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Abstract

Additive Manufacturing (AM) has the potential to revolutionise manufacturing across
various sectors. By building parts layer-by-layer, this method allows for complex and
custom geometries at a substantially lower cost. However, AM processes are complex
and can be unreliable, which leads to defects in the final product. Traditionally, human
operators oversee the process by applying corrections through trial and error, yet this
approach is costly and prone to errors. Deep learning has recently been applied in the
detection, forecasting and compensation of these errors. In particular, monitoring the
process with vision sensors provides insightful data that can be utilised by machine
learning models. One such framework, diffusion modelling, has proven to be a powerful
conditional image generator.

This project proposes a method to forecast layers before they are printed via genera-
tive diffusion modelling, which can then be used for error prediction and avoidance. By
creating graphs that represent the printing process parameters, the aim is to predict the
final layer image. In essence, this method proposes a graph-to-image generative pipeline
that combines recent advances in Graph Neural Networks (GNNs) with generative
diffusion models. A new architecture is introduced by fusing a convolutional neural
network (CNN) with GNNs via a novel representation. This representation is coined
the dual-graph as it considers two graphs: one which represents the target image, the
other which represents conditioning variables. We demonstrate this to be a highly
effective approach, and show its application in an AM setting.

To facilitate the project, a first-of-its-kind dataset was collected that contains
over 2500 process parameter graphs and print layer image pairs. To achieve this, we
introduce a new strategy that aids in the semi-automatic collection of such data. This
work could enhance the AM process by accurately reconstructing layer images, in turn
preventing future defects or minimising the effect of existing ones. This could improve
the viability of the method for industrial or recreational use.
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Chapter 1

Introduction

1.1 Motivation

Additive Manufacturing (AM) is the method of creating objects by iteratively adding
material, typically layer-by-layer such as in 3D printing. This method allows for
complex and bespoke parts to be made at a low cost, which could lead to advances
in many industries such as aerospace or medical device design (Haghiashtiani et al.
[2020], Najmon et al. [2019]). The most common approach: Fused Deposition Modelling
(FDM) heats a material filament before extruding it through a nozzle head at precise
locations on a surface (Ngo et al. [2018]). However, this approach commonly suffers
from defects which can significantly degrade the mechanical, dimensional and functional
properties of the final part. Traditionally, human operators must estimate the cause of
the issue and restart the process with adjusted parameters (Mohamed et al. [2015],
Brion et al. [2022]). Yet this not only expensive, but they often fail to navigate the
process’ complexities, meaning that errors are still common. This has hindered its
adoption in industrial-scale production (Baechle-Clayton et al. [2022]).

Manufacturing defects commonly observed in FDM can include: adhesion defects,
extrusion defects, blobbing or stringing (see Figure 1.1). The causes of these defects
include: complex or unstable geometries (e.g. a single dot is less likely to adhere to
the print bed and intricate details can be compromised), inappropriate parameters
(e.g. low or high flow rate) or mechanical failures (e.g. belt slippage). The root causes
complexly interplay with one another adding to the complexity of minimising errors.
For example, Figure 1.2 shows the significant difference in output when printing the
same geometry with different the flow-rate.
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Figure 1.1: Example of Common FDM Errors. Real images exhibiting common
defects. Local errors are highlighted in red circles. Adhesion failure is the inability of
the printed layers to properly bond to each other or the print bed. Extrusion defects
occur when material is not properly deposited e.g. the flow rate is too slow. Stringing
results in undesired strands as the nozzle head moves to different parts of the print.

Figure 1.2: The Effect of Different Process Parameters. The same input
geometries printed with different flow rates.

To this end, if it were possible to forecast and avoid errors, this would have
significant benefits for its applicability. Ideally, such an approach would be able to
forecast potential errors before they occur, be applicable in-situ, and understand how
different printing parameters influence the physical end product. One area of active
research focuses on using on-board sensors to monitor the process. Particularly, vision
sensors provide rich data and have allowed recent advances in deep learning to be
applied to error detection and prevention (Straub [2015], Cunha et al. [2021], Brion
and Pattinson [2022b,a]).

The Institute for Manufacturing (IFM) has developed a framework that relates
process monitoring data with spatial coordinates and control commands being executed
at the instance of collection. They refer to this data as space-time graphs. This
framework forms the foundation for this project’s aim: to forecast the occurrence
and location of defects in FDM processes, and to provide interpretable feedback to
operators based upon input control commands.
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1.2 Approach

In this work, a new method is introduced for predicting errors in FDM. This is achieved
by learning the mapping between space-time graphs (e.g. input parameters) and the
resulting layer produced. The graph indicates when, where and how the printer will
deposit material. The resulting layer is captured via a camera mounted vertically
above the print bed (see Figure 1.3). In order to achieve this, a commercially available
3D printer was retro-fitted. The chosen printer came equipped with a movable print-
mill (i.e. a conveyor belt) which allowed for semi-automatic generation of a dataset
consisting of graph and layer-image pairs. Since this is an unexplored research area,
data collection focused on single-layer prints for both simplicity and collection speed.
Moreover, if the first layer is printed successfully this decreases the chances of later
failures (i.e a strong foundation minimises errors propagating to higher layers).

Figure 1.3: Data Collection. A) Layer images are captured with an aerial camera.
B) The input space-time graph was used to print the layer image, this contains process
parameters and spatial information. C) A pre-processed layer image.

The diffusion framework was selected to learn the mapping from inputs to resulting
layer image. In recent years, diffusion modelling (Ho et al. [2020], Song and Ermon
[2020]) has proven to be an extremely effective model for image generation. What
makes these models particularly effective is how they break down the difficult problem
of generation into many sub-problems. They achieve this by optimising a model to
predict noise that has been used to corrupt a target image at varying noise levels.
Once trained, new samples are generated by initialising the model with pure noise
and conditioning variables; these are then iteratively denoised. This project proposes
a graph-to-image pipeline by aiming to produce layer-image samples conditioned on
space-time graphs.
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Figure 1.4: A) Training Overview. The input data consists of space-time graphs and
layer image pairs. Noisy data is passed to a customised U-Net that allows conditioning
images with graphs, principally through a GNN. B) Inference Overview New samples
can be generated by starting from pure noise and the conditioning input graph. Error
localisation is achieved by comparing expected output with the generated samples.

To train the generative pipeline, a U-Net model (Ronneberger et al. [2015]) is
augmented with two novel computational units. These facilitate the task of transforming
a space-time graph into latent image-space, and provide strong spatial conditioning
signals to the model during denoising. The first of these units is referred to as a dual-
graph GNN. This utilises the recent advances in geometric deep learning to process the
space-time graph and its connection to the image. This takes into account that the
underlying geometry contains important information required for error prediction. The
second unit borrows ideas from classical rendering to produce a learnable 2D latent
image representation of the graph.
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The model was trained with real data captured by the printer’s onboard vision
sensors, as well as a larger synthetic dataset. Real data is time-consuming to collect,
thus synthetic data allowed a head-start in model development, and the ability to
pre-train on a related task. The real data was extensively pre-processed before being
passed to the model. Most notably, images were registered i.e. transforming the camera
coordinate system into the graph coordinate system via a transformation matrix. Due
to belt slippage, mechanical inaccuracies and print failures, a robust affine matching
system was developed in order to minimise coordinate discrepancies. See Figure 1.3
for the overview of data collection, and Figure 1.4 for the general approach.

Although existing machine learning techniques have aimed to tackle the problem of
error prediction in FDM, none of them explicitly learn the mapping between process
parameters and the resulting layer images. For example, previous approaches have
attempted to classify whether a specific print will suffer from warping defects (Brion
et al. [2022]), yet this is less interpretable than image outputs, and difficult to analyse
for human operators. Some approaches have adopted a generative approach (using
GANs) to predict complex microstructures in different types of AM (e.g. selective last
melting Song et al. [2023]). Yet, no work currently utilises the modern advances in both
diffusion modelling and graph neural networks to tackle the challenge in FDM. This
approach has the potential to accurately reconstruct the resulting layer images from
any given graph. This could allow operators to forecast likely errors before they print,
ultimately making the process more reliable and minimising wastage. Additionally,
such a model could be used to directly find the most stable process parameters for a
desired geometry, which opens the door to automatic error compensation. Validation
routes for the proposed framework rely on layer image reconstruction accuracy for
unseen layer graphs.

1.3 Contributions

The main contributions of this thesis are as follows:

• Novel Dataset & Collection Strategy: a new AM dataset comprising of over
2500 graph and image pairs. This data is automatically collected by augmenting
a commercially available 3D printer with vision sensors. We make this data freely
available here.

https://drive.google.com/file/d/1-xRVaAGqBL5F50Sm-u5gO84SX7ndLpCh/view?usp=drive_link
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• First Graph-to-Image Diffusion Model and Novel Application for AM:
this work proposes the first application of diffusion models to predict images from
spatially aligned graphs e.g. a graph-to-image generative pipeline. This approach
is applied to predict layer images given AM process parameters represented as a
space-time graph.

• Novel Computational Units for Graph Conditioning: several novel com-
putational units are introduced in order to successfully train the graph-to-image
generative pipeline. These units have application beyond AM and may be used
with little to no modification for other graph-to-image tasks. Furthermore, it
provides a new perspective on how spatial graphs can be used to condition images
via a novel dual-graph representation. Although these units are integrated into a
U-Net, the ideas introduced are directly transferable to other vision architectures.
All project code is included here.

This project plans to submit these contributions as a conference paper to CVPR.
Additionally, a follow-up work which extends the framework with nozzle-head video is
being developed.

1.4 Thesis Outline

In Chapter 2 existing literature is reviewed and presented. This section explores the
existing work in deep learning for AM, and presents the fundamental theory required
to understand the contributions proposed by this project i.e. diffusion, architecture
choices and GNNs. Chapter 3 explains the overall methodology, including data
collection, pre-processing, synthetic data creation, the proposed novel computational
units and the overall graph-to-image pipeline. Subsequently, Chapter 4 presents
the results of the pipeline, both qualitatively and quantitatively. Finally, Chapter 5
summarises the project’s findings, examines its impacts and explores potential avenues
for future research. This section includes reflections on the project, both its merits
and shortcomings.

https://drive.google.com/file/d/11GfuFGQfoWtYtnJ1ZFEIIVIULAFnsnJk/view?usp=sharing


Chapter 2

Related Work

This section outlines prior work, which is categorised into two distinct areas. In the
first part, we review deep learning applied in the additive manufacturing domain
and highlight gaps in research. The second part covers relevant methodological
works including diffusion models, with an emphasis on conditional variants, model
architectures and graph neural networks. By organising the related work in this manner,
we first cover relevant work from an applied stand-point, before delving into relevant
methodological background. This section provides a comprehensive literature review,
and positions the contributions of this work as natural extensions both in terms of
application and methodology. It is important for the reader to keep in mind the goal
of this project when reviewing this section: to learn the graph to layer-image mapping
in FDM, with the ultimate aim to forecast and prevent defects.

2.1 Deep Learning for Additive Manufacturing

Automatic Error Detection and Prevention

Additive Manufacturing (AM) processes are complex physical processes and are often
unreliable, which has limited their adoption. Therefore, automatic error detection
and prevention is an active research area. The types of defects are wide-ranging
and can vary depending upon the parameters (see Figure 1.1 and Figure 1.2). For
example Baechle-Clayton et al. [2022] notes that adhesion errors in FDM can be
influenced by thermal inconsistencies, such as fluctuating heating/cooling cycles of the
polymer filament, ambient temperature or improper print bed temperature settings.
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Furthermore, extrusion temperature and speed are crucial in FDM printing. The
temperature directly impacts the viscosity and adhesion of the filament (Zhu et al.
[2022]), whereas speed directly impacts how much material is deposited, affecting its
geometry and structural integrity. Although these problems are complex, vision sensors
can automatically collect datasets. This makes this problem a strong candidate to
be optimised and improved by modern deep learning techniques, and much work has
shown success (Johnson et al. [2021], Jin et al. [2020], Gardner et al. [2019], Brion et al.
[2022], Brion and Pattinson [2022a,b]).

Saimon et al. [2024] produced a recent literature review which covers how deep
learning has been applied to AM. In particular, they highlight two main research prob-
lems: understanding the process-structure-property (PSP) relationship and analysing
high-dimensional data for in-situ control. The PSP relationship aims to explore how
printing parameters and materials affect the microstructure of the final object. PSP
research focuses on mitigating defects via improving process parameters, whereas
research for in-situ control analyses large volumes of sensor data to mitigate or detect
defects during the process in real-time.

One example of research that aims to address the PSP problem is Jain et al. [2024].
By simulating the behavior of 3D lattice structures using graphs, they effectively
capture the link between the process parameters, the resulting lattice structure, and its
mechanical properties. Yet they rely on a small simulated dataset that was expensive
to generate, and the resulting method still cannot be run in real time. Methods applied
in-situ can be deployed more flexibly for automatic prevention of errors. One work
that tackles the in-situ control problem would be Larsen and Hooper [2023]. They
showed that Graph Neural Networks (GNNs) could be used to help detect defects
during Laser-Powder Bed Fusion manufacturing. GNNs are a popular choice for this
type of task due to the dependence on the underlying geometry. However, this work
was limited to training on only a handful of geometries. Other work has shown success
in FDM mid-print optimisation using vision sensors. Brion et al. [2022] made use
of Convolutional Neural Networks (CNNs) to predict and prevent warping in FDM.
They paused the print between each layer, and use a CNN to classify whether or not
warping had occurred. They note that correcting for warp is a difficult challenge, as it
may occur a long time after the print material has been deposited. Furthermore, it is
dependent on a number of complex factors such as layer number. Nonetheless, their
classification model allowed them to adapt the bed temperature, fans and printing
speed to save prints that would warp without intervention. Some limitations of this
work include the need for extensive labelled data, and the way that parameter updates
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were applied globally rather than to localised regions. It is challenging to interpret and
localise output from classification models - generative models allow richer outputs such
as images which may remedy this.

Generative Modelling in AM

Generative models have already been applied to AM. Saimon et al. [2024] highlight that
Generative Adversarial Networks (GANs) have been used in many settings including:
topology optimisation, manufacturability assessment and process monitoring and
control (Hertlein et al. [2021], Almasri et al. [2022], Guo et al. [2021], Song et al.
[2023]). Typically, GANs are applied during image-based monitoring to enhance low-
fidelity images or to generate new synthetic data for training as in Li et al. [2022].
Yet in Song et al. [2023] they use a conditional GAN to predict the final complex
pore microstructure for selective laser melting. The authors use a GAN auto-encoder
model conditioned on the process parameters such as laser power or scanning velocity.
However, GANs are notoriously unstable to train, and diffusion models have emerged
as a stable alternative with a superior sample quality (Ho et al. [2020], Dhariwal and
Nichol [2021]).

Diffusion models have recently been explored in the wider life and material sciences
domain, for example they were recently used in AlphaFold 3 (Abramson et al. [2024]) to
predict protein structure and their interactions. However, they have only been lightly
explored in the AM domain. Ogoke et al. [2023] recently applied diffusion models in
Laser-Powder Bed Fusion to map low-fidelity simulation information to high-fidelity
versions (i. e. super resolution). Additionally, conditioned diffusion models were
applied by Jadhav et al. [2023] to reduce the cost of finite element analysis when
simulating stress distribution for a given geometry. These works both employ the
U-Net CNN model architecture, which tends to be the most popular backbone for
diffusion models (Ho et al. [2020]).

Highlighting Gaps in Research

Although prior work has proposed the use of diffusion modeling in manufacturing, to
the best of my knowledge, no work has applied it to predict the final layer image in
FDM. This project explores this gap in research. In particular, the approach allows a
hybrid solution to PSP predictions and in-situ control, since images are generated on
a per-layer basis, which in turn would allow for mid-print optimisation. In addition,
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this work does not require manual data annotation, avoided by directly learning the
mapping between process parameters and resulting layer images. This allows us to
collect a more diverse and interesting dataset containing many geometries with varying
parameters. Moreover, by producing a high-resolution output, it possible to get highly
localised and interpretable feedback for different parameters and geometries. Lastly,
while graphs have been suggested as a natural choice for representing complex physical
properties, no research has integrated spatially aligned graphs directly into a diffusion
model for image generation.

In this section we outlined how deep learning has been applied in AM, focusing on
research involving vision-based technology (Brion et al. [2022]), graph neural networks
(Larsen and Hooper [2023]), and diffusion models (Ogoke et al. [2023]). In the following
section, we elaborate on these key methodologies and discuss the relevant theory, all of
which play a pivotal role in solving the task of generating final layer images from the
printing process graph.

2.2 Methodological Background

This section condenses key methodological concepts, including diffusion models, archi-
tecture choices (e.g., UNet, ViT), and GNNs. These topics are inherently complex,
the aim of this summary is to capture the essential principles and present the key
mathematical foundations required for each topic. Please note that due to the breadth
of each topic, this is not an exhaustive treatment but a focused discussion to facilitate
understanding of the approach presented in the subsequent chapter.

2.2.1 Diffusion Models

Diffusion models, first proposed by Sohl-Dickstein et al. [2015], and later popularised by
Ho et al. [2020] and Song and Ermon [2020] are a class of generative model that learn
a mapping between two distributions. Diffusion models map between a complex data
distribution (e.g. images) and a simple distribution such as isotropic Gaussian noise by
defining a forward and reverse mapping process. The forward process slowly corrupts
the data distribution by adding noise over time. At the end of this process, the corrupted
data becomes indistinguishable from pure noise. In contrast, the corresponding reverse
process transforms the noise back into the data by slowly removing the noise that was
added.



2.2 Methodological Background 11

Turning data into noise is trivial, yet turning noise into data is difficult, therefore
deep learning is employed to approximate the denoising reverse process. Once trained,
diffusion models can generate new samples from the data distribution by starting from
noise and iteratively denoising with the trained denoiser. These models have shown
success by turning the difficult problem of data generation into a series of much simpler
supervised denoising problems. This has led to diffusion models surpassing GANs for
image synthesis (Dhariwal and Nichol [2021]), and producing text-guided generated
artworks that have captured the public imagination (Saharia et al. [2022], Balaji et al.
[2023], Podell et al. [2023], Ramesh et al. [2022]).

Despite diffusion’s ubiquity and impressive performance, many authors struggle
to provide a clear and concise mathematical explanation of the framework (Turner
et al. [2024]). This is partly down to the many interpretations and variants such as:
the variational lower bound vs maximum likelihood perspective (Turner et al. [2024]),
or the markov-chain vs differential equation perspective (Song et al. [2021]). In this
vein, many works have tried to elucidate the design space of diffusion models; most
notably the work of Karras et al. [2022], which made several interesting contributions
such as using 2nd order solvers to speed up inference. In the following section I
will provide a concise mathematical foundation on diffusion models from the same
continuous time perspective used in Song and Ermon [2020] and Karras et al. [2022].
The continuous-time variant is chosen since it offers a natural way to trade off quality
with inference speed, and tends to produce higher quality samples.

Mathematical Preliminaries

Consider a large number of training samples {x1 . . .xN},x ∈ Rd drawn from an
underlying data distribution pdata(x;σdata). It is logical that by iteratively corrupting
this distribution with additive i.i.d Gaussian noise ∼ N (0, σ2I), over time for σmax >>

σdata the distribution p(x;σmax) is indiscernible from pure noise (as shown in Figure 2.1).
This sequential operation outlines the forward process, which transforms the data
distribution to the noise distribution.

Due to the mathematical nature of sequentially adding Gaussian noise, it is possible
to sample a noisy image xt analytically. At a given noise level σt, this is done by first
sampling pure noise x0 ∼ N (0, σ2

maxI) and combining it with the true image x1 ∼ pdata

with respect to a pre-determined noise schedule.
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Figure 2.1: Karras et al. [2022] Figure 1.a Noisy images drawn from p(x;σ).
Images corrupted with varying levels of additive Gaussian noise (normalised for cleaner
visualisation).

It is possible to formulate diffusion with either discrete or continuous levels of
noise σ. For the continuous and more generalised case, we consider a continuous time
variable t ∈ [0, 1] that indexes into the noise schedule. Such that for a given noisy
sample {xt}1

t=0, both requirements of x0 being noise and x1 being the data are met.
With this requirement being met, we can model the diffusion process (the mapping
from data to noise distribution) as the solution to a differential equation. In Song et al.
[2021], they introduce both Stochastic Differential Equations (SDE) and Ordinary
Differential Equations (ODE) variants, but find the SDE to produce higher quality
samples. They propose the following Itô SDE:

dx = f(x, t)dt+ g(t)dw (2.1)

Where w is a standard Weiner process (e.g. a stochastic process such as brownian
motion), g(t) is a scalar function which produces the diffusion coefficent at time t, and
f(x, t) models the data drift coefficient over time. One manifestation of equation 2.1
could be a small decay of the data plus a small amount of random noise. Furthermore,
Song et al. [2021] introduce a corresponding reverse-time SDE that maps noise back
towards the data distribution:

dx =
[
f(x, t)− g(t)2∇x log pt(x;σ(t))

]
dt+ g(t)dw̄ (2.2)

Here, dt is an infinitesimal negative timestep and w̄ is the reverse-time Weiner
process. Crucially, this formulation relies on ∇x log pt(x;σ(t)), which is known as the
score function (Hyvärinen [2005]). Here, the score function is a vector field that points
towards higher density areas of data for the given noise level. Therefore new data
samples can be generated by simulating equation 2.2 starting from noise. Off-the-shelf
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numerical SDE solvers can be used to simulate this, for example Euler-Maruyama. See
Figure 2.2 for an overview of these forward and reverse processes simulated.

Figure 2.2: Song et al. [2021] Figure F.2 An illustrive graphic of the mapping
between the data and noise distributions. The left hand-side illustrates the forward
process described by 2.1, whereas the right the reverse process described in 2.2.

The work of Karras et al. [2022] thoroughly investigates several aspects of the
score-based diffusion formulation presented by Song et al. [2021]. This includes: 1)
the importance of the noising schedule, 2) the performance gap between ODE and
SDE variants, 3) the choice of solver and higher order solvers and 4) other practical
improvements such as whether to predict the noise or the image. In their work they
first explore the ODE variant, in this case the only source of randomness is the initial
noise, and it allows a clearer examination of the process before stochastic sampling is
re-introduced. This revealed that the noise schedule defines the shape of differential
equation solution equations, and therefore errors induced by truncation error during
sampling can be reduced by selecting an appropriate schedule. Secondly, they show
that a 2nd order solver such as Range-Kutta produces a better computational trade-off.
Additionally, they prove that the SDE variant produces higher quality samples since
the stochasicity pushes the sample towards the desired marginal distribution at time t,
actively correcting errors made in previous sampling time steps. Finally, they propose
a network pre-conditioning connection that allows the model to predict either the
image or the noise (or an adaptive mix of signal and noise). These improvements
and practical considerations led to impressive performance increases in both training
convergence, inference and sampling quality. Readers should refer to Appendix A.1 for
a more detailed treatment of Elucidated Diffusion, the chosen diffusion variant.

Conditioning diffusion models on conditioning variables c changes the task from
p(x;σ(t)) to p(x|c;σ(t)). Typically, this is done explicitly through concatenation be it a
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text embedding, a low-res image or another signal. However, other common approaches
either inject conditional signals through cross-attention or use guidance methods
during sampling (Po et al. [2023]). Alternatively, the ControlNet paper by Zhang
et al. [2023] achieved unprecedented spatial-conditional generation by incorporating
an additional network alongside a large, pre-trained text-to-image diffusion model
with frozen parameters. This underscores the potential of diffusion models in enabling
advanced spatial conditioning for image generation.

In this section, a high level overview of the mathematical preliminaries for diffusion
was introduced. In the next section, model architectures for diffusion are explored.

Architecture Choices

Traditionally, diffusion models (Ho et al. [2020]) employ encoder-decoder style CNNs
such as the U-Net proposed by Ronneberger et al. [2015]. These models have a track-
record of efficiently learning fine-grained details from relatively small datasets. They
process input images via a CNN encoder-decoder connected via skip connections (see
Figure 2.3). In diffusion, they are used to predict the added noise, the original image
or some combination of the two (as in Karras et al. [2022]).

Alongside other generic advances in deep learning architectures, the U-Net has been
specifically improved for diffusion by: making them more efficient at high resolutions,
conditioning them for controlled generation and augmenting them with self-attention
for improved fidelity (Ho et al. [2020], Dhariwal and Nichol [2021]). One work which
encapsulates all three of these improvements is the Imagen paper (Saharia et al.
[2022]), where the authors generate high-quality 1024x1024 images (see Figure 2.5)
via a cascade of conditional diffusion models with U-Net backbones. Specifically,
they improve the U-Net’s memory efficiency with no performance degradation, by
down-scaling images before the ResNet blocks and by using more ResNet blocks at
lower resolutions compared to higher ones.

The Imagen paper is also a great example of conditional generation i.e. via text and
low-res images. Conditional generation is most commonly done by explicitly providing
the U-Net additional information. For example, in super-resolution the low-resolution
image is provided to the model generally via concatenation to the noisy input (see
Figure 2.3 for a basic overview). This approach provides the model with important
spatial and semantic information throughout generation and has led to unprecedented
success (see Figure 2.4 and Figure 2.5 for some examples).
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Figure 2.3: Saharia et al. [2021] Figure A.1 A basic diagram of the U-Net
architecture used for super-resolution diffusion. Input images are concatenated with a
low-resolution conditioning image before processing. The encoder downsamples images
into feature maps via ResNet blocks (He et al. [2015]), typically halving the resolution
and doubling the channels at every scale. This down-sampled feature map is then
passed to the decoder through a bottleneck, before being upsampled and processed by
more ResNet blocks. Each corresponding scale in the encoder and decoder is connected
via a skip connection which helps the network learn effectively at multiple scales.

Figure 2.4: Saharia et al. [2021] Figure F.4 [top row only] An example of
conditional image super-resolution using diffusion, and comparisons to other methods.
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Figure 2.5: Saharia et al. [2022] Figure A.12 [top row] An example of conditional
image super-resolution in the Imagen paper, each image is generated by providing a
noisy low resolution image during generation alongside a text embedding.

It is important to observe that tasks such as super-resolution are ill-posed; there are
many possible high-resolution images for each corresponding low-resolution counterpart.
In purely generational tasks, models are often adapted to increase sample diversity
(and therefore distribution coverage). For example, the Imagen paper corrupts the low-
resolution image which increases sample diversity. Additionally, classifier-free guidance
(Dhariwal and Nichol [2021]) is used, meaning the model only partially follows the
text-conditioning which improves sample quality.

Many similarities can be drawn between super-resolution and predicting the final-
layer image given process parameters. The complex molecular dynamics of FDM
can result in behaviour that is very hard to predict. However, given suitable sensor
information it should be possible to generate conditioned samples from this underlying
distribution. However, this raises the research question of how exactly to condition
images using space-time process parameter graphs.

A promising alternative to CNN-based architectures would be Dosovitskiy et al.
[2021]’s vision transformers (ViTs), which were shown to be scalable image generators
for diffusion in Peebles and Xie [2023]. Although there are many attractive properties
to ViTs, in their basic form they suffer from quadratic input complexity which makes
them difficult to scale to higher resolution without resorting to diffusion in latent
space as in Peebles and Xie [2023]. Compressing images into latent space inevitably
introduces errors, this is acceptable when the aim is improving visual quality (i.e if the
target metric is FiD), but is less appropriate for reconstruction tasks.
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2.2.2 Graph Neural Networks

Geometric deep learning is principally interested in extending deep learning techniques
to non-regular data-spaces such as graphs. Just as CNNs excel by operating on
local pixel neighbourhoods, Graph Neural Networks (GNNs) achieve strong results
by operating on the local neighbourhoods of graph nodes. As Bronstein et al. [2021]
state, geometrical approaches leverage low-dimensional structures (like grids in images
or molecular properties) and their symmetries (e.g., translation, rotation), enforcing
invariances critical for tasks like molecule classification. Additionally, this approach
effectively handles high-dimensional and flexible data types, such as social network
graphs with varying degrees of node connections. This geometric interpretation can
applied to a wide-array of architectures, not just those that operate with graph data.
For example, image processing with CNNs can be viewed through this lens as it
introduces translational invariance via shared local weights (Bronstein et al. [2021]).

Figure 2.6: Bronstein et al. [2021] Figure F.17 Modern GNN architectures can be
broadly categorised into three types. The convolutional variant updates node features
based on the features of neighboring nodes, weighted by a learned constant. The
attentional variant uses an attention mechanism to update node features by considering
the relationship between sender and receiver nodes. Lastly, the message passing variant
computes vector-based messages between sender and receiver nodes to update their
features.

As discussed in section 2.1, graphs are a natural choice for operating on space-time
graphs that contain AM parameters. This is because the underlying geometry includes
important information that is important to the task, and there are many desirable
equivariances such as rotation and translation that should be enforced when computing
with such input. Furthermore, they naturally handle different sized graphs without
resorting to zero-padding. They have exhibited success in both the AM domain (Larsen
and Hooper [2023], Jain et al. [2024]) and wider life and material science domain
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(Abramson et al. [2024]) even with small datasets. This is often attributed to their
explicit focus on not only feature nodes, but the relations between them.

One of the most significant contributions in this area is the work of Gilmer et al.
[2017], who introduced a GNN design for quantum property prediction using small
datasets. This work shows that the vast majority of GNN architectures fall into
the same family of architectures known as: message passing GNNs. As Bronstein
et al. [2021] discuss, GNNs broadly fall into one of three variants, each increasing
in complexity: convolutional, attentional and message passing, see Figure 2.6 for an
overview. Attentional and convolutional networks can be viewed as special cases of
Message Passing Neural Networks (MPNNs) by applying specific restrictions.

All variants follow the same basic premise: an updated node embedding is computed
with respect to the local neighbourhood. Permutation invariance - the order in which
neighbours are considered is not relevant - is ensured by some permutation-invariant
operator (defined with ⊕) such as averaging. In the message-passing variant, an
updated node (hu) is calculated:

hu = ϕ

xu,
⊕

v∈Nu

ψ(xu,xv)
 (2.3)

Where ϕ is a learnable function and ψ is a learnable message passing function that
computes the message from local neighbour xv to pass to node xu (Bronstein et al.
[2021]).

Graph data is often represented by more than a single node or edge type. Hetero-
geneous graphs - those with more than one of type of node or edge - have also been
explored in the literature. For example, Hu et al. [2020] introduced the Heterogeneous
Graph Transformer (HGT) architecture that learns different transformations for each
node and edge type in the graph (commonly known as a meta-path).

Furthermore, GNNs have also been used in the computer vision domain. Han et al.
[2022] demonstrate how graphs can be effectively used in image classification tasks by
splitting the image into patches and connecting them via nearest neighbours. This
work showed that graphs can be powerful general architectures in the vision domain.
GNNs have also been applied to diffusion models before, for example, Yang et al. [2022]
and Farshad et al. [2023] utilise scene graph conditioning using diffusion. Both of
these approaches adopt some form of graph encoder (typically graph convolution Kipf
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and Welling [2017]), to condition the diffusion process. It is worth noting that scene
graphs are very different types of graphs when compared to space-time graphs. Scene
graphs are designed to contain coarse structures of the scene images, as opposed to the
fine-grained accuracy of space-time graphs.



Chapter 3

Method

This chapter explores the practical and theoretical approach of the project, which is
split into three sections. The first part explains the dataset, the collection process, pre-
processing and synthetic data generation. The next section investigates the potential
strategies to condition images with spatially aligned graphs, and describes two proposals
in detail. The final section outlines the model architecture along with proposed
modifications that were required to facilitate graph-to-image generation.

3.1 Data

This section examines input space-time graphs and the data collection process, along
with pre-processing and augmentation strategies. Due to time constraints, the volume
of real data was limited, so much of the initial work focused on synthetic data. The
generation of synthetic data is also covered in this section.

3.1.1 Space-Time Graphs

Space-time graphs for AM can be interpreted as a sequential list of instructions that
are sent to a 3D printer. In their most basic form, each node is only connected to
the subsequent node. Each command or ‘node’ in the graph indicates where and how
the printer should deposit material, for example one hypothetical command may read
{x : 0.5, y : 0.5, z : 0, flow_rate : 100, active : 1} indicating that the nozzle head
should move from its current position to position x=0.5,y=0.5 along the print bed
with a flow rate of 100% the default calibrated value, where the active command allows
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the printer to move the nozzle head position with or without depositing material. It
is easy to draw parallels with plotting software that renders lines between sequential
coordinate pairs. However, there are complex physical interactions that underpin each
stage of the AM process. This results in a mapping between space-time graph and layer
images that is not bijective. See Figure 3.1 for some examples of this phenomenon.

Figure 3.1: Space-time Graphs Overlaid on Resulting Layer Images. This
figure shows two space-time graphs overlaid on the resulting layer images. Green lines
show active lines, whereas blue indicate inactive lines where the nozzle is moved but no
material is deposited i.e. the island in the right hand side images can only be formed
through a connection via an inactive edge.

Representing the set of instructions as a graph is a natural choice because it exploits
the underlying geometry and its associated symmetries (as discussed in 2.2.2). It also
supports a variable number of nodes and edges without explicit padding. Given the
number of nodes in graphs can vary significantly between prints, adopting a framework
that accommodates this is advantageous (implementation details discussed next in
3.1.2).

As mentioned, this is an unexplored research area, so only graphs that represent a
single-layer were investigated. However, the graph representation can trivially extend
beyond this restriction. In fact, it allows a way to represent the projection of multiple
layers in the form of overlapping nodes. A dataset of input graphs were provided by the
CAM group, which was generated by taking slices from existing 3D models. These were
used to generate a dataset of resulting layer images using a 3D printer. A secondary
dataset was collected towards the end of the project for training a final model. To add
variety, half of this data was created using new space-time graphs derived from Quick
Draw - a line drawing dataset (Ha and Eck [2017]).
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3.1.2 Data Collection & Pre-Processing

This section describes data collection using the graphs outlined in the previous section.
The experimental set-up is as follows: the Creality CR-30 3DPrintMill 3D Printer
was retro-fitted with an aerial-view camera Raspberry Pi High Quality Camera with
CS-mount 25mm/F1.2 lens and a Raspberry Pi 4 Model B 8 GB model used for remote
control. The stock 45-degree nozzle head was replaced with one perpendicular to the
print bed, preventing other prints from being scraped during collection. A custom
mount and software adjustments, such as multiplying y by cos(45), were required
to accommodate this change. This setup was specifically configured in the climate-
controlled IfM additive manufacturing laboratory. The printer’s moving print-bed
allowed for automatic printing of multiple layers before manual cleaning was necessary.
Graphs were converted to g-code - the standard language for 3D printing - before being
sent to the printer. In total an initial dataset of ∼ 1500 images were collected by a
member of the CAM team. At a later stage I took over the collection process and
collected ∼ 1000 additional samples. All data is made available here. Images were
captured in batches of 55 prints, taking ∼90 minutes per batch to run and reset. The
captured images have a resolution of 1280x720. Each graph geometry was printed up
to five times with varying flow rates to study the distribution of final layer images.
The flow rate was randomly perturbed with offsets from an initial random value for
each graph. Flow rate variations are defined as the percentage of material exiting
the nozzle relative to the default settings established during calibration (this builds
on existing work from IfM Margadji et al. [2024]). Therefore, the focus of this study
is to understand the PSP relationship between input geometry, flow rate, and the
characteristics of the final layer.

Figure 3.2: Layer Images Before Pre-Processing. Displays layer images prior to
pre-processing; multiple neighbouring prints are in view and residue is visible on the
print bed.

After collection, the images were pre-processed to remove residue and neighboring
prints, and to align the graph and image coordinates. Without alignment, neighboring

https://drive.google.com/file/d/1-xRVaAGqBL5F50Sm-u5gO84SX7ndLpCh/view?usp=drive_link
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prints could appear in the images, and the target layer might be out of view. See
Figure 3.2 to see what images looked like prior to pre-processing and registration.

To align the images with the graph coordinates, 2D affine transformation matrices
were estimated. Affine matrices allow for scaling, rotation and translation. This makes
the conservative assumption that perspective effects are negligible given the flat bed
and aerial view. However, due to belt slippage and other mechanical inaccuracies it was
not appropriate to apply a single affine matrix to all samples. A more sophisticated
approach was required in order to minimise discrepancies. Yet, estimating robust
affine matrices between the graph and its corresponding image is not trivial. This is
because images can contain severe errors when compared to the graph; neighbouring
prints share near identical features and belt slippage alters alignment mid-experiment
(see Figure 3.3). These problems mean that traditional feature matching algorithms
ultimately fail to correctly register images. This raised two issues: 1) how to find
robust correspondences between the graph and the captured image, 2) how to safely
handle failure cases.

Figure 3.3: Belt Slippage and Belt Jamming. This top image overlays two
subsequent prints on top of one another, notice that severe belt slippage can occur even
between a single sample. The bottom image shows a belt jam, notice in the highlighted
red region the belt has moved over the top of the belt roller.

A new approach to find robust correspondences between graph and imperfect layer
images was developed. The approach aimed to find approximate outline shapes of
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each central print image and its corresponding graph, and then compared them with
Enhanced Correlation Coefficient (ECC Evangelidis and Psarakis [2008]). Importantly,
this produced a highly robust way to estimate scale, translation and orientation, even
between two severely distinct images that represent the same underlying geometry.
Other traditional methods are not explicitly compared to this approach because they
result in a majority of catastrophic failures. An overview of this affine matching
system is displayed in Figure 3.4 on the page below, algorithm details can be found in
Algorithm 1.

Algorithm 1 Robust Image Alignment for Graph / Real Image pairs
Require: Unaligned Graph / Image Pairs: graph, real_image

1: graph_image ← render(graph)
2: real_image ← threshold(crop_and_pad(real_image))
3: for image in {graph_image, real_image} do
4: morphological_close(image)
5: adaptive_threshold(image)
6: find_middle_contours(image)
7: fill_contour_outline(image)
8: blur(image)
9: end for

10: affine_matrix, EEC ← FindAffineWithEEC({graph_image, real_image})
11: if EEC > threshold then
12: affine_matrices ← store(affine_matrix)
13: end if

The second challenge was robustly handling failure cases. Although belt slippage
has significant impacts on image translation, the system was robust in terms of scale
and rotation. Therefore, a default scaling and rotation matrix was found using all
available samples. This was done by filtering the set with RANSAC to remove outliers
(Fischler and Bolles [1987]), and taking the average. To find more accurate translations
a three-tier fall back approach was then implemented. Translations were calculated
on a per-sample basis if the sample had high ECC (e.g. 90+). For samples below
this threshold the translations of neighbouring prints from the same geometry were
averaged. Finally, if that failed then the per experiment average was used i.e. the 55
neighbouring prints. Again RANSAC was used to remove outliers from this per-run
mean. Approximately 88.7% of dataset samples are processed by the first method,
6.1% by the second stage and 5.2% by the third stage. To further analyse this approach
Figure 3.5 displays translation predictions. We notice clear clusters displayed on an
experiment/sample basis showing the validity of this method. Furthermore, in extreme
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Figure 3.4: Robust Affine Matching System. Examples of how graph/print images
are processed for affine estimation. Graphs are plotted to target renders, and real
images are padded to match the resolution. Both have a morphological closing operator
applied, are blurred and adaptively thresholded. This connects inter-print shapes
and results in approximate outlines. Image contours that don’t intersect with a small
central region of the image are discarded. This step discards neighbouring prints whilst
ensuring the entire shape in the center is retained. The remaining contours are sorted
into an outline contour and filled, this new image estimates the outline geometry of the
entire print. ECC is used to estimate an affine matrix between the two images. The
ECC coefficient is used to find matches that had high confidence and those that failed.
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Figure 3.5: Robust Affine Translation Estimation Scatter Plot. This represents
the affine translation estimations over the dataset, experiments of 55 samples are colour-
coded, whereas the five neighbouring samples of the same geometry share marker type.
Indicated in dashed ellipses are severe belt jamming/slippage incidents, which this
method can successfully handle e.g. the blue ellipse indicates a belt jamming incident.
The red to the left, the blue to the right. Note: the small red arrow denotes a major
slippage event. The data points within the red highlighted region show results from
the experiment with a belt jam failure displayed in Figure 3.3.

incidences of belt jamming we see the system track the translation in the direction of
the belt jam. See Figure 3.6 for examples of pre-processed images, and Figure 3.7 for
aligned image examples with the graph overlaid.

Once images were correctly registered they were threshold masked at 20% to
eliminate background texture and left-over residue. Finally, the image was resized to
the desired resolution, and normalised to -1 to 1. Augmentation was then applied to the
images and their corresponding graph coordinates. The augmentations were restricted
to Euclidean transformations only. This was to ensure that underlying information was
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not distorted e.g. scaling an image would destroy the relationship between flow rate
and line width in the image. Random rotations of up to 360 degrees, and shifts up to
25% of the image dimensions were applied. These parameters are more extreme than
typically seen in a natural image deep learning pipeline. However, since a printer can
start anywhere and in any orientation, these values are appropriate. See Figure 3.8 for
some examples of pre-processed and augmented data, samples were chosen to match
the same data points in Figure 3.7 .

Figure 3.6: Pre-processed Samples for Each Dataset. Images show captured
images from the dataset. Top rows show data from graphs provided by CAM. Bottom
rows show data from graphs derived from Quick draw dataset (plane and ship class
subsets).

After the image and graph pairs were pre-processed they were stored in custom Het-
eroData objects from PyTorch Geometric (Fey and Lenssen [2019]). This heterogenous
representation allows for flexible numbers of node and edge types. This automatically
handled variable length graph representations efficiently. This is done by stacking the
graph adjacency matrices into one large adjacency matrix and stores them in a sparse
matrix (which induces less computational and memory overhead). Isolated sub-graphs
cannot pass messages between them via GNN operators, therefore it is safe to group
graphs in this manner. At run-time, this data representation allowed easy access to
each graph and corresponding image, but importantly enabled the entire stacked graph
to run efficiently through GNN models.
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Figure 3.7: Uncurated Samples of Image-to-Graph Alignment: Graphs with
color-coded flow rates are overlaid on the aligned layer images. While the system is
robust, it does not achieve perfect alignment. Without this system, multiple layers
would appear in a single graph, leading to incorrect model predictions. Dashed lines
show inactive edges.
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Figure 3.8: Augmented Images. This figure presents the same samples from
Figure 3.7, but with random rotation and translation applied to the graph and the
image.
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3.1.3 Synthetic Data Generation

The collection of real-world data is time-consuming and expensive. Additionally, the
most successful generative diffusion models have access to millions of images as opposed
to a few thousand. Transfer learning is a common technique in deep learning where a
model is trained on a related task, then a second training stage fine-tunes the model
parameters for a more specialised downstream task. It was hypothesised that training
the graph-to-image model on synthetic data would act as a valuable pre-conditioning
stage, the results of which can be found in Section 4.2.

Figure 3.9: Synthetic Data. The top half displays rendered images from the provided
graph data set. The bottom half are the random graphs. The visualisation plots a
colour coded graph over the top of the render. N.B. the render perfectly aligns with
the graph but has randomly varying widths. Dashed lines indicate inactive edges.

To generate synthetic data, the existing space-time graphs were gathered alongside
randomly generated graphs. Randomly generated graphs were created in several
different ways. For each random graph, a number of sub-graphs were randomly
sampled (up to 10). Each sub-graph were composed of either simple geometries
(rectangles, triangles, etc) or were generated from sampled points along random Bezier
curves. Furthermore, each node in the graph had a random probability to be active
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or inactive, and finally a random line-width and line-width variability were generated.
On average line-width would vary five times within a single graph. To generate the
corresponding image, these graphs were rendered using matplotlib (Hunter [2007]).
These renders do not exhibit errors that are prevalent in the real-data, however, the
synthetic data still provides a surrogate graph-to-image task, albeit deterministic and
classically solvable.

The training pipeline expects to receive graph and image pairs, however, pre-
computing images for each graph is expensive and restrictive. A better approach would
generate renders in real time. This could be achieved at run-time by passing a graph
to a Matplotlib function that exports the canvas as an array. Matplotlib has been
highly optimised for such plotting tasks. Furthermore, by wrapping this operation in a
Pytorch dataset (Paszke et al. [2019]) this allowed parallelisation of the task. Since
renders were generated on-the-fly more extreme data augmentation such as scaling,
width variation and shearing could be also be used. See Figure 3.9 for examples of this
synthetic data.

3.2 Conditioning Images with Graphs

This section discusses possible strategies to condition a diffusion model with a graph.
For notational clarity in some sections graphs are highlighted with magenta, images
with blue. A common strategy in text-to-image models is to encode a text prompt
into text embeddings using an existing language model, then to give the diffusion
model a summarised vector representation of this prompt. This may be appropriate
for global conditioning of an image but one can imagine that such a summarised
embedding would prove to be an information bottleneck in fine-grained spatial tasks
such as is the focus here. For example, it would be difficult to effectively represent a
graph containing 10,000 nodes and a graph containing a single node in the same fixed
length vector representation. Even if the target representation is 2D (e.g. a latent
image), the model must handle variable length inputs and explicit invariances such
as rotation, translation, and pair-wise permutations. Furthermore, once we extend to
multiple layers it must also handle the task of projecting multiple layers in 3D to the 2D
image and the complicated physical interactions this entails. Super-resolution models
provide a better task comparison: by conditioning a diffusion model on a low-resolution
image, we effectively restrict possible generations to adhere to the underlying spatial
information. In this work we do not have a low-resolution image to provide, however,
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we can provide similar conditioning signals such as a line mask of the ideal render.
Essentially, this formulates the task as the residual problem - the model only needs
to learn the difference (e.g. the errors). However, a simple line mask ignores the
graph and process parameter information e.g. the flow rate. Therefore, several more
considered approaches were explored, two of which are described in detail. The first
and simplest of the two, is referred to as a learnable render using line lookup. The
second is referred to as the dual-graph GNN.

3.2.1 Learnable Render using Line Lookup

As discussed, the simplest approach to graph-to-image would be to provide the model
a line mask. Line masks can be rendered using the graph’s coordinates in a similar way
to how synthetic data is generated. However, one problem with this procedure is that
it doesn’t use the full suite of available information, for example we know there is a
relationship between flow rate and resulting line which is unknown at training time. In
an approach inspired by classical rendering and the Neural Texture work of Thies et al.
[2019], we can lookup a single line mask that connects two nodes, and fill them in with
an appropriate value. This value or vector of values can be directly learned from the
local nodes process parameters. In essence, for a graph with N nodes this approach
would produce N−1 latent line mask images. These line mask images can be combined
via summation to produce a single D dimensional latent image representation of the
graph and its process parameters. For an illustrative overview of this approach see
Figure 3.10. Formally, this learnable render module can be described with the following
equation:

R =
N−1∑
i=1

(ϕ(ni)⊙Mi) (3.1)

Where output render R is equal to the sum over all latent line images. Where ϕ is
a learnable transformation of node ni multiplied element-wise (⊙) by line mask Mi.
Where line mask Mi is 1 for all pixels that intersect with the linear path between node
ni and ni+1, and is 0 everywhere else.
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Figure 3.10: Learnable Render Overview From left to right. Given a space-time
graph, the N-1 lines are extracted as pairs of sequential nodes, and line masks are
generated for each pair. Each node is passed through a MLP which outputs a vector
representing the print parameters for the line, this is multiplied by its corresponding
line mask. A 2D latent image is calculated by summing the N − 1 line masks into a
single D dimensional latent image. In this diagram D = 3.

Algorithm 2 Learnable Render Module for Space-Time Graph
Require: Heterogeneous Graph Data: het_graph

1: print_nodes ← get_node(het_graph, print_nodes)
2: print_textures ← MLP(print_nodes)
3: output_render ← zeros(size)
4: for i ∈ {1, . . . , N − 1} do
5: start_node ← print_nodes[i].xy
6: end_node ← print_nodes[i+1].xy
7: mask_idx ← draw_line(start_node, end_node)
8: output_render.index_add(mask_idx, print_textures[i])
9: end for

10: return output_render

Calculating line masks between two points is a highly optimised procedure, and this
did not prove to be a bottleneck during inference, even for large graphs. This unit was
implemented into the model at various resolutions, which gives the model to generate
effects beyond the the fine-grained line at full-resolution. Anti-aliased lines were also
investigated. The results are presented in section 4. For an algorithmic overview see
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algorithm 2, note in practice that masks can be pre-computed with vectorised lookup
procedures for entire graph batches (avoiding loops), this allows highly efficient and
learnable rendering.

3.2.2 Dual-Graph GNN

Although the learnable render described in the previous section solves basic spatial
conditioning, it is likely insufficient for accurate prediction of complex physical defects.
This is because many complex defects require knowledge of multiple nodes and the
relationships between them, and is indeed why inputs are formulated as graphs as
opposed to sequences. One option to incorporate the graph would be to replace the
MLP in the learned render with a GNN, and then extract node embeddings. However,
this approach suffers from the fact that that every value along a latent line image is
the same i.e. it makes the assumption that the relationship between pixels and points
along the line stays uniform. Although it is possible for the diffusion model to sample
from the underlying distribution, a more flexible approach may allow the model to
learn complex patterns of error. To support a more flexible conditioning format the
concept of a dual-graph was introduced.

A dual-graph representation considers the graph-to-image task as an operation that
exists on two graphs. The first graph is the familiar space-time graph that consists of
print nodes and is connected with temporal print edges. The second graph represents
the target image or its latent representation. This graph consists of image nodes, where
each node can represent a single pixel or a patch of pixels. These two graphs can be
inter-connected in various ways, for example an obvious choice is to connect every
image node that falls along a print line to the previous node, essentially filling the
same role of the learnable render but with more expressivity. Refer to Figure 3.11 for
an illustrative breakdown of the dual-graph concept and different edge types.

The benefits of operating on a dual-graph representation are numerous and more
dynamic than they may first appear. Some of the benefits include: natural handling of
variable length graphs, exploiting invariances, equivariances and inductive biases, and
an efficient way to switch between image and graph representations via node updating.
Firstly, this representation efficiently handles variable length graphs without padding.
Secondly, the process parameters of the print graph are invariant to rotation and
translation, in that the flow rate of a rotated print graph remains unchanged. Yet, the
connection of the print graph to the image graph is equivariant (ignoring discretisation
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Figure 3.11: Dual Graph Representation. A) For every layer image there exists
the corresponding space-time graph that was used to print it. B) Every layer image is
made up of pixels, each pixel can be thought of as a node in a grid graph. Likewise
in CNN or ViT architectures, once images are fed into a model one pixel can also
represent a local patch of pixels. C) The dual-graph representation imagines overlaying
the print graph and image graph on top of one another. The image lives in a discretised
coordinate space, whereas the space-time graph lives in a continuous space. D) The
print graph can be connected to itself with temporal print edges. E) The print graph
can connect to the image graph by connecting to nodes along the print line. Edges can
also contain additional features (e.g. distances). F) Other possible edge types include
nearest neighbours which can be between either print nodes, image nodes or both.

error). This has significant effects on the output. Consider an example graph that
exhibited adhesion defects, by rotating or translating the graph we can expect the
output to display equivariance, but potential defects can be processed invariantly
on the print graph. Finally, this representation allows for an efficient way to switch
between variable length graphs and fixed resolution images, in turn this opens the door
to unique processing by switching between the representations. The dual graph can
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take as input a set of ‘current image features’ i.e. the current latent representation of
the image passed from the U-Net model. These can be then used to update the image
nodes on the graph before the the dual-graph is passed through a heterogeneous GNN.
Furthermore, it flexibly allows image nodes on the graph to be converted back into
latent image patches, passed through any transformation (such as a ResNet block) and
then converted back into nodes on the graph for further processing.

Formally we can present operations on a dual-graph GNN with the following
equations. The first operation allows current feature maps to replace image nodes in
the dual-graph, for incoming image features x of shape [B,C,H,W ]:

xpatch = P (x, [B ·H ·W,C]) (3.2)
xnode = U(xpatch) (3.3)

Where U is a vertex updating function, and function P permutes and reshapes
image features into the N image nodes. The vertex update function U can be chosen
as the identity, a learned projection or a more complex transformation.

Once image nodes are updated, we can perform any variety of heterogeneous
message passing using the dual graph GNN:

hu = ϕ

xu,
⊕

v∈Nu

ψ(xu,xv, euv, tu, tv)
 (3.4)

Where the message passing transformations depend on both the edge features
euv and the types of nodes tu, tv. Readers may refer to appendix A.2. for specific
materialisations of Eq 3.4. Furthermore, we can easily switch back and forth between
image and dual-graph representations to apply intermediate image transformations on
the image nodes, for example a convolutional layer. For all image nodes {himage

u }:

{ĥimage
u } = U

(
P
[
ψ(P−1(Û({himage

u})))
)]

(3.5)

Where P−1 transforms the set of nodes nodes back into images, i.e. the inverse
operation of P in eq 3.3. Û is again a node wise transformation such as a projection
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that facilitates transforming nodes back into image patches. Where ψ can be any
image-wise learnable transformation, such as a convolutional layer or block. It is trivial
to switch back and forth between the image and dual-graph representation which opens
the door to new types of models. Moreover, common deep learning techniques such
as skip connections are easy to integrate. For clarity we present a simple example
formulation of the dual graph block, using a simple convolutional image layer and
simple graph convolutional layer with mean aggregation. For input image features x
and conditioning nodes c:

x̂i = 1
|N (i)|

∑
j∈N (i)

[
1{j∈Image} · (eji · U(P (xj))) + 1{j∈Conditioning} · (eji · ĉj)

]
(3.6)

x̃i =
∑

j∈R(i)
wji ·

(
P−1(Û(x̂j)) + bi

)
(3.7)

Equation 3.6 applies the GNN to the local neighborhood N , incorporating both
image and conditioning nodes. In 3.7, the image nodes are transformed back into an
image feature map, and an image convolution is applied to the local receptive field R.
We can interpret this formulation not only as a GNN that operates on a graph with
two types of nodes, but also as a framework that operates on two low-dimensional
structures -specifically, how N operates on the GNN and R operates on the image.
Activation functions are omitted for brevity. We also present a more general algorithmic
overview in 3 below.

The metadata for dual graphs can be computed on-the-fly from augmented data
e.g. print line edge connections. Additionally, new features can be attributed to print
graphs such as distances between other nodes or positional encoding information. See
Figure 3.12 for an example dual-graph with real data.

Ultimately this novel dual-graph representation allows for highly expressive spatial
conditioning, and allows for unique operations as it switches back and forth between
image and dual-graph. Alongside its flexibility, this form of dual-graph conditioning is
parameter-efficient due to weight sharing, message-passing and aggregation, allowing
highly specific spatial conditioning with only minimal parameter increases. See Fig-
ure 3.13 for an overview of the dual-graph GNN block. Note, this block is flexible in
its design and part of the project was to explore best practices.

Prior work has proposed image processing using graphs (Han et al. [2022]), pro-
cessing images to generate graphs (Xu et al. [2017], Yang et al. [2018]), and even
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Algorithm 3 Dual-Graph Block for Image and Heterogeneous Graph
Require: Image and Heterogeneous Graph Data: image, het_graph

1: for i ∈ {1, . . . , L} do
2: image_nodes ← reshape_to_patches(image)
3: image_nodes ← projection_layer(image_nodes)
4: het_graph ← update_nodes(het_graph, image_nodes)
5: for g ∈ {1, . . . , G} do
6: hidden ← GNN(het_graph)
7: end for
8: hidden_image_nodes ← extract_image_nodes(hidden)
9: image ← reshape_to_image(hidden_image_nodes)

10: for c ∈ {1, . . . , C} do
11: image ← activation(conv(norm(image))
12: end for
13: end for
14: return image

Figure 3.12: Example Dual Graph. Layer image and corresponding dual-graph
representation, print nodes shown in blue, dense image nodes in pink. A) Temporal
print edges in green. B) Nearest Neighbour edges in orange. C) Print line edges in red

diffusion models conditioned on abstract scene-graphs (Mishra and Subramanyam
[2024], Farshad et al. [2023], Yang et al. [2022]). However, to my knowledge no work
has presented a representation similar to a dual-graph GNN as it introduces a dynamic
back-and-forth approach between graph and image, and allows fine-grained spatial
conditioning. We postulate this to be pivotal for the proposed task because the image
contains important information for use in updating the graph representation.
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Figure 3.13: Dual Graph Architecture. The dual-graph block expects an input
image per heterogeneous graph datapoint. The image is reshaped into N image nodes,
and passed through a learned projection. The image nodes in the graph are replaced
with these features. The dual-graph is then passed through a GNN which returns a
new set of node embeddings. Image nodes are extracted from these new embeddings,
reshaped back to images and passed through a convolutional block. This process repeats
for L blocks before being returned. Options such as residuals, complex convolutional
or transformer blocks are all feasible.

3.3 Graph-to-Image Diffusion Model

This section presents a unified system using the graph-to-image dataset and the
proposed conditioning strategies. The Elucidated Diffusion framework (Karras et al.
[2022], as outlined in section 2.2) was employed alongside the U-Net backbone from
Saharia et al. [2022]. Elucidated diffusion models introduce a substantial volume of
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notation, to avoid distracting from the main substance of the report, this notation and
accompanied treatment is presented in appendix section A.1. The proposed graph-to-
image conditioning is integrated directly into the U-net encoder. This provides early
signal to the model, yet allows the model to adjust features in the decoder if required.

For sample generation (predicting a layer image from a given graph), random
Gaussian noise is drawn and passed to the model Dθ conditioned on graph g, producing
samples from p(x|Dθ(g)). We adopt the 2nd order stochastic sampler from Karras
et al. [2022] and stick to their default linear schedule and ImageNet hyper-parameters
for sampling and training. We modify their algorithm 2 with our conditioning and
present it for reader convenience:

Algorithm 4 Stochastic Sampler with Conditioning Graph
(Adapted from Karras et al. [2022] algorithm 2)
Require: Trained model and conditioning hetero graph: Dθ, g

1: Sample x0 ∼ N (0, t20I)
2: for i ∈ {0, . . . , N − 1} do
3: Sample ϵi ∼ N (0, S2

noiseI)

4: t̂i ← ti + γiti ▷ γi =

min
(

Schurn
N

,
√

2− 1
)

if ti ∈ [Smin, Smax]
0 otherwise

5: x̂i ← xi +
√
t̂i

2 − t2i ϵi

6: di ←
(
x̂i −Dθ(x̂i|g; t̂i)

)
/t̂i

7: xi+1 ← x̂i + (ti+1 − ti)di

8: if ti+1 ̸= 0 then
9: d′

i ← (xi+1 −Dθ(xi+1|g; ti+1))/ti+1

10: xi+1 ← x̂i + (ti+1 − t̂i)
(

1
2di + 1

2d
′
i

)
11: end if
12: end for
13: return xN

We also follow the training procedure from Karras et al. [2022], including pre-
conditioning and loss re-weighting. Following their advice and best practice, we train
a separate model Fθ in which Dθ can be derived which allows input and output
magnitudes to remain stable. Ultimately, this means we predict both noise and signal,
adapting Karras et al. [2022] Eq. 7 with conditioning graph g this yields:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x|g; cnoise(σ)) (3.8)



3.4 Validation Procedures 41

We also adapt Karras et al. [2022] Eq. 8:

Eσ,y,n

λ(σ)cout(σ)2
∥∥∥∥∥Fθ (cin(σ) · (y + n)|g; cnoise(σ))− 1

cout(σ) (y − cskip(σ) · (y + n))
∥∥∥∥∥

2

2


(3.9)

Below we present the training algorithm for our system given a random training
point:

Algorithm 5 Elucidated Diffusion Training with Conditioning Graph
Require: Model, image and conditioning hetero graph: Fθ, images, g

1: Sample σ ∼ N (Pmean, Pstd) from noise distribution
2: Sample ϵ ∼ N (0, I)
3: noised_images ← images +σ · ϵ
4: denoised_images ← preconditioned_model(Fθ, noised_images, g, σ) ▷

see 3.6
5: loss ← 1

H·W
∑H·W

i=1 (denoised_images− images)2

6: weighted_loss ← loss ·(σ2 + σ2
data) · (σ · σdata)−2

7: return weighted_loss

For readers who are unfamiliar with the work of Karras et al. [2022] and Song et al.
[2021], the notation and procedure here may seem opaque. To succinctly summarise,
we train a model on noisy images at a given noise level σ, but we also allow the model
to process the corresponding space-time graph. We ultimately get the model to predict
the denoised image. Once trained on many noisy images, we can predict new samples.
We do this by starting with pure noise and a corresponding graph and iteratively
denoise it using the last estimate as the prediction for the next time step. We follow
Algorithm 4 to do this; despite not being a general purpose SDE solver (Karras et al.
[2022]) it has strong empirical results and is faster than other methods.

Finally, to conclude the method section we present an overview of the entire model
with integrated conditioning in Figure 3.14 at the end of the chapter.

3.4 Validation Procedures

The validation routes for this project are not straightforward. The most commonly used
validation metric: Fréchet Inception Distance (FID) is not well-suited for reconstruction
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tasks. This is because FID relies on pre-trained network statistics, which are out of
distribution for our FDM data. Moreover, FID measures visual quality which does
not align with our specific goal of reconstruction. For similar reconstruction tasks like
super-resolution, metrics such as Peak Signal-to-Noise Ratio (PSNR) or Structural
Similarity Index (SSIM) are typically used, though they often do not correlate well
with human preferences Saharia et al. [2021]. However, the goal of the task is to
faithfully reconstruct the output layer to predict possible errors. Therefore, simple
MSE measured against the reconstruction of test images (given input graphs) makes
the most suitable quantitative validation metric. Typically, PSNR (a normalised and
reweighted MSE) measured in dB is preferred as it normalises the metric with respect
to pixel values offering easier comparisons. Note: higher PSNR denotes a higher quality
reconstruction, typical lossy image compression ranges from 30-50 dB.

MSE = 1
n2

n∑
i=0

n∑
j=0

(
y(i,j) − ŷ(i,j)

)2
(3.10)

PSNR = 10 log10

(
MAX2

MSE

)
(3.11)

This metric is not ideal as whilst the model may predict the correct type of error (e.g.
stringing or adhesion failure), the pixel-precise prediction of where this failure occurs
may not be accurate. In practice these types of predictions are still useful for operators
despite being penalised by this metric, therefore we resort to careful qualitative analysis
of model predictions alongside numericaol analysis. Human evaluation metrics are
crucial as they provide insights that purely numerical results may overlook, particularly
in assessing the practical utility of model predictions. The downside to numerical
analysis is compounded by the fact that diffusion is inherently an stochastic process,
and so results will slightly different between samplings runs. Finally, to validate the
practical effectiveness of our model we use it to predict optimal process parameters
for a given geometry on unseen test samples, this is presented in 4.5.2. The available
data was split into training and validation splits (90/10), results are presented on the
validation split.
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Figure 3.14: Graph-to-Image Diffusion Model Fθ(g). The baseline U-Net model
augmented with graph-to-image conditional units. Note the dual-graph GNN uses the
current image features and heterogeneous graph data, rather than the learnable render
which only uses graph information to map to latent image space. Both units can be
plugged into any resolution via feature interpolation. Cross embedding layers consist
of multiple convolutional kernel sizes. Down and up blocks consist of ResNet blocks
with optional attention and diffusion time conditioning.



Chapter 4

Results

This section covers model training, experimental setup, key ablations and results. It
then details training on synthetic and real data, followed by model improvements
and further ablations. Finally, reconstructions from the best model are qualitatively
examined, along with an real-world case study into optimising process parameters for
a given target render.

4.1 Experimental Setup

The experimental setup focused on training a customised U-Net on a graph-to-image
diffusion task at 128x128 resolution. Hyper-parameters were directly derived from the
Efficient U-Net 256x256 super resolution model from Saharia et al. [2022] - see appendix
A.3 for details. This establishes a competitive baseline to evaluate the addition of the
new computational units. The Adam optimiser (Kingma and Ba [2017]) with a fixed
learning rate of 0.0001 was used. The baseline model has 693.6 million parameters.

We incorporate two additional conditioning units: a learnable render unit and a dual-
graph GNN. The learnable render unit was developed from scratch to efficiently handle
graph-batched data. The learnable render is designed to match the current resolution
dimensions; for example, at the lowest resolution, it produces a 1024-dimensional
16x16 render. Additionally, an initial render with 8 dimensions at full resolution was
included. The baseline learnable renders add 1.49 million parameters. The dual-graph
GNN interface was written in PyTorch. We evaluated existing models from PyTorch
Geometric for the GNN layers and selected the Heterogeneous Graph Transformer
(HGT) from Hu et al. [2020] as the baseline model; different architectures are explored
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in a later section. This unit includes custom node updating functionality, intermediate
image transformations, representation switching, and additional conditioning (e.g.,
diffusion time). By default, we set the number of Dual-Graph GNN layers to 2, with 2
blocks, resulting in a total of 4 GNN layers and 2 intermediate image transformations.
We use all three edge types described in Section 3.3, including explicit reverse-type
edges (i.e., undirected heterogeneous). The baseline dual-graph GNN adds 1.32 million
parameters. Sample generation involves 32 diffusion steps.

4.2 Synthetic Data

This section presents model training using synthetic data, which is abundant and
classically solvable so high performance is expected. The dataset contains 35,000
base graphs, but is rendered at runtime with varying widths and augmentations.
This approach allowed us to evaluate proposed conditioning strategies before real
data had been collected. Firstly, a baseline was established using only the learnable
applied at full resolution. This was subsequently improved by applying it at multi-
resolution and with anti-aliased line masks. The dual-graph GNN was then added, and
subsequently enhanced with intermediate convolutional layers. As hypothesised, using
both conditional units provided the best results, as shown in Table 4.1.

Model Name Steps PSNR (dB) Improvement (%)

Learnable Render (LR) 5k 23.68 -
LR Multi-Res 5k 24.56 3.71
LR Multi-Res Anti-Aliased 5k 25.08 5.91
Dual-Graph GNN without Conv 5k 24.62 3.97
Dual-Graph GNN 5k 25.17 6.32
Dual-Graph GNN and LR 5k 26.75 13.00

LR Multi-Resolution Anti-Aliased 50k 25.24 ±0.24 6.6
Dual-Graph GNN 50k 29.36 ±0.28 24.00
Dual-Graph GNN and LR 50k 30.21 ±0.27 27.61

Table 4.1: Validation PSNR for Trained Models. Note percentages are calculated
in PSNR which is a logarithmic measure. Values rounded to 2.d.p and standard
deviations of the last 5% of training steps are included.

To validate the effects of conditioning, we monitored the loss and reconstruction
curves over 50,000 update steps (24 hours of training on a single GPU using the
Cambridge HPC), as shown in Figure 4.1 and Figure 4.2. Interestingly, the learnable
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render reached a performance plateau relatively early, while the GNN continues to
improve, suggesting it provides a more expressive representation. There is a larger
improvement to reconstruction compared to training loss, indicating the GNN results
in more accurately conditioned generations. The best model achieves a PSNR of 30.21,
which is comparable to lossy image compression, demonstrating very strong performance
on synthetic data. While the models have not yet converged, they generate high-quality
samples. Figure 4.3 shows the evolution of validation samples over training, and
Figure 4.4 shows validation samples from the best model. This approach successfully
conditions images with different graph properties (e.g. line width) to a high degree of
accuracy.

Figure 4.1: Training on Synthetic Data - Validation Reconstruction. Validation
reconstruction MSE over 50,000 steps. Three runs are shown: one using the GNN,
one the learnable render, and one combining both approaches. Even on synthetic data
- which lacks complex physical dynamics - the GNN emerges as the most effective
conditioning method.

Figure 4.2: Training on Synthetic Data - Training loss. Training loss over 50,000
steps, matching Figure 4.1. The loss is very noisy, and is therefore highly smoothed.
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Figure 4.3: Evolution of Validation Reconstruction over training steps. These
images show samples from same conditioning graph over model training with steps:
0, 500, 1000, 2500, 10000, 50000. The top row is same target image, middle row is the
prediction and the bottom row is the difference between the two e.g. the error.

Figure 4.4: Validation Reconstruction Samples. Samples generated at 50k steps
from the best model. The top row displays the graph color coded with flow rate. The
middle rows show the target image and the model reconstruction. The bottom row
demonstrates the error between the two.
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4.3 Evaluating Real-World Data: Initial Findings

This section explores preliminary results on real data, beginning with the initial dataset
of 1,500 samples, with a subsequent section utilising the full 2,500 samples (due to
data collection timeline). The primary objective is to assess whether insights gained
from synthetic data experiments extend to real data—a significantly more complex
challenge.

Model Name Steps PSNR (dB) Improvement (%)

Learnable Render (LR) 50k 16.53 ±0.41 -
Dual-Graph GNN 50k 17.61 ±0.42 6.51
Dual-Graph GNN and LR 50k 17.51 ±0.32 5.95
- no pre-training 50k 17.58 ±0.11 6.34

Table 4.2: Validation Reconstruction (PSNR) for Models trained for 50K steps on real
data. To mitigate noise PSNR values are calculated by taking the mean and standard
deviation of the last 5% of training steps. Values are reported to 2.d.p.

To this end, four experiments were trained for 50,000 update steps using the best-
performing settings from the synthetic data experiments, such as multi-resolution and
anti-aliasing techniques (see table 4.1). The loss curves are presented in Figure 4.5 and
Figure 4.6; surprisingly, pre-trained models did not exhibit performance compared to
those trained from scratch. Yet, it did initially speed up convergence. This is to be
expected as pre-trained models have sensibly calibrated outputs. This suggests that
the characteristics of the real data do not provide additional information that would
be advantageous for the real task. This phenomenon could be attributed to the strong
inductive biases of the conditional units, as they encode the majority of information
provided from the synthetic data (i.e. line placement).

The learnable render showed little to no benefit when combined with the GNN,
which is in keeping with the findings from synthetic data. Interestingly, the training
loss of GNN models exhibit only a modest decrease of ∼ 10%, yet, more substantive
improvements of up to 30% in reconstruction MSE (N.B. PSNR is log scale). This
suggests that the GNN enhances accurate conditioning rather than merely improving
visual quality. The PSNR values were calculated with respect to validation reconstruc-
tion and are displayed in the table 4.2. To mitigate measurement noise the average
values over the last 5% of training steps is reported. Measurements on real data will
be noisier, particularly as the validation set is small.
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Figure 4.5: Training Loss Curves on Real Data. The graph presents smoothed
validation reconstruction MSE and smoothed training loss over 50k update steps for
the four initial training runs. Results smoothed with a Gaussian kernel σ = 1.

Figure 4.6: Validation Reconstruction Curves on Real Data. The graph presents
smoothed validation reconstruction MSE over 50k update steps for four initial training
runs. Results smoothed with a Gaussian kernel σ = 1.

We anticipated the model’s performance to degrade when applied to real data, due
to factors such as non-determinism, images misalignment, and significantly smaller
dataset size. Additionally, one could expect the model to take longer to converge on
this more complex task. Nonetheless, it is encouraging that the insights gained from
synthetic data were transferable to the real domain. Given the limitations in dataset
size and the presence of measurement noise, longer training runs should validate these
findings. The GNN model consistently demonstrated its advantages over the learnable
renderer. However, due to computational constraints, we are unable to fully confirm
this advantage through extended validation.



4.4 Further Improvements & Ablation Studies 50

The next sections focus on improving the model before presenting a final version
trained for longer and on a larger dataset. To avoid repeating qualitative analysis, we
reserve this for section 4.5.

4.4 Further Improvements & Ablation Studies

This section explores possible optimisations of the dual-graph GNN, as it has been
established as the most effective conditioning unit. This includes: testing different GNN
architectures, a study into the effect of GNN layer depth, conditioning the dual-graph
GNN on diffusion time, additional learned spatial embeddings and finally an ablation
into the effect of image/graph alignment. Each of these experiments is discussed in the
following subsections.

Additional Spatial & Temporal Conditioning

We explore the use of additional spatial and temporal conditioning, through the use of
learned sinusoidal embeddings (similar to ViT positional embeddings Dosovitskiy et al.
[2021]). The intuition here is that print nodes contain sub-pixel positional information
which may be useful for the model, and allow the model to learn more complex spatial
relationships. For all graph nodes we calculate spatial and temporal embeddings (e.g.
pixel position, or print position and sequence ordering) with the following formulation:

F(x) =


x1 · · · xd

sin(x1 · w1 · 2π) · · · sin(xd · wd · 2π)
cos(x1 · w1 · 2π) · · · xd · cos(wd · 2π)

 (4.1)

Where w is a learned vector. We then pass these additional features alongside
original node features into an MLP to get updated embeddings per node. We apply
this before the graph is passed to the GNN.

Additionally, the baseline U-Net conditions features with diffusion time. It does
this using learned scaling and shift parameters. We apply a similar approach to the
nodes of the dual-graph GNN, learning scale and shifts parameters per node type based
upon diffusion time.
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Algorithm 6 Time Conditioning for Heterogeneous Graph
Require: Hetero Graph and Diffusion Time: g, time_embedding

1: node_scales, node_shifts ← MLP(time_embedding)
2: for node_type in g do
3: node[node_type] *= node_scales[node_type] + 1
4: node[node_type] += node_shifts[node_type]
5: end for
6: return g

In practice, these additional conditioning strategies made little to no improvement,
but involve almost no additional overhead. We hypothesise that improvements were
only minor due to the strong spatial inductive bias of the dual-graph GNN and the
U-Net. Moreover the U-Net is already heavily conditioned on diffusion time, which
means that further conditioning only has a minor overall impact.

Alternative Dual-Graph GNN Architectures

To identify a better architecture, we first conduct a small ablation on GNN depth by
evaluating the HGT network with different number of layers. Readers should also be
warned that memory usage for large or dense GNNs are typically much higher than
more localised models such as the U-Net. This is because one node may connect to
hundreds of neighbouring node which leads to large activation maps. This is particularly
relevant in our case, as print-line or spatial edges on the dual-graph can be dense,
connecting to hundreds of pixels at once. In our experiments we didn’t find substantial
improvements by utilising deeper networks, but found decreasing them would degrade
performance.

Rather than trying to theoretically justify the best possible GNN architecture,
we based our approach on empirical performance. We explored several alternative
GNN architectures beyond the HGT, including: Graph Convolution (Morris et al.
[2021]), Graph Attention Networks (GAT Veličković et al. [2018]), GATv2 (Brody
et al. [2022]), SAGE Convolution (Hamilton et al. [2018]) and Heterogeneous Attention
Networks (HAN Wang et al. [2021]), view A.2 for a theoretical overview. We find very
comparable performance between these architectures despite different computational
overheads, see Figure 4.7 for an overview. However, these were small experiments run
for only 10,000 steps due to computational constraints. When evaluating architectures,
one should consider factors such as parameter count and runtime complexity; for
instance, attention-based methods have quadratic complexity. It is known that sparse
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Figure 4.7: PSNR for Different GNN Architectures. Bubble area indicates
number of parameters plotted against PSNR for models run for 10k steps. Models
have very comparable performance to one another. Bottom indicates smaller U-net
models with large GNNs, also notice very comparable performance.

representations such as GNNs have worse computational trade-offs compared with
dense models with respect to parameter count. GAT, GATv2, HAN and HGT all have
the most similar complexity profile due to self-attention, we found that GATv2 and
HGT performed the best. Interestingly SAGE provided a highly competitive and more
computationally efficient alternative. Graph Convolution appeared to be the most
computationally efficient approach but it did not perform as well in practice.

We also investigate shifting the balance of parameters from the U-Net to the GNN.
We must balance the load between image generation (from the U-Net) and useful
conditioning information (from the GNN). In the baseline approach the vast majority
of parameters are reserved for the generative model and only a few reserved for the
conditioning model. To explore the idea of changing the balance, we switch to a
smaller U-Net by reducing dimensional multipliers and the number of ResNet blocks,
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reducing the number of U-Net parameters by around 75%. We then increase the
number of dual-graph GNN blocks and their depth, following advice from Li et al.
[2020] on training deeper graphs. Interestingly we find almost identical reconstruction
performance in these approaches (see 4.7), at the cost of significantly fewer parameters.
However, memory overheads at training time stay roughly equivalent due the larger
activation maps of the dual-graph GNN (e.g. it has several dense areas of connectivity
at high resolution). To provide a fair assessment we also train small U-Net models
with baseline GNN depths and see very little difference between the two. Perhaps a
sensible conclusion to draw from this is to note that given our small dataset size the
model is simply highly over-parameterised. These results may indicate we have reached
a natural plateau through this technique. However, we observed small quantitative
differences were noticed between the smaller and larger models and we are wary of
the fact that the numerical validation procedures are noisy given the dataset size and
these models were not trained to convergence. Furthermore, we had to be mindful of
available computing constraints. We decide to present a final model only in the large
variant using HGT 2x2.

Node Sampling

One observation of the dual-graph representation is that certain edge types are dense.
Namely, print line edges that run along the line of the nozzle head connect to every
pixel along the line. These are by far the most numerous type of connection on the
graph, and there should be a high level of redundancy in the information they carry.
Furthermore, in other work on diffusion generation, they show improved generation
by augmenting low-resolution images with low levels of noise (Saharia et al. [2022]).
Additionally, it is common practice to sample a neighbourhood of nodes in GNN
frameworks (Hu et al. [2020]). In a similar vein, we implement node sub-sampling at
the start of each model pass for this type of node. We randomly sample a subset of
spatial and print line edges using a Bernoulli distribution where p = 0.2.

Sample(Et) = {ei ∈ E | I(Bernoulli(p) = 1)} (4.2)

Remarkably, we see no significant degradation in validation reconstruction or
training loss using this method and receive substantial memory savings. We leave it to
future work to explore this phenomenon further and to find best p values.
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Image Alignment Ablation

Figure 4.8: Samples from Model without Alignment. Top rows show graph
overlaid on target image without alignment i.e. notice how the graph and image do
not match. Bottom rows are the prediction given the un-aligned graph. This model
was trained for 10,000 steps.

To study the effect of image alignment on the system, random translations were
applied to the image only. As can be seen in Figure 4.8 the samples from this model are
very poorly conditioned and the visual quality has also suffered. This demonstrates the
important of data pre-processing and the image alignment processed outlined in section
3. The model here was trained for 10,000 steps, so it may have possibly improved later
in training. However, by giving the model aligned images we allow the model to focus
on the important part of the generation.

4.5 Final Model

The model with best parameters was trained for longer and utilised additional data.
Half of these extra data points consisted of prints generated using graphs supplied by
CAM, while the other half were random samples from the Quick Draw dataset (Ha
and Eck [2017]). It was trained for 60+ hours on the HPC, using model check-pointing
to side-step job time limits, achieving a validation PSNR of 18.26. The final model
demonstrates a solid understanding of the PSP relationship. Samples are generated
with 32 sampling steps unless otherwise specified.
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4.5.1 Generated Samples

Figure 4.9: Validation Sample Generation. The top two rows show validation
samples and their corresponding graphs. The bottom rows are generated samples
conditioned on the same graphs.

We conduct a qualitative analysis of samples to further analyse the results. Figure 4.9
and Figure 4.10 display generated samples from the model. In Figure 4.10, geometrically
identical graphs are generated with different flow rate parameters. When the flow
rate is too low, the layer quality deteriorates and exhibits line artefacts. The model
has clearly learned this relationship, as the reconstructions reflect similar types of
errors. In contrast, high flow rate layers appear to suffer fewer defects and display
greater consistency. The model appears to generate highly plausible samples in this
case, producing better results for images with higher flow rates. This is unsurprising,
as under-extruded samples exhibit higher levels of stochasticity, making them more
difficult to predict accurately. The model correctly learns when and where there is a
higher likelihood of stringing artefacts. Stringing commonly occurs between parts of
the print but may also appear as the printer moves on to a new print. It seems that
the model learns this distribution, and although the predictions are not accurate in
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terms of numerical metrics (e.g. PSNR/MSE), it appears to generate the same type of
errors.

Figure 4.10: Varying Flow Rate Sample Generation. Matching Figure 4.9, this
figure displays validation samples over varying flow rate graphs.

We explore the difference between the SDE and ODE samplers over different
numbers of sampling steps. They both produce plausible samples until the number of
steps is reduced to below 6. Figure 4.11 shows that the ODE sampler produces near
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identical outputs. Similarly to Karras et al. [2022] we see higher performance using
the stochastic sampler, we display validation PSNR over sampling steps in 4.12.

Figure 4.11: Effects of Different Samplers. generated samples using different
sampling schemes. The only source of randomness in the ODE is the initial noise.

Figure 4.12: PSNR by sample steps. Shows validation PSNR over sampling steps
for both types of samplers.

We present additional investigations into the trained model and the conditional
units in appendix section A.4.

Out-of-Distribution Generation

To demonstrate model performance on out-of-distribution graphs, we display samples
were generated from text graphs, a task the model was not trained on. For this test,
we also sweep flow rate values from 1 to 400%. The flow rate values at training
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time were set between 10 and 300% of the default, so this allows us to examine both
out-of-distribution geometries and parameters. Figure 4.13 highlights that the model
behaves as expected: low flow rates yield adhesion errors and extrusion errors, and
high flow rates lead to over-extrusion. Again we see very plausible stringing artefacts
that follow inactivate print line connections. This indicates that the model has learned
representations that generalise to both unseen parameters and unseen geometries.

Figure 4.13: Out-of-Distribution Generation. Generated samples using text graphs
and flow-rates that extend beyond the training distribution. From left to right flow
rate is set to [1, 10, 50, 100, 200, 300, 400].

4.5.2 Case Study: Process Parameter Optimisation

To showcase our model’s capabilities and validate its performance, we present a test-
case focused on process parameter optimisation. Specifically, given a target render, we
search for optimal flow rate parameters that minimise the difference between the render
and the generated samples. In Figure 4.14 we observe a minimum error at a specific
flow rate value. By comparing the optimal sample, the predicted flow rate value, and
the target render, we observe a clear similarity between the images. However, this is
an artificial example, so it is unclear whether these findings would hold true for real
world examples. To explore this idea further, an additional dataset comprising of 55
prints using the same geometry with different flow rates was collected.

The collected dataset comprised of the Clare College crest, and was printed with
linearly-spaced flow rates from 10 to 300 (see Figure 4.15), and randomly varying flow
rates. We find MSE between the image and the sample to be a noisy metric. This is
amplfied by the non-determinism in both the generated samples and the real data. To
mitigate this issue, we explore two perceptual loss methods. We first used a perceptual
loss by comparing high-level features from a pre-trained model (VGG16 Simonyan and
Zisserman [2015]) to match images based on perceptual qualities rather than pixel
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Figure 4.14: Optimal Parameter Search. By sampling a target render from the
model with various process parameters, we can perform a simple MSE optimisation to
find the parameter most likely to result in the target render, and therefore to avoid
over or under-extrusion errors. In this example, we use a target render with a constant
flow rate parameter. Yet even this task is highly dependent on input geometry. We
generate one sample per flow-rate value and the output is noisy. To alleviate this, we
smooth predictions with a Gaussian kernel σ = 1. An alternative here would be to
perform Bayesian inference in light of these noisy samples and a flow-rate prior.

differences. Subsequently we used the initial convolutional layer of our trained diffusion
model whilst skipping graph conditioning. We found the latter to produce better
results. The error profile across different flow rates is presented in Figure 4.16. This
reinforces our understanding that the model produces high-quality samples, because
both real and generated samples that share the same parameters are neighbours in
latent space. Interestingly, we find the difference in latent space to be small. A more
considered approach would select the features with highest correlation to flow-rate,
and pass outputs through a softmax to amplify likely predictions.
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Figure 4.15: Clare College Crest Data and Generated Samples. This figures
presents printed layer images of the Clare College crest, and generated samples from
the same input graph underneath. The top half use linearly spaced but constant flow
rate. The bottom half have randomly varying flow rates.
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Figure 4.16: Normalised Average Feature Difference between Samples and
Ground Truth. Ground truth layer images of the Clare College crest and generated
samples were compared by calculating their difference in features using the trained
model. These errors are averaged over 30 samples per flow rate. Rows are normalised
to sum to 1. Maximum value per row highlighted with magenta.



Chapter 5

Conclusions

This final section summarises the project’s findings and the exciting research offshoots
which are currently being explored. It begins with a high-level discussion of the project
by highlighting its achievements, followed by a critical evaluation. The report concludes
by presenting ongoing and future work, namely the integration of additional sensors
e.g. a nozzle-head camera. This includes a discussion concerning the applicability of
this work in other domains and the potential benefits of doing so.

5.1 Discussion

This project successfully managed to condition a diffusion model with spatial graph
inputs. Despite a limited amount of real data, the model was able to predict plausible
FDM layer images which shared characteristics with the ground truth data. Further-
more, the novel dual-graph method was proven to be an effective and flexible way to
condition images. The system showed better reconstruction accuracy, demonstrating
that the conditioning strategy was more effective than other methods. Overall, this
work is an innovative and successful approach towards mapping the PSP relationship in
FDM. We also believe these contributions should extend beyond the AM domain (this
is discussed in the next section). Furthermore, we were able to gather a first-of-its-kind
dataset of over 2,500 FDM layer images. Alongside this, we presented a new robust
affine matching system and pre-processing pipeline.

Despite its successes, this project had a number of limitations and shortcomings.
For example, the dataset consisted of single-layer images - this does not match real-
world applications which utilise hundreds of layers. Furthermore, it is challenging
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to analyse how the size of the dataset held back the model’s predictive capability.
This is especially pertinent as model performance typically grows with a power-law
with respect to dataset size and data quality (Li et al. [2024]). The dataset was not
only small, but had issues such as image misalignment. This was compounded by
other mechanical failures which are difficult to track and represent in the input graphs.
This ultimately resulted in a dataset with higher inherent stochasticity, which could
have been avoided by using a different printer design (e.g. the moving belt caused
many of the issues). Critiquing this point further, the project did not incorporate the
importance of the physical printer set-up e.g. print bed height adjustment, type of
filament feed-stock and temperature control. It is known that environmental factors
(e.g. humidity) play an important role in FDM (Baechle-Clayton et al. [2022]), meaning
that the trained model may not be applicable in environmental settings different from
those of the IfM lab.

Validating the model’s performance proved difficult, particularly in numerically
assessing the reconstruction accuracy. This was because image alignment was not perfect
meaning the model may (correctly) predict shifted outputs which are heavily penalised
by simple metrics such as PSNR. Although, this was somewhat alleviated by validating
optimal parameters with a real-world test case. Perhaps a more sophisticated user
study would have been a better predictor of model success. Allowing a human operator
to use the model in their workflow would provide better insight into its effectiveness in
reducing trial-and-error. Finally, a methodological weakness of the project is that the
baseline approach includes one of the proposed conditional units. This was done as
this was the simplest way to provide the model all available information, however, for
evaluation purposes using a simple line mask baseline could provide a more insightful
comparison to evaulate the proposed units.

5.2 Future Work

5.2.1 Future Work in FDM

There is currently ongoing work to integrate video data from a nozzle-head camera
into the dual-graph system. The dual-graph is highly flexible and allows many types of
conditioning to be integrated easily. We also want to adapt the system to the multi-layer
setting. We hypothesise that a dual-graph representation would have significant benefits
over a learnable render in this scenario, as it allows far more complex interactions of
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nodes projecting down onto a surface. We are gathering a larger dataset of around
10,000 data samples to facilitate this improved system.

A promising avenue for future research could include reversing the sampling proce-
dure to recover the conditioning graph. Although we showed it was possible to find
optimal parameters through a forward optimisation approach, there may be better
methods to go from an ideal render to optimal process parameters. Finally, a deeper
analysis of the inner workings of the model and the dual graph may reveal a represen-
tation of the underlying physical process. This could be useful for researchers who aim
to understand the PSP relation. Finally, we could gain deeper insight into the AM
process by calculating ‘sample standard deviation’ for a given input graph, we could
verify whether this is a useful metric to validate potential instabilities in layer images.

Another interesting direction would allow the GNN edges to be dynamically pre-
dicted at run time. For example, when the model is being trained with images that
have little noise, this could help dynamically adjust instances with poor image align-
ment or catastrophic errors. There is some prior work in these types of dynamic
graphs e.g. Spatial Graph Convolutional Networks learn a spatial neighbourhood of
edge connections (Danel et al. [2020]). On a different point, in 4.4 we showed highly
promising results in sub-sampling graphs nodes. One promising future avenue would
be randomly draw the value of p and condition the model on this value, in a method
similar to Saharia et al. [2022] i.e. we should view sub-sampling as a type of data
augmentation.

5.2.2 Applications in Other Domains

Many applications can benefit from high-accuracy spatial conditioning. Conditional
image generation tasks such as inpainting or text-to-image can benefit from higher
degrees of spatial conditioning. For example, human face generation may be improved
by utilising the dual-graph conditioning system and using facial features instead of the
space-time graph. Common challenges with current approaches include the generation
of text within images, which often fails to accurately adhere to the given text prompt,
and the generation of human hands, which frequently results in errors. By utilising a
dual-graph system, models may be able to overcome these challenges. In addition, a
dual-graph may naturally lend itself as a user-friendly interface for humans to interact
with such systems to enforce strong but flexible spatial conditioning. To test out this
hypothesis, we want to apply this method to an existing segmentation dataset. We
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postulate this will improve generation coherence by connecting related parts of the
image via a dual-graph using class-conditional nodes. Another potential application
could be satellite image prediction. Climate modelling often makes use of sparse
‘off-the-grid’ data points which can be difficult to integrate into existing systems. The
benefit of utilising a dual-graph beyond the performance gains is the flexibility it allows.
Any number of observations or nodes can be added to the graph and integrated into
the system to provide conditioning information such as weather beacons being spatially
connected to a satellite image for weather forecasting applications.
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Appendix

To avoid cluttering the main body of text and risk obfuscating the focus of the work,
we present more detailed mathematical derivations here in the appendix.

A.1 Elucidated Diffusion

Here we present a more rigorous treatment of the elucidated framework. N.B. this is
still a summarisation and interpretation of Karras et al. [2022] for reader convenience.

ODE vs SDE Formulation

The foundational differential equation which governs deterministic sampling is:

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt (Eq. 1 Karras et al. [2022])

Where dot denotes the time derivative and ∇x log p(x;σ(t)) the score function.
A forward step in this ODE pushes the sample away from the data. Conversely, a
backward step pulls the sample closer to the data distribution. Due to special properties
of the score function it can be evaluated through a simple expected L2 denoising error.
This leads them to Eq. 2 and 3 in their paper:

Ey∼pdata

[
En∼N (0,σ2I)∥D(y + n;σ)− y∥2

2

]
(Eq. 2 Karras et al. [2022])

∇x log p(x;σ) = D(x;σ)− x
σ2 (Eq. 3 Karras et al. [2022])
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Ultimately, given an trained denoiser D(x;σ) the solution to Eq. 1 can now be found
via traditional ODE solution methods. For example a simple numerical integration
scheme such as Euler. Skipping ahead to section 4 of the paper they introduce their
SDE variant, which adds two additional terms:

dx± = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt probability flow ODE (Eq. 1)︸ ︷︷ ︸
± β(t)σ(t)2∇x log p(x;σ(t)) dt deterministic noise decay︸ ︷︷ ︸
+
√

2β(t)σ(t) dωt, noise injection︸ ︷︷ ︸
(eq. 6 Karras et al. [2022])

They show that the SDE variant includes the ODE from Eq. 1 alongside two
separate SDEs. Allowing to separate the terms in this manner allows for much
greater understanding as we can examine each part in term. The ODE shapes sample
trajectories such that they pass through the desired distribution pt at time t. The
additional terms comprise of a deterministic score-based denoising term and a stochastic
noise injection term, these randomly explore the distribution pt. These terms push
samples towards the time-dependent marginal distribution, which is equivalent to
correcting errors made in earlier time steps. Importantly, this formulation allows the
authors to provide explicit hyper-parameters that control each part of the sampling
process. In our work we implicitly use Eq. 6 via our algorithm 4.

Sampling Parameters

To facilitate best practices for Eq. 4 the authors introduce several new parameters:
Snoise, St max, St min, Schurn, we evaluate each in turn. Snoise is simply a multiplier for the
current noise level. Whereas Smax, Smin determines noise ‘bounds’ in which stochasticity
can occur i.e. noise levels where ti ∈ [St min, St max]. For these noise levels, they
introduce ‘churning’ which they define as adding and removing noise. They control
this via the Schurn parameter. It further modulated by the current sampling step
so that this source of randomness reduces over the sampling procedure. Finally,
they clamp this parameter when selecting a new noise level by min (Schurn

N
,
√

2 − 1).
Furthermore by setting Schurn to 0 the entire formulation returns back to the ODE
formulation in Eq 1. In our implementation we use their default ImageNet parameters:
Snoise = 1.003, St max = 50, St min = 0.05, Schurn = 80.
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Remarks

In this work the authors unify ODE and SDE variants of diffusion. Using Eq. 6 they
can provide a deeper analysis of reverse and forward processes. In turn they empirically
verify and explore this design space resulting in the hyper-parameters presented in
the previous section. In practice we found this implementation provided high fidelty
samples with few sampling steps.

The shortcomings of this work lie in its heavy reliance on empirical verification.
For example, we did not have the computing requirements to explore all the potential
hyper-parameters, despite their recommendation this should be done in a case-by-case
manner. Furthermore they use FID as their metric of choice for optimisation, it is
unclear whether this would generalise to other metrics e.g. PSNR in the case of this
project.

A.2 GNN Architecture Details

Here we list several of the most pertinent mathematical formalities of the implemented
GNNs. Readers may refer to the cited papers or Pytorch Geometric Documentation
for further detail. Where applicable we list them down in homogeneous form, they are
convert to heterogeneous form by repeating the operator for every edge type (a.k.a
meta-path).

Graph Convolution

x′
i = W1xi + W2

∑
j∈N (i)

ej,i · xj (1)

ej,i denotes edge weight. From Morris et al. [2021].

SAGE Convolution

x′
i = W1xi + W2 ·meanj∈N (i)xj (2)

From Hamilton et al. [2018].
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Graph Attention Network (GAT)

eij = a(Whi,Whj) (3)

αij = softmaxj(eij) = exp(eij)∑
k∈Ni

exp(eik) (4)

αij =
exp

(
LeakyReLU

(
a⃗T [Whi∥Whj]

))
∑

k∈Ni
exp (LeakyReLU (⃗aT [Whi∥Whk])) (5)

h′
i = σ

∑
j∈Ni

αijWhj

 (6)

Where ∥ represents concatenation. From Veličković et al. [2018].

Heterogeneous Transformer

AttentionHGT(s, e, t) = Softmax∀s∈N (t)

(∥∥∥
i∈[1,h]

ATT-headi(s, e, t)
)

(7)

ATT-headi(s, e, t) =
(
Ki(s) ·WATT

ϕ(e) ·Qi(t)⊤
)
· µ(τ(s), ϕ(e), τ(t))√

d
(8)

Ki(s) = K-Lineari
τ(s)

(
H(l−1)[s]

)
Qi(t) = Q-Lineari

τ(t)

(
H(l−1)[t]

)
(9)

H l[t]← Aggregate∀s∈N (t),∀e∈E(s,t) (Attention(s, t) ·Message(s)) (10)

From Hu et al. [2020].

A.3 Further Implementation details

Baseline U-Net

Baseline U-Net hyper-parameters:

• Dimension multipliers of (1, 2, 4, 8)

• Number of ResNet blocks (2, 4, 8, 8)

• Attention layers on the final block, 8 attention heads
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• Feed-forward multiplier of 2.0

• Hidden size of 128

Small U-Net

Small U-Net hyper-parameters:

• Dimension multipliers of (1, 2, 4, 4)

• Number of ResNet blocks (2, 2, 4, 4)

• Attention layers on the final block, 8 attention heads

• Feed-forward multiplier of 2.0

• Hidden size of 128

A.4 Model Probing

Here we present experimental probes on the conditional units of the trained model.

Learnable Render

We examine the learnable render to understand what properties it has learned. In
appendix Figure 1 we compare the learnable render before and after model training. We
can see that even prior to training the random initialisation encodes a representation
of the flow rate in output render. However, we see this is amplified as the model learns
this to be an important feature. In appendix Figure 2 we visualise the learned deep
texture for samples with variable flow rate, we see a similar picture that is learns to
encode flow rate, but also line activity, positional information, and indications of node
counting (e,g, overlapping lines in the first column).
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Figure 1: Learnable Render Before and After Training. The initial learnable
render is set to D=8 channels, this is the render visualised on a per-channel for a
random validation sample. The figure has been normalised by the maximum and
minimum of all channels. The last column images is the target graph with colour coded
flow-rate.

Figure 2: Learnable Render Visualisation. The initial learnable render is set to
D=8 channels, this is the render visualised and normalised on a per-channel basis for 5
test-case samples. The last column are the target graphs with colour coded flow-rate.
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Dual Graph

We examine the dual graph unit and find that the unit has a significant impact on
input features. We present insights in appendix Figure 3.

Figure 3: Dual Graph Visualisation. The top section visualises feature differences
before and after the dual graph. Bottom left visualises specific features before and
after the unit. We also plot the L2 norm of the features over diffusion time. This
indicates that the GNN unit has a significant impact in feature space.
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Unit Ablation

We produce samples by skipping each of the individual conditional units in appendix
Figure 4. We see the samples generated without the GNN are more degraded than
those with the GNN, indicating the model has higher reliance on this unit. We also
conducted this visualisation on models trained only on each specific unit, however,
from a qualitative point of view there wasn’t major differences.

Figure 4: Unit ablation. Samples generated by skipping conditional units.
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Examining Output Invariances

We show samples from the same input graph using the ODE sampler to examine output
invariances and equivariances. We see that we get similar outputs despite the rotation,
yet, they are not truly invariant to the rotation operation. This is understandable as the
random seed noise isn’t rotated and so we would expect different image materialisations
despite the same graph.

Figure 5: Invariance Analysis. Generated samples using with 32 sampling steps.
Each row uses the same conditioning graphs from the validation split, but each row is
randomly rotated.
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