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Abstract

Diffusion models have become the state-of-the-art family for generative modelling, enabling
the generation of high-quality samples from complex distributions. However, these models
generally require a substantial amount of training data to achieve optimal performance, thus
limiting their applicability in domains where training data is scarce. On the other hand, if
an unnormalised density for the target distribution is available, samples can be generated by
relying on Monte Carlo or variational inference methods, even if no training data is available.

Since these scenarios are not mutually exclusive, we consider the problem of improving
the quality of the samples generated by a sub-optimal diffusion model, possibly trained in
insufficient data, by leveraging knowledge of an unnormalised target density. This problem
can be formulated from the broader perspective of divergence minimisation for path measures
defined in terms of controlled stochastic differential equations which transport the target
distribution to a simple prior distribution, and vice versa. To this end, we propose two
sampling methods: the Controlled Ancestral sampler and the Controlled Annealed Langevin
sampler, which rely on controls, parameterised by neural networks, which can be trained,
in an end-to-end fashion, to improve the quality of the samples generated by the diffusion
model.
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Chapter 1

Introduction

The generative problem involves modelling the underlying distribution of some data to enable
the generation of new samples, which resemble those of the original dataset. Diffusion
models have become the state-of-the-art family for this task, surpassing other generative
approaches, such as Generative adversarial networks (Goodfellow et al., 2020), Variational
Autoencoders (Kingma and Welling, 2013) or Flow-based generative models (Rezende
and Mohamed, 2015). These models been particularly successful in image synthesis, as
demonstrated by their utilisation in a number of commercial products, such as DALL-E
(Ramesh et al., 2021) or Stable Diffusion (Rombach et al., 2022). However, their applications
span a wide variety of domains, including image super-resolution (Saharia et al., 2022),
speech synthesis (Chen et al., 2020) and video generation (Ho et al., 2022).

Moreover, their ability to generate samples from high-dimensional distributions makes
them particularly well-suited for various applications in computational chemistry. For
instance, diffusion models can be leveraged to generate novel foldable protein structures, thus
potentially facilitating the process of designing proteins with specific functional properties
(Watson et al., 2022; Wu et al., 2024; Yim et al., 2023). Additionally, they have been
employed for generating chemically valid molecular structures Hoogeboom et al. (2022);
Zhang et al. (2023b).

On the other hand, there are numerous problems in physical sciences for which no
training data is available but, instead, the target density is known to be proportional to a
Boltzmann-type distribution, i.e. ptarget ∼ exp(−ξ (·)), which can be evaluated (and possibly
differentiated). In this setting, diffusion models are not readily applicable, although samples
can be generated by resorting to Monte Carlo techniques, such as Annealed Importance
Sampling (Neal, 2001) or Sequential Monte Carlo (Del Moral et al., 2006). Alternatively,
variational approaches can be leveraged, thus approximating the target distribution using
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a surrogate model, from which sampling can be done efficiently. However, sample quality
depends on how well the surrogate model fits the target distribution.

However, in a data-constrained scenario, where an unnormalised density is also available,
a sub-optimal diffusion model can be trained. Then, importance sampling can be used to
remove any bias in subsequent computations by reweighing the samples (Midgley et al.,
2022) by their importance sampling weights, although this method can be highly inefficient
if the diffusion model is a poor approximation to the target.

To tackle this challenge, we propose two methods for improving sample quality of
a diffusion model by leveraging knowledge of the unnormalised target distribution: the
Controlled Ancestral sampler and the Controlled Annealed Langevin sampler. Experimental
results are provided, demonstrating that the quality of the samples generated by the sub-
optimal diffusion model can be improved.

1.1 Contributions

The contributions of this work are the following:

• Literature review of diffusion-based approaches to sampling.

• Two sampling approaches, the Controlled Ancestral and Annealed Langevin samplers,
that enable to improve sampling for a pre-trained diffusion by optimisation of controlled
stochastic differential equations.

1.2 Outline

This dissertation is organised as follows:

• Chapter 2 provides relevant background in diffusion models and the sampling problem,
followed by a review of diffusion-inspired sampling approaches.

• Chapter 3 introduces two approaches to improve sample quality of diffusion models.

• Chapter 4 discusses limitations of the proposed approaches and outlines future work.



Chapter 2

Background

This chapter outlines the theoretical principles of generative modeling using diffusion models.
Following, sampling problems are described, discussing the challenges faced when applying
diffusion models in this context. At the end of the chapter, relevant work is briefly outlined.

2.1 Diffusion Probabilistic Models

The key idea in diffusion models, which is loosely-inspired in non-equilibrium statistical
physics, consists in transforming the complex underlying distribution of the data into a
prior distribution from which sampling is simple, e.g. isotropic Gaussian noise. This is
usually referred to as forward (or noising) diffusion process, and it is done by progressively
destroying the structure in the data by corrupting it with additive Gaussian noise across
multiple steps.

Therefore, assume that ptarget is the probability density of the data (which is generally
unknown) and a set of samples X0 ∼ ptarget is available. Diffusion Probabilistic Models (Ho
et al., 2020) define a forward Markov chain by progressively adding Gaussian noise to the data,
thus generating a sequence of noisy augmentations {Xτi}T

i=1, with 0 = τ0 < τ1 < ... < τT = 1,
defined as follows

Xτi = ατi|τi−1Xt−1 +στi|τi−1ετi where ετi ∼N (0, I) and i ∈ {1, ...,T}. (2.1)

Note that the forward diffusion is a first-order Gaussian auto-regressive process, so
the marginal conditionals q(xτi|x0) are also Gaussian. In fact, the noising parameters
{(ατi|τi−1,στi|τi−1)}

T
i=1 can be expressed in terms of the parameters {(αt ,σt)}t∈[0,1], which
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define the marginal conditionals (Kingma et al., 2021, Appendix A):

q(xt |x0) = N
(
αtx0,σ

2
t I
)
, t ∈ [0,1]. (2.2)

A common choice is setting αt =
√

1−σ2
t , which corresponds to the variance-preserving

diffusion process (Song and Ermon, 2019). For this setting, the forward diffusion is fully-
specified by σ2

t which is an increasingly monotonic function with range (0,1) determining
how fast the data is corrupted across noise levels. For illustration, Figure 2.1 shows the
continuous approximation to the scheduler in Song and Ermon (2019), which is used in
subsequent experiments.
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Fig. 2.1 Evolution of the noising parameters σt and αt =
√

1−σ2
t as a function of time

for the continuous approximation of the scheduler in Song and Ermon (2019) (left). The
schedule choice determines ατi+1|τi (middle) and στi+1|τi (right), where τi are equally spaced
points in the interval [0,1], i.e. τi = i/T (T = 32, i ∈ {0, ...,T}).

Moreover, note that for the variance-preserving process, if σ2
1 ≈ 1, the marginal at the

last step follows, approximately, an standard Gaussian distribution, i.e. q1(x1)≈N (x1;0, I),
which constitutes the prior distribution. Consequently, the forward diffusion process trans-
ports the target distribution into the prior distribution, by adding Gaussian noise at each
step.

Once the forward diffusion is defined, the idea is to learn a reverse Markov chain
which allows to navigate from the prior distribution, pprior ≡ p1 to the target distribution
ptarget ≡ q0(·). Typically, the reverse kernels are also Gaussian (a choice which is optimal
when T →∞), with their means, and possibly covariances, parameterised by a neural network
which takes the current step as input (in the remainder of this section, we use τi ≡ i to
declutter the notation):

pθ (xi−1|xi) = N
(
xi−1,µθ (xi, i),σ2

θ (xi, i)
)
. (2.3)
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Noting that q(xi−1|xi,x0) is Gaussian, and its mean is a linear combination of x0 and xi,
i.e.

µi−1|0,i = ai−1x0 +bi−1xi, (2.4)

the learnable mean of the kernel p(xi−1|xi) can be parameterised, by analogy, as

µθ (xi, i) = ai−1x̂θ
0 (xi, i)+bi−1xi, (2.5)

so the network predicts instead the clean data from the noisy observation xi (see Song
and Ermon (2019) for the expressions of the coefficients ai,bi). Alternatively, the network
can be trained to extract the noise εi from the noisy observation, so the clean data point can
be recovered as

x̂θ
0 (xi, i) =

xi−σiε̂
θ
i (xi, i)

αi
, (2.6)

which is the parameterisation used in our experiments. Since the noise added at neigh-
bouring steps is similar, this parameterisation builds an inductive bias which eases learning
across noise levels. To train the model, one possibility would be to minimise the negative
likelihood of the parameters, i.e.

Eq(x0) [−log pθ (x0)] , (2.7)

but the term pθ (x0) =
∫

pθ (x0:T )dx1:T is intractable. Instead, Jensen’s inequality can be
applied to derive a variational lower bound

Eq(x0) [−log pθ (x0)]≤ Eq(x0:T )

[
−log

(
pθ (x0:T )

q(x1:T |x0)

)]
:= LV LB, (2.8)

and this upper bound can be further simplified by factorising the backward process as

pθ (x0:T ) = p(xT )
T

∏
i=1

pθ (xi−1|xi), (2.9)

while the forward process admits the expression

q(x1:T |x0) = q(xT |x0)
T

∏
i=2

q(xi−1|xi,x0), (2.10)

so the variational bound can be simplified as follows
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LV LB =

L0: reconstruction loss︷ ︸︸ ︷
Eq(x1,x0) [−log pθ (x0|x1)]+

LT : prior loss︷ ︸︸ ︷
Eq(x0) [DKL(q(xT |x0)||p(xT ))] (2.11)

+
T

∑
i=2

Eq(xt ,x0) [DKL(q(xi−1|xi,x0)||pθ (xi−1|xi))]︸ ︷︷ ︸
Li−1: consistency loss

. (2.12)

Since the number of steps T is generally large (e.g. Song and Ermon (2019) set T = 1000),
computing the summation across all noise levels can be prohibitively expensive. Instead,
it can be expressed as the expectation of an uniform random variable over the steps, and
approximated, during training, using a Monte Carlo estimator. Therefore, the simplified
training objective is

LV LB =C+
T
2
·Ex0∼q0(·),ε∼N (0,I),i∼U{1,...T}

[
w(i)||εi− ε̂

θ
i (αix0 +σiε, i)||2

]
, (2.13)

where C contains the terms that do not depend on the parameters θ , while w(i) depends
on the schedule parameters and forward and backward variances (see Appendix A in Kingma
et al. (2021) for concrete expressions). Therefore, the evaluation of this training objective
does not require simulation of the entire trajectory of noisy augmentations {xi}T

i=1, thus
enabling efficient training.

2.2 Diffusion with Stochastic Differential Equations

In Section 2.1, a discrete number of noised augmentations {Xτi}T
i=1 were used. Alternatively,

a continuum of noise scales can be considered by letting T → ∞, thus modelling the forward
diffusion as a stochastic process X = {Xt}t∈[0,1] governed by the SDE

dXt = f (Xt , t)dt +g(t)dWt , X0 ∼ ptarget, (2.14)

where Wt represents Brownian motion, and f , g are the drift and diffusion coefficients
respectively (Song et al., 2020). The forward SDE for the parameterisation in Section 2.1
can be recovered for the choices

f (Xt , t) =
1
2

d log α2
t

dt
Xt , g(t)2 =

d σ2
t

dt
− d log α2

t
dt

σ
2
t , (2.15)
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and in particular, for the variance-preserving SDE (α2
t = 1−σ2

t ):

f (Xt , t) =−1
2

(
− d

dt
log(1−σ

2
t )

)
︸ ︷︷ ︸

β (t)

Xt =−1
2β (t)Yt , g(t) =

√
− d

dt log(1−σ2
t ) =

√
β (t). (2.16)

Analogously to the discrete diffusion, the marginal pX1 is required to approximately
follow a tractable prior distribution pprior from which sampling can be done efficiently. In
this regard, the forward SDE defines a transport between the target distribution ptarget and the
prior pprior (Villani et al., 2009). This is illustrated in Figure 2.2, which shows the evolution
of the marginals for the stochastic processes governed by the forward diffusion SDE (left),
and its time-reversal (right).
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Fig. 2.2 Evolution of the marginals for a stochastic process governed by the forward diffusion
SDE with initial boundary condition a 1-D GMM (left). Its time-reversal is also a diffusion
a process, whose its initial condition matching the marginal at the last step of the forward
diffusion (right). Trajectories obtained by simulating each SDE are depicted in red.

Therefore, sampling from the target distribution requires simulating the time-reversal
of the forward diffusion, thus transporting the samples from pprior to ptarget (see Figure 2.2,
right). Anderson (1982) proved that this time-reversal is also a diffusion process, governed
by the backward SDE (we use the notation

←−
f to indicate time-reversals for time-dependent

functions, i.e.
←−
f (t) = f (1− t)):

dYt =
[
−←−f (Yt , t)+

←−−
g(t)2

∇xlog←−pXt (Yt)
]

dt +
←−−
g(t)dWt , Y0 ∼ pX1, (2.17)

where ∇xlog pXt (Yt) denotes the score of the marginal density at step t, which is generally
not known. However, if samples from ptarget are available, it can be estimated by training a
score-based model sθ (xt , t) via denoising score-matching (Vincent, 2011):

LDSM = EX0∼ptarget,Xt∼pt(·|X0),t∼U [0,1]
[
w(t)||sθ (Xt , t)−∇xlog p(Xt |X0)||2

]
. (2.18)
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For f (x, t) affine in the spatial coordinate, the transition kernel p(xt |x0) is Gaussian with
(possibly) closed-form parameters, thus enabling the objective computation. In particular, for
f (x, t) =−1

2β (t)x and g(t) =
√

β (t), it can be expressed as

∇xlog p(xt |x0) =−
xt−αtx0

σ2
t

=− εt

σt
, with εt =

xt−σtx0

σt
. (2.19)

By parameterising sθ (x, t) =−ε̂θ
t (x, t)/σt (Song and Ermon, 2020), the DSM loss can

be related to the discrete optimisation objective in Equation 2.13. Alternatively, the DSM
objective can be derived from the forward KL divergence of the path measures induced by the
backward process and the time-reversal of the forward diffusion, i.e. DKL(P←−X ||PY ) (Vargas
et al., 2023). This perspective is specially relevant to theoretically ground novel sampling
schemes, as shown in Section 2.4

To sum up, the SDE perspective provides a unifying framework for studying score-
based generative models. For instance, methods such as SMLD (Song and Ermon, 2019)
and DDPM (Ho et al., 2020) can be interpreted as Euler-Maruyama discretisations of a
variance-exploding and variance-preserving SDEs respectively (Song et al., 2021, Section 2).

However, since the time-reversal cannot be exactly simulated, the sampling process is
subject to numerical errors which, along with other factors, can negatively impact sample
quality. Following, we analyse the different sources of error.

2.3 Sampling Error

Theoretically, diffusion models can generate unbiased samples from the target distribution,
when trained to optimality with sufficient data (De Bortoli, 2022), and assuming that the
time-reversal of the diffusion process is simulated exactly. However, in practice, numerical
errors are inevitable, and sample quality can be affected by three factors (Chen et al., 2023):

1. The error due to initialising the backward SDE using a prior distribution pprior, instead
of the marginal at the last step of the forward process pX1 . This irreducible error is
given by DKL(PX1||PY0).

2. The numerical error arising from the discretisation of the backward SDE in a finite
number of steps.

3. The discrepancy between the ground-truth score and its parameterised approximation,
i.e. Et∼U(0,1),Xt∼pXt (·)

[
||sθ (Xt , t)−∇xlog pXt (Xt)||2

]
.

Regarding (1), it is possible to reduce this error by choosing a noise schedule so that the
signal-to-noise ratio is approximately zero close to the end boundary condition of the forward
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SDE (Kingma et al., 2021). Generally, this error is negligible since the forward process
marginals converge exponentially fast to the prior Gaussian measure (Cao et al., 2024).

On the other hand, the SDE simulation error (2) can be systematically reduced by
increasing the number of discretisation steps. Moreover, for a fixed number of steps, the
discretisation error can be reduced by relying on the exponential integrator scheme to
leverage the semi-linear structure of the backward SDE (Zhang and Chen, 2022), or resorting
to higher-order method (Karras et al., 2022).

However, having fixed the discretisation scheme, as well as the number of steps, it is
relevant to study how to choose the sampling parameters, such as the discretisation points, to
improve sample quality.

For instance, the ancestral sampling method in DDPMs (Song and Ermon, 2019) corre-
sponds to an Euler-Maruyama discretisation of the backward SDE for a sufficiently small
step size (Song et al., 2021, Appendix E). However, using the same variance for the forward
and backward diffusion is only optimal when the number of discretisation step goes to infinity
(see Equation 2.17). Precisely, the optimal variance admits an analytical expression in terms
of the score Bao et al. (2022), which can be approximated via a Monte Carlo estimator. As
this estimator is biased if the score is not properly estimated, a clipping strategy can be
introduced to avoid relying on inconsistent values.

On the other hand, the choice of discretisation points can considerably impact sample
quality, specially if the score of the target distribution is not sufficiently smooth. In this setting,
it is suggested to use exponentially decaying step sizes (Chen et al., 2023). Alternatively,
if the discretisation points are fixed, the selection of an optimal sub-sampling trajectory,
for a given number of sub-steps, can be cast into a least-cost-path problem, which can be
efficiently solved using dynamic programming (Bao et al., 2022; Watson et al., 2021).

Finally, if the score is not properly estimated (3), the optimal sampling strategy (in
the sense of KL divergence minimisation) might depend (at least partially) on the noise
scales in which the perturbations concentrate (Cao et al., 2024). On the other hand, if an
unnormalised target density is available, it might be possible to improve sample quality, even
for a sub-optimal score model.

Therefore, in the next section, diffusion-based approaches to the problem of sampling
from an arbitrary (unnormalised) density are discussed, thus setting the theoretical ground
for the approaches presented in Chapter 4.
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2.4 Sampling Problem

In some scenarios, data is scarce or even no data is available. As training competitive diffusion
models requires large amounts of data, specially for high-dimensional data distributions,
these models are not readily applicable.

However, it is possible that an unnormalised density ρ(x) for the target distribution is
known. In this setting, the target density can be recovered as ptarget(x) = ρ(x)/Z, where
Z =

∫
ρ(x)dx is the normalisation constant (or partition function) of ρ . Generally, the integral∫

ρ(x)dx is not tractable, although it can be approximated using Monte Carlo methods.
Sampling from an unnormalised density is a recurrent problem in fields such as Bayesian
inference (Neal, 1993) or statistical mechanics (Noé et al., 2019), and the main approaches
to this problem are variational inference and Monte Carlo techniques.

Among the MC approaches, methods derived from Annealed Importance Sampling (Neal,
2001) and Sequential Monte Carlo (Del Moral et al., 2006) are regarded as the state-of-the-art
in numerous sampling tasks. Although these methods can recover the target distribution in
the asymptotic regime, they can suffer from slow mixing times and inability to capture mode
diversity (Desjardins et al., 2010).

On the other hand, variational inference methods approximate the intractable target den-
sity by selecting, within a family of parameterised distribution (from which sampling can be
done efficiently), the one which provides the best approximation to the target. Consequently,
these methods cast the sampling task into an optimisation problem. A popular family of VI
methods are normalising flows (Rezende and Mohamed, 2015), which define a sequence of
diffeomorphisms mapping the unnormalised target distribution to a tractable distribution. In
combination with AIS, normalising flows have demonstrated state-of-the-art performance in
modelling the Boltzmann distribution of physical systems (Midgley et al., 2022). However,
normalising flows require the transformation mappings to be bijective, as well as its Jacobian
to be easily computable, thus limiting their expressivity.

Alternatively, the sampling problem can framed as a transport of a tractable prior dis-
tribution to the target density via diffusion stochastic dynamics. Contrary to most MCMC
approaches, diffusion-inspired methods can exhibit fast convergence to the target distribution,
even in high-dimensions (Vargas et al., 2023), as the mixing properties of the reversed
diffusion are inherited from those of the forward process (De Bortoli et al., 2021, Theorem
1).

Additionally, this perspective has allowed to draw formal connections linking diffusion
models with Schrödinger bridges (Chen et al., 2021), stochastic optimal control (Vargas et al.,
2023; Zhang et al., 2023a; Zhang and Chen, 2021), annealed importance sampling (Doucet
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et al., 2022) and optimal transport (Vargas et al., 2024). Some of these approaches are further
discussed in the following section.

2.5 Related Works

In the following section, relevant diffusion-based approaches to the sampling problem are
briefly introduced. To this end, we rely on the notation used in Berner et al. (2022), to present
them under a common framework. This section relies heavily on the concept of path measure,
which corresponds to a probability measure on the functional space C ([0,1],Rd). As each
solution to an SDE induces a path measure, this concept is fundamental to characterise “how
far” two SDEs are from being time-reversals to each other. For a formal introduction to path
measures, we refer the reader to Léonard (2013).

The approaches in this section are defined in terms of two stochastic processes. One is
induced by the controlled inference SDE

dY v
t = ( f +g · v)(Yt , t)dt +g(t)dWt , Y0 ∼ ptarget, (2.20)

and the other by the controlled generative SDE

dXu
t = (−←−f +←−−g ·u)(Xt , t)dt +←−g (t)dWt , X0 ∼ pprior. (2.21)

Note that inference SDE can be regarded, for v = 0, as the forward diffusion, defined in
Section 2.2, while the uncontrolled generative SDE, i.e. v = 0, corresponds to the backward
diffusion SDE (the roles of X and Y are interchanged with respect to the notation in Section
2.2 for consistency with the notation in Berner et al. (2022)).

In this setting, the goal is to identify suitable controls u,v ∈ U so that the stochastic
processes are reversals to each other, thus verifying, in particular, that Xu

1 ∼ ptarget and
Y v

1 ∼ pprior. Formally, this problem can be formulated as follows:

Problem (Richter and Berner, 2023): Let PXu and P←−Y v be the path space measures of the
processes Xu and

←−
Y v (where

←−
Y v denotes the stochastic process induced by the time-reversal

of Y v). Let D : P ×P → R≥0 be a divergence between path measures, thus satisfying
D(P,Q) = 0 if and only if P=Q. The goal is to obtain optimal controls u∗,v∗ such that

u∗,v∗ ∈ arg min
u,v∈U ×U

D
(
PXu∥P←−Y v

)
. (2.22)
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The most common choice for D across the diffusion-based sampling literature is the
Kullback-Leibler divergence

DKL

(
PXu∥P←−Y v

)
= EPXu

[
log

PXu

P←−Y v

]
, (2.23)

although this objective exhibits mode seeking behaviour (Midgley et al., 2022), as well as
non-zero variance Monte Carlo gradient estimators, even for optimal controls, thus potentially
hindering convergence to the optimum (Roeder et al., 2017).

Alternatively, the log-variance divergence can be used

DPZ
LV
(
PXu∥PỸ v

)
= VPZ

[
log

PXu

PỸ v

]
, (2.24)

where PZ is the law of a reference stochastic process, thus enabling off-policy training of
the controls. Consequently, it can be beneficial to rely on a exploratory reference process Z
in the early-stages of training (thus potentially preventing mode collapse), while exploiting
the current control, by transitioning to Z = Xu later in the optimisation (Richter and Berner,
2023).

The log-variance divergence exhibits the sticking-the-landing property (Roeder et al.,
2017), i.e. the variance of its Monte Carlo gradient estimator vanishes at the optimal solution,
as opposed to the KL divergence loss, thus potentially stabilising the training procedure close
to the optimum. Moreover, for the choice Z = Xu, its gradient estimator can be regarded as a
control-variate version of the gradient of the KL loss, thus it can be expected to exhibit lower
variance Monte Carlo estimation (Richter and Berner, 2023).

Both divergences require computing the Radon-Nikodym derivative between the path
measures PXu and P←−Y v

, a technical derivation relying in Girsanov’s theorem (Üstünel and
Zakai, 2013). For the sake of conciseness, we refer the reader to Appendix A.2. (Richter and
Berner, 2023).

However, Problem 2.5 has infinitely many solutions. In particular, the presented objectives
only enforce Nelson’s identity (Nelson, 2020):

u∗+ v∗ = gT
∇log←−p Y v∗ . (2.25)

Consequently, the diffusion-based approaches, presented in the following section, use
specific choices for the controls u and v to render the solution of the time-reversal problem
unique.
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2.5.1 Time-Reversed Diffusion Sampler (DIS)

Berner et al. (2022) characterise the marginal log-densities of an stochastic process, governed
by a SDE, as the solution to an Hamilton-Jacobi-Bellman equation, thus allowing to connect
score-based generative modelling with stochastic optimal control. Moreover, they rely on
this connection to derive their time-reversed diffusion sampler (DIS).

This sampler can be derived from the framework presented in Section 2.5. In particular,
to solve the non-uniqueness of the controlled sampling problem, the authors set v = 0, thus
relying on a uncontrolled inference SDE. This choice constrains the drift f and diffusion g
coefficients to be chosen so that Y 0

1 is distributed approximately as pprior. To this end, they
use the variance-preserving (VP) SDE (Song and Ermon, 2019), and fix pprior = N (0, I).

Therefore, only the control u of the generative SDE is optimised, which is parameterised
as

uθ (x, t) = Φ
(1)
θ
(x, t)+Φ

(2)
θ
(x, t)g(t)s(x, t), (2.26)

with

s(x, t) := t∇log pprior(x)+(1− t)∇log ptarget(x) (2.27)

thus linearly interpolating between the score of the prior and target distributions. Since
the optimal control is u∗(x, t) = g(t)∇xlog←−p Y 0 (from Nelson’s identity), the authors initialise
Φ

(1)
θ

and Φ
(2)
θ

to 0 and 1 respectively, thus ensuring that, at initialisation, the parameterised
control is optimal at the initial and terminal boundary conditions.

To optimise u, they minimise the control loss LDIS(u), which is equivalent to indirectly
minimising the reverse KL divergence DKL(PXu,P←−Y 0) since

LDIS(u) = DKL(PXu||P←−Y 0)− log Z (2.28)

where LDIS(u) involves an unnormalised density ρ of the target distribution, and Z
denotes its corresponding normalisation constant, i.e. ptarget = ρ/Z. This loss can be derived
from Proposition 2.3 (Richter and Berner, 2023) for the specific choice v = 0, and it is
approximated via Monte Carlo, by simulating trajectories of the stochastic process Xu using
the Euler-Maruyama scheme.

Regarding the numerical results, the authors showed that DIS consistently outperformed
the Path Integral Sampler (Zhang and Chen, 2021) in the estimation of normalising constants,
expectations and standard deviations for three sampling benchmarks.
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2.5.2 Controlled Monte Carlo Diffusion Sampler (CMCD)

In DIS, the forward diffusion is uncontrolled, i.e. v = 0, while the control u of the backward
process is optimised to minimise the KL divergence DKL(PXu||P←−Y 0).

Vargas et al. (2024) argue that simultaneously adapting the forward and backward controls
can lead to improved sampling results. However, if the controls u and v are independent, the
optimal solution to the time-reversal problem is not unique, as shown in Section 2.5. To this
end, they tie the controls u and v to ensure uniqueness.

Concretely, they set the drift and diffusion coefficients of the forward process to

f (Yt , t) = σ
2
∇logπ(Yt , t), g(t) = σ

√
2. (2.29)

Similarly to DIS, ∇log π(Yt , t) is defined as a linear interpolation between scores of the
prior and target

∇logπ(x, t) := t∇log pprior(x)+(1− t)∇log ptarget(x), (2.30)

thus ensuring optimality at the boundary conditions. Additionally, they parameterise the
forward control with a neural network, i.e. g · v = −Φθ . To motivate their choice for the
control u, they observe that the optimal controls are related to each by other by Nelson’s
identity:

g ·u∗+g · v∗ = g2 ·∇log←−p Y v∗ . (2.31)

Therefore, considering that ∇log π(Yt , t) can be regarded as an approximation to ∇log←−p Y v∗ ,
the authors set the backward control to

g ·u = g2 ·∇←−−−log π−g · v = 2σ
2
∇
←−−−
log π +Φθ , (2.32)

so the controlled generative SDE is given by

dXu
t = (σ2←−−−−

∇log π +
←−
Φ θ )(Xt , t)dt +σ

√
2dWt , X0 ∼ pprior (2.33)

The tied controls u and v are jointly optimised by indirectly minimising the reverse
KL divergence DKL(PXu||PY v), using an objective analogous to that of DIS (Richter and
Berner, 2023, Proposition 2.1), which only involves an unnormalised density for the target
distribution. Moreover, the Euler-Maruyama scheme is used to simulate trajectories from the
generative SDE.



Chapter 3

Controlled Sampling from Diffusion
Models

In the previous chapter, the theoretical foundations of diffusion models for generative
modelling were introduced, and their sources of errors characterised into three different
components. Moreover, it was highlighted that these models excel when training data
is abundant. If, instead, data is scarce, but the target (unnormalised) density is known,
variational inference and Monte Carlo methods are the standard approaches to sample from
the target distribution. In this context, two approaches to diffusion-based sampling were
introduced: the Time-Reversed Diffusion Sampler (DIS) and the Controlled Monte Carlo
Diffusion Sampler (CMCD). These were motivated from the perspective of identifying
optimal controls for two stochastic processes to be time-reversals of each other. Both of these
methods rely on interpolating the scores of the prior and target distribution, either by using a
learnable interpolation for the backward control (DIS) or by using a fixed linear interpolation
of the scores to define the drift coefficient of the inference SDE (CMCD).

In this regard, approaches to generative modelling and sampling problems generally
assume two mutually exclusive scenarios: either data is available, but the target density is
not known; or an unnormalised density is available, and there is no access to data from the
target distribution.

However, it is interesting to study a middle-point scenario, i.e. some data is available,
thus allowing to train a (probably) sub-optimal. Moreover, if an (unnormalised) density is
known, it can be possible to improve the quality of the samples generated by the generative
model, for instance by re-weighting the samples by their importance sampling coefficients
(Midgley et al., 2022). In turn, the refined samples might be bootstrapped to further train the
diffusion model.



16 Controlled Sampling from Diffusion Models

To this end, we study how to improve sample quality for a pre-trained diffusion by
optimising relevant controls in the inference and generative SDEs.

3.1 Motivation

In the following sections, it is assumed that a score-model model sθ (x, t), trained via score-
matching to generate samples from a target distribution ptarget, is available (see Section
2.2). Additionally, an unnormalised density ρ for ptarget is known, i.e. ptarget = ρ/Z, but
the integral

∫
ρdx is not tractable, so the normalisation constant Z cannot be analitically

computed.
Following the notation in Section 2.5, the forward diffusion in DDPMs (Song and Ermon,

2019) can be regarded as the uncontrolled inference SDE

dY 0
t = f (Yt , t)dt +g(t)dWt ,Y0 ∼ ptarget, (3.1)

where the roles of the stochastic processes X and Y are interchanged with respect to the
notation used in Section 2.2. Therefore, the variance-preserving SDE can be recovered by
setting the diffusion and drift coefficients as

f (Yt , t) =−
1
2

β (t)Yt and g(t) =
√

β (t), where β (t) =− d
dt

log(1−σ
2
t ). (3.2)

.
On the other hand, for the generative SDE

dXu
t = (−←−f +←−−g ·u)(Xt , t)dt +

←−−
g(t)dWt ,X0 ∼ pprior, (3.3)

the control can be parameterised as uθ (Xt , t) = g(t)sθ (Xt , t). Therefore, if pY1 ≈ pprior

and sθ (Xt , t)≈∇xlog pYt (Xt), the generative SDE (or backward diffusion) is the time-reversal
of the inference SDE (Anderson, 1982). If this was the case, the reverse KL divergence
for the path measures, induced by these stochastic processes, should be close to zero, i.e.
DKL(PXu||P←−Y 0)≈ 0.

However, if the score model is not accurate, these path measures can greatly differ, so the
simulation of the generative SDE can be expected to yield low-quality samples (see Section
2.3). This can be problematic, for instance, if these samples are used in the Monte Carlo
estimation of some statistic of the target distribution, as these estimates would be biased.
More generally, for a functional in path space φ : C([0,1],Rd) −→ Rn, we would need to
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approximate
EP←−Y 0 [φ(X)]≈ EPXu [φ(X)]. (3.4)

However, it is possible to correct the bias by using importance sampling in path space,
thus re-weighting the trajectories by the Radon-Nikodym derivative for the path measures of
the time-reversal P←−Y 0 and the sub-optimal controlled process PXu:

EP←−Y 0 [φ(X)] = EPXu [φ(X)
dP←−Y 0

dPXu
(X)︸ ︷︷ ︸

wu(X)

]. (3.5)

However, the variance of this estimator can scale exponentially in the KL divergence
DKL(PXu||P←−Y 0), thus being very sensitive to how far the control u is from optimality (Hart-
mann and Richter, 2024). Therefore, to reduce the variance of the importance sampling
estimates, it is paramount to reduce the divergence between these path measures.

To this end, note that the choices for the stochastic processes in the present section not only
match the SDE formulation of generative modelling (Section 2.2), but also closely resemble
those of the Time-Reversed Diffusion Sampler (DIS): the inference SDE is uncontrolled but,
instead of parameterising the control u as

uθ (x, t) = Φ
(1)
θ
(x, t)+Φ

(2)
θ
(x, t)g(t)s(x, t), (3.6)

the pre-trained score model is leveraged

uθ (x, t) = g(t)sθ (x, t). (3.7)

Therefore, one possibility would be to further improve the control u by optimising the DIS
objective, i.e. DKL(PXu||P←−Y 0), with respect to the score model parameters θ . However, this
might not be desirable for two reasons:

• The computation of DKL(PXu||P←−Y 0) involves unrolling the trajectory of Xu, thus re-
quiring to compute gradients across N model evaluations (where N denotes the number
of discretisation steps). Since modelling the score across noise levels ∇xlog pY 0

t
(x, t)

generally requires a model with high capacity, training can become prohibitively ex-
pensively, both in terms of memory and computational cost. However, the stochastic
adjoint sensitivity method (Kidger et al., 2021) could be used to alleviate this issue.

• Since the score model parameters θ were trained using the DSM objective, re-training
them for the reverse divergence loss might result in a performance drop for the original
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task, a phenomenon commonly observed in continuous learning (Hess et al., 2023).
This is undesirable, specially if the score model is intended to be further optimised as
new samples from the target distribution are available.

These observations suggest that the parameters θ should remain fixed, thus enabling to
detach them from the gradient computations. However, the control u would no longer be
learnable, thus rendering the proposed DIS variation invalid.

3.2 Controlled Ancestral Sampler

Following the discussion on the previous section, an alternative learnable control needs to be
incorporated into the generative SDE to enable the optimisation of the reverse divergence,
while fixing the parameters of the score model sθ (x, t). Moreover, given the promising results
of the CMCD sampler (Vargas et al., 2024), we consider controlling, not only the generative
SDE, but also the inference one.

To this end, we parameterise the inference control v as g · v = −Φω . To guarantee
uniqueness of the time-reversal problem, we leverage Nelson’s identity, in a similar fashion
as Vargas et al. (2024), but replacing the linear interpolation of the score ∇xlog π by the
pre-trained score model. Therefore, we set

g ·u = g2 · sθ −g · v = g2 · sθ +Φω . (3.8)

Consequently, the generative and inference SDEs are defined as follows

dY v
t = [ f (Yt , t)−Φω(Yt , t)]dt +g(t)dWt ,Y0 ∼ ptarget (3.9)

dXu
t = [−←−f (Xt , t)+←−g (t)2←−−−−−sθ (Xt , t)+

←−
Φ ω(Yt , t)]dt +

←−−
g(t)dWt ,X0 ∼ pprior. (3.10)

Note that, for an optimal score model, i.e. sθ (Xt , t) = ∇xlog pY 0
t
(Xt), and assuming that

Y 0
1 ∼ pprior, the optimal control is v = −Φω = 0 (Anderson, 1982). However, it is highly

unlikely that the score model sθ is perfectly accurate. For that scenario, the network Φω can
be optimised to ensure that the generative process matches the time-reversal of the inference
SDE.

Therefore, for a given divergence between path measures D, the parameters ω of the
control network can be optimised to minimise D(PXu ||P←−Y v), similarly to DIS and CMCD
(see Section 2.5).
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To simulate the generative SDE, we can consider a sub-trajectory of time-steps 0 = τ0 <

... < τT = 1 and apply the Euler-Maruyama discretisation scheme:

Xτi+1 = Xτi +(−←−f +←−g ·←−sθ +
←−
Φ ω)(Xτi,τi)∆τi+1 +

←−g (t)(Wτi+1−Wτi)︸ ︷︷ ︸
∼N (0,∆τi+1 I)

, (3.11)

where ∆τi+1 = τi+1− τi. Moreover, if we set the drift f and diffusion g coefficients so
that the uncontrolled inference SDE matches the variance-preserving SDE (Song and Ermon,
2019), i.e.

f (x, t) =−1
2

β (t),g(t) =
√

β (t), where β (t) =− d
dt

log(1−σ
2
t ). (3.12)

Assuming that ∆τi is sufficiently close to 0 for every i ∈ {1, ...,T}, the Euler-Maruyama
discretisation matches the ancestral sampler in DDPMs (Song et al., 2021, Appendix E), with
the addition of the control Φω :

p(Xτi+1|Xτi) = N

(
Xτi+1; 1←−−−−

ατi+1|τi
Xτi +

←−−−−
στi+1|τi

2

←−−−−
ατi+1|τi

←−sθ (Xτi,τi)+∆τi+1

←−
Φω(Xτi,τi),

←−−−
σ2

τi+1|τi
I
)

(3.13)

where←−−−−ατi+1|τi ≡ α1−τi|1−τi+1 and similarly for the rest of noising parameters (see Section
2.1). Similarly, the EM discretisation of the generative SDE, for a sufficiently small step size
(so that αt|s ≈−1

2β (s) and σt|s ≈
√

β (s)), can be expressed as

q(Xτi|Xτi+1) = N (←−−−−ατi+1|τiXτi+1−∆τi+1

←−
Φω(Xτi+1,τi+1);

←−−−
σ

2
τi+1|τi

I). (3.14)

Moreover, for the Euler-Maruyama discretisation, Proposition E.1. in Vargas et al. (2024)
can be applied to obtain a time-discretisation of the Radon-Nikodym derivative dPXu

dP←−Y v
. By

analogy, relying on the ancestral sampling integrator, the discretised objective for D = DKL is

DKL(PXu ||P←−Y v)≈ EXu

[
log
(

Z · pprior(Xτ0)∏
T−1
i=0 p(Xτi+1 |Xτi)

ρ(XτT )∏
T−1
i=0 q(Xτi |Xτi+1)

)]
, where ρ = Z ptarget. (3.15)

Therefore, the discrete objective corresponds to the ratio of transitions densities for two
discrete Markov chains, which can be interpreted as controlled versions of the forward and
backward discrete diffusions in DDPMs (see Section 2.1).

Due to this analogy, it is sensible to consider relying on a learnable variance for the
discretisation of the generative SDE. To this end, the following result characterises the
optimal mean and variance of the backward transition kernels for the uncontrolled setting:
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Lemma (Bao et al., 2022, Appendix E.1): For the discrete diffusion, presented in Section
2.1, the optimal means and variances (in the sense of KL divergence minimisation) for the
backward transition kernels p(Xs|Xt) = N (Xs; µs|t(Xt),σ

2
s|tI) are:

µ
∗
s|t(Xt) =

1
αt|s

(
Xt +σ

2
t|s∇xlog pY 0

t
(Xt)

)
(3.16)

σ
2∗
s|t =

σ2
t|s

αt|s

(
1−σ

2
t|sEpY 0

t

||∇xlog pY 0
t
(Xt)||2

d

)
. (3.17)

Note that the optimal mean matches that mean of the ancestral sampling backward kernel
when sθ is an accurate model of the score. Moreover, this lemma states that the optimal
variance only depends on the noise level in which the score is evaluated, and not on the
on the iterate Xt . Therefore, one possibility would be to parameterise the variance using a
neural network taking as input the noise level t, thus modelling the squared norm of the score.
However, this result only holds when considering isotropic Gaussian backward kernels.

Alternatively, to provide greater flexibility, a diagonal covariance Σ can be considered,
allowing to interpolate, in a per-dimension fashion, between the variances of q(Xt |Xs) and
q(Xs|Xt ,X0) (Nichol and Dhariwal, 2021):

Σ(Xt , t) = exp

v(Xt , t) σ
2
t|s︸︷︷︸

q(Xt |Xs)

+(1− v(Xt , t)) σ
2
t|s

σ2
s

σ2
t︸ ︷︷ ︸

q(Xs|Xt ,X0)

 , (3.18)

which are optimal in the limiting scenarios where T → ∞ or the data comes from a Dirac
distribution respectively (Turner et al., 2024). Note that the iterate Xt is used as input, since
the optimal variance characterisation does not hold in the non-isotropic case, and can be
expected to depend on this value.

Finally, in Section 2.3, the importance of the selection of the discretisation points was
highlighted. In particular, as the regularity of the score worsens for low noise scales, an
exponentially decaying step size can be helpful to decrease the discretisation error (Chen
et al., 2023). However, instead of relying in a hand-crafted strategy to fix the discretisation
points, we opt for optimising them along with the control parameters ω .

In particular, we consider the learnable free-parameters β = (β1, ...,βT ) ∈ RT , and
compute the discretisation trajectory as

τ0 = 0, τi =
i

∑
j=1

σ j(β ), where σ j(β ) =
eβ j

∑
T
k=1 eβk

and i ∈ {1, ...,T}. (3.19)
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Therefore, an uniform initialisation of the discretisation points can be obtained by setting
βi = 0. The parameterisation of β in log-space (due to the application of the softmax) is
essential for numerical stability, as modeling exponentially decaying step sizes in natural
scale can potentially lead to truncation errors, specially when relying on 32-bit floating point
numbers. Precisely, note that exponentially decaying step sizes can be recovered by setting
βi =−ilog r.

3.3 Controlled Annealed Langevin Sampler

For the Controlled Ancestral sampler, the inference SDE was defined as a controlled version
of the variance-preserving SDE in DDPMs. Alternatively, we can consider a controlled
annealed-based inference SDE, inspired in the CMCD sampler and the corrector-only sam-
plers used in score-based generative modelling (Song et al., 2021, Section E):

dY v
t = σ

2sθ (Yt , t)︸ ︷︷ ︸
f (Yt ,t)

+(−Φω(Yt , t))︸ ︷︷ ︸
(g·v)(Yt ,t)

dt +σ
√

2︸︷︷︸
g(t)

dWt , Y0 ∼ ptarget. (3.20)

From Nelson’s identity, we parameterise g ·u in terms of v to ensure uniqueness for the
time-reversal problem

g ·u = g2sθ +Φω = 2σ
2sθ +Φω , (3.21)

so the generative SDE is given by

dXu
t = [−σ

2←−sθ (Xt , t)︸ ︷︷ ︸
←−
f (Xt ,t)

+2σ
2←−sθ (Xt , t)+

←−
Φ ω(Xt , t)︸ ︷︷ ︸

←−−
(g·u)(Xt ,t)

]dt +σ
√

2︸︷︷︸
←−g (t)

dWt ,X0 ∼ pprior, (3.22)

which simplifies to

dXu
t = [σ2←−sθ (Xt , t)+

←−
Φ ω(Xt , t)]dt +σ

√
2dWt ,X0 ∼ pprior, (3.23)

Similarly to the ancestral sampler, we rely on the Euler-Maruyama scheme to simulate
the generative SDE. Therefore, for the discretisation steps 0 = τ0 < ... < τT = 1, we have

Xτi+1 = Xτi +(σ2←−sθ +
←−
Φω)(Xτi,τi)∆τi+1 +σ

√
2(Wτi+1−Wτi)︸ ︷︷ ︸
∼N (0,∆τi+1 I)

. (3.24)
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For this scheme, the time-discretisation of the path measure divergence D(PXu||P←−Y v) can
be obtained by applying Proposition E.1. in Vargas et al. (2024) for D = DKL:

DKL(PXu||P←−Y v)≈ EXu

[
log
(

Z · pprior(Xτ0)∏
T−1
i=0 N (Xτi+1 ;Xτi+(σ2←−sθ +

←−
Φω )(Xτi ,τi)∆τi+1 ,2σ2∆τi+1 I)

ρ(XτT )∏
T−1
i=0 N (Xτi ;Xτi+1+(σ2←−sθ−

←−
Φω )(Xτi+1 ,τi+1)∆τi+1 ,2σ2∆τi+1 I)

)]
. (3.25)

3.4 Performance Metrics

Following, we outline the performance metrics that are used to evaluate the proposed methods.

3.4.1 Estimation of Normalisation Constants

In the following experiments, the target distribution ptarget is only known up to a multiplicative
constant, i.e. ptarget = ρ/Z, where Z is unknown. Consequently, a common task in sampling
problem is to estimate this constant, thus enabling to approximate the ground-truth normalised
density.

This normalisation constant can be unbiasedly estimated in path space, by applying
Proposition 2.3. in Richter and Berner (2023), which states that

dP←−Y v

dPXu
(X) =

1
Z

exp
(
−
(

R f Bridge
u,v,u

+Su+v +B
))

(X), (3.26)

where R f Bridge
u,v,u

, Su+v and B only depend on the coefficients of the inference and generative
SDEs and the unnormalised density ρ . Moreover, since

EPXu

[
dP←−Y v

dPXu
(Xu)

]
= 1, (3.27)

and taking expectations in Equation 3.26

Z = EPXu

[
exp
(
−
(

R f Bridge
u,v,w

+Su+v +B
))

(Xu)
]
. (3.28)

Therefore, by applying Jensen’s inequality, log Z can be bounded bellow as

log Z ≥ EPXu

[
−
(

R f Bridge
u,v,w

+Su+v +B
)
(Xu)

]
. (3.29)

Moreover, if the controls are optimal, i.e.
dP←−

Y v∗
dP

Xu∗
= 1, a zero-variance estimator is obtained:

Z = exp
(
−
(

R f Bridge
u∗,v∗,u∗

+Su∗+v∗+B
))

(Xu∗), Xu∗ ∼ PXu∗ (3.30)
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Similarly, the normalisation constant can be estimated by discretising the trajectories
using the integrators presented in the former section. For instance, for the Controlled
Annealed Langevin Sampler, it is verified that

log Z ≥ EXu

[
log
(

ρ(XτT )∏
T−1
i=0 N (Xτi ;Xτi+1+(σ2←−sθ−

←−
Φω )(Xτi+1 ,τi+1)∆τi+1 ,2σ2∆τi+1 I)

pprior(Xτ0)∏
T−1
i=0 N (Xτi+1 ;Xτi+(σ2←−sθ +

←−
Φω )(Xτi ,τi)∆τi+1 ,2σ2∆τi+1 I)

)]
. (3.31)

Consequently, the normalisation constant for the unnormalised target density can be
unbiasedly approximated via a Monte Carlo estimate of this expectation. Since the variance
of this estimator depends on the divergence between the measures induced by the SDEs
(Hartmann and Richter, 2024), it can be expected that the optimisation of the objectives
presented before can lead to lower variance estimates of the normalisation constant.

3.4.2 Effective Sample Size

As explained before, importance sampling is a method which enables to compute unbiased
expectations for statistics of a target distribution. This is done by re-weighting the expectation
by the Radon–Nikodym derivative of the measures

EP←−Y 0 [φ(X)] = EPXu [φ(X)
dP←−Y 0

dPXu
(X)︸ ︷︷ ︸

wu(X)

]. (3.32)

These weighting factors are called importance sampling weights and their variance deter-
mines, to a great extent, the quality of the IS estimate of the target statistic (Neal, 2001). In
path space, these are defined as

wu,v =
dP←−Y v

dPXu
(Xu), (3.33)

but if the partition function of ptarget is unknown, only the unnormalised IS weights can be
computed

ŵu,v = Z ·
dP←−Y v

dPXu
(Xu)≡

d̂P←−Y v

dPXu
(Xu), (3.34)

which do not depend on Z (Richter and Berner, 2023, Appendix A.12). Moreover, since
EPXu [ŵu,v] = Z, the initial expectation can be expressed in terms of the unnormalised IS
weights

EP←−Y 0 [φ(X)] =
EPXu [φ(X)ŵu,v(X)]

EPXu [ŵu,v(X)]
. (3.35)
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If we were to approximate this expectation via Monte Carlo, the variance of the estimator
would be inversely proportional to the number of independent samples used to approximate
it. However, for the IS estimator, since the samples are drawn, instead, from the proposal
distribution, the effective sample size (ESS) is N/(1+V(ŵu,v)), where N denotes the number
of samples drawn from the proposal (Neal, 2001, Equation 18). Consequently, low ESS
implies that Monte Carlo estimators relying on those samples are likely to suffer from high
variance.

Therefore, since the variance of the normalised importance weights is expected to de-
crease as we optimise the controls, we also rely on these metric to evaluate the proposed
approaches.

In our implementation, instead of computing the RND directly, we compute its loga-
rithm to ease numerical stability, thus obtaining the log-unnormalised IS weights log ŵu,v.
Consequently, the normalised IS weights can be computed as

wu,v
i = exp

log ŵu,v
i − log

(
N

∑
j=1

exp(ŵu,v
i )

)
︸ ︷︷ ︸

LogSumExp(ŵu,v)

+log N

 , (3.36)

thus relying on operations with numerically stable primitives.

3.4.3 Wasserstein Distance

For sub-optimal controls, there exists the possibility that the support of the marginal distri-
bution at the last step of the generative SDE is disjoint with that of the target distribution,
e.g. if a mode is missed. In this scenario, optimal transport distances compare favourably to
other f-divergences (Cuturi, 2013), such as the Kullback-Leibler KL(P||Q), which require
absolute continuity for the measures (P≪ Q).

From a high-level perspective, this family of distances quantify the minimum cost of trans-
porting one mass of probability into another. In this work, we use the 2-Wasserstein distance
W γ

2 (so the cost is defined in terms of the Euclidean distance) with entropic regularisation
(Cuturi, 2013), where γ denotes the regularisation weight.
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3.4.4 Benchmark Targets

1-D Gaussian Mixture Model (GMM) : We define a simple 1-D GMM, which despite
being a simple target, is helpful to develop visualisations. This is defined as

ρ(x) =
1
2
N (x;−1,0.22)+

1
2
N (x;1,0.22). (3.37)

2-D Gaussian Mixture Model (GMM): We consider the standardised bi-dimensional
GMM with 40 components in Vargas et al. (2024)

ρ(x) =
40

∑
m=1

πmN (x; µm,σ
2
mI). (3.38)

Note that, despite the simplicity of this target, it is particularly interesting due to its
multimodality, and the fact that the modes can be separated by low-probability regions in
which methods, such as Metropolis-Hastings, can become stuck.

Moreover, the marginal for the forward diffusion at each noise scale (see Section 2.1),
also follows a GMM density:

q(xt) =
40

∑
m=1

πmN (x;αt µm,(σ
2
t +αtσ

2
m)I). (3.39)

Consequently, this target can be used to conduct ablations where the only source of error
is due to the discretisation SDE, thus allowing to evaluate, for instance, if the choice of the
discretisation steps can lead to improved performance.

Funnel: This is a 10-dimensional target, which is commonly used in the evaluation of
MCMC approaches (Neal, 2003). This is defined as

ρ(x) = N (x1;0,σ2)
10

∏
i=2

N (xi;0,ex1). (3.40)

Note the score of the Funnel distribution is

∇x1log ρ(x) =− xi

σ2 + e−x1
10

∑
i=2
||xi||2, ∇xilog ρ(x) =− xi

ex1
, (3.41)

so its magnitude varies exponentially with the value of x1, making its estimation challenging,
specially at low noise levels (De Bortoli et al., 2024).
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Double Well: We consider the bi-dimensional Double Well distribution in Wu et al. (2020),
which is defined by the log-density

log p(x1,x2) =−x4
1 +6x2

1 +
1
2

x1−
1
2

x2
2 +C. (3.42)

This distribution has two modes, separated by a low-probability region, often referred to
as energy barrier, in the context of molecular dynamics. These energy barriers often result in
slow convergence for methods based on the simulation of a Langevin SDE, so a high number
of iterations are required to converge to a mode, corresponding to a stable configuration of a
molecule.

To increase the difficulty of this target, we consider the 4-particle Double Well potential
(Akhound-Sadegh et al., 2024), obtained from the product of 4 copies of the Double Well
distribution. Therefore, the target distribution has 24 = 16 modes, well-separated by energy
barriers.

Using the same approach as Midgley et al. (2022), samples from this distribution are
obtained by independently sampling from each copy, and using rejection sampling to obtain
unbiased samples from the marginal p(x1). Sampling from p(x2) is straightforward, as it
follows a standard normal distribution.

Additionally, the Funnel and Double Well datasets were scaled to the interval [−1,1]d ,
to ease training of the score model. Thus, the change of variable theorem was applied to
obtain the log-densities for the transformed variables. These benchmark targets, along with
ground-truth samples, are shown in Figure A.1.

3.5 Experimental Settings

The experimental settings used to conduct the evaluation of the proposed samplers are
summarised in Table 3.5. Following, we delve deeper into the specific architectural choices
and training procedure.

3.5.1 Score-model Training

The evaluation of the presented approaches requires training a score model before-hand, so it
can be incorporated in the control of the generative SDE. The architecture used for the score
model is a multi-layer perceptron with skip connections, inspired in model in Kingma et al.
(2021).



3.5 Experimental Settings 27

To encode the time-step, we use fixed Fourier embeddings, inspired in the positional
encoding in Ott et al. (2019), which are defined as

emb(x) =
[
sin(ω

0
d x), ...,sin(ω

d
d x),cos(ω

0
d x), ...,cos(ω

d
d x)
]
. (3.43)

Moreover, since the goal is to improve the likelihood of the data generated by the model,
and considering that the first noising steps have a major impact on the VLB (Nichol and
Dhariwal, 2021), it is particularly relevant to capture the fine perturbations that occur at low
noise levels. To this end, we compute an additional set of high-frequency Fourier features to
amplify these small perturbations, similarly to Kingma et al. (2021). These, along with the
time embeddings and the noisy observation, constitute the input to the network.

Additionally, instead of modeling the score sθ (x, t) directly, the network is trained to
predict the noise εθ (x, t) that was added to the observation. This preconditioning eases
training, since the score magnitude varies considerably across noise levels. In this regard, the
score can be recovered as sθ (x, t) = εθ (x, t)/σt .

To train the noise-prediction network, instead of optimising the variational lower bound
directly, we opt for using the unweighted variant

L =
1
2
EX0∼ptargetε∼N (0,I),t∼U(0,1)

[
||εt− ε̂

θ
t (αtX0 +σtε, t)||2

]
, (3.44)

which generally exhibits lower gradient variance compared to the VLB objective (Nichol
and Dhariwal, 2021). To further reduce the variance in the loss computation, we used the
low-discrepancy sampler for the steps t in Kingma et al. (2021). Therefore, for a batch of N
elements, we sample u0 ∼U(0,1) and select the time-step as ti = mod(u0 +1/N,1) , thus
obtaining a more uniform partition of the interval [0,1] which helps to reduce the objective
variance. For the noise schedule, we consider a continuous approximation to the discrete
schedule in (Song and Ermon, 2019).

We train the score model using the Adam optimiser (Kingma and Ba, 2014) with moment
decay rates β1 = 0.9 and β2 = 0.999, gradient clipping and tuning the learning for each
benchmark. To improve training stability, we compute an exponential moving average of the
parameters, setting the momentum parameter to m = 0.999.

Finally, we would like to highlight that we did not perform an extensive hyper-parameter
sweep, or consider introducing more advanced techniques for diffusion model training (such
as using a learnable noise schedule), since the focus of the work is improving the quality of
the samples generated by a sub-optimal diffusion model.



28 Controlled Sampling from Diffusion Models

3.5.2 Control Architecture

Once the score-model is trained, its sample quality can be improved by optimising the control
in the generative SDE.

For the parameterisation of the control, we rely on the PIS-NN architecture, presented in
(Zhang and Chen, 2021). This is a multi-layer perceptron with GeLU activations (Hendrycks
and Gimpel, 2016). The input to this network is the current iterate in the integration trajectory,
as well as the discretisation step, which is encoded using Fourier embeddings, similarly to
the score-model. At initialisation, the last layer is initialised to zero so, before training, both
the inference and generative SDEs are uncontrolled, which was empirically found to stabilise
training.

In Section 3.2, it was argued that learning the variance of the generative SDE for the
Controlled Ancestral Sampler could be beneficial, as relying on the noise variance of the
generative SDE is only optimal in the limit of infinite discretisation steps (T → ∞). To this
end, we parameterise the variance as the interpolation

Σ(Xt , t) = exp
(

vω(Xt , t)σ2
t|s +(1− vω(Xt , t))σ2

t|s
σ2

s

σ2
t

)
, (3.45)

and parameterise vω using a 3-layer perceptron, with skip-connections. The soft-plus
activation is used for the intermediate outputs, while the sigmoid activation is added after the
last linear layer to constrain the network outputs to the interval [0,1].

Finally, for the Controlled Annealed Langevin Sampler, the diffusion coefficient σ , which
modulates the noise in both the inference and generative SDEs, needs to be properly adjusted.
To highlight its importance, consider the Euler-Maruyama discretisation of the generative
SDE:

Xτi+1 = Xτi +(σ2←−sθ +
←−
Φω)(Xτi,τi)∆τi+1 +σ

√
2(Wτi+1−Wτi)︸ ︷︷ ︸
∼N (0,∆τi+1 I)

. (3.46)

In particular, several possibilities are explored for σ : (1) using a (possibly learned) single
value across all noise scales, (2) annealing σ using a fixed schedule, (3) jointly learning σ ,
along with the control.

Regarding the former choice, we parameterise σ∆τi+1 (note that the step size is embedded
into the parameterisation) using a multi-layer perceptron with GeLU activations, whose
inputs are the Fourier embeddings of the discretisation points τi+1 and τi.
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3.6 Evaluation

In this section, we present the numerical results obtained for the Controlled Ancestral
Sampler and the Controlled Annealed Langevin Sampler. For each sampler, sample quality
is evaluated across a number of performance metrics: mean log-likelihood, Wasserstein
distance, effective sample size and estimation of normalisation constants. Given that samples
from each target distribution are available, these are used to compute Monte-Carlo estimators
for those metrics that cannot be easily computed analytically, such as the mean log-likelihood
and the Wasserstein distance, and these estimators are used as ground-truth values for
comparison with the proposed approaches. For the normalisation constant, since it is known
for all the evaluated benchmark, its analytic value is used in the comparison.

Following the approach of (Richter and Berner, 2023), the samplers were trained for the
two divergences presented in Section 3.1, which are repeated for reference:

• Kullback-Leibler divergence

DKL(Pu
X ||P←−Y v) := EPu

X

[
log

Pu
X

P←−Y v

]
. (3.47)

This is the standard choice in the sampling literature, but is prone to ignoring areas
with small probability mass, a phenomenon referred to as mode-seeking behaviour
(Midgley et al., 2022; Minka et al., 2005).

• Log-variance divergence

DLV (Pu
X ||P←−Y v) := VPu

X

[
log

Pu
X

P←−Y v

]
. (3.48)

This divergence involves a reference measure, which we set to the measure induced by
the learnable controlled generative SDE, i.e. Pu

X , thus effectively training the control
in an on-policy fashion. For this setting, this loss can be regarded as a control-variate
variant of DKL, thus potentially exhibiting lower variance.

For each sampler, the performance metrics before and after training are reported, and
these are compared with their corresponding ground-truth values. The numerical results
are summarised in Tables 3.2 (GMM, d=1), 3.1 (GMM, d=2), 3.3 (Funnel, d=10) and 3.4
(Many Well, d=8). Since each method admits multiple variants (e.g. the discretisation points
can be optimised along with the controls), each configuration is evaluated separately, thus
enabling to identify which factors contribute the most to sample quality. To distinguish each
configuration, we include the following legend:
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• β . Parameters defining the discretisation points (τ1, ...,τT ) are optimised.

• Φ. The network controlling both the inference and generative SDE is learnable.
Otherwise, it is set to zero.

• ∆ (only available for the Controlled Langevin sampler). The diffusion coefficient is
controlled by a fixed schedule. Otherwise, it is set to a fix value, shared across noise
levels.

• ∆ω (only available for the Controlled Langevin sampler). Indicates that the diffusion
coefficient is learnable.

• σ (only available for the Ancestral sampler). Indicates that the variance of the genera-
tive SDE is learnt.

Note that the numerical results are reported for a fixed number of discretisation steps:
8 for the 1-D GMM, and 32 for the rest of benchmark targets. For the sake of conciseness,
we report the results for varying discretisation steps in Appendix A. Moreover, we want to
highlight that this number of steps is relatively low, even for the simple benchmark targets
that are being considered (e.g. Berner et al. (2022) use 256 discretisation steps, although their
problem is arguably harder, as they do not have access to samples from the target to train
a diffusion model). In this setting, the sample quality before training is generally poor, as
illustrated in the performance metrics reported in Tables 3.2, 3.1, 3.3 and 3.4. This situation
is specially clear when evaluating the samples qualitatively. Consequently, in the following
subsection, we analyse into greater detail the results obtained for each target.

3.6.1 2-D GMM

The numerical results for the 2-D GMM with 40 modes (Vargas et al., 2024) are reported in Ta-
ble 3.1. First of all, it is relevant to highlight that the mean log-likelihood EPX0

1
[log ptarget(x)]

(denotes as LL in Table 3.1) is significantly lower than the expected ground-truth value
before training (e.g. its value for the ancestral sampler is below −15, while the ground-truth
value surpasses 1). The inspection of the samples generated by the model before optimisation,
shown in Figure 3.2 (left), shows that, although all the modes of the target distribution are
captured, the marginal distribution PX0

1
of the generative SDE overestimates the variance of

the target distribution, as it is qualitatively reflected in the greater dispersion of the samples,
as compared to those obtained from the target distribution (see Figure A.1). Moreover, for
the three samplers evaluated, the effective sample size is quite low at initialisation (< 5%),
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and it does not significantly improve after training. This issue is further discussed in Section
3.7.3.

However, it is possible to considerably improve sample quality by optimisation of the
divergence objective, as it illustrated in Figure 3.2 (right), which shows the samples generated
by the Controlled Ancestral sampler (with learnable variance), after tuning the control and
sampling trajectory to minimise the Kullback-Leibler divergence between the discretised
measures induced by the inference and generative SDEs. Specifically, as it is reflected in Table
3.1, the performance metrics for the Controlled Ancestral sampler can significantly improve,
as compared to their initial values at initialisation, when training either the discretisation
points on isolation, or the control and the discretisation trajectory simultaneously. Notably,
only training the control does not significantly improve sample quality, as demonstrated by
the higher Wasserstein distance and the mean log-likelihood remaining low.

The importance of tuning the discretisation trajectory can be understood from the per-
spective of the rate at which the structure in the data is destroyed, due to its perturbation with
additive Gaussian noise. Specifically, this rate is modulated by the noise schedule, which
uniquely defines the drift and diffusion coefficients of the variance-preserving inference SDE.
Moreover, in this work, we rely on a continuous approximation to the noise schedule used by
Song and Ermon (2019), which can corrupt the data too swiftly (Nichol and Dhariwal, 2021).

This phenomenon is illustrated in Figure 3.4, which shows the marginals of the stochastic
process induced by the inference SDE at different time steps. Note that, even at t = 0.2, the
marginal distribution is still uni-modal, closely resembling the standard Gaussian (which
constitutes the prior distribution, i.e. pprior = N (0, I)). Consequently, it can be argued that
the Euler-Maruyama updates ocurring within that interval will not significantly change the
marginal measures, and progress towards the target measure will be slow. This is particularly
clear for the Controlled Annealed Langevin sampler, whose discretisation is given by

Xτi+1 = Xτi +(σ2←−sθ +
←−
Φω)(Xτi,τi)∆τi+1 +σ

√
2∆τi+1ετi+1, ετi+1 ∼N (0, I). (3.49)

In this regard, if Xτi ∼ pprior = N (0, I), sθ (x, t)≈N (x;0, I), and the control is zero (as it is
the case at initialisation), this update corresponds to an ULA transition (Roberts and Tweedie,
1996), which leaves the measure N (0, I) invariant. Consequently, Xτi+1 ∼N (0, I), and no
progress is made towards the target distribution.

Therefore, placing the discretisation steps uniformly within the interval [0,1] can lead
to insignificant updates within the first steps, due to the score being close to that of the
prior distribution, while taking too aggresive steps for the less noisy levels, when the score
changes more significantly between discretisation steps. Consequently, given the small
number of Euler-Maruyama steps used, it is sensible to expect that it might not be possible
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to compensate for overly large step sizes at low noise levels exclusively by optimising the
control, as the numerical evidence suggests for the evaluated benchmarks.

Additionally, to further illustrate this point, we study the evolution of the discretisation
trajectory τi by measuring the difference between their values at each step and their uniform
initialisation values, as shown in Figure 3.1. Since this difference is positive and increases
quite steadily during training for both runs, it indicates that the steps tend to accumulate
themselves at low noise levels, which is consistent with the observation that smaller steps can
be beneficial to simulate the SDE, due to the faster variation of the score at low noise levels.
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Fig. 3.1 Evolution of the difference between the discretisation points τi and their initial values
i/T for T = 16 (left) and T = 32 (right). These correspond to Controlled Ancestral sampler
runs, with fixed variance.

It is remarkable to highlight that, while the log-variance divergence performance is similar
to that of the Kullback-Leibler loss for the Controlled Ancestral sampler with fixed variance,
this is not the case when the variance of the inference SDE is learnt. For this setting, Table 3.1
shows that the estimators of the normalisation constant are highly biased (e.g. ≈ 8.099 for
the variant β/Φ). Moreover, the mean log-likelihood stays below −10, thus not improving
with respect to its value at initialisation. Moreover, Figure 3.3 compares the samples obtained
when optimising each objective, thus evidencing that, despite relying on the same sampler,
their performance can greatly differ depending on the divergence choice. This anomalous
behaviour can be explained in terms of the non-uniqueness of the optimal control problem,
as both the Kullback-Leibler and log-variance divergence only enforce Nelson’s identity
(Nelson, 2020) (see Section 2.4). In this regard, specific choices of the controls were used for
the proposed samplers to render the solution to the problem unique. However, we hypothesise
that relying on a learnable variance in the generative SDE for the ancestral sampler can,
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effectively, decouple the controls, thus restoring non-uniqueness and leading to pathological
optimum, as the one shown in Figure 3.3 (right).

Finally, it is relevant to highlight that the performance of the Controlled Annealed
Langevin sampler is quite poor for all the configurations evaluated in Table 3.1. Moreover,
there is an important gap in performance when comparing the metrics obtained at initialisation
of the ancestral and Langevin samplers. This is particularly clear when comparing the mean
log-likelihood at initialisation, as it is an order of magnitude lower for the Langevin sampler.
To some extent, this is explained by the fact that, while the uncontrolled inference and
generative SDEs for the ancestral sampler approximately transport the target distribution
into the prior distribution, and viceversa by construction (as they are defined in terms of the
variance-preserving SDE), this is not the case for the annealed Langevin sampler, whose
score is only accurate in the terminal points, similarly to the CMCD sampler (Vargas et al.,
2024). In this regard, it is observed that the Controlled Annealed Langevin sampler generally
requires careful hyperparameter tuning to match the performance of the ancestral sampler.

Fig. 3.2 Qualitative comparison of sample quality for the ancestral sampler method, with
learnable backward variance, using 32 discretisation steps, before training (left) and after
optimisation of the control and discretisation steps (right).

3.6.2 1-D GMM

The numerical results for the 1-D GMM benchmark target are outlined in Table 3.2. Given
the simplicity of this target, only 8 discretisation steps are used, to increase the difficulty of
the sampling problem. Despite the reduced number of steps, it is possible, after optimisation
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Sampler Variant Loss log Z W γ

2 ↓ ESS ↑ LL ↑

Target - - 0.000 0.009±0.001 - 1.047±0.040

Ancestral

Init - -0.216±0.266 0.010±0.001 0.048±0.030 -10.719±0.760

β
KL -0.248±0.543 0.010±0.001 0.061±0.041 -1.079±0.311
LV -0.288±0.488 0.010±0.001 0.075±0.049 -0.920±0.260

Φ
KL -0.107±0.693 0.013±0.002 0.046±0.024 -10.640±0.586
LV -3.155±0.945 0.035±0.003 0.014±0.009 -11.815±0.538

β/Φ
KL -0.304±0.294 0.025±0.003 0.050±0.036 -0.915±0.274
LV -0.384±0.299 0.013±0.002 0.042±0.028 -0.763±0.242

Ancestral/σ

Init - -0.136±0.270 0.010±0.001 0.044±0.020 -15.172±0.757

β
KL -0.235±0.516 0.010±0.001 0.066±0.046 -0.874±0.273
LV 27.100±8.208 0.010±0.001 0.003±0.002 -13.487±0.662

Φ
KL -0.109±0.492 0.010±0.002 0.043±0.029 -10.699±0.667
LV 3.818±3.205 0.137±0.009 0.005±0.005 -11.546±0.486

β/Φ
KL -0.251±0.472 0.010±0.001 0.067±0.048 -0.936±0.264
LV 8.099±3.939 0.127±0.009 0.004±0.002 -10.481±0.571

Langevin

Init - -0.592±0.554 0.015±0.001 0.015±0.006 -124.658±10.010

β
KL 0.002±0.270 0.012±0.001 0.031±0.011 -51.325±3.306
LV -0.117±0.570 0.012±0.001 0.030±0.012 -49.970±2.910

Φ
KL -6.552±2.534 0.021±0.001 0.004±0.001 -92.066±7.509
LV * * * *

β/Φ
KL -0.404±0.941 0.034±0.003 0.012±0.006 -44.500±2.590
LV -0.882±1.056 0.068±0.006 0.011±0.006 -27.360±1.421

Φ/∆
KL -0.943±0.976 0.118±0.009 0.024±0.015 -13.323±0.677
LV * * * *

β/Φ/∆
KL -0.136±0.444 0.011±0.002 0.034±0.014 -10.111±0.435
LV * * * *

Table 3.1 Numerical results for varying samplers and configurations in the GMM (d=2)
benchmark problem using 32 discretisation steps. Performance metrics were estimated from
500 samples for 30 different seeds, and means and standard deviations are reported. First
row indicates the ground-truth values for the performance metrics: analytical value of the
normalisation constant (log Z) and Monte-Carlo estimators for the Wasserstein distance (W γ

2 )
and log-likelihood (LL) using ground-truth samples. The arrows ↑ and ↓ indicate whether
the performance metrics are maximised or minimised. Variant Init denotes the performance
metrics before training. Bolded values indicate the best performance within each sampler. KL
stands for Kullback-Leibler divergence, while LV corresponds to the log-variance divergence
loss (Vargas et al., 2024). Divergent runs are signaled with ∗.
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Fig. 3.3 Qualitative comparison of sample quality for the ancestral sampler method, with
learnable backward variance, using 32 discretisation steps, after optimisation using the
Kullback-Leibler loss (left) and the log-variance divergence (right).

of the sampling trajectory and controls, to generate samples matching, almost perfectly, the
target distribution, as illustrated for the Controlled Ancestral sampler in Figure 3.5.

From a high-level perspective, the numerical results for this target are aligned with the
observations made for the 2-D GMM, such as the importance of training the discretisation
points and pathological behaviour of the log-variance objective for the ancestral sampler with
learnable variance.

However, two main differences can be observed. First, the effective sample sizes are
much higher for the three samplers, as it can be expected given the lower dimensionality
of the problem. Moreover, the performance of the annealed Langevin sampler is closer to
that of the ancestral sampler, surpassing the latter in terms of effective sample size, for some
configurations.

To provide additional insight on the performance of the annealed Langevin sampler,
Figure 3.6 qualitatively compares the samples generated by the model before and after
training the sampling trajectory and controls. First of all, note that the samples generated
before training are approximately distributed as a standard normal, which constitutes the
prior distribution. This can be expected considering that, at initialisation, the generative SDE
is uncontrolled (thus recovering the annealed Langevin algorithm (Thin et al., 2021, Equation
14)), with the score changing slowly for the first steps, for an uniform initialisation, so that
only 8 updates are not sufficient to transport the prior measure to the target distribution.



36 Controlled Sampling from Diffusion Models

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
t = 1.0 t = 0.3 t = 0.2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
t = 0.1

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

t = 0.05

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

t = 0.01

Fig. 3.4 Density contours for the marginals of the variance-preserving SDE, using as target
the 2-D GMM distribution, evaluated at varying noise scales. The vector field represents the
score ∇x pXt (x, t) at each grid position.

On the other hand, after training, the generated samples match more closely the target
distribution, although its marginal variance is slightly higher (see Figure 3.5, right). However,
the overestimation of the variance can be beneficial in terms of the effective sample size.
Precisely, if the proposal distribution PXu has heavier tails that those of the target measure
P←−Y v , the density ratio dP←−Y v/dPXu for the discretised measures is bounded (assuming absolute
continuity) and, consequently, the variance of the importance sampling weights. Therefore,
as the effective sample size is inversely proportional to the variance of the normalised
importance weights, a higher effective sample size might be expected in this scenario. This
is generally the case for the samples generated by the controlled annealed Langevin sampler
in this target, which might explain the slightly better effective sample sizes obtained by this
method.

3.6.3 Funnel

The numerical results for the Funnel target are summarised in Table 3.3. Results for the
Langevin sampler are not included due to divergence of the runs. As highlighted in Section
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Sampler Variant Loss log Z W γ

2 ↓ ESS ↑ LL ↑

Target - - 0.000 0.007±0.004 - -0.513±0.039

Ancestral

Init - -0.101±0.072 0.008±0.002 0.360±0.133 -1.584±0.079

β
KL -0.063±0.089 0.007±0.003 0.365±0.181 -0.662±0.037
LV -0.107±0.081 0.007±0.003 0.315±0.139 -0.731±0.045

Φ
KL -0.079±0.045 0.007±0.001 0.445±0.094 -1.436±0.070
LV -0.079±0.048 0.007±0.001 0.450±0.089 -1.454±0.074

β/Φ
KL -0.052±0.078 0.006±0.003 0.386±0.187 -0.595±0.044
LV * * * *

Ancestral/σ

Init - -0.077±0.072 0.009±0.001 0.357±0.084 -2.592±0.123

β
KL -0.071±0.088 0.007±0.003 0.378±0.172 -0.615±0.027
LV 4.200±2.131 0.009±0.001 0.006±0.010 -2.352±0.104

Φ
KL -0.079±0.054 0.007±0.002 0.427±0.104 -1.443±0.078
LV 5.332±2.923 0.011±0.001 0.006±0.015 -3.549±0.146

β/Φ
KL -0.057±0.064 0.007±0.004 0.413±0.178 -0.637±0.052
LV 8.901±4.396 0.009±0.001 0.003±0.001 -2.729±0.124

Langevin

Init - 0.001±0.050 0.013±0.001 0.345±0.015 -4.977±0.310

β
KL -0.002±0.042 0.007±0.002 0.515±0.077 -1.523±0.076
LV 0.005±0.053 0.007±0.002 0.506±0.097 -1.496±0.069

Φ
KL -0.008±0.064 0.009±0.001 0.364±0.056 -2.296±0.113
LV -0.017±0.049 0.014±0.002 0.390±0.019 -3.164±0.149

β/Φ
KL -0.001±0.042 0.007±0.002 0.516±0.080 -1.521±0.077
LV 0.008±0.084 0.007±0.002 0.485±0.140 -1.523±0.073

Φ/∆
KL -0.004±0.059 0.011±0.001 0.397±0.066 -3.155±0.171
LV 0.005±0.077 0.011±0.001 0.346±0.110 -3.417±0.149

β/Φ/∆
KL 0.004±0.044 0.013±0.005 0.553±0.100 -1.141±0.070
LV 0.000±0.071 0.008±0.003 0.457±0.152 -1.694±0.074

Table 3.2 Same as Table 3.1 but for the GMM (d = 1) benchmark problem using 8 discretisa-
tion steps.

3.4.4, this target is particularly challenging due to the widely varying magnitude of the
target score, as the conditional marginals for x2:10 are approximately Dirac for x1 ≪ 0.
However, the generative SDE is only simulated until step 1−ε , with ε > 0, and, although the
sampling trajectory is optimised (thus allowing to use an arbitrarily small ε , up to the machine
precision), some residual noise can still be present. This results in extremely values for the
mean log-likelihood on initialisation, as the samples have marginal conditionals x2:10 for
with non-zero variance at the noise level 1− ε , even for x1≪ 0. To tackle this limitation, the
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Fig. 3.5 Qualitative comparison of sample quality, in the 1-D GMM benchmark, for the
ancestral sampler method, with learnable backward variance, using 8 discretisation steps,
before training (left) and after optimisation of the control and discretisation steps (right).

residual noise can be removed by applying Tweedie’s formula (Efron, 2011) to the samples
generated by the model, as shown in Figure 3.7. However, we found that using denoised
samples in the optimisation led to unstable training, so the performance metrics reported in
Table 3.3 correspond to estimations from samples with residual noise, thus explaining the
poor performance for this benchmark.

3.6.4 Many Well

The 8-dimensional Many Well benchmark is obtained as the product of 4 copies of the
2-dimensional Double Well target, defined in Section 3.4.4. Numerical results for this target,
using 32 Euler-Maruyama discretisation steps, are displayed in Table 3.4.

First of all, it is relevant to highlight that the three samplers provide faithful approxima-
tions of the normalisation constant (within [log Z− 0.2, log Z+ 0.2]), which is indicative
that the 24 = 16 modes of the target are captured. Moreover, learning the variance of the
generative SDE, as done for the Ancestral/σ method, leads to significantly higher effective
samples sizes, as compared to other methods. This might be due to the fact that, if the noise
added at each step in the simulation of the SDE is too high, the simulated trajectories can
reach low density regions of the target with non-zero probability. This phenomenon can
result in an IS weights distribution with heavy right tails, thus inflating its variance, and
resulting in low effective sample size values.
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Fig. 3.6 Qualitative comparison of sample quality, in the 1-D GMM benchmark, for the
annealed langevin sampler (variant β/Φ/∆), using 8 discretisation steps, before training
(left) and after optimisation of the control and discretisation steps (right).

Sampler Variant Loss log Z W γ

2 ↓ ESS ↑ LL ↑

Target - - 0.000 0.009±0.001 - 32.161±0.693

Ancestral

Init - -2.286±0.986 0.024±0.006 0.011±0.007 -108509.641±201074.234

β
KL -11.414±2.497 0.080±0.022 0.004±0.002 -1.971±5.141
LV * * * *

Φ
KL -2.885±1.104 0.100±0.029 0.017±0.014 -0.600±1.459
LV * * * *

β/Φ
KL -1.770±0.650 0.071±0.026 0.017±0.014 7.673±0.273
LV * * * *

Ancestral/σ

Init - -3.348±0.777 0.036±0.010 0.008±0.004 -248855.844±548453.625

β
KL -11.433±2.496 0.080±0.022 0.004±0.002 -1.954±5.074
LV * * * *

Φ
KL -3.507±0.635 0.112±0.032 0.014±0.008 -2.443±1.499
LV * * * *

β/Φ
KL -1.899±0.768 0.075±0.027 0.023±0.019 6.755±0.366
LV * * * *

Table 3.3 Same as Table 3.1 but for the Funnel (d = 10) benchmark problem using 32
discretisation steps.

To qualitatively evaluate the samples generated by the trained model, we follow the
approach in Midgley et al. (2022), and visualise a selection of two-dimensional marginals.
Specifically, we consider two inputs coming from different Double Well factors, while
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Fig. 3.7 Qualitative comparison of the samples generated by the ancestral sampler, for 32
discretisation steps before (left) and after (right) applying Tweedie’s formula. This target is
10-dimensional, and only the marginals {(x1,xi)}5

i=2 are shown.

fixing the other variables to zero. This is shown in Figure 3.8, which evidences that, before
training (left), the variance of the target is significantly overestimated, while after training
(right) the samples are grouped more compactly around each mode, thus the higher mean
log-likelihoods.

Fig. 3.8 Qualitative comparison of sample quality, in the Many Well benchmark, for the
ancestral sampler method, using 32 discretisation steps, before training (left) and after
optimisation of the control and discretisation steps (right).

3.7 Analysis

Following, we conduct additional analysis to more detailed greater insights into the behaviour
of the proposed samplers.
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Sampler Variant Loss log Z W γ

2 ↓ ESS ↑ LL ↑

Target - - 41.174 0.037±0.003 - 47.125±0.105

Ancestral

Init - 40.725±0.491 0.041±0.003 0.028±0.018 39.392±0.313

β
KL 41.135±0.279 0.039±0.004 0.052±0.038 46.009±0.123
LV 41.070±0.736 0.039±0.003 0.031±0.023 44.647±0.149

Φ
KL 40.876±0.424 0.075±0.007 0.038±0.022 42.406±0.240
LV 28.920±1.063 0.104±0.008 0.013±0.010 36.964±0.295

β/Φ
KL 41.103±0.187 0.045±0.004 0.089±0.037 46.825±0.108
LV 40.496±0.627 0.066±0.006 0.025±0.016 45.949±0.141

Ancestral/σ

Init - 40.632±0.538 0.051±0.003 0.014±0.006 27.206±0.947

β
KL 41.157±0.093 0.039±0.003 0.219±0.088 46.434±0.103
LV 62.432±7.193 0.056±0.004 0.003±0.001 34.689±0.451

Φ
KL 40.926±0.295 0.070±0.006 0.054±0.033 41.623±0.229
LV 47.161±4.531 0.082±0.006 0.003±0.002 22.143±0.616

β/Φ
KL 41.144±0.091 0.043±0.004 0.250±0.112 46.894±0.112
LV 57.533±4.543 0.058±0.004 0.003±0.001 32.404±0.430

Langevin

Init - 27.819±6.399 0.174±0.014 0.002±0.000 -5024.465±332.402

β
KL 36.141±2.541 0.102±0.007 0.005±0.002 -87.670±9.623
LV 36.187±2.460 0.102±0.007 0.005±0.003 -87.643±9.794

Φ
KL 35.820±2.647 0.110±0.008 0.004±0.002 -18.134±5.563
LV -37945.602±126.600 0.203±0.014 0.002±0.000 -1791.432±75.125

β/Φ
KL 36.897±2.435 0.110±0.008 0.004±0.002 -11.876±4.046
LV 30.576±3.284 0.111±0.008 0.004±0.002 -48.124±8.107

Φ/∆
KL 39.622±1.282 0.065±0.004 0.008±0.005 28.326±0.635
LV 20.624±6.826 0.166±0.019 0.002±0.000 -5833.650±419.485

β/Φ/∆
KL 40.913±0.538 0.060±0.005 0.023±0.016 40.833±0.237
LV * * * *

Table 3.4 Same as Table 3.1 but for the Many Well (d = 8) benchmark problem using 32
discretisation steps.

3.7.1 Importance of Control Tying

The controls for both the Controlled Ancestral and Controlled Annealed Langevin samplers
are defined so that the Problem 2.5 has an unique solution. To do so, either u or v is
parameterised by a neural network, so it can evolve unconstrained during optimisation, while
the other is defined in terms of the free control. For the presented approaches, the specific
choice of control tying was motivated from Nelson’s identity (Nelson, 2020)

u∗+ v∗ = gT
∇xlog←−p Y ∗ , (3.50)
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where ∇xlog←−p Y ∗ is replaced by an approximation to the ground-truth score. From a
high-level perspective, it seems intuitive that relying on independent controls might lead to
improved performance, as the inference and generative SDEs would be allowed to evolve
unconstrained during optimisation. In this regard, even if the solution to Problem 2.5 is no
longer unique, it might still be possible for the optimiser to converge to an optimum whose
performance surpasses that of the unique solution when the controls are tied.

However, we empirically verified that untying the controls can result in convergence to
pathological solutions. This is illustrated in Figure 3.9, which shows the samples generated
when training the controls u and v independently for the Controlled Ancestral sampler.
Despite the samples collapsing to a single region, and not matching the probability contours
at all, the training loss decreased steadily during optimisation, thus indicating that this
anomalous behaviour is not due to any divergence during training, but instead, to the ill-
defined nature of the problem.

Fig. 3.9 Samples generated, for the 2-D GMM benchmark, after training the Controlled
Ancestral Sampler with independent controls.

3.7.2 Inaccurate Score Estimation

The score models used in this evaluation were trained with ground-truth samples from the
target distribution. However, it is interesting to consider what happens when these are trained,
instead, in biased samples from the target distribution. In this scenario, the controls need to
be adapted during optimisation to correct the error introduced by the biased score-model.

To this end, we trained the diffusion model for the 1-D GMM benchmark with data
from a GMM with the same means and covariances, but with prior probabilities (0.9,0.1),
instead of (0.5,0.5). Consequently, the samples generated by the model are highly biased on
initialisation, as illustrated in Figure 3.10.
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However, the optimisation of the controls can lead to a slight improvement in sample
quality, as shown in Figure 3.10 (right), thus indicating that the controls can be adapted to
compensate, to some extent, the error in the score estimation. Empirically, we found that
training dynamics were less stable, compared to when using a model trained in ground-
truth samples, so we hypothesise that sample quality can be further improved by tuning the
hyperparameters.

Fig. 3.10 Qualitative comparison of sample quality for the ancestral sampler method, when
using an inaccurate score-model, before training (left) and after optimisation of the control
and discretisation steps (right).

3.7.3 Effective Sample Sizes

The numerical results presented evidence that, despite the improvements in sample quality
obtained by optimising the controls, the effective sample sizes are generally low, specially for
the 2-GMM and Funnel benchmarks. However, it is important to highlight that our objective
is the KL divergence, and, although at optimality the IS weights have zero variance, the
optimisation of the KL loss is not equivalent to the minimisation of the importance sampling
weights variance (Midgley et al., 2022). Therefore, it can be expected that, if the controls are
not optimal, the variance of the IS weights might still be high, thus being reflected in low
effective sample sizes.

To reduce the variance of the importance sampling weights after training the model, a
non-linear transformation can be applied to them, such as truncation of their values to a given
upper bound (Ionides, 2008). Although unbiasedness can no longer be guaranteed, estimators
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relying on the truncated IS weights are still consistent. To illustrate the effect of post-training
IS variance reduction techniques, we apply the non-linear importance sampling method,
presented in Míguez (2017), to the IS weights obtained, after training, for the 2-GMM
benchmark, as shown in Figure 3.11. Note that, due to the low effective sample size, the
histogram obtained by weighting the samples using the non-transformed IS weights collapses
into multiple Dirac distributions (bottom-left), while after transforming the IS weights, the
resulting histogram (bottom-right) approximates better the ground-truth histogram (top-left),
as the samples in low-probability regions are down-weighted correspondingly.

3.7.4 Varying Number of Discretisation Steps

Although the numerical results shown in Tables 3.2 (GMM, d=1), 3.1 (GMM, d=2), 3.3
(Funnel, d=10) and 3.4 (Many Well, d=8) consider a fixed number of discretisation steps, we
conducted additional experiments, considering varying number of steps sizes.

These experiments are summarised in Figures A.2, A.3, A.4 and A.5. As it was expected,
the performance metrics improve as the number of discretisation steps increases, due to
reduction of numerical errors in the simulation of the generative SDE. Moreover, it can be
seen that, when relying on few steps, optimising the controls and discretisation points is
essential to obtain good sample quality.

3.8 Summary

In this chapter, the Controlled Ancestral sampler and the Controlled Annealed Langevin
sampler were proposed. These approaches aim to improve sample quality, for a pre-trained
diffusion model, by optimising relevant controls in the inference and generative SDEs. While
the Controlled Ancestral Sampler generally achieves improved sample quality, as compared
to the initial performance of the model, the Controlled Annealed Langevin requires careful
tuning of its hyperparameters to compete with the Controlled Ancestral sampler.
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Fig. 3.11 Histograms obtained from ground-truth data of the 2-D GMM benchmark (top-left),
non-weighted samples from the trained model (top-right), IS-weighted samples from the
model (bottom-left), and non-linear IS-weighted (Míguez, 2017) samples (bottom-right).
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Diffusion SDE
SDE Variance-Preserving SDE (Song and Ermon, 2019)
log-SNR sched. γ(t) −log(exp(1e−4 +10t2)−1))
α(t) sigmoid(γ(t))

1
2

σ2(t) sigmoid(−γ(t))
prior distribution pprior N (0, I)
Ancestral SDE
drift f (x, t), diff. g(t) Variance-Preserving SDE (Song and Ermon, 2019)
inference control g ·u −Φω

generative control g2sθ +Φω

prior distribution pprior N (0, I)
Annealed SDE
drift f (x, t), diff. g(t) σ2sθ (x, t), σ

√
2

inference control g ·u −Φω

generative control 2σ2sθ +Φω

prior distribution pprior N (0, I)
SDE Solver
type Euler-Maruyama (Kloeden et al., 1992)
discretisation steps T [16, 32, 64]
Score Training
loss unweighted VLB ||ε− εθ ||
optimiser Adam
learning rate 0.0003
batch size 2000
iterations 30000
gradient clipping 5 (ℓ2-norm)
EMA momentum 0.999
SDE Training
loss [Kullback–Leibler divergence DKL, Log-variance divergence DLV ]
optimiser Adam
learning rate 0.005
batch size 300 (1D GMM), 2000
iterations 3000
gradient clipping 5 (ℓ2-norm)
Network sθ

time encoding fourier-emb
network input Xt , fourier-emb, fourier-feat
activation ρ GeLU (Hendrycks and Gimpel, 2016)
num. hiddens n 6
embedding dim. 128
architecture linear◦ (res+ρ ◦ linear)n◦ linear
initialization weights and biases to 0 (last layer), default (rest)
Network Φω

network input Xt , fourier-emb
time encoding linear◦ρ ◦ linear◦ [fourier-emb]
activation ρ GeLU (Hendrycks and Gimpel, 2016)
num. hiddens n 2
embedding dim. [64, 128, 64]
architecture linear◦ (ρ ◦ linear)n

initialization weights and biases to 0 (last layer), default (rest)
Evaluation
num. seeds 30
samples per seed 500

Table 3.5 Hyperparameter configuration for the numerical results presented in Section 3.6.
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Conclusions

In this work, two methods are proposed to improve sample quality for a pre-trained diffusion
model when an unnormalised density is available: the Controlled Ancestral sampler and the
Controlled Annealed Langevin sampler. These are defined in terms of controlled stochastic
differential equations, defining transports from a target to a prior distribution, and their
corresponding time-reversals. By optimising the controls to minimise the divergence between
the path measures induced by these SDEs, it is empirically demonstrated that sample quality
can be improved for several benchmark targets.

4.1 Limitations

An important limitation of this work is that the evaluation is conducted in relatively low-
dimensional targets, and, although theoretically the generative SDE inherits the fast-mixing
properties of the inference SDE (Vargas et al., 2023), evaluation in higher-dimensional targets
should be conducted to further prove the ability of the proposed methods to improve sample
quality. Note that this requires training a diffusion model with high-capacity, and simulating
the generative SDE using a sufficiently high number of discretisation steps, so tracking
the computational graph can become prohibitively expensive, and adjoint SDE solvers are
required. As the Euler-Maruyama scheme is used in this work for the SDE simulation, the
experimental infrastructure needs to be adapted to handle more challenging targets, although
the theoretical framework still holds its validity.

Another challenge is the discovery of high-probability regions that are missed by the
pre-trained diffusion model. Although the stochasticity in the SDE simulation can enable the
discovery of these regions, this exploration is likely to become inefficient in high-dimensions.
In this setting, on-policy optimisation of the control, using an objective such as the Kullback-
Leibler divergence, is likely to result in convergence to a local minima which possibly misses
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undiscovered modes. Consequently, relying on the target score is fundamental to efficiently
guide the exploration and facilitate the discovery of missing modes. However, in the present
work, gradient information of the target is not exploited.

4.2 Future Works

Besides addressing the limitations outlined previously, potential research direction involve
enhancing exploration using off-policy divergences, incorporating learning signals at inter-
mediate steps in the simulation trajectory and explore alternative divergences.

Regarding the first point, it was highlighted previously that, when relying on on-policy
training, exploration is only encouraged by the stochasticity of the SDE. Alternatively, an
exploratory reference process could be considered, e.g. a noisier variant of the generative
SDE, and optimisation of the control done in an off-policy fashion, thus facilitating the
discovery of new high-density regions. To this end, the KL divergence is not readily
applicable, and an alternative optimisation objective needs to be considered, such as the
log-variance divergence. On the other hand, the reference process could leverage gradient
guidance to enable efficient exploration, even in high dimensions.

Moreover, for the proposed methods, the learning signal is provided after simulating the
complete trajectory, when the unnormalised density is evaluated. Alternatively, intermediate
learning signals could be incorporated, which can be beneficial to reduce gradient variance.
Zhang et al. (2023a) explore this possibility, and rely on a variance-exploding stochastic
process with a Dirac distribution as initial boundary condition. Consequently, it can be
interesting to adapt this method to reduce gradient variance for the sampling approaches
presented in this dissertation.

Finally, alternative divergences could be used to define the optimisation objective. For
instance, the 2-divergence im Midgley et al. (2022) enables minimisation of the importance
weights variants. Consequently, this divergence could be incorporated to possibly improve
the effective sample sizes.
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Appendix A

Additional Figures

In this Appendix, the figures that were omitted from the main text, for the sake of conciseness,
are included.
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Fig. A.1 Densities, along with ground-truth samples for the benchmarks 1-D GMM (top-left),
2-D GMM (top-right), Many Well (bottom-left) and Funnel (bottom-right). For targets with
d > 2, a subset of marginals are shown.
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Fig. A.2 Evolution of the performance metrics with increasing number of discretisation steps,
for the 2-D GMM benchmark and using the Controlled Ancestral sampler.
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Fig. A.3 Evolution of the performance metrics with increasing number of discretisation steps,
for the 2-D GMM benchmark and using the Controlled Annealed Langevin sampler.
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Fig. A.4 Evolution of the performance metrics with increasing number of discretisation steps,
for the Many Well benchmark and using the Controlled Ancestral sampler.
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Fig. A.5 Evolution of the performance metrics with increasing number of discretisation steps,
for the Many Well benchmark and using the Controlled Annealed Langevin sampler.
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