecting a training run uniformly at
random from the dataset. From this run, a random tuple of current, future parameters and
their associated losses (θ ,L1, ...,Lm,θ

∗,L ∗
1 , ...,L

∗
m) is selected uniformly, with θ always

being sampled from an earlier step than θ ∗, not necessarily from consecutive checkpoints.
Similar to the process described in Section 2.3.2, the parameters are normalized, and

then tokenized layer-by-layer flattening them into 1D vectors, with each layer’s flattened

3.3 DiHyFo-1 45

1: Input: γ (performance threshold), F (main network), DT (task data), β (check-
ing threshold), bin1, ...,binr (loss bins), b1, ...,br (max bin sizes), Yp (pivots),
max_checkpoints

2: D1← [Xtraining,Ytraining] from D
3: D2← [Xtest,Ytest] from D
4: J← Random sample from unique(Ytraining)
5: D1← subsample(D1,J)
6: ncheckpoints← 0
7: for epoch in Nepochs do
8: if ncheckpoints < max_checkpoints then
9: training Step F(D1)

10: L1, ...,Lm← Compute class losses of F(D1) on D2
11: if β < sampled random value then
12: if every L j associated with Yp > γ then
13: if Lu in binu, not Lu in Yp then
14: if count(binu) < bu then
15: save checkpoint
16: ncheckpoints← ncheckpoints +1
17: end if
18: end if
19: end if
20: end if
21: end if
22: end for

Fig. 3.7 Pseudocode for Collecting Checkpoints with Bins.

parameter vector corresponding to a unique token. Layers containing both weight and bias are
decomposed into separate tokens, and each token accepts a maximum number of parameters
set to be smaller than the DiT hidden size.

The time-step t, input losses, and the differential between the current and future losses
∆L1,L

∗
1
, ...,∆Lm,L ∗

m
are tokenized using a frequency-based encoder. All the obtained tokens

are linearly projected to the transformer hidden size, resulting in a unique set of weights for
each token.

During training, Standard Gaussian noise is added to the future parameters at each
time step, simulating the forward diffusion process. The noisy parameters are then passed
through the DiT, which uses a decoder as final layer that linearly projects each token back to
the original size of the corresponding layer’s flattened parameter vector to reconstruct the
denoised parameter vector θ ∗t . A residual connection to the input θ is added at the end of the
process to predict the parameter updates θ ∗t −θt .

46 Methodology

The training objective is to minimize the MSE between the original future parameters
and the parameters generated by the DiT so that it learns to generate parameters that closely
match the original future parameters conditioned on the input losses.

L(G) = E(∥θ ∗−G(θ ∗t ,θ ,L
∗

1 , ...,L
∗

m,L1, ...,Lm, t)∥2
2) (3.6)

At inference time, the model can take a set of starting parameters θ (which may be
initialized randomly) and their corresponding starting losses L1, ...,Lm, to sample updated
parameters that approximate a set of desired losses L ∗

1 , ...,L
∗

m by denoising an input Gaus-
sian noise vector via DDPM with fixed variances.

For the MNIST, the DiT uses a hidden dimension of 1536 with 12 hidden layers with 16
attention heads, trained using AdamW (Loshchilov and Hutter, 2017) with an exponential
moving average of the model weights maintained throughout the training process. Addition-
ally, learned positional embeddings, initialized to zero, are applied across all tokens to help
the model understand the sequential nature of the data.

3.3.3 Training Evaluation

The learning curves on MNIST-4 depicted in Figure 3.8 show a progressive decrement
of the MSE across epochs, albeit with some fluctuations, stabilizing at a low value. This
indicates that DiHyFo-1 achieves to capture the underlying patterns in this case. Although
the testing MSE exhibits some fluctuations, the behaviour between training and testing is
similar, indicating that the model is correctly applying the knowledge gained during training
to unseen data.

0 1000 2000 3000 4000
Epoch

0.000

0.002

0.004

0.006

Tr
ai

n
M

SE

(a) Training

0 1000 2000 3000 4000
Epoch

0.000

0.002

0.004

0.006

Te
st

 M
SE

(b) Testing

Fig. 3.8 DiHyFo-1 Learning Curves with MNIST-4.

3.3 DiHyFo-1 47

The prompt alignment and correlation between the target and observed losses are shown
in Figure 3.9, and the direct comparison in Figure 3.10. These figures show how the model
behaves for both pivot and free classes.

In the early epochs, both metrics fluctuate significantly, reflecting the model’s initial
exploration of the parameter space as it seeks a stable configuration. As training continues,
the metrics stabilize, indicating successful convergence where predictions align closely
with the prompts. The early fluctuations highlight the learning process’s complexity, while
the eventual convergence demonstrates the model’s effectiveness in prompt conditioned
parameter generation.

The direct comparison plots show that during training for Class 2, the observed losses
generally align with the identity line, indicating the model’s ability to approximate target
losses. However, some deviations suggest difficulties in perfectly matching the desired loss.
Similar behavior is seen during testing, with increased variability. These deviations highlight
that while the model generalizes well to unseen data, it struggles more with lower target
losses.

For Class 0, a pivot class, observed losses also track target losses, though with greater
divergence and noticeable jumps between levels. This is expected, as training examples
primarily represent low losses for these classes.

For MNIST, similar results are observed. The learning curves in Figure 3.11 show a
progressive decrease, with some fluctuations, before stabilizing. The sharp drop in MSE
suggests that the model quickly adjusts its parameters to fit the training data. Occasional
spikes indicate moments of adjustment where errors temporarily increase, likely due to
the model balancing the conflicting objectives of forgetting specific classes while retaining
others.

Figure 3.12 illustrates how the prompt alignment for two forgettable classes stabilizes,
showing that the model effectively adjusts its parameters to align with the forgetting prompts.
For the pivot classes, while early fluctuations are more pronounced, the alignment eventually
stabilizes, meeting our objectives.

Contrasting with Figure 3.13, the observed losses for forgettable classes generally align
well with the target losses, following the identity line’s direction with some deviations. The
model effectively guides the losses toward the desired targets, though adjusting to the exact
magnitude remains challenging. During testing, variability increases compared to training,
indicating that while the model generalizes well to new data, the task’s complexity leads to
some inconsistencies.

For pivot classes, observed losses during training align with target losses in the low-loss
range, but with more noticeable deviations, particularly in testing. The model successfully

48 Methodology

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Class 2

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(b) Class 2

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(c) Class 0 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(d) Class 0 (pivot)

Fig. 3.9 Examples of prompt alignment and correlation obtained by the parameters generated
with DiHyFo-1 for MNIST-4.

3.3 DiHyFo-1 49

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(a) Class 2 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(b) Class 2 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(c) Class 0 (pivot) - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(d) Class 0 (pivot) - Test

Fig. 3.10 Examples of Observed vs Target Losses during training and testing obtained by the
parameters generated with DiHyFo-1 for MNIST-4.

0 1000 2000 3000 4000
Epoch

0.000

0.002

0.004

0.006

Tr
ai

n
M

SE

(a) Training

0 1000 2000 3000 4000
Epoch

0.000

0.002

0.004

0.006

Te
st

 M
SE

(b) Testing

Fig. 3.11 DiHyFo-1 Learning Curves with MNIST.

50 Methodology

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Prompt Alignment on Class 2

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(b) Correlation on Class 2

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(c) Prompt Alignment on Class 3

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(d) Correlation on Class 3

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(e) Prompt Alignment on Class 8 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(f) Correlation on Class 8 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(g) Prompt Alignment on Class 9 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(h) Correlation on Class 9 (pivot)

Fig. 3.12 Examples of prompt alignment and correlation obtained by the parameters generated
with DiHyFo-1 for MNIST.

3.4 DiHyFo-2 51

retains performance on these pivot classes but struggles to generate high losses, as expected.
Increased scatter in the testing phase suggests that the model’s ability to maintain low losses
on unseen data may need further refinement.

Overall, results on MNIST and MNIST-4 show that DiHyFo-1 can generate parameters
that achieve target losses, though with some errors. Deviations from the identity line indicate
areas for improvement, but the model generally performs well in both training and testing,
maintaining alignment between observed and target losses. Learning bidirectional loss
movements at a class level is more challenging, leading to less precise prompt alignment
compared to Section 2.3.2. The model captures the direction of loss changes but struggles
with magnitude, making generation harder to control—likely due to limited loss variety in the
dataset. However, this is not a major issue for our primary objective, as unlearning typically
focuses on high and low-performing parameters rather than covering the entire loss range.

3.4 DiHyFo-2

While the conditioning of DiHyFo-1 is designed to make it behave as a leaned optimizer/de-
optimizer, DiHyFo-2 is directly conditioned on the desired class losses, Figure 3.14. This
type of conditioning have shown good results in other tasks using diffusion hypernetworks
(Li et al., 2024; Wang et al., 2024a). We use a DiT conditioned on a large set of examples
where parameters exhibit both high and low performance on individual classes. This allows
us to synthesize new parameters directly in the parameter space, tailored to the specific loss
properties needed for our forgetting objectives.

During inference, the model receives input Gaussian noise and target losses for each class,
generating parameters that approximate the specified loss conditions. The task of DiHyFo-2
is to predict the distribution of parameters that achieve these desired losses, as expressed in
Equation 3.7.

pG(θ
∗ | θ ,L ∗

1 , ...,L
∗

m,L1, ...,Lm) (3.7)

3.4.1 Training Dataset

We consider the same underlying classification tasks and main networks configurations
than in Section 3.3.1, and collect checkpoints using a procedure in Figure 3.5, but giving
preference for parameters that exhibit either low or high performance.

Thus, for the checkpoints random selection we give more priority to epochs at the
beginning and end of the training, but also in some runs we randomly select checkpoints

52 Methodology

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(a) Losses Comparison for Class 2 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(b) Losses Comparison for Class 2 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(c) Losses Comparison for Class 3 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(d) Losses Comparison for Class 3 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(e) Losses Comparison for Class 9 (pivot) - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(f) Losses Comparison for Class 9 (pivot) - Test

Fig. 3.13 Examples of Observed vs Target Losses obtained during training and testing of
parameters generated with DiHyFo-1 for MNIST.

3.4 DiHyFo-2 53

Fig. 3.14 DiHyFo-2 Architecture

across the training, to ensure that DiHyFo-2 has access to examples of both the general loss
evolution process and the particular moments we are interested in for the forgetting task.

DiHyFo-2 does not requires to see a process of increments in class losses, just a variety
of combinations of losses across classes, which can be done by collecting a vast amount of
checkpoints from runs with different configurations.

This checkpoint collection approach has proven effective for conditional parameter
generation using diffusion hypernetworks (Li et al., 2024; Wang et al., 2024a). It worked
well for the MNIST-4 case, however, due to disk space constraints, we reused datasets from
DiHyFo-1 for MNIST, which are already aligned with the required properties and facilitate
direct comparison with DiHyFo-1.

3.4.2 Training Process

Training data is loaded and preprocessed in consistent manner with the methodology outlined
in Section 3.3.3.

Similarly, the DiT architecture, training process, and inference process follows the
methodology described in Section 3.3.3, changing the training objective for Equation 3.8.

54 Methodology

L(G) = E(∥θ ∗−G(θ ,L1, ...,Lm, t)∥2
2) (3.8)

0 1000 2000 3000 4000
Epoch

0.00

0.02

0.04

0.06

Tr
ai

n
M

SE

(a) Training

0 1000 2000 3000 4000
Epoch

0.00

0.02

0.04

0.06

Te
st

 M
SE

(b) Testing

Fig. 3.15 DiHyFo-2 Learning Curves for MNIST-4.

0 1000 2000 3000 4000 5000
Epoch

0.01

0.04

0.07

0.10

Tr
ai

n
M

SE

(a) Training

0 1000 2000 3000 4000 5000
Epoch

0.01

0.04

0.07

0.10

Te
st

 M
SE

(b) Testing

Fig. 3.16 DiHyFo-2 Learning Curves for MNIST.

3.4.3 Training Evaluation

The results in Figure 3.17 show that for Class 2 of MNIST-4, prompt alignment stabilizes
early, indicating the model’s quick adaptation to align its parameters with the desired per-
formance changes. The strong alignment is further confirmed in Figures 3.18a and 3.18b,
where the model closely tracks the identity line in both training and testing, with only minor
deviations.

3.4 DiHyFo-2 55

In contrast, pivot Class 1 shows more variability in both alignment and correlation, likely
due to the dataset’s focus on low-loss examples for pivot classes. This is evident in Figure
3.18c, where the model fits well for low losses but struggles with high losses, a common
issue in generative models (Li et al., 2022; Peebles et al., 2022). However, since our focus
is on fitting low-loss regions for these classes, the deviations in high-loss areas are less
problematic.

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Prompt Alignment for Class 2

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(b) Correlation for Class 2

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(c) Prompt Alignment for Class 1 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(d) Correlation for Class 1 (pivot)

Fig. 3.17 Examples of prompt alignment and correlation obtained by the parameters generated
with DiHyFo-2 for MNIST-4.

The training curves of DiHyFo-2 for MNIST indicate that the model gradually learns the
conditional parameter generation task and stabilizes over time.

Figure 3.19 shows that as training progresses, the model increasingly aligns generated
parameters with the requested performance. However, Figure 3.20 reveals that while the
model learns to direct movements in the correct loss directions, it struggles to match the
magnitude of these movements, often underestimating high-loss targets, particularly for pivot
classes.

56 Methodology

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(a) Losses Comparison for Class 2 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(b) Losses Comparison for Class 2 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(c) Losses Comparison for Class 1 (pivot) - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(d) Losses Comparison for Class 1 (pivot) - Test

Fig. 3.18 Examples of Observed vs Target Losses obtained during training and testing
generated with DiHyFo-2 for MNIST-4.

3.4 DiHyFo-2 57

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Prompt Alignment for Class 2

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(b) Correlation for Class 2

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(c) Prompt Alignment for Class 3

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(d) Correlation for Class 3

0 500 1000 1500 2000 2500 3000
Epoch

−4

−3

−2

−1

0

1

Pr
om

pt
 A

lig
nm

en
t

(e) Prompt Alignment for Class 9 (pivot)

0 500 1000 1500 2000 2500 3000
Epoch

0.0

0.5

1.0

ρ

(f) Correlation for Class 9 (pivot)

Fig. 3.19 Examples of prompt alignment and correlation obtained by the parameters generated
with DiHyFo-2 for MNIST.

58 Methodology

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(a) Losses Comparison for Class 2 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(b) Losses Comparison for Class 3 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(c) Losses Comparison for Class 3 - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(d) Losses Comparison for Class 3 - Test

0.0 0.4 0.8 1.2 1.6 2.0
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Tr
ai

n
Ob

se
rv

ed
 L

os
s

All Classes
Lower Bound
Generated
Identity

(e) Losses Comparison for Class 9 (pivot) - Train

0.0 0.4 0.8 1.2 1.6 2.0
Test Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

Te
st

 O
bs

er
ve

d
Lo

ss

All Classes
Lower Bound
Generated
Identity

(f) Losses Comparison for Class 9 (pivot) - Test

Fig. 3.20 Examples of Observed vs Target Losses obtained during training and testing
generated with DiHyFo-2 for MNIST.

3.5 Unlearning Evaluation 59

Table 3.1 Individual Unlearning Performance Metrics on MNIST-4.

MNIST-4
Sampled with DiHyfo-1 Sampled with DiHyfo-2 Retrained Model

D f ={2} D f ={2,3} D f ={2} D f ={2,3} D f ={2} D f ={2,3}

Accuracy on Dr 0.9838 0.9967 0.9844 0.9995 0.9938 0.9991
Accuracy on D f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MIA 0.6310 0.6338 0.4432 0.3994 0.4171 0.3398

Table 3.2 Paired Unlearning Performance Metrics on MNIST-4.

MNIST-4
Sampled with DiHyfo-1 Sampled with DiHyfo-2

D f ={2} D f ={2,3} D f ={2} D f ={2,3}

Overlap on Dr 0.9851 0.9967 0.9854 0.9995
Overlap on D f 0.3499 0.6812 0.6657 0.7988
Overlap on Test Set 0.8270 0.8411 0.9062 0.9008
Activation Distance 0.4467 0.3597 0.1657 0.1555
Unlearning Score (ϕ) 0.8537 0.9272 0.9630 0.9723

In the testing phase, increased scatter around the identity line for both varying and pivot
classes suggests that while the model generalizes adequately, it faces challenges in managing
multiple classes with conflicting loss objectives.

Overall, DiHyFo-2 successfully captures general loss trends but has difficulty controlling
generation, especially when handling multiple classes. During inference, prompts may need
adjustment to achieve the desired outcomes. These findings highlight the need for further
refinement to improve the model’s stability and precision in balancing forgetting and retention
across different class configurations.

3.5 Unlearning Evaluation

To apply the DiHyFo models for unlearning, we sample multiple parameters prompting
different high losses values for different forget sets simultaneously with low losses for the
corresponding retain sets. The generated parameters are used to load an instance of the main
network, which is then evaluated on a test set. We save the sampled model that obtains
the lowest average accuracy on the forget set while obtaining the highest possible average
accuracy on the retain set (best unlearned model). We use accuracy for the selection and
evaluation as it is a more interpretable performance measure than loss.

We sampled models that forget classes {2} and {2,3} for MNIST-4, and {2}, {2,3,4},
and {0,1,2,3,4} for MNIST. Figures 3.21 and 3.22 exemplifies this sampling and selection
process.

60 Methodology

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(a) DiHyFo-1 sampled models, D f = {2,3}

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(b) DiHyFo-1 sampled models, D f = {2,3}

0 20 40 60 80 100
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(c) DiHyFo-2 sampled models, D f = {2}

0 20 40 60 80 100
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(d) DiHyFo-2 sampled models, D f = {2,3}

Fig. 3.21 Selection of sampled models using DiHyFo-1 and DiHyFo-2 on MNIST-4.

3.5 Unlearning Evaluation 61

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(a) DiHyFo-1 sampled models, D f = {2,3,4}

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(b) DiHyFo-1 sampled models, D f = {0,1,2,3,4}

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(c) DiHyFo-2 sampled models, D f = {2,3,4}

0 10 20 30 40
Avg Accuracy on Forget Set

80

85

90

95

100

Av
g

Ac
cu

ra
cy

 o
n

R
et

ai
n

Se
t

Sampled Models
Best Unlearned Model

(d) DiHyFo-2 sampled models, D f = {0,1,2,3,4}

Fig. 3.22 Selection of sampled models using DiHyFo-1 and DiHyFo-2 on MNIST.

62 Methodology

We also train an instance of the main network without the forget set to serve as the
retrained model baseline. Notably, an instance of the main network needs to be retrained for
each forget set considered, while the same DiHyFo can sample an unlearned model for all
the forget sets considered.

Then, we proceed to the individual and pair comparisons as described in Section 3.3.3.
The results of the computed metrics for the case of MNIST-4 are summarized in Tables 3.1
and 3.1, and for MNIST in Tables 3.3 and 3.3.

For all the forgetting tasks on both MNIST-4 and MNIST, the sampled unlearned models
achieved zero accuracy on the forget set while maintaining high accuracy on the retain set,
which indicates their robustness in preserving the performance on classes that are not subject
to forgetting. Their individual performance on each set is comparable to the performance of
the retrained model.Coupled with the obtained low MIA scores, the individual comparison
shows achievement on the forgetting tasks and no significant signs of catastrophic forgetting.

Notably, in some cases the unlearned models obtained lower MIA scores than the retrained
model, suggesting resistantance to membership inference attacks. This highlight the potential
of the DiHyFo models and the HyperForget framework to synthesize models with effective
unlearning capabilities.

The direct comparison of output spaces shows similar predictions on the retain and test
sets, which aligns with individual performance metrics. However, noticeable differences
are seen in predictions on the forget set, likely due to the models encoding different repre-
sentations within their neurons, resulting in diverse classification outcomes. Despite this
variability, the low concordance in the output space for the forget set is not a significant
concern, as the unlearning does not lead to catastrophic outcomes. Combined with previous
metrics, this suggests that the models are effectively unlearning the forget set, as they no
longer rely on the data associated with those classes.

Taking as reference the predictions of the retrained model, we can compare the output
spaces using the confusion matrix between the sampled models and the corresponding
retrained model on the retain and complete test set. Figures and 3.24 present the results for
DiHyFo-1 on MNIST-4 and DiHyFo-2 on MNIST (for additional plots see Appendix A). The
forget set is not included in this comparison as it mainly contains matrices with zeros across
all entries. This serves as a visual confirmation of commented findings using the evaluation
metrics.

On the other hand, the activation distance is relatively low in most cases and the unlearning
score is high, indicating that most of the time the unlearned models achieve a behavior close
to the unlearning gold standard, with differences in how they treat the forget set.

3.5 Unlearning Evaluation 63

Table 3.3 Individual Unlearning Performance Metrics on MNIST.

MNIST
Sampled with DiHyfo-1 Sampled with DiHyfo-2 Retrained Model

D f ={2} D f ={2,3,4} D f ={0,1,2,3,4} D f ={2} D f ={2,3,4} D f ={0,1,2,3,4} D f ={2} D f ={2,3,4} D f ={0,1,2,3,4}

Accuracy on Dr 0.9110 0.9411 0.9362 0.7281 0.9460 0.9519 0.9193 0.9479 0.9504
Accuracy on D f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MIA 0.3376 0.3992 0.4379 0.3604 0.3241 0.3270 0.3562 0.3406 0.3798

In summary, our evaluations demonstrate that both DiHyFo models can effectively sample
unlearned models with behavior comparable to retraining from scratch without the forget set,
in both output and parameter spaces. The models successfully unlearned the forget set while
maintaining strong performance on the retain set, without significant signs of catastrophic
unlearning or the Streisand effect. DiHyFo-1, in particular, produced more consistent results,
especially with MNIST, where DiHyFo-2 struggled. The conditioning of DiHyFo-1 appears
to make it more robust for learning and unlearning tasks. Based on these findings, and
Section Section 2.1.4, we identify this approach as a potential Retrieval-Enhanced unlearning
method that is model-intrinsic, dynamic, accuracy-preserving, possesses a good level of
completeness, and provides guarantees of unlearning.

Table 3.4 Paired Unlearning Performance Metrics on MNIST.

MNIST
Sampled with DiHyfo-1 Sampled with DiHyfo-2

D f ={2} D f ={2,3,4} D f ={0,1,2,3,4} D f ={2} D f ={2,3,4} D f ={0,1,2,3,4}

Overlap on Dr 0.9160 0.9641 0.9560 0.7197 0.9386 0.9506
Overlap on D f 0.5731 0.7946 0.7891 0.4035 0.7067 0.6331
Overlap on Test Set 0.8807 0.9128 0.8703 0.6868 0.8684 0.7875
Activation Distance 0.1760 0.1282 0.1715 0.9508 0.1878 0.2928
Unlearning Score (ϕ) 0.9876 0.9952 0.9943 0.4124 0.9852 0.9535

64 Methodology

Class 0 Class 1 Class 2 Class 3
Retrained Model

Class 0

Class 1

Class 2

Class 3

D
iH

yF
o-

1

96.53 0.19 0.00 3.28

7.99 67.89 0.00 24.12

0.00 0.00 0.00 0.00

2.14 1.11 0.00 96.75

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(a) Predictions on Test Set with D f = {2}

Class 0 Class 1 Class 3
Retrained Model

Class 0

Class 1

Class 3

D
iH

yF
o-

1

99.58 0.10 0.31

0.00 97.98 2.02

1.32 0.61 98.07

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(b) Predictions on Dr with D f = {2}

Class 0 Class 1 Class 2 Class 3
Retrained Model

Class 0

Class 1

Class 2

Class 3

D
iH

yF
o-

1

86.36 13.64 0.00 0.00

17.71 82.29 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0

10

20

30

40

50

60

70

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(c) Predictions on Test Set with D f = {2,3}

Class 0 Class 1
Retrained Model

Class 0

Class 1

D
iH

yF
o-

1

99.29 0.71

0.00 100.00

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(d) Predictions on Dr with D f = {2,3}

Fig. 3.23 Comparison of Predictions between DiHyFo-1 and Retrained Model on MNIST-4.

3.5 Unlearning Evaluation 65

Clas
s 0

Clas
s 1

Clas
s 2

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

2

97.06 0.00 0.00 1.47 0.00 0.86 0.37 0.12 0.12 0.00

0.00 98.12 0.00 1.34 0.00 0.00 0.09 0.09 0.36 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 89.33 0.00 1.33 2.67 0.00 6.67 0.00

0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

9.77 0.40 0.00 45.27 1.03 36.98 1.20 0.54 4.19 0.62

2.29 0.08 0.00 4.33 3.43 1.06 86.59 0.57 1.64 0.00

0.49 2.97 0.00 7.41 2.22 0.08 0.33 80.64 1.65 4.20

0.15 8.53 0.00 9.43 1.72 1.72 0.75 0.22 76.87 0.60

0.21 0.52 0.00 1.25 44.96 0.42 0.16 1.88 0.47 50.13

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(a) Predictions on Test Set with D f = {2}

Clas
s 0

Clas
s 1

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

2

97.40 0.00 1.48 0.00 0.74 0.37 0.00 0.00 0.00

0.00 99.91 0.00 0.00 0.00 0.00 0.00 0.09 0.00

0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

9.32 0.40 44.18 1.06 40.86 0.60 0.55 2.42 0.60

2.62 0.00 0.39 3.30 1.17 91.17 0.58 0.78 0.00

0.18 2.38 4.49 1.10 0.00 0.09 87.72 0.73 3.30

0.20 4.71 3.63 2.26 1.77 0.69 0.20 85.87 0.69

0.21 0.52 1.26 44.91 0.37 0.16 1.89 0.42 50.26

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(b) Predictions on Dr with D f = {2}

Clas
s 0

Clas
s 1

Clas
s 2

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

2

99.47 0.00 0.00 0.00 0.00 0.32 0.11 0.11 0.00 0.00

0.00 95.92 0.00 0.00 0.00 0.85 1.44 0.34 1.44 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.07 0.47 0.00 0.00 0.00 80.59 2.01 2.18 7.79 1.89

3.94 0.30 0.00 0.00 0.00 2.50 91.98 0.23 0.83 0.23

2.18 3.78 0.00 0.00 0.00 1.38 2.91 76.67 5.67 7.41

1.27 4.51 0.00 0.00 0.00 6.99 4.13 0.51 81.32 1.27

0.63 0.53 0.00 0.00 0.00 0.79 5.78 1.94 1.47 88.86

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(c) Predictions on Test Set with D f = {2,3,4}

Class 0 Class 1 Class 5 Class 6 Class 7 Class 8 Class 9
Retrained Model

Class 0

Class 1

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

2

99.78 0.00 0.11 0.11 0.00 0.00 0.00

0.00 99.62 0.00 0.09 0.09 0.19 0.00

5.28 0.32 87.75 2.01 0.84 2.96 0.84

2.39 0.10 0.31 96.77 0.21 0.21 0.00

0.54 3.17 0.36 0.36 88.85 1.72 4.99

1.10 4.50 2.10 1.00 0.50 90.39 0.40

0.81 0.81 0.20 0.10 2.04 1.73 94.30

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(d) Predictions on Dr with D f = {2,3,4}

Fig. 3.24 Comparison of Predictions between DiHyFo-2 and Retrained Model on MNIST.

Chapter 4

Discussion

In this final section, we reflect on the insights gained from our experiments, highlighting
the potential of diffusion hypernetworks for Machine Unlearning. We acknowledge both
their strengths and limitations, offering suggestions for improving the current approach. We
discuss the contributions of this work, draw key conclusions, and present perspectives for
future research directions.

4.1 Model Limitations

While our POCs demonstrated the potential of the HyperForget framework and its associated
models, DiHyFo-1 and DiHyFo-2, for addressing the Machine Unlearning problem, several
critical limitations and potential drawbacks must be resolved before these approaches can be
effectively applied in real-world scenarios. These concerns encompass scalability, unlearning
policy compliance, generalization capabilities, generation control, and overall robustness.

The primary practical challenge is scalability. As the number of potential forget targets
increases, so does the demand for data and computational resources. This can make the
model impractical in scenarios with large datasets or complex models, where training and
inference times may become prohibitively long. Moreover, the significant computational
overhead associated with integrating diffusion models as hypernetworks further limits broader
adoption, particularly for those lacking substantial computational resources.

Generalization capabilities present another concern. Although HyperForget performs well
on the datasets used in this study, its ability to generalize to other datasets or more complex
scenarios remains uncertain. Balancing multiple objectives—such as retaining performance
on certain classes while forgetting others—increases the complexity and could affect the
model’s performance in diverse applications. Additionally, the model inherits challenges

68 Discussion

from diffusion hypernetworks, including interpolation issues, limited extrapolation beyond
trained loss ranges, and inconsistencies in generation capabilities.

Generative control is another issue. Although the generated parameters generally align
with target losses, evaluation results reveal inconsistencies in achieving the desired loss
outcomes. Often, to obtain a specific loss, a higher or lower loss must be requested, compli-
cating control over generation outcomes. While this may not significantly impact unlearning
objectives focused on high and low loss values, it poses challenges for broader applications
with varied unlearning goals.

Finally, regarding Machine Unlearning and policy compliance, a critical risk involves the
potential for performance recovery. The generative nature of HyperForget models allows for
sampling parameters that could potentially restore performance on forgotten classes. This
poses significant challenges for strict policy compliance scenarios and complete unlearning.

Addressing these challenges is essential to enable the HyperForget framework and
DiHyFo models to be more broadly applicable and effectively used in Machine Unlearning
tasks, ensuring they meet the rigorous demands of both industry and academia.

4.2 Conclusion and Future Work

This work introduced the HyperForget framework, a novel approach to Machine Unlearning
that leverages hypernetworks to dynamically generate model parameters that selectively
forget specific classes while retaining essential capabilities. Building on prior advancements,
we integrated diffusion models into HyperForget, resulting in two distinct Diffusion Hyper-
Forget Networks (DiHyFo-1 and DiHyFo-2), each with unique strategies for conditioning
parameter generation.

Our experiments, though limited in scope, showed that both DiHyFo models effectively
achieved low accuracy on forget sets while maintaining high accuracy on retain sets, with low
MIA scores indicating potential robustness against adversarial attacks. Notably, DiHyFo-1
demonstrated more consistent performance across tasks, offering assurances that the model
closely mimics retraining without the need to start from scratch.

Although it is required to perform more evaluations and tests using more diverse datasets
and scenarios, our POCs results give us reasons to believe that HyperForget and DiHyFo
networks have potential benefits for dynamic forgetting scenarios with frequent or multi-
ple unlearning request, potentially allowing for a more flexible and adaptable method for
unlearning.

However, challenges remain. Scalability and computational complexity are significant
barriers, as the framework’s reliance on multiple checkpoints and diffusion models demands

4.2 Conclusion and Future Work 69

high resources. This restricts HyperForget’s practical application to scenarios requiring
frequent dynamic forgetting or where the computational cost is justified. Additionally, the
models’ generalization capabilities and consistency in achieving desired loss outcomes need
further refinement for broader reliability.

Concerns about the potential for knowledge recovery also pose risks for compliance with
standards like GDPR. Additional safeguards and restrictions may be necessary depending on
the unlearning task’s context.

Addressing these limitations will be crucial to transform HyperForget into a more ver-
satile and reliable tool for Machine Unlearning. Future work should focus on optimizing
diffusion processes, exploring alternative architectures and checkpoint collection strategies,
and expanding the framework’s applicability beyond image classification. Additionally, as the
fields of Machine Unlearning and Hypernetworks are in an early stage, there are numerous
opportunities for further innovation. For instance, model-agnostic forgetting through the
possibility of hypernetworks to sample parameters for different main networks architectures,
new robust unlearning evaluation metrics, learning on latent spaces rather than directly on
the parameter space, or improved strategies for checkpoint collection.

In conclusion, while the HyperForget framework has potential benefits for Machine
Unlearning, further development is essential to overcome its current limitations. We hope
this work serves as inspiration for future research that further expands the application of
hypernetworks and Machine Unlearning, potentially leading to more adaptive solutions
towards ethical and regulatory AI alignment.

References

Bao, F., Nie, S., Xue, K., Li, C., Pu, S., Wang, Y., Yue, G., Cao, Y., Su, H., and Zhu, J. (2023).
One transformer fits all distributions in multi-modal diffusion at scale. In International
Conference on Machine Learning, pages 1692–1717. PMLR.

Basden, B. H., Basden, D. R., and Gargano, G. J. (1993). Directed forgetting in implicit and
explicit memory tests: A comparison of methods. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 19(3):603.

Baumhauer, T., Schöttle, P., and Zeppelzauer, M. (2022). Machine unlearning: Linear
filtration for logit-based classifiers. Machine Learning, 111(9):3203–3226.

Becker, A. and Liebig, T. (2022). Evaluating machine unlearning via epistemic uncertainty.
arXiv preprint arXiv:2208.10836.

Bessis, J. (2011). Risk management in banking. John Wiley & Sons.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A., Zhang, B.,
Lie, D., and Papernot, N. (2021). Machine unlearning. In Proceedings - 2021 IEEE
Symposium on Security and Privacy, SP 2021, Proceedings - IEEE Symposium on Security
and Privacy, pages 141–159. Institute of Electrical and Electronics Engineers Inc.

Brophy, J. and Lowd, D. (2021). Machine unlearning for random forests. In International
Conference on Machine Learning, pages 1092–1104. PMLR.

Cao, Y. and Yang, J. (2015). Towards making systems forget with machine unlearning. In
2015 IEEE symposium on security and privacy, pages 463–480. IEEE.

Carlini, N., Jagielski, M., Choquette-Choo, C. A., Paleka, D., Pearce, W., Anderson, H.,
Terzis, A., Thomas, K., and Tramèr, F. (2024). Poisoning web-scale training datasets is
practical. In 2024 IEEE Symposium on Security and Privacy (SP), pages 175–175. IEEE
Computer Society.

Chatterjee, A., Aryasomayajula, S. A., Chaudhari, R., Paul, S., and Singh, V. M. (2024).
Remembering everything makes you vulnerable: A limelight on machine unlearning for
personalized healthcare sector. arXiv preprint arXiv:2407.04589.

Chauhan, V. K., Zhou, J., Lu, P., Molaei, S., and Clifton, D. A. (2023). A brief review of
hypernetworks in deep learning. arXiv preprint arXiv:2306.06955.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., and Zhang, Y. (2021). When
machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM SIGSAC
conference on computer and communications security, pages 896–911.

72 References

Chen, R., Yang, J., Xiong, H., Bai, J., Hu, T., Hao, J., Feng, Y., Zhou, J. T., Wu, J., and Liu,
Z. (2024). Fast model debias with machine unlearning. Advances in Neural Information
Processing Systems, 36.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankanhalli, M. (2023a). Can bad
teaching induce forgetting? unlearning in deep networks using an incompetent teacher.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
7210–7217.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankanhalli, M. (2023b). Zero-shot
machine unlearning. IEEE Transactions on Information Forensics and Security, 18:2345–
2354.

Cohen, J. (1985). Trauma and repression. Psychoanalytic Inquiry, 5(1):163–189.

Costanzi, M., Cianfanelli, B., Santirocchi, A., Lasaponara, S., Spataro, P., Rossi-Arnaud, C.,
and Cestari, V. (2021). Forgetting unwanted memories: Active forgetting and implica-
tions for the development of psychological disorders. Journal of Personalized Medicine,
11(4):241.

Council of Europe (1950). European convention on human rights. Accessed: 2024-08-11.

Cuddy, L. J. and Jacoby, L. L. (1982). When forgetting helps memory: An analysis of
repetition effects. Journal of Verbal Learning and Verbal Behavior, 21(4):451–467.

Davis, R. L. and Zhong, Y. (2017). The biology of forgetting—a perspective. Neuron,
95(3):490–503.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794.

Dinsdale, N. K., Jenkinson, M., and Namburete, A. I. (2020). Unlearning scanner bias for
mri harmonisation in medical image segmentation. In Medical Image Understanding
and Analysis: 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020,
Proceedings 24, pages 15–25. Springer.

Dinsdale, N. K., Jenkinson, M., and Namburete, A. I. (2021). Deep learning-based unlearning
of dataset bias for mri harmonisation and confound removal. NeuroImage, 228:117689.

Dobrow, R. P. (2016). Introduction to stochastic processes with R. John Wiley & Sons.

El Ouadrhiri, A. and Abdelhadi, A. (2022). Differential privacy for deep and federated
learning: A survey. IEEE access, 10:22359–22380.

Endress, A. D. and Johnson, S. P. (2021). When forgetting fosters learning: A neural network
model for statistical learning. Cognition, 213:104621.

Erkoç, Z., Ma, F., Shan, Q., Nießner, M., and Dai, A. (2023). Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 14300–14310.

References 73

European Commission (2024). Regulation of the european parliament and of the council
laying down harmonised rules on artificial intelligence, amending regulations and directives
(artificial intelligence act). Accessed: 2024-08-11.

European Union (2000). Charter of fundamental rights of the european union. Accessed:
2024-08-11.

European Union (2016). Regulation (EU) 2016/679 of the european parliament and of the
council of 27 april 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data (general data protection regulation).
Accessed: 2024-08-11.

Fawcett, J. M. and Hulbert, J. C. (2020). The many faces of forgetting: Toward a constructive
view of forgetting in everyday life. Journal of Applied Research in Memory and Cognition,
9(1):1–18.

Fei, Z., Fan, M., Yu, C., Li, D., and Huang, J. (2024). Scaling diffusion transformers to 16
billion parameters. arXiv preprint arXiv:2407.11633.

Feng, S., Miao, C., Zhang, Z., and Zhao, P. (2024). Latent diffusion transformer for
probabilistic time series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 11979–11987.

Foster, J., Fogarty, K., Schoepf, S., Öztireli, C., and Brintrup, A. (2024a). An information
theoretic approach to machine unlearning.

Foster, J., Schoepf, S., and Brintrup, A. (2024b). Fast machine unlearning without retraining
through selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 12043–12051.

Foster, J., Schoepf, S., and Brintrup, A. (2024c). Loss-free machine unlearning. arXiv
preprint arXiv:2402.19308.

Freud, S. (1922). Repression. The Psychoanalytic Review (1913-1957), 9:444.

Freud, S. (2014). The psychical mechanism of forgetfulness. Read Books Ltd.

Frise, M. (2018). Forgetting. In Michaelian, K., Debus, D., and Perrin, D., editors, New
Directions in the Philosophy of Memory, pages 223–240. Routledge.

Gamboa, O. L., Garcia-Campayo, J., Müller, T., and Von Wegner, F. (2017). Suppress
to forget: The effect of a mindfulness-based strategy during an emotional item-directed
forgetting paradigm. Frontiers in psychology, 8:432.

Gatzert, N. and Wesker, H. (2012). A comparative assessment of basel ii/iii and solvency ii.
The Geneva Papers on Risk and Insurance-Issues and Practice, 37:539–570.

Geraerts, E. and McNally, R. J. (2008). Forgetting unwanted memories: Directed forgetting
and thought suppression methods. Acta psychologica, 127(3):614–622.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. (2019). Making ai forget you: Data deletion
in machine learning. Advances in neural information processing systems, 32.

74 References

Goel, S., Prabhu, A., and Kumaraguru, P. (2022a). Evaluating inexact unlearning requires
revisiting forgetting. CoRR abs/2201.06640.

Goel, S., Prabhu, A., Sanyal, A., Lim, S.-N., Torr, P., and Kumaraguru, P. (2022b). Towards
adversarial evaluations for inexact machine unlearning. arXiv preprint arXiv:2201.06640.

Goel, S., Prabhu, A., Torr, P., Kumaraguru, P., and Sanyal, A. (2024). Corrective machine
unlearning.

Golatkar, A., Achille, A., and Soatto, S. (2020). Eternal sunshine of the spotless net: Selective
forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9304–9312.

Graves, L., Nagisetty, V., and Ganesh, V. (2021). Amnesiac machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten, L. (2019). Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv preprint arXiv:1609.09106.

He, Y., Meng, G., Chen, K., He, J., and Hu, X. (2021). Deepobliviate: a powerful charm for
erasing data residual memory in deep neural networks. arXiv preprint arXiv:2105.06209.

Heng, A. and Soh, H. (2024). Selective amnesia: A continual learning approach to forgetting
in deep generative models. Advances in Neural Information Processing Systems, 36.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851.

Hoofnagle, C. J., Van Der Sloot, B., and Borgesius, F. Z. (2019). The european union general
data protection regulation: what it is and what it means. Information & Communications
Technology Law, 28(1):65–98.

Huang, R., Huang, J., Yang, D., Ren, Y., Liu, L., Li, M., Ye, Z., Liu, J., Yin, X., and Zhao, Z.
(2023). Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion models.
In International Conference on Machine Learning, pages 13916–13932. PMLR.

Jagielski, M., Thakkar, O., Tramer, F., Ippolito, D., Lee, K., Carlini, N., Wallace, E., Song,
S., Thakurta, A., Papernot, N., et al. (2022). Measuring forgetting of memorized training
examples. arXiv preprint arXiv:2207.00099.

Jeon, D., Jeung, W., Kim, T., No, A., and Choi, J. (2024). An information theoretic metric
for evaluating unlearning models. arXiv preprint arXiv:2405.17878.

Ji, Z., Lipton, Z. C., and Elkan, C. (2014). Differential privacy and machine learning: a
survey and review. arXiv preprint arXiv:1412.7584.

Jung, C. G. (2014). The collected works of CG Jung: Symbols of transformation (volume 5).
Routledge.

King, P. and Tarbert, H. (2011). Basel iii: an overview. Banking & financial services policy
report, 30(5):1–18.

References 75

Kingma, D. and Gao, R. (2024). Understanding diffusion objectives as the elbo with simple
data augmentation. Advances in Neural Information Processing Systems, 36.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B. (2020). Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761.

Kristiadi, A., Däubener, S., and Fischer, A. (2019). Predictive uncertainty quantification with
compound density networks. arXiv preprint arXiv:1902.01080.

Kuhl, B. A., Dudukovic, N. M., Kahn, I., and Wagner, A. D. (2007). Decreased demands on
cognitive control reveal the neural processing benefits of forgetting. Nature neuroscience,
10(7):908–914.

Kulikovskikh, I. and Prokhorov, S. (2018). Psychological perspectives on implicit regular-
ization: a model of retrieval-induced forgetting (rif). In Journal of Physics: Conference
Series, volume 1096, page 012079. IOP Publishing.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafillou, E. (2024). Towards unbounded
machine unlearning. Advances in neural information processing systems, 36.

Li, Y., Chen, C., Zheng, X., Zhang, Y., Gong, B., Wang, J., and Chen, L. (2023). Selective
and collaborative influence function for efficient recommendation unlearning. Expert
Systems with Applications, 234:121025.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al. (2022). Competition-level code generation with alphacode.
Science, 378(6624):1092–1097.

Li, Y., Gu, S., Zhang, K., Van Gool, L., and Timofte, R. (2020). Dhp: Differentiable meta
pruning via hypernetworks. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pages 608–624. Springer.

Li, Y., Li, W., Danelljan, M., Zhang, K., Gu, S., Van Gool, L., and Timofte, R. (2021).
The heterogeneity hypothesis: Finding layer-wise differentiated network architectures. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2144–2153.

Li, Z., Gao, L., and Wu, C. (2024). Text-to-model: Text-conditioned neural network diffusion
for train-once-for-all personalization. arXiv preprint arXiv:2405.14132.

Liu, S., Yao, Y., Jia, J., Casper, S., Baracaldo, N., Hase, P., Xu, X., Yao, Y., Li, H., Varshney,
K. R., et al. (2024a). Rethinking machine unlearning for large language models. arXiv
preprint arXiv:2402.08787.

Liu, Y., Fan, M., Chen, C., Liu, X., Ma, Z., Wang, L., and Ma, J. (2022). Backdoor defense
with machine unlearning. In IEEE INFOCOM 2022-IEEE conference on computer
communications, pages 280–289. IEEE.

Liu, Z., Ye, H., Chen, C., and Lam, K.-Y. (2024b). Threats, attacks, and defenses in machine
unlearning: A survey. arXiv preprint arXiv:2403.13682.

76 References

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Luo, C. (2022). Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970.

Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.-F., Chen, C., and Qiao, Y. (2024). Latte:
Latent diffusion transformer for video generation. arXiv preprint arXiv:2401.03048.

Mahabadi, R. K., Ruder, S., Dehghani, M., and Henderson, J. (2021). Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489.

Marchant, N. G., Rubinstein, B. I., and Alfeld, S. (2022). Hard to forget: Poisoning attacks
on certified machine unlearning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7691–7700.

Marks, I., Lovell, K., Noshirvani, H., Livanou, M., and Thrasher, S. (1998). Treatment of
posttraumatic stress disorder by exposure and/or cognitive restructuring: A controlled
study. Archives of general psychiatry, 55(4):317–325.

Micaelli, P. and Storkey, A. J. (2019). Zero-shot knowledge transfer via adversarial belief
matching. Advances in Neural Information Processing Systems, 32.

Moulin, C. J., Perfect, T. J., Conway, M. A., North, A. S., Jones, R. W., and James, N. (2002).
Retrieval-induced forgetting in alzheimer’s disease. Neuropsychologia, 40(7):862–867.

Murayama, K., Miyatsu, T., Buchli, D., and Storm, B. C. (2014). Forgetting as a consequence
of retrieval: a meta-analytic review of retrieval-induced forgetting. Psychological bulletin,
140(5):1383.

Nasirigerdeh, R., Razmi, N., Schnabel, J. A., Rueckert, D., and Kaissis, G. (2024). Machine
unlearning for medical imaging. arXiv preprint arXiv:2407.07539.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper, A. F., Ippolito, D., Choquette-Choo,
C. A., Wallace, E., Tramèr, F., and Lee, K. (2023). Scalable extraction of training data
from (production) language models. ArXiv.

Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-C., Yin, H., and Nguyen, Q. V. H.
(2022). A survey of machine unlearning. arXiv preprint arXiv:2209.02299.

Norman, K. A., Newman, E. L., and Detre, G. (2007). A neural network model of retrieval-
induced forgetting. Psychological review, 114(4):887.

Oh, G. and Peng, H. (2022). Cvae-h: Conditionalizing variational autoencoders via hypernet-
works and trajectory forecasting for autonomous driving. arXiv preprint arXiv:2201.09874.

Peebles, W. and Xie, S. (2023). Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205.

Peebles, W. S., Radosavovic, I., Brooks, T., Efros, A. A., and Malik, J. (2022). Learning to
learn with generative models of neural network checkpoints. ArXiv.

References 77

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3.

Ren, K., Zheng, T., Qin, Z., and Liu, X. (2020). Adversarial attacks and defenses in deep
learning. Engineering, 6(3):346–360.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and Tesauro, G. (2018). Learning
to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910.

Roeder, G., Metz, L., and Kingma, D. (2021). On linear identifiability of learned representa-
tions. In International Conference on Machine Learning, pages 9030–9039. PMLR.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour, K.,
Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al. (2022). Photorealistic text-to-
image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494.

Schoepf, S., Foster, J., and Brintrup, A. (2024). Potion: Towards poison unlearning.

Schürholt, K., Kostadinov, D., and Borth, D. (2021). Self-supervised representation learning
on neural network weights for model characteristic prediction. Advances in Neural
Information Processing Systems, 34:16481–16493.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T. (2021). Remember what you want to
forget: Algorithms for machine unlearning. Advances in Neural Information Processing
Systems, 34:18075–18086.

Shastri, S., Wasserman, M., and Chidambaram, V. (2019). The seven sins of Personal-Data
processing systems under GDPR. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19), Renton, WA. USENIX Association.

Shuang Sha, A., Pereira Nunes, B., and Haller, A. (2024). " forgetting" in machine learning
and beyond: A survey. arXiv e-prints, pages arXiv–2405.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsu-
pervised learning using nonequilibrium thermodynamics. In International conference on
machine learning, pages 2256–2265. PMLR.

Soleymani, F., Paquet, E., Viktor, H. L., and Michalowski, W. (2024). Structure-based protein
and small molecule generation using egnn and diffusion models: A comprehensive review.
Computational and Structural Biotechnology Journal.

Sommer, D. M., Song, L., Wagh, S., and Mittal, P. (2020). Towards probabilistic verification
of machine unlearning. arXiv preprint arXiv:2003.04247.

Song, Q., Tan, R., and Wang, J. (2023). Towards efficient personalized driver behavior
modeling with machine unlearning. Proceedings of Cyber-Physical Systems and Internet
of Things Week 2023, pages 31–36.

78 References

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020).
Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456.

Storm, B. C., Bjork, E. L., and Bjork, R. A. (2008). Accelerated relearning after retrieval-
induced forgetting: the benefit of being forgotten. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 34(1):230.

Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankanhalli, M. (2023a). Deep regression
unlearning. In International Conference on Machine Learning, pages 33921–33939.
PMLR.

Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankanhalli, M. (2023b). Fast yet effective
machine unlearning. IEEE Transactions on Neural Networks and Learning Systems.

Thudi, A., Deza, G., Chandrasekaran, V., and Papernot, N. (2021). Unrolling sgd: Under-
standing factors influencing machine unlearning. 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pages 303–319.

United Nations (1948). Universal declaration of human rights. Accessed: 2024-08-11.

Van Vugt, M. K. and Jha, A. P. (2011). Investigating the impact of mindfulness meditation
training on working memory: A mathematical modeling approach. Cognitive, Affective, &
Behavioral Neuroscience, 11:344–353.

Vaswani, A. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Voigt, P. and Von dem Bussche, A. (2017). The eu general data protection regulation (gdpr). A
Practical Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555.

Volk, T., Ben-David, E., Amosy, O., Chechik, G., and Reichart, R. (2022). Example-based
hypernetworks for out-of-distribution generalization. arXiv preprint arXiv:2203.14276.

Von Oswald, J., Henning, C., Grewe, B. F., and Sacramento, J. (2019). Continual learning
with hypernetworks. arXiv preprint arXiv:1906.00695.

Wang, K., Xu, Z., Zhou, Y., Zang, Z., Darrell, T., Liu, Z., and You, Y. (2024a). Neural
network diffusion. ArXiv.

Wang, W., Tian, Z., and Yu, S. (2024b). Machine unlearning: A comprehensive survey. arXiv
preprint arXiv:2405.07406.

Wixted, J. T. (2004). The psychology and neuroscience of forgetting. Annu. Rev. Psychol.,
55(1):235–269.

Wu, G., Hashemi, M., and Srinivasa, C. (2022). Puma: Performance unchanged model
augmentation for training data removal. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 8675–8682.

Wu, J., Ji, W., Fu, H., Xu, M., Jin, Y., and Xu, Y. (2024). Medsegdiff-v2: Diffusion-based
medical image segmentation with transformer. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 6030–6038.

References 79

Xu, J., Wu, Z., Wang, C., and Jia, X. (2024). Machine unlearning: Solutions and challenges.
IEEE Transactions on Emerging Topics in Computational Intelligence.

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J. (2022). Geodiff: A geometric
diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923.

Yoon, Y., Nam, J., Yun, H., Lee, J., Kim, D., and Ok, J. (2022). Few-shot unlearning by
model inversion. arXiv preprint arXiv:2205.15567.

Zhang, D., Finckenberg-Broman, P., Hoang, T., Pan, S., Xing, Z., Staples, M., and Xu,
X. (2023a). Right to be forgotten in the era of large language models: Implications,
challenges, and solutions. arXiv preprint arXiv:2307.03941.

Zhang, D., Pan, S., Hoang, T., Xing, Z., Staples, M., Xu, X., Yao, L., Lu, Q., and Zhu, L.
(2024). To be forgotten or to be fair: Unveiling fairness implications of machine unlearning
methods. AI and Ethics, 4(1):83–93.

Zhang, H., Nakamura, T., Isohara, T., and Sakurai, K. (2023b). A review on machine
unlearning. SN Computer Science, 4(4):337.

Zhu, L., Liu, X., Liu, X., Qian, R., Liu, Z., and Yu, L. (2023). Taming diffusion models for
audio-driven co-speech gesture generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10544–10553.

Zoellner, L. A., Feeny, N. C., Bittinger, J. N., Bedard-Gilligan, M. A., Slagle, D. M., Post,
L. M., and Chen, J. A. (2011). Teaching trauma-focused exposure therapy for ptsd: Critical
clinical lessons for novice exposure therapists. Psychological Trauma: Theory, Research,
Practice, and Policy, 3(3):300.

Appendix A

Additional Supporting Results

Additional Confusion Matrices for Unlearning Evaluation

Class 0 Class 1 Class 2 Class 3
Retrained Model

Class 0

Class 1

Class 2

Class 3

D
iH

yF
o-

1

98.48 0.30 0.00 1.22

0.94 89.93 0.00 9.13

0.00 0.00 0.00 0.00

12.10 1.41 0.00 86.49

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(a) Predictions on Test Set with D f = {2}

Class 0 Class 1 Class 3
Retrained Model

Class 0

Class 1

Class 3

D
iH

yF
o-

1

98.66 0.21 1.13

0.00 97.99 2.01

0.52 0.41 99.07

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(b) Predictions on Dr with D f = {2}

Class 0 Class 1 Class 2 Class 3
Retrained Model

Class 0

Class 1

Class 2

Class 3

D
iH

yF
o-

1

99.07 0.93 0.00 0.00

15.67 84.33 0.00 0.00

0.00 0.00 0.00 0.00

100.00 0.00 0.00 0.00

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(c) Predictions on Test Set with D f = {2,3}

Class 0 Class 1
Retrained Model

Class 0

Class 1

D
iH

yF
o-

1

99.90 0.10

0.00 100.00

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(d) Predictions on Dr with D f = {2,3}

Fig. A.1 Comparison of Predictions between DiHyFo-2 and Retrained Model on MNIST-4.

82 Additional Supporting Results

Clas
s 0

Clas
s 1

Clas
s 2

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

1

97.75 0.00 0.00 1.23 0.00 0.72 0.20 0.00 0.00 0.10

0.00 94.52 0.00 3.10 0.00 0.16 0.48 0.08 1.59 0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.86 0.96 0.00 90.03 0.00 0.96 2.78 0.19 4.22 0.00

0.20 0.00 0.00 0.20 93.91 0.10 1.47 0.88 0.20 3.05

3.80 0.56 0.00 15.94 0.56 74.05 1.39 1.39 1.39 0.93

2.02 0.32 0.00 5.98 3.15 2.75 82.54 0.16 2.91 0.16

0.53 0.88 0.00 6.95 0.79 0.18 1.32 84.86 0.97 3.52

0.67 3.50 0.00 4.25 0.08 2.08 0.50 0.33 87.01 1.58

0.38 0.58 0.00 3.27 1.54 0.19 0.00 4.04 0.67 89.33

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(a) Predictions on Test Set with D f = {2}

Clas
s 0

Clas
s 1

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

1

98.33 0.00 1.04 0.00 0.31 0.21 0.00 0.00 0.10

0.00 97.96 0.62 0.00 0.09 0.09 0.09 1.06 0.09

0.14 0.00 99.32 0.00 0.41 0.00 0.14 0.00 0.00

0.20 0.00 0.10 94.31 0.10 1.20 0.90 0.20 2.99

3.12 0.57 15.97 0.57 74.95 1.23 1.32 1.32 0.95

1.95 0.10 0.49 2.53 2.43 90.75 0.19 1.46 0.10

0.00 0.79 2.48 0.30 0.10 0.10 93.26 0.50 2.48

0.60 2.38 3.27 0.10 2.48 0.40 0.30 88.59 1.88

0.29 0.58 3.29 1.55 0.19 0.00 3.96 0.68 89.47

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(b) Predictions on Dr with D f = {2}

Clas
s 0

Clas
s 1

Clas
s 2

Clas
s 3

Clas
s 4

Clas
s 5

Clas
s 6

Clas
s 7

Clas
s 8

Clas
s 9

Retrained Model

Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

1

96.77 0.00 0.00 0.00 0.00 2.15 0.99 0.00 0.09 0.00

0.00 89.54 0.00 0.00 0.00 3.41 2.42 0.85 3.70 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.31 0.28 0.00 0.00 0.00 90.82 0.62 0.28 6.00 0.69

0.37 0.22 0.00 0.00 0.00 2.88 95.49 0.00 0.74 0.30

1.26 0.25 0.00 0.00 0.00 0.76 0.50 90.50 3.19 3.53

0.93 0.20 0.00 0.00 0.00 6.44 1.46 0.07 88.71 2.19

0.30 0.10 0.00 0.00 0.00 1.17 5.43 2.59 1.12 89.28

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)

(c) Predictions on Test Set with D f = {2,3,4}

Class 0 Class 1 Class 5 Class 6 Class 7 Class 8 Class 9
Retrained Model

Class 0

Class 1

Class 5

Class 6

Class 7

Class 8

Class 9

D
iH

yF
o-

1

98.69 0.00 0.80 0.50 0.00 0.00 0.00

0.00 98.44 0.00 0.52 0.35 0.69 0.00

1.63 0.23 94.53 0.81 0.12 2.56 0.12

0.21 0.00 1.05 98.12 0.00 0.52 0.10

0.58 0.29 0.29 0.29 94.69 1.64 2.22

0.74 0.21 2.10 0.53 0.11 95.58 0.74

0.29 0.20 0.88 0.29 2.95 0.98 94.40

0

20

40

60

80

C
oi

nc
id

en
ce

 L
ev

el
 (%

)
(d) Predictions on Dr with D f = {2,3,4}

Fig. A.2 Comparison of Predictions between DiHyFo-1 and Retrained Model on MNIST.

83

Learning to Learn on Individual Classes

We present some results of G.pt reviewed in Section 2.3.2 when trained conditioned on
an individual class loss. This was intended to evaluate the capabilities of G.pt to learn to
generate parameters conditioned on individual class losses. The results showed that G.pt had
potential to learn with this type of condition, still it needed modifications to be able to learn
from multiple classes simultaneously and to learn to forget.

0 500 1000 1500 2000
Epoch

−2

1

0

1

Pr
om

pt
 A

lig
nm

en
t

(a) Prompt alignment - Train.

0.0 0.4 0.8 1.2 1.6 2.0 2.4
Train Target Loss

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Tr
ai

n
O

bs
er

ve
d

Lo
ss

Class 3
Lower Bound
Generated
Identity

(b) Loss comparison - Train.

0 250 500 750 1000 1250 1500
Epoch

0.0

0.5

1.0

ρ

(c) Correlation - Train.

0 500 1000 1500 2000
Epoch

0.00

0.02

0.04

0.06

Tr
ai

n
M

SE

(d) Training Learning Curve.

Fig. A.3 Behavior of G.pt when trained conditioned on one class loss.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 An Enquiry Concerning Human Forgetting
	1.2 From a Nice-To-Have to a Requirement
	1.3 Outline

	2 Background
	2.1 Machine Unlearning
	2.1.1 Exact Unlearning
	2.1.2 Approximate Unlearning
	2.1.3 Restricted Data Scenarios
	2.1.4 Unlearning Algorithms Categorization
	2.1.5 Catastrophic Unlearning
	2.1.6 Unlearning Evaluation and Verification
	2.1.7 Challenges in Machine Unlearning

	2.2 Diffusion Models
	2.2.1 Denoising Diffusion Probabilistic Models
	2.2.2 Diffusion Transformer

	2.3 Hypernetworks
	2.3.1 Diffusion Hypernetworks
	2.3.2 Learning To Learn

	3 Methodology
	3.1 HyperForget
	3.2 Evaluation Procedure and Metrics
	3.3 DiHyFo-1
	3.3.1 Training Dataset
	3.3.2 Training Process
	3.3.3 Training Evaluation

	3.4 DiHyFo-2
	3.4.1 Training Dataset
	3.4.2 Training Process
	3.4.3 Training Evaluation

	3.5 Unlearning Evaluation

	4 Discussion
	4.1 Model Limitations
	4.2 Conclusion and Future Work

	References
	Appendix A Additional Supporting Results

