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Abstract

Additive manufacturing (AM) traditionally relies on predefined parameters and post-production
inspections to ensure print quality. This approach, while effective, can be time-consuming,
prone to errors, and lacks real-time adaptability to dynamic conditions during the printing
process.

This dissertation introduces LLaVA-IntelliPrint, the first framework to integrate Vision-
Language Models (VLMs) into AM. By combining advanced vision transformers (ViT)
and large language models (LLMs), LLaVA-IntelliPrint provides continuous, automated
quality assurance during the printing process. The system diagnoses defects and offers
natural language corrective suggestions, significantly improving the accuracy, efficiency, and
reliability of AM processes.

LLaVA-IntelliPrint leverages self-supervised learning from Masked Autoencoders (MAEs)
and cross-modality from LLaVA to estimate process parameters like flow rate, achieving a
mean absolute error of 6.49%, improving on the state-of-the-art (SoTA) of 8.64%. When
integrated with an LLM, it maintains a competitive error rate of 12.02%, while also offering
broader capabilities like extrusion quality classification, error detection, and enhanced human-
computer interaction.

Additionally, this thesis presents a novel architecture that enhances LLMs’ regression
capabilities, with potential applications beyond AM. LLaVA-IntelliPrint represents the first
application of VLMs in AM, setting a new benchmark for real-time quality assurance in
intelligent manufacturing systems.
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Chapter 1

Introduction

1.1 Additive Manufacturing

Additive Manufacturing (AM), commonly known as 3D printing, is renowned for its capa-
bility to manufacture intricate and customised products layer by layer from digital models.
This process significantly reduces the time and cost associated with product development,
minimises human interaction, and shortens the overall product development cycle. AM
might revolutionise some key industries such as aerospace and medical devices (Wong &
Hernandez, 2012).

Several types of 3D printers are prevalent, including Fused Deposition Modeling (FDM),
Digital Light Processing (DLP), and Stereolithography (SL). FDM, in particular, operates
like a hot glue gun with a small nozzle attached to a computer-controlled mechanical carriage
that methodically outlines and builds an object layer by layer (Torta & Torta, 2019). The
leftmost image in Figure 1.2 depicts a typical FDM printer. This dissertation focuses on
FDM printers due to their widespread use, low cost, ease of operation, and compatibility
with various materials such as polymers, metals, and ceramics.

However, the inherent complexities of AM processes often lead to high error rates and
operational inefficiencies that can undermine its benefits. Currently, the identification and
correction of these errors rely heavily on skilled technicians who monitor the AM processes
and make adjustments manually. This dependence not only increases production costs due
to the need for continuous human oversight but also limits the scalability and speed of
AM operations. Furthermore, training operators to achieve proficiency with 3D printing
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technologies is a time-consuming and costly endeavour, exacerbated by the rapid evolution
of these technologies, which continuously reshapes the required skill sets.

1.2 Visual-Language Models (VLMs)

Addressing these challenges, there has been growing interest in developing intelligent error
detection and correction systems. Traditional methods have employed various sensors to
monitor processes and detect anomalies such as nozzle clogs, including acoustic (Wu et al.,
2015), inertial (J. Guo et al., 2019), pressure (Estelle & Gozen, 2024), and current(Wu et al.,
2015). However, data from these sensors are often insufficient for comprehensive error
detection and correction (Gao et al., 2015).

Recent advancements in artificial intelligence, particularly in natural language processing
and computer vision, have paved the way for more sophisticated solutions. Models such as
T5 (Raffel et al., 2023), GPT-3 (Brown et al., 2020), and LLAMA (Touvron et al., 2023) have
demonstrated the potential of Large Language Models (LLMs) as general-purpose assistants.
The introduction of Vision Transformer (ViT) (Dosovitskiy et al., 2021) has shown state-of-
the-art capabilities in image feature extractions. Cross-modality mixing techniques, including
Flamingo (Alayrac et al., 2022), Contrastive Language-Image Pretraining (CLIP) (Radford
et al., 2021), Bootstrapping Language-Image Pre-training (BLIP) (J. Li et al., 2022), and
Large Language and Vision Assistant (LLaVA) (H. Liu, Li, Wu, & Lee, 2023), show great
potential for visual-language interaction.

Current deep learning models mainly utilise convolutional neural networks (CNNs) for real-
time defect detection in additive manufacturing, addressing issues such as nozzle clogs and
layer misalignment (Brion & Pattinson, 2022b; Brion et al., 2022; Farhan Khan et al., 2021;
Margadji et al., 2024). However, CNNs pose challenges in scalability, and the performance is
not always satisfying. Vision Transformers (ViTs), which utilise self-attention mechanisms,
offer promising alternatives but remain largely unexplored in this context. Additionally,
integrating language models for human-computer interaction can enhance real-time system
usability by providing explanations and suggestions, thus bridging automated detection and
human expertise. This potential remains unexplored.

1.3 Research Objective

The objective of this thesis is to develop a Vision-Language Model (VLM) that comprehends
the Fused Deposition Modelling (FDM) printing process, estimates key parameters, associates
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visual features with textual outputs, and suggests specific actions. Current state-of-the-art
VLMs, such as GPT-4o and LLaVA 1.5, cannot interpret nozzle images or estimate flow
rates, as shown in Figure 1.1. This highlights a clear application and research gap in the field.

Fig. 1.1 An example of the current state-of-the-art model’s performance on an FDM nozzle
image.

This dissertation introduces LLaVA-IntelliPrint, a novel integration of advanced vision-
language models (VLMs) and large language models (LLMs) into 3D printers. By equip-
ping these printers with enhanced vision and language processing capabilities, they can
autonomously monitor, diagnose, and correct errors in real time, thereby improving the
efficiency and reliability of additive manufacturing.

As illustrated in Figure 1.2, the system utilizes Vision-Language Models (VLMs) to:

1. Describe overall printing quality (e.g., over-extrusion, optimal extrusion, under-extrusion).

2. Estimate the current printing flow rate.

3. Detect errors and analyse their causes using natural language processing.

4. Provide corrective suggestions for identified errors.
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Fig. 1.2 LLaVA-IntelliPrint system flowchart.

This work demonstrates the power of integrating VLMs with language models to create a more
intelligent, user-friendly, and efficient 3D printing system. By combining visual analysis with
natural language processing, LLaVA-IntelliPrint autonomously identifies and explains errors,
offers actionable suggestions, and provides operators with valuable insights. This approach
not only reduces the learning curve and training costs but also enhances decision-making,
productivity, and the overall reliability of additive manufacturing processes.

1.4 Contributions

The main contributions of this dissertation include:

• State-of-the-art Vision Encoder for flow rate estimation: Developed a transformer-
based self-supervised learning method (Masked Autoencoder) to estimate printing flow
rate with a Mean Absolute Error of 6.49%, surpassing previous CNN-based approaches
(Margadji et al., 2024).

• First VLM in Additive Manufacturing: Introduced VLM in the field of Additive
Manufacturing, significantly improving error detection accuracy and effectiveness
compared with existing methods and offering functionalities such as interpretability
and human-computer interaction that were previously unavailable.

• VLM for Regression: Introduced a novel architecture that enables VLMs to perform
quantitative regression, allowing the estimation of numerical properties from images
(e.g., determining flow rate from a nozzle image).
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1.5 Roadmap

This thesis is organised into five chapters, each addressing a critical component of the research
process, from background knowledge to the development and evaluation of the proposed
system.

• Chapter 1: Introduction - Introduces additive manufacturing and Vision-Language
Models (VLMs), outlining the research objectives and contributions.

• Chapter 2: Background - Reviews related literature on AI techniques in manufactur-
ing, Vision Transformers (ViTs), and Large Language Models (LLMs), focusing on
the integration of these technologies into VLMs.

• Chapter 3: Methodology - Details the design and implementation of the LLaVA-
IntelliPrint system, including the architecture, dataset, training process, and evaluation
metrics.

• Chapter 4: Experiments and Results - Presents the experimental setup, results,
and analysis, including performance evaluation and ablation studies of the LLaVA-
IntelliPrint system.

• Chapter 5: Conclusion and Future Work - Summarises the research findings,
discusses contributions, and proposes directions for future research.





Chapter 2

Background

This chapter reviews the relevant literature, including existing artificial intelligence tech-
niques in additive manufacturing, the architecture of Vision Transformers (ViTs) and Large
Language Models (LLMs), and the integration of these technologies into VLMs. The chapter
also discusses the challenges and opportunities in using VLMs for regression tasks within
the context of additive manufacturing.

2.1 Artificial Intelligence in Additive Manufacturing

Additive manufacturing (AM) technology has seen significant advancements over the past
decade, finding applications in fields such as medicine, aerospace, and construction (Wong
& Hernandez, 2012). As the technology’s use expands, its maturity continues to improve.
Ensuring that AM products meet mechanical, material, and functional design standards
requires a thorough understanding of the technology’s characteristics, careful selection of
suitable materials and processes, and optimisation of process parameters. To this end, various
methodologies have been developed to enhance the effective application of AM technology.

One particularly impactful development is the integration of artificial intelligence (AI)
through machine learning, which enables the detailed analysis of the physical phenomena
associated with AM. Gu et al. (2023) categories AI techniques in AM into four main areas
Figure 2.1.

The first area involves AI for design optimisation specific to AM technology, streamlining
the design process. (Goh et al., 2021; J. Jiang et al., 2022).
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Fig. 2.1 Additive Manufacturing Categories

The second area uses AI to develop and analyse new materials for AM, focusing on material
properties. Various AI techniques have been proposed for material selection, development,
and properties prediction based on simulations of existing materials synthesis (C.-T. Chen &
Gu, 2019).

The third area includes AI for quality assurance and real-time optimisation. By applying
AI techniques, models on the relationship between process variables and output quality are
generated. This approach allows for various output quality indicators such as dimensions
(C.-T. Chen & Gu, 2019), surface quality (Aoyagi et al., 2019), mechanical properties (Sood
et al., 2012), density (Mbodj et al., 2021), and microstructure (Suzuki et al., 2022) to be
applied.

The fourth area employs AI for predicting output quality, aiming to ensure the quality
certification of finished AM products (Equbal et al., 2011; Shen et al., 2004; R.-J. Wang
et al., 2009).

2.1.1 AI for Quality Assurance

Parameters to Estimate

The focus of this dissertation is on ensuring real-time AM printing quality, falling under the
third category of AI applications in AM. The key objective for 3D printing quality assurance
is estimating the printing parameters such as the actual and target temperatures for the hot-end
and bed, flow rate, lateral speed and Z offset. (Brion & Pattinson, 2022b).

Out of the printing parameters, the flow rate, or the extrusion multiplier, determines the
amount of plastic to extrude (Wenger et al., 2022). The correct flow rate is crucial for dimen-
sionally accurate 3D prints. A flow rate greater than, approximately equal to, and less than
100% is classified as over-extrusion, optimal-extrusion, and under-extrusion, respectively. If
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the flow rate is too high, over-extrusion occurs, causing issues like excessive filament use,
blobbing, stringing, and poor dimensional accuracy. Conversely, a low flow rate leads to
under-extrusion, resulting in problems like gaps, weak layer adhesion, and poor surface finish
(Torta & Torta, 2019). Compared to controlling temperature, which involves heating the
hot-end and bed, adjusting the flow rate by sending G-code to the stepper motors is faster and
easier, and it provides more immediate feedback (Torta & Torta, 2019). This dissertation will
focus on estimating and correcting the printing flow rate, while the estimation of temperature
will be considered for future work.

3D Printing Quality Assurance Models

Various indirect methods have been developed to estimate parameters and detect errors
during additive manufacturing, such as monitoring acoustic emissions (Wu et al., 2015),
printer vibrations (Rao et al., 2015), inertial measurements (J. Guo et al., 2019), pressure
(Estelle & Gozen, 2024), and motor current (Wu et al., 2015). However, data from these
sensors often lack the richness needed for comprehensive error detection and correction,
relying on accurate physical models and costly equipment. Vision sensors, on the other hand,
provide more detailed information, enabling the detection of larger defects like layer shifts
and low-quality infills using traditional computer vision techniques (He et al., 2019; Huang
et al., 2021; Straub, 2015). Multi-camera systems, which offer perspectives beyond a single
visible-spectrum camera, have also been explored (Cunha et al., 2021; Holzmond & Li, 2017;
Straub, 2015), allowing for more detailed error detection. However, these approaches are
often expensive, require complex calibration, are sensitive to lighting and surface properties,
and may be limited by scanner resolution.

Recently, deep learning-based vision approaches have been used for autonomous error
correction after printing, effectively addressing errors that develop as the material cools,
such as cracking and warping (Jin et al., 2020; Z. Zhang et al., 2020). To further reduce and
correct errors during printing, vision technology can be integrated with traditional real-time
feedback loop strategies. Brion et al. (2022) adapted Convolutional Neural Networks (CNNs)
and multi-head neural networks for this purpose, also creating a specialised image dataset for
extrusion quality classification. These models can estimate material flow rate categories (e.g.,
over-extrusion, good extrusion, under-extrusion) during printing. Using the self-regulated
network 8GF (RegNet) (Xu et al., 2021) backbone, their model achieved a mean squared
error of 92 and a mean absolute error of 9.5 % in flow rate prediction (Brion & Pattinson,
2022a).
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Margadji et al. (2024) proposed an iterative learning framework that improves performance
by learning from its own errors during repeated build cycles of the same part. This iterative
learning approach has been shown to enable robust error detection and correction, reaching a
mean absolute error of 8.64 % in estimating the extrusion flow rate. This performance was
achieved by using a RegNet as the convolutional backbone, which was then fine-tuned on 15
typical 3D printing geometries.

With the introduction of the attention mechanism (Vaswani et al., 2023), Vision Transformers
(ViTs) have been used as powerful encoders to capture image visual information (Dosovitskiy
et al., 2021). However, a Vision Transformer-based model has not yet been developed to
estimate 3D printing parameters (i.e., extrusion flow rate). One objective of this thesis is to
implement a ViT-based model on 3D printing nozzle images and evaluate its performance in
estimating the flow rate.

2.2 Vision Transformer (ViT)

Vision Transformers (ViTs) adopt an attention-based architecture that has rapidly become a
leading deep-learning model for computer vision tasks. Notably, Cordonnier et al. (2020)
theoretically demonstrated the equivalence between multi-head self-attention mechanisms
and Convolutional Neural Networks (CNNs), laying the groundwork for subsequent devel-
opments. Building on this foundation, Dosovitskiy et al. (2021) extended the Transformer
architecture (Vaswani et al., 2023) to facilitate large-scale pertaining.

Along with derived pretraining methods such as CLIP (Radford et al., 2021), MAE (He
et al., 2021), and BEiT (Bao et al., 2022), as well as advancements in language-augmented
foundational vision models (Gan et al., 2022; C. Li et al., 2022), ViT has significantly
enhanced capabilities in visual understanding tasks. These tasks encompass classification
(Pham et al., 2023; Radford et al., 2021; J. Yang et al., 2022; Yuan, Chen, et al., 2021),
detection (L. H. Li et al., 2022; Y. Zhong et al., 2021), segmentation (C. Li, Gan, et al., 2023;
H. Zhang et al., 2023), and captioning (J. Li et al., 2023; J. Wang et al., 2022), alongside
visual generation and editing (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al.,
2022).

2.2.1 Vision Transformer Architecture

Figure 2.2 illustrates the ViT architecture, highlighting its key components:
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• Patch Partitioning: Given an image x ∈ RH×W×C, it’s divided into a grid of non-
overlapping patches, each of size P×P. The number of patches N is:

N =
H ×W

P2 (2.1)

where H and W are the image’s height and width, P is the patch size, and N denotes
the total number of patches. Each patch is embedded into a vector of dimension D,
forming a sequence of embeddings Z = [z1,z2, . . . ,zN ] ∈ RN×D.

• Position Embedding: Positional information is added by a learnable position embed-
ding P ∈ RN×D:

Zpos = Z+P (2.2)

where Zpos represents the position-enhanced patch embeddings.

• [CLS] Token: A learnable classification token zcls ∈ RD is prepended to the sequence:

Z0 = [zcls,z
pos
1 ,zpos

2 , . . . ,zpos
N ] (2.3)

where Z0 serves as the input to the Transformer encoder.

• Transformer Encoder: The encoder, consisting of multiple layers, includes self-
attention and feedforward networks.

– Self-Attention: The input sequence Z ∈ R(N+1)×D is projected to query, key,
and value matrices:

Q = ZWQ, K = ZWK, V = ZWV (2.4)

where WQ, WK , and WV are learnable projection matrices. Attention scores are
computed as:

Attention(Q,K,V) = softmax
(

QK⊤
√

dk

)
V (2.5)

with dk being the dimension of the key vectors.

– Feedforward Neural Network: The output of the self-attention is passed through
a feedforward network:

FFN(z) = ReLU(zW1 +b1)W2 +b2 (2.6)

where W1 and W2 are weight matrices, and b1 and b2 are bias vectors.
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• Classification Head: The [CLS] token from the final layer L is passed through an
MLP head for classification:

y = softmax(zL
clsWcls +bcls) (2.7)

where Wcls ∈ RD×K and bcls ∈ RK are the weights and bias of the classification head,
K is the number of classes, and y represents the predicted class probabilities.

Fig. 2.2 Vision Transformer Architecture (Dosovitskiy et al., 2021)

2.2.2 ViT Pretrains

Due to the intensive computational resources required in training Vision Transformers (ViTs),
which typically involve millions of parameters, pretraining ViTs has become a common
practice for feature representation that can be used in downstream tasks. This involves
training them on large datasets to learn rich, general visual representations. The pretraining
phase enables the models to develop a strong understanding of visual features and spatial
hierarchies. Transfer learning then fine-tunes these pre-trained models on specific tasks,
leveraging the general knowledge gained during pretraining to achieve high performance
with relatively less data and computational effort. Some common ViT pretraining approaches
include:

Supervised Pre-Training

• ViT (Vision Transformer): Supervised training directly on the [CLS] token of ViT on
large labelled datasets like ImageNet.
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Self-Supervised Pre-Training

Self-supervised learning (SSL) involves training a model to predict part of the input from
other parts, which does not require labelled data. Common self-supervised learning tech-
niques include Context as supervision (i.e., predicting the relative location between patches),
Inpainting (i.e., filling in masked parts), and Colourisation (i.e., adding colour to a grayscale
image) (Goodfellow et al., 2017).

• MAE (Masked Autoencoders) (He et al., 2021): Trains the model to reconstruct
masked parts of the input image. The masking ratio is usually 75%.

• BEiT (Bidirectional Encoder Representation from Image Transformers) (Bao et
al., 2022): Similar to MAE, BEiT masks random patches of the input image. However,
instead of reconstructing image pixels, it predicts discrete tokens for these masked
patches using a discrete variational autoencoder (dVAE) tokenizer.

• DINO (Self-Distillation with No Labels) & DINO v2 (Caron et al., 2021) (Oquab
et al., 2024): Uses self-distillation with knowledge distillation, where a model is trained
to match the output distribution of a teacher model without using labelled data. On top
of the original DINO, DINO v2 automates the data curation, which enhances stability
and training efficiency.

• Momentum Contrast (MoCo) v3 (X. Chen et al., 2021): Employs both self-supervised
learning (SSL) and contrastive learning. It takes two crops of each image under random
data augmentation, encodes them with separate encoders, and minimises the contrastive
loss between the two outputs.

Contrastive Learning

Contrastive learning involves training a model to distinguish between similar and dissimilar
pairs of data points. It often uses a loss function that encourages the model to bring similar
data points closer and push dissimilar ones apart (Goodfellow et al., 2017).

• CLIP (Contrastive Language-Image Pre-Training) (Radford et al., 2021): CLIP
learns visual concepts from natural language descriptions by training on a large dataset
of images and their corresponding text descriptions.

Other Learning Models

• Swin Transformer (Shifted Windows Transformer) (Z. Liu et al., 2021): Introduces
a hierarchical architecture with shifted windows for local and global self-attention,
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improving efficiency and scalability for dense prediction tasks like object detection
and segmentation.

• DeiT (Data-efficient Image Transformers) (Touvron, Cord, Douze, et al., 2021): En-
hances the data efficiency of vision transformers by integrating knowledge distillation
from a convolutional neural network teacher, which provides additional supervision to
the transformer during training.

Method pre-train data ViT-B ViT-L/16 ViT-H

iGPT (M. Chen et al., 2020)
IN1K 1 +

Labelled Data 2 68.7 72.0 72.6

DINO (Caron et al., 2021) IN1K 82.8 - -
MoCo v3 (X. Chen et al., 2021) IN1K 83.2 84.1 -
BEiT (Bao et al., 2022) IN1K+DALLE 83.2 85.2 -
MAE (He et al., 2021) IN1K 83.6 85.9 86.9

Table 2.1 Comparisons of self-supervised learning ViT pre-trains on ImageNet-1K Top-1
Accuracy. Where [1] stands for ImageNet 1K; [2] Includes CIFAR-10, CIFAR-100 and
STL-10

These ViT pre-training methods are strong candidates for use as vision encoders in VLMs.
Notably, self-supervised learning approaches stand out, especially given the high cost of
acquiring labelled 3D printing data described in natural language. The ability of these
methods to learn without labelled data makes them particularly well-suited for the objectives
of this dissertation.

The Masked Autoencoder (MAE) is chosen as the vision encoder in this dissertation due
to its outstanding performance on the ImageNet-1K dataset (Table 2.1). MAE excels in
classification accuracy, simplicity, and stability, making it superior to other self-supervised
learning methods. Its masking and reconstruction approach effectively learns rich visual
representations, leading to robust generalisation across tasks. The simplicity of MAE’s
architecture also ensures ease of implementation and reliability. making it an ideal vision
encoder for this research. By leveraging MAE as the vision encoder, this research ensures
that the model benefits from robust visual features, enhancing performance in tasks like flow
rate estimation and error detection in additive manufacturing.

2.3 Large Language Models (LLM)

Large Language Models (LLMs), on the other hand, have gained significant attention due
to their universal interface and capability as general-purpose assistants based on instruction.



2.3 Large Language Models (LLM) 15

These models are based on Transformer architecture (Vaswani et al., 2023), with state-of-
the-art modles including BERT (Devlin et al., 2019), T5 (Raffel et al., 2023), GPT-3 (Brown
et al., 2020), Mistral (A. Q. Jiang et al., 2023), Chinchilla (Hoffmann et al., 2022), PaLM
(Chowdhery et al., 2022) and LLaMA (Touvron et al., 2023).

LLMs can be classified into two main types:

• Decoder-Only Models: These models, such as GPT (Radford et al., 2021), use only
the decoder part of the Transformer, generating text in an autoregressive manner by
predicting tokens sequentially. They excel at tasks like text generation and completion.

• Encoder-Decoder Models: Models like BERT (Devlin et al., 2019) and T5 (Raffel et
al., 2023) employ both the encoder and decoder components. The encoder processes the
input sequence to create context-aware representations, while the decoder generates the
output sequence. These models are particularly effective for tasks such as translation
and summarisation.

2.3.1 Architecture of Decoder-Only LLMs

State-of-the-art models such as GPT (Radford et al., 2021) and LLaMA (Touvron et al.,
2023) are prominent examples of Large Language Models (LLMs) that have demonstrated
exceptional capabilities in natural language processing tasks. These models primarily utilise
a decoder-only architecture, which is particularly effective for generating coherent and
contextually relevant free-text outputs from a wide range of input prompts. The decoder-only
architecture is designed to predict the next token in a sequence, making it highly suitable
for tasks that involve text generation, summarisation, translation, and conversational agents.
LLaVA-IntelliPrint could leverage the capability of decoder-only LLMs and generate concise
descriptions on 3D printing images. As illustrated in Figure 2.3, key steps in processing text
data include:

• Tokenisation : Text is divided into tokens, representing words, subwords, or characters.
Subword tokenisation methods, such as Byte Pair Encoding (BPE) (Goodfellow et al.,
2017), are common in LLMs.

• Embedding: Tokens are converted into high-dimensional vectors called embeddings:

ei = Weti (2.8)

where We is the embedding matrix and ti is the ith language token.
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Fig. 2.3 Decoder-Only LLM Architecture (Touvron et al., 2023)

• Positional Embedding: Positional information is added to token embeddings to reflect
the order of tokens in a sequence:

e′i = ei +pi (2.9)

Where pi is the positional information.

• Self-Attention Mechanism: The Transformer’s core innovation, self-attention, assigns
importance to different tokens based on their relevance:

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V (2.10)

where Q, K, and V are the query, key, and value matrices derived from the embeddings,
and dk represents the dimensionality of the key vectors.
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• Feedforward Network: The output is processed through a feedforward neural net-
work:

FFN(x) = (xW1 +b1)W2 +b2 (2.11)

where W1 and W2 are weight matrices, and b1 and b2 are bias vectors.

• Softmax Function: The final output is converted into a probability distribution over
the vocabulary:

P(yi = j|x) =
exp(z j)

∑
V
k=1 exp(zk)

(2.12)

where z j is the logit corresponding to token j, and V is the size of the vocabulary.

• Cross-Entropy Loss: During training, the model’s predictions are evaluated using
cross-entropy loss:

Loss =−
V

∑
i=1

yi log(pi) (2.13)

where yi represents the true distribution (which is 1 for the correct token and 0 for
others), and pi denotes the predicted probability for the i-th token in the vocabulary.
Minimising this loss aids the model in improving its predictions by increasing the
probability of the correct next token.

A thorough understanding of LLM architecture is crucial for effectively exploring and opti-
mising Vision-Language Models (VLMs). By tailoring and refining LLMs for specific tasks,
we can enhance model performance and achieve superior outcomes in targeted applications.
In this research, we hypothesise that modifying the tokeniser and loss function in the LLM
could significantly improve its numeric regression capabilities. Further details on these
modifications will be discussed in Chapter 3.

2.4 Visual-Language Model (VLM)

After reviewing state-of-the-art vision encoders and language models, this section aims to
present and analyse the common architectures and methods in the literature that combine
these modalities to achieve multimodal functionalities.

2.4.1 Visual Question Answering (VQA)

With the advancements in Computer Vision (CV) and Natural Language Processing (NLP),
tasks requiring the understanding of images described by natural language have become
increasingly prevalent. Common applications include image captioning (Anderson et al.,
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2018), visual grounding (Fukui et al., 2016), visual question answering (VQA) (Agrawal
et al., 2016), and visual dialogue (Das et al., 2017; D. Guo et al., 2019). Image captioning
involves describing the content and context of an image. VQA, on the other hand, is the task
of answering open-ended questions based on an image, producing natural language responses
to natural language questions.

The objective of this dissertation—developing a vision-language model as an embodied man-
ufacturing agent—falls at the intersection of VQA and visual dialogue. This project involves
describing printing quality, identifying and correcting errors through natural language, and
engaging in multiple rounds of conversation, including queries about flow rate, extrusion
quality, and printing corrections.

VQA Dataset

As shown in Figure 2.4, VQA datasets typically include an image, a question, and a corre-
sponding gold-standard answer. Several types of VQA datasets exist, including:

Fig. 2.4 Examples from the VQA v2.0 dataset (Goyal et al., 2017)

• General VQA: Includes datasets such as VQA v2.0 (Goyal et al., 2017), MovieQA
(Tapaswi et al., 2016), and Visual Question Answering under Changing Priors (VQA-
CP) (Agrawal et al., 2018).

• Scene-specific VQA Datasets: These require spacial understanding, such as CLEVR
(Johnson et al., 2016), GQA (Hudson & Manning, 2019), and ShapeWorld (Kuhnle &
Copestake, 2017).
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• Knowledge-Based VQA: These datasets necessitate external knowledge not directly
evident from the image, including OK-VQA (Marino et al., 2019), FVQA (P. Wang
et al., 2017), and A-OKVQA (Schwenk et al., 2022).

• Other Domain-Specific VQA Datasets: These focus on particular domains, such
as TextVQA (Singh et al., 2019), which concentrates on text understanding, and
VQA-MED-2021 (Abacha et al., n.d.), which focuses to VQA in the medical field.

2.4.2 Visual Language Model (VLM)

To tackle VQA problems, Visual Language Models (VLMs) are employed. A vision-language
model is an integration of vision and natural language models. It processes images and
their respective textual descriptions as inputs and learns to associate knowledge from both
modalities. The vision component captures spatial features from the images, while the
language model generates text from encoded information.

Vision-language models (VLMs) combine vision models with language models through
various techniques and architectures. Pre-training VLMs is crucial for integrating visual and
textual data, enabling these models to perform tasks such as image captioning and visual
question answering effectively. This process allows the model to learn shared representations
for images and text, enhancing its ability to generate accurate descriptions and understand
complex queries. Pre-training on large-scale datasets ensures robust generalisation across
various tasks without the need for extensive task-specific data for downstream applications,
which require further fine-tuning. Based on training techniques, vision-language pretraining
(VLP) can be classified into End-to-End VLP and Modular VLP.

End-to-End Visual-Language Pretraining

End-to-end vision-language pretraining (VLP) involves training all components simulta-
neously on the same data and objectives. Depending on how modalities are combined,
end-to-end VLP can be classified into four architectures (Figure 2.5).
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Fig. 2.5 Four architectures for end-to-end VLP

Fig. 2.6 Unified transformer architecture Fig. 2.7 Fusion-encoder architecture

• Unified transformer architecture employs transformer-based systems to process and
fuse image and text embeddings. As shown in Figure 2.6, this modality is usually
combined before feeding into transformers. Notable contributions include the work by
Zhou et al. (2019), which first demonstrates improved performance in image captioning
and visual question answering through unified vision-language pre-training. W. Wang
et al. (2022) proposed BEiT-3, which treats images similarly to text by dividing them
into patches and applying a transformer model. This model masks certain tokens,
learning to predict them, effectively capturing contextual relationships within images.
The BLIP framework by J. Li et al. (2022) introduced an image-grounded text encoder
and decoder, achieving state-of-the-art results.

• Fusion-encoder architecture has separate encoders for modalities and integrates them
at an intermediate stage by cross-attention before producing the final prediction by a
multimodal encoder (Figure 2.7). Notable models include Learning Cross-Modality
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Encoder Representations from Transformers (LXMERT) (Tan & Bansal, 2019), which
uses cross-attention layers for tasks like visual question answering, while Align Before
Fuse (ALBEF) (J. Li et al., 2021) aligns modalities using cross-modal contrastive loss
before fusing, enhancing joint representation learning.

• Dual-Encoder Architecture leverages distinct encoders for processing visual and
textual data independently, with their outputs integrated at a subsequent stage. As illus-
trated in Figure 2.8, this architecture includes separate encoders for images and text,
and employs contrastive learning to effectively distinguish between similar and dissim-
ilar pairs of data points. Prominent examples include Contrastive Language–Image
Pre-training (CLIP) (Radford et al., 2021), which employs contrastive learning on
a large-scale dataset of images and captions to generate joint visual-textual embed-
dings. The Large-scale ImaGe and Noisy-text embedding (ALIGN) model (Jia et al.,
2021) extends this approach by using an even larger and more uncurated dataset to
enhance model robustness. Furthermore, Contrastive Captioning (CoCa) (Yu et al.,
2022), which focuses on image captioning, integrates contrastive learning with caption
generation, resulting in outputs that are more contextually relevant.

Fig. 2.8 Dual-encoder architecture

• Encoder-decoder architecture involves two stages: the encoder converts input data
into a latent representation, and the decoder transforms this representation into the
target output. Representative models include Vision-and-Language BERT (ViLBERT)
(Lu et al., 2019), which extends BERT to jointly encode visual and textual inputs before
decoding for various tasks; Simple Visual Language Model Pretraining with Weak
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Supervision (SimVLM) (Z. Wang et al., 2022), which employs weakly supervised data
to enhance visual-language pretraining; and Pathways Language and Image model
(PaLI) (X. Chen et al., 2023), designed for multilingual and multimodal tasks.

Fig. 2.9 Encoder-decoder architecture

Of the four architectures described above, the Unified Transformer architecture and the
Encoder-Decoder architecture are the most suitable for our project, as both involve decoders
for natural language generation. These models leverage decoders to produce free-form text,
enabling more flexible and detailed outputs. In contrast, while the Dual-Encoder and Fusion-
Encoder architectures can be extended to support text generation, they are primarily designed
for tasks involving the matching of images with predefined labels, making them less suitable
for our objective of generating free text descriptions of 3D printing processes. In this
dissertation, we explore the Unified Transformer architecture due to its inherent capability to
handle complex, multimodal data and generate coherent textual descriptions. The Encoder-
Decoder model, though promising, is reserved for future work, as it typically requires more
extensive training data and computational resources to achieve similar levels of performance
in multimodal text generation tasks.

The exploration of these architectures leads us to consider the broader landscape of vision-
language pre-training (VLP) methods, which commonly perform end-to-end pre-training
using large-scale image-text pair datasets. However, as model sizes increase, the computa-
tional cost of pre-training escalates significantly. Moreover, end-to-end pre-trained models
often lack flexibility, making it difficult to incorporate readily available unimodal pre-trained
models, such as large language models (LLMs) (J. Li et al., 2023). This challenge under-
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scores the need for architectures like the Unified Transformer, which can efficiently integrate
multimodal data while mitigating the computational and flexibility constraints associated
with traditional VLP methods.

Modular Visual-Language Pretraining

Modular vision-language pretraining involves using pre-trained unimodal models (e.g., vision
encoders and language models) and keeping them frozen while fine-tuning additional layers
for vision-language alignment. Each module is optimised for its specific task or domain
before integration into the larger system. This approach leverages existing models to reduce
computational costs and enhance performance.

Modular vision-language pretraining involves using pre-trained unimodal models, such as
vision encoders and language models, and keeping them frozen while fine-tuning additional
layers for vision-language alignment. Each module is optimised for its specific task or
domain before integration into the larger system. This approach leverages existing models to
reduce computational costs and enhance performance.

Early work in this area employed a frozen object detector to extract visual features, with
notable examples including Universal Image-Text Representation Learning (UNITER) (Y.-C.
Chen et al., 2020), OSCAR (X. Li et al., 2020), and VinVL (P. Zhang et al., 2021). Recently,
to bridge the gap between vision encoders and vision-language models, many state-of-the-art
models freeze the language model and/or vision model for vision-to-language generation
tasks. Notable models employing this approach include:

• Frozen (Tsimpoukelli et al., 2021): This model connects the final output vector of the
vision encoder and linearly maps the output to D×n channels, subsequently reshaping
the result into a sequence of n embeddings. Here, D represents the token embedding
dimension of the language model.

• Flamingo (Alayrac et al., 2022): This model enhances the integration of visual features
by inserting new cross-attention layers into the large language model (LLM). These
layers are specifically pre-trained to inject visual information into the model effectively.

• BLIP-2 (J. Li et al., 2023): Bootstrapping Language-Image Pre-training (BLIP)-2
introduces a Querying Transformer (Q-Former), which consists of both an image
transformer and a text transformer. These components jointly optimise three objectives
that enforce the queries (a set of learnable embeddings) to extract visual representations
most relevant to the accompanying text.
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• LLaVA (H. Liu, Li, Wu, & Lee, 2023): LLaVA (Large Language and Vision Assistant)
integrates modalities by introducing a projection layer between the open-set visual
encoder of CLIP (Radford et al., 2021) and the language decoder Vicuna (Chiang et al.,
2023). LLaVA also marks the first attempt to extend instruction-tuning to the language-
image multimodal space, paving the way for the development of a general-purpose
visual assistant.

Fig. 2.10 Comparison of VLM on 12 benchmarks (H. Liu, Li, Li, & Lee, 2023)

H. Liu, Li, Li, and Lee (2023) conducted a comprehensive evaluation of LLaVA 1.5 against
state-of-the-art (SoTA) models, as depicted in Figure 2.4. Their findings revealed that LLaVA
outperformed all other models in 11 out of 12 benchmarks and achieved a second-place
ranking in the remaining benchmarks. This impressive performance underscores LLaVA’s
robustness and versatility.

Additionally, several derived works from LLaVA, such as LLaVA-Med (C. Li, Wong, et al.,
2023), LLaVA-Gemma (Hinck et al., 2024), OMG-LLaVA (T. Zhang et al., 2024), and
Math-LLaVA (Shi et al., 2024), have further demonstrated its adaptability and effectiveness
across various domains and specialised tasks. These derivatives show LLaVA’s capability to
handle a wide range of applications, from medical imaging to mathematical problem-solving,
highlighting its flexibility and broad applicability.
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Given LLaVA’s outstanding performance, relatively straightforward architecture, and proven
ability to adapt to diverse tasks, it has been chosen as the project’s foundational model.

2.5 Visual-Language Model as a Quantity Estimator

2.5.1 Visual Language Model as a Quantity Estimator

This project has a unique aspect as it utilises the VLM to estimate the flow rate of the 3D
printing process. This requires using VLM as a numerical regressor. To ensure accurate
regression, Mean Squared Error (MSE) (Equation 2.14) is typically employed. However, the
loss function for most decoder-based LLMs, such as LLAMA (Touvron et al., 2023), GPT-3
(Brown et al., 2020), and T5 (Raffel et al., 2023), is cross-entropy (Equation 2.15), which
optimises the probabilities of correctly classifying tokens in a fixed vocabulary. Using an
LLM as a regressor effectively applies a classification loss function to solve a regression
task. This also explains why in the VQA Challenge 2021 (Yadav et al., 2019), answering
numerical questions had the worst performance out of all types of questions, as illustrated by
Table 2.2. For example, numerical questions usually have a form like: "Count the number of
people" or "How many shoes are there" (Goyal et al., 2017).

LMSE =
1
N

N

∑
i=1

Mi · (xi − x̂i)
2 (2.14)

L (y, ŷ) =−
n

∑
i=1

yi log(ŷi) (2.15)

where y is the true label vector (one-hot encoded) and ŷ is the predicted probability vector.

To address the challenge, Trott et al. (2018) trained a sequential counting mechanism with a
reinforcement learning loss on the counting question subsets of VQA v2 and Visual Genome.
They achieved a small increase in accuracy, but their method is not widely applicable to
the traditional VQA framework. Models by Santoro et al. (2017) and Johnson et al. (2016)
successfully counted on the synthetic CLEVR VQA dataset without bounding boxes and
supervision of where the objects to count are. Y. Zhang et al. (2018) took a step further
and proposed a neural network that leverages attention maps to allow robust counting,
which improved the counting accuracy by 6.6% on the VQA v2 data. These methods have
successfully improved the accuracy of numerical questions. However, they are not directly
applicable to our project. The methods they propose primarily involve counting objects
present in the image, whereas our VLM aims to capture numerical information and features
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Rank Participant team yes/no number other overall
1 PaLI-X - Google Research 96.78 74.14 79.46 86.06
2 PaliGemma-3B (finetune, 448px) 96.39 76.29 78.41 85.64
3 Zhipu AI 95.71 71.97 77.99 84.68
4 PaLI - Google Research 96.13 69.07 77.58 84.34
5 BEiT-3 (Microsoft) 96.43 73.63 75.92 84.18
6 mPLUG-single 94.83 69.82 77.02 83.62
7 MLLM A (MLLM-A-base) 94.69 69.46 75.80 82.94
8 xxw 94.85 72.24 74.15 82.52
9 CoCa - Google Brain 94.55 70.25 74.46 82.33
10 TiMix 94.37 67.28 74.82 82.10

Table 2.2 TOP 10 model accuracy Acc(ans) = min
{#humans that said ans

3 ,1
}

in the VQA Chal-
lenge 2021 in August 2024 (start from 2021, no end date) (Yadav et al., 2019)

within the image and estimate their parameters (i.e. flow rate). This task is more complex
and intricate than simple counting. As a result, this dissertation aims to close the gap in using
VLMs to regress property values (not counting) from an input image.

2.5.2 Vision Encoder as a Quantity Regressor

Vision Encoder to Estimate Tyre-to-Road Friction

Prior work has employed vision encoders to regress properties from images. Vosahlik et al.
(2021) utilised Convolutional Neural Networks (CNNs) combined with an Unscented Kalman
Filter (Wielitzka et al., 2018) to estimate tyre-to-road interface friction parameters. Further
advancing this concept, Ojala and Seppänen (2024) eliminated the need for sensor fusion
via a Kalman filter by using ResNet50 (He et al., 2016) as the vision backbone. The authors
simply added a regression head to the end of the vision backbone to output the friction
estimation and its associated uncertainty.

Vision Encoder to Estimate Age

In the task of estimating a person’s age from an image, several studies have focused on using
Convolutional Neural Networks (CNNs) as feature extractors (Hou et al., 2017; Ojala &
Seppänen, 2024). Recently, more attention has shifted towards Transformer-based approaches
(Touvron, Cord, Sablayrolles, et al., 2021; Yuan, Hou, et al., 2021). Kuprashevich and
Tolstykh (2023) proposed MiVOLO, which extracts facial and bodily features separately
using Vision Transformers. These features are then processed by a regression head optimised
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with a Weighted Mean Squared Error (WMSE) function (Y. Yang et al., 2021), effectively
addressing the issue of imbalanced labels and features.

Overall, in both applications, it can be summarised that researchers typically add a regression
head at the end of vision encoders, achieving high performance in estimating parameters
inherent in images.

2.5.3 Large Language Model as Regressor

Recent research by Vacareanu et al. (2024) demonstrates that LLMs like GPT-4 and Claude
3 can perform linear and non-linear regression tasks using in-context learning. This work
demonstrated that LLMs can generalise from a limited set of input-output pairs presented
during inference, without requiring additional training or fine-tuning.

In their study, Vacareanu et al. (2024) utilised synthetic regression datasets for their experi-
ments. For instance, in one of their linear regression tasks, they generated datasets where
the relationship between the input and output was defined by a simple linear equation, such
as y = wx+ b, where w and b are coefficients. The training dataset consisted of several
input-output pairs (e.g., (x1,y1),(x2,y2), . . . ,(xn,yn)).

To test LLMs like GPT-4, they provided a few examples of input-output pairs directly as
context during inference. The LLM then used these examples to predict the output for a new
input without any additional training.

This is relevant in the context of our project, where the VLM’s task of estimating flow rates in
a 3D printing process can be seen as a regression problem. The empirical evidence provided
by the work suggests that LLMs, when given appropriate in-context examples, can potentially
achieve good performance in regression tasks.

There is a noticeable gap in leveraging VLMs to regress property values (e.g., flow rate) from
images. A VLM could exploit the vision encoder’s ability to capture detailed information
while using the LLM to enhance interactivity, provide interpretable reasoning, and offer
suggestions. Additionally, beyond estimating flow rate, a VLM could correct errors, assess
extrusion quality, and provide explanations, which is beyond the capability of a pure vision
encoder. This research aims to address this gap.
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2.6 Chapter 2 Summary

In this chapter, we explored the integration of artificial intelligence in additive manufacturing
for quality assurance.

We identified Masked Autoencoder (MAE) as a robust and efficient vision encoder due to
its accuracy, simplicity, and stability. LLaVA was selected as the foundational model for
its outstanding performance and adaptability across diverse tasks. To estimate numerical
parameters (i.e. flow rate) from both image and text prompts, we decided to add a regression
head to vision encoders.

These methodologies set the stage for the detailed implementation and experimental proce-
dures in the following chapters.



Chapter 3

Methodology

This chapter details the design and implementation of the LLaVA-IntelliPrint system. It
covers the architecture of the system, including the use of Masked Autoencoders (MAE)
as the vision encoder and the integration of a regression head into the LLM. The chapter
also describes the dataset used, the training process, and the evaluation metrics employed to
assess system performance.

3.1 Large Language and Vision Assistant (LLaVA)

As explained in Chapter 2, LLaVA is selected as the foundational model due to its outstanding
performance and adaptability across diverse tasks. This section introduces the architecture
and properties of LLaVA, along with modifications made to our dataset to align with LLaVA’s
requirements.

3.1.1 Architecture of LLaVA

LLaVA (Large Language and Vision Assistant), developed by H. Liu, Li, Wu, and Lee (2023),
is designed to understand and generate responses to both visual and language inputs. Its
architecture consists of two primary components: the vision encoder and the language model.

The visual feature Zv = g(Xv) is extracted from the input image Xv. A projection matrix W
converts Zv into language embedding tokens Hv, aligning with the word embedding space of
the language model:

Hv =W ·Zv, with Zv = g(Xv) (3.1)
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Image patches are treated as language tokens and are directly fed into the language model to
generate responses, as illustrated in Figure 3.1.

The vision encoder in LLaVA utilises the CLIP (Contrastive Language–Image Pre-training)
visual encoder ViT-L/14 (Radford et al., 2021), which generates visual features from input
images. The input image resolution is 336×336 with a patch size of 14×14. The embedding
dimension is 1024, resulting in 336×336

14×14 = 576 patches, and thus image features represented
by a vector of Zv ∈ RB×576×1024

For the language model, LLaVA incorporates Vicuna (Chiang et al., 2023), an open-source
language model renowned for its superior instruction-following capabilities, fine-tuned on
top of LLaMA 2 (Touvron et al., 2023). The vision encoder and the language model are
connected via a linear MLP layer. The input embedding dimension of each token for LLaMA
2 is 5120. Therefore, to map the vision representation into the same space as the language
model, a two-layer projection layer is used, consisting of transformations from 1024 to 5120,
as shown in Equation 3.2.

Hv = ReLU(W2 ·ReLU(W1 ·Zv +b1)+b2) (3.2)

where W1 ∈ R1024×5120,W2 ∈ R5120×5120, b1 and b2 are the biases

3.1.2 Training and Performance

LLaVA’s training process involves a two-stage instruction-tuning procedure. Figures 3.1 and
3.2 illustrate the pre-training and fine-tuning stages, respectively, with frozen components
indicated by snow symbols and active training components by fire symbols:

1. Pre-training for Feature Alignment: Using 595K image-text pairs from the filtered
Conceptual Caption 3M dataset (Sharma et al., 2018), LLaVA is pre-trained to align
visual features with the language model’s word embeddings. This stage trains the
projection matrix W while keeping the visual encoder and language model weights
frozen (Figure 3.1).

2. Fine-tuning End-to-End: LLaVA is then fine-tuned on a multimodal instruction-
following dataset (LLaVA-Instruct-158K) for tasks such as multimodal chatbot. This
stage updates both the projection layer and the language model (Figure 3.2).

Both pretraining and fine-tuning use the Adam optimiser (Kingma & Ba, 2017), and the loss
function is cross-entropy loss:
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L (y, ŷ) =−
n

∑
i=1

yi log(ŷi) (3.3)

where y is the true label vector and ŷ is the probability of each token logits.

LLaVA demonstrates impressive performance across various tasks. For instance, on the
ScienceQA dataset, LLaVA achieved a state-of-the-art accuracy of 92.53%, surpassing
previous models, including BLIP2 (J. Li et al., 2023), InstructBLIP (Dai et al., 2023) and
Qwen-VL-Chat (Bai et al., 2023).

Fig. 3.1 LLaVA Pretrain Stage (H. Liu, Li, Wu, & Lee, 2023)

Fig. 3.2 LLaVA Finetune Stage (H. Liu, Li, Wu, & Lee, 2023)

3.2 LLaVA-IntelliPrint

As mentioned in previous sections, LLaVA uses Hugging face CLIP ViT-L/14 as its vision
encoder and Vicuna as the language model. However, after training the off-the-shelf LLaVA
on the 3D printing dataset, the performance was unsatisfactory (discussed further in the
Experimental Results Section), with the estimated flow rate showing a mean absolute error
(MAE) of 62.4%

CLIP ViT-L/14 was pre-trained on publicly available image-caption data. This was achieved
through a combination of web crawling and using commonly used pre-existing image datasets
such as YFCC100M (Thomee et al., 2016). These data mainly comprise media objects and
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explain the rationale behind their creation, which do not typically include manufacturing
images, and even less so 3D printing nozzles. Since the 3D printing dataset is so different
from the pretraining images, the model may not have the appropriate capability to capture
flow rate and extrusion quality information.

Therefore, pretraining and fine-tuning the vision encoder becomes the next immediate task.
As mentioned in Chapter 2, due to the difficulty in collecting a labelled 3D printing dataset,
self-supervised training is preferred to reduce the need for labelled data. Masked Autoencoder
is selected as the vision encoder’s evaluation metric.

To address this issue, we propose a four-stage training approach on the 3D printing dataset
and a novel architecture to handle LLM for regression tasks:

3.2.1 Four-Stage Training Approach

As illustrated in Figure 3.3, the four-stage training process includes Pretraining the MAE
ViT, Fine-tuning the MAE ViT, Pretraining LLaVA, and Fine-tuning LLaVA.

Fig. 3.3 LLaVA-IntelliPrint four-stage training

Stage 1: Pretraining MAE ViT

In this stage, the vision encoder is trained on an extensive 3D printing dataset using self-
supervised learning (SSL). This method enables the model to learn meaningful represen-
tations from the data without the need for labelled examples (Section 3.5.1). The primary
objective is to minimize the Mean Squared Error (MSE) between the reconstructed and
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original image pixels, which is calculated as:

LMSE =
1
N

N

∑
i=1

Mi · (xi − x̂i)
2 (3.4)

where xi is the original pixel value, x̂i is the reconstructed pixel value, and Mi is the mask
indicator function, which is 1 if the patch is masked and 0 otherwise.

Stage 2: Fine-tuning MAE ViT

Following pretraining, the vision encoder is fine-tuned on a labelled 3D printing dataset to
specialize in flow rate estimation. (Section 3.5.2). The objective is minimising the Mean
Squared Error (MSE) of flow rate predictions, calculated as:

L (y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.5)

where yi represents the true flow rate and ŷi represents the predicted flow rate.

Stage 3: Pretraining LLaVA

With the fine-tuned vision encoder, the next step is to pre-train the LLaVA model using our
multimodal dataset (Section 3.4), which includes both visual and textual data related to 3D
printing. The vision transformer (ViT) remains frozen during this stage. Visual features from
the MAE ViT are projected into the word embedding space of the language model through a
trainable projection multilayer perceptron (MLP). The goal is to align these visual features
with the language model using the Cross-Entropy loss, defined as:

L (t, t̂) =−
n

∑
i=1

ti log(t̂i) (3.6)

where ti denotes the true token and t̂i denotes the predicted probability of the token.

Stage 4: Fine-tuning LLaVA

The final stage involves fine-tuning the LLaVA model on a task-specific dataset (Section 3.4)
to improve its performance on multimodal tasks relevant to 3D printing. During this phase,
both the projection layer and the language model are updated. The fine-tuning process aims
to optimise the model’s ability to understand and generate accurate responses to multimodal
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instructions by minimising the Cross-Entropy loss of the language model tokens, which is
the same as Equation 3.6.

By following this four-stage training approach, we aim to significantly improve the model’s
performance in estimating flow rates in 3D printing processes and enhance its overall
multimodal capabilities.

3.2.2 LLM Regression Head

Building upon the Four-Stage Training Approach, an effective pipeline for achieving the
dissertation’s objectives, we propose a novel architectural enhancement for Vision-Language
Models (VLMs). This enhancement introduces a dual-objective function that simultaneously
optimises regression loss and language loss, thereby improving the accuracy of flow rate
estimation. This architecture represents a significant advancement in using VLMs for
regression tasks and can be extended to other fields with similar requirements.

As depicted in Figure 3.4, the architecture begins by embedding the vision and language
inputs, which are subsequently processed by the LLAMA model to generate corresponding
image and text outputs. Inspired by ViT, which employs a [CLS] token to aggregate image
information, we integrate a similar concept into our architecture. Given the causal attention
mechanism in language models, where only subsequent tokens can attend to preceding
ones, we introduce a [SEP] token at the end of the image patch embeddings and before the
text embeddings. This [SEP] token is designed to encapsulate all preceding image-related
information.

The [SEP] token is then passed into a regression head responsible for predicting flow rates,
which is optimised using the mean squared error (MSE) loss function. Concurrently, the
language tokens are used in a cross-entropy loss function to refine the model’s language
predictions. These dual objectives are optimised simultaneously, resulting in a joint loss
function, as shown in Equation 3.7:

L =
1
N

N

∑
i=1

(yi − ŷi)
2 +

1
N

N

∑
i=1

C

∑
c=1

yi,c log p̂i,c (3.7)

Here, N represents the number of samples, yi is the true value for the ith sample, ŷi is the
predicted value for the ith sample, yi,c is a binary indicator (0 or 1) indicating whether class
label c is the correct classification for sample i, and p̂i,c is the predicted probability of sample
i belonging to class c.
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Fig. 3.4 LLaVA-IntelliPrint Architecture

During inference, the output from the regression head is not used, as it does not influence the
final text-based prediction. The hypothesis is that during training, the [SEP] token can attend
to all preceding image patch tokens. Backpropagation through the regression head may
enhance the model’s numerical prediction by integrating this information. Additionally, since
later language tokens attend to the [SEP] token, accurately representing numerical values
could improve the language model’s precision and knowledge, leading to better performance.
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3.3 3D Printing Dataset

To effectively implement the Four-Stage Training Approach and the novel LLM Regres-
sion Head architecture, the dataset must align with the foundation model’s (i.e., LLaVA)
requirements. Section 3.3.1 introduces our 3D Printing dataset, while Section 3.4 details the
preprocessing steps taken to adapt it for the Four-Stage Training.

3.3.1 Dataset Introduction

The dataset used in this research was developed by the Computer-Aided Manufacturing
Group at the Department of Engineering, University of Cambridge. It comprises over
500,000 labelled images capturing the material deposition process in extrusion additive
manufacturing (AM). The images were generated using a Creality CR-20 Pro 3D printer
equipped with an endoscope camera and a Raspberry Pi Model 4 B+ to record high-resolution
images of the extrusion process. This dataset is crucial for training deep learning models for
real-time control of 3D printing processes, enabling accurate prediction and correction of
flow rates, thereby improving print quality and efficiency (Brion & Pattinson, 2022a).

Each image has a size of [350 × 350], and is labelled with metadata, specifically, the current
material flow rate, obtained through a custom data acquisition system that integrates firmware
metadata with real-time video. The dataset includes images sampled at 19 different flow rate
levels, ranging from one-third to three times the optimal flow rate, ensuring a comprehensive
representation of various printing conditions. Additionally, a natural language description of
the 3D printing process is included. As shown in Figure 3.5, there are three main components
in the text description:

1. Additive Manufacturing Description: Highlighted in blue, this section states the
type of AM process (i.e., FDM).

2. Printing Quality: Highlighted in green, this section comprises two main pieces of
information, which are the primary parameters to estimate:

• Flow Rate: This percentage number defines the flow rate of the current printing
process.

• Extrusion Quality: There are three categories of extrusion quality: over-
extrusion, good extrusion, and under-extrusion, corresponding to a flow rate
greater than, approximately equal to, and less than 100%, respectively.
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3. Explanation: The last section, highlighted in grey, explores the potential reasons why
this problem may have occurred and provides suggestions to alleviate it.

Fig. 3.5 Examples of the Dataset

3.3.2 Dataset Statistics

Out of the 500,000 data points, the dataset statistics are summarised in the following sections:

Image Colour Statistics

The RGB (Red, Green, Blue) values provide a quantitative measure of the average colour
and variation in the images captured during the 3D printing process. As the colour of
training images varies depending on the material colour, understanding these statistics helps
in normalising the image for training.

• Dataset Image RGB Mean: (0.56101511, 0.57580587, 0.54373282)

• Dataset Image RGB Standard Deviation: (0.24505545, 0.2083447, 0.22679123)

The RGB values are scaled between 0-1. The mean values indicate a balanced colour
distribution with a slight emphasis on green and blue channels. The standard deviations
suggest moderate variability in colour, with the red channel showing the highest variation,
which could be due to the material’s reflectivity under the printing conditions. Figure 3.6
illustrates the proportion of dataset images based on their dominant colour, providing a
comprehensive view of the colour variability present in the images.
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Fig. 3.6 Dataset dominant colours distribution

Extrusion Quality Distribution

Table 3.1 presents the extrusion quality distribution, revealing a data imbalance, with 48.48%
of prints exhibiting under-extrusion and 41.49% showing over-extrusion. Only 10.04% of
the prints achieve good extrusion quality. This imbalance underscores the challenges in
maintaining optimal flow rates, potentially leading to relatively lower classification accuracy
for the Good Extrusion class.

Extrusion Quality Count Percentage
Over-Extrusion 207,432 41.49%
Good Extrusion 50,191 10.04%
Under-Extrusion 242,377 48.48%

Table 3.1 Extrusion Quality Distribution

Flow Rate Data Statistics

The flow rate data provides insights into the material deposition process, which is critical for
maintaining the quality of the 3D print. Table 3.2 displays a wide range of flow rates, with a
mean of 121.38 and a large standard deviation of 76.05, indicating significant variability in
the printing conditions.



3.4 Training Dataset 39

Fig. 3.7 Flow Rate Data Distributions

Statistic Value
Median 100.00
Mean 121.38
Standard Deviation 76.05
Minimum 33.00
25th Percentile 56.00
50th Percentile 100.00
75th Percentile 168.00
Maximum 300.00

Table 3.2 Flow Rate Data Statistics

3.4 Training Dataset

Modifications and preprocessing have been applied to the 3D printing dataset to meet the
requirements of LLaVA and Masked Autoencoder (MAE). This section details the changes
made to the conversation data and the image augmentation techniques applied to the images,
ensuring the model effectively learns and adapts to the specific characteristics of the data.

3.4.1 Conversation Format Modification

Pretraining Dataset

The pretraining dataset for LLaVA comprises one turn of conversation. The original LLaVA
pretraining dataset is a subset of the CC3M dataset. To adapt the dataset for our purposes, we
have developed a Python script that converts the 3D printing dataset as described in section
3.1 to the required format. The pretrain text description follows the format below:

Human: <image>\n Estimate the flow rate and + [Prompt]
GPT: [Answer]

To ensure that the model consistently predicts the critical parameter of flow rate, the text
"Estimate the flow rate and" is added to each prompt. To adapt to various prompts, the
[Prompt] in the dataset is a random sample from the list of instructions for image description.
These instructions maintain the same meaning with natural language variance.
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List of Instructions for Image Description

• Describe the following image in detail
• Provide a detailed description of the given image
• Give an elaborate explanation of the image you see
• Share a comprehensive rundown of the presented image
• Offer a thorough analysis of the image
• Explain the various aspects of the image before you
• Clarify the contents of the displayed image with great detail
• Characterize the image using a well-detailed description
• Break down the elements of the image in a detailed manner
• Walk through the important details of the image
• Portray the image with a rich, descriptive narrative
• Narrate the contents of the image with precision
• Analyze the image in a comprehensive and detailed manner
• Illustrate the image through a descriptive explanation
• Examine the image closely and share its details
• Write an exhaustive depiction of the given image
• Describe the manufacturing process.

An example of the pretrain data is given below:

Example of Pretrain Data

Human: <image>\n Estimate the flow rate and offer a thorough
analysis of the image
GPT: The FDM 3D printer’s nozzle can be seen.This extrusion
nozzle exhibits signs of under-extrusion, suggesting that the
flowrate may be 62 %. Under-extrusion commonly occurs when the
feedrate is too low or the nozzle temperature is insufficient,
resulting in inadequate material deposition.

Fine-tuning Dataset

Multi-turn instruction-following data is used to fine-tune the model. Based on the available
information in the 3D printing dataset, the fine-tuned text description follows the format
below:
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Human: <image>\n Estimate the flow rate and + [Prompt]
GPT: [Answer]
Human: Estimate the flow rate
GPT: [Flow rate label]
Human: Describe the extrusion quality
GPT: [Extrusion quality label]

Similar to pertaining the [Promot] is randomly sampled from the list of instructions. To
extract flow rate and extrusion quality labels from the free text, the following algorithm has
been used and is capable of accurately extracting the information:

• Flow rate: The algorithm first splits the text into individual words. It identifies the
flow rate by searching for numeric values that are before and after five words of the
term "flow".

• Extrusion quality: The algorithm first splits the text into individual words. It looks for
the word "extrusion" and checks nearby words for keywords indicating over-extrusion,
under-extrusion, or good extrusion. Notice that several words have been used in the
dataset to represent good extrusion. Therefore, a dictionary that has similar meanings
to "good extrusion" based on the dataset has been built. If any of these words are found,
it is classified as good extrusion.

Terms indicating good extrusion

"good", "proper", "optimal", "favorable", "consistent",
"effective", "reliable", "steady", "controlled"

An example of the finetune data is given below:
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Example of Finetune Data

Human: <image>\n Estimate the flowrate and Illustrate the image
through a descriptive explanation
GPT: In our sights is the nozzle of a 3D printer, specifically an
FFF type.This extrusion nozzle exhibits signs of under-extrusion,
suggesting that the flowrate may be 66 %. Under-extrusion
commonly occurs when the feedrate is too low or the nozzle
temperature is insufficient, resulting in inadequate material
deposition.
Human: Estimate the flow rate
GPT: 66 %
Human: Describe the extrusion quality
GPT: under-extrusion

3.4.2 Image Pre-Processing

In this study, image preprocessing is a crucial step to ensure the efficacy of the Masked Au-
toencoder model. Proper preprocessing enhances the model’s ability to learn and generalise
from the input data. The following steps outline the specific transformations applied to the
images before they are fed into the model:

• Resize Images: All images from the 3D printing dataset have a dimension of [350 ×
350] and are downscaled to a standard input size of [224 × 224]. This standardisation
ensures consistent input dimensions for the model.

• Interpolation: Use bicubic interpolation for resizing images. Bicubic interpolation
can be represented as:

I′(x,y) =
3

∑
i=0

3

∑
j=0

w(i, j) · I(x+ i−1,y+ j−1), (3.8)

where I is the input image, I′ is the resized image, i and j are incices that iterate over
the 4×4 neighbourhood and w(i, j) are the bicubic interpolation weights computed as:

w(i, j) = (1−|i|/a)(1−| j|/a) (3.9)

with a being a parameter controlling the smoothness of the interpolation.
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• Random Flipping: Apply random horizontal flipping to the images. This augmenta-
tion technique helps in making the model invariant to the orientation of objects in the
images.

• Normalisation: Normalise the images using pre-defined mean µ and standard de-
viation σ values for each channel. As presented in Section 3.1.2, the dataset has a
mean of (0.561, 0.576, 0.544) and a standard deviation of (0.245, 0.208, 0.227). The
normalisation process is represented as:

I′ =
I −µ

σ
, (3.10)

ensuring that the pixel values are consistent, which improves the model’s performance.

The effect of the image processing applied to a raw image can be observed below:

Fig. 3.8 Original Image Fig. 3.9 Image after preprocessing

By applying these transformations, the dataset becomes more robust, mitigating overfitting
and ensuring that the Masked Autoencoder can generalise well to unseen data. The impact
of each transformation on the dataset’s quality and the model’s performance is critically
analysed in subsequent sections.

Some other image processing techniques, such as Random Erasing and PCA Colour Aug-
mentation, have also been attempted.

• Random Erasing: Random erasing introduces the removal of parts of an image with
a certain probability (Z. Zhong et al., 2017).

• PCA Colour Augmentation: Following Brion and Pattinson (2022a), PCA colour
augmentation was attempted. This technique adjusts the principal components of the
image’s colour distribution to introduce slight variations.



44 Methodology

However, during the ablation studies of image preprocessing techniques, they demonstrated a
negative effect on flow rate estimation and were subsequently removed in the MAE training,
which will be presented in Chapter 4.2.

3.5 Masked Autoencoder (MAE)

The first two stages of the proposed four-stage training involve pretraining and fine-tuning
the MAE vision encoder. This section presents the technical details of these two stages.

Masked Autoencoders (MAE) (He et al., 2021) adapt the autoencoder framework, which
includes an encoder to represent images in a latent space and a decoder to reconstruct
the original signal from the latent representation. This concept extends from denoising
autoencoders, which extract important features and reduce noise by reconstructing a clean
version of the input (Vincent et al., 2008). MAE employs an asymmetric design, allowing
the encoder to operate only on the partial, observed signal (without mask tokens), while
a lightweight decoder reconstructs the full signal from the latent representation and mask
tokens. This ensures that most of the learning is done by the encoder, with the decoder being
less complex and discarded when using the Vision Transformer (ViT) as an image encoder.

Fig. 3.10 Masked Autoencoder Architecture (He et al., 2021)
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3.5.1 Pretraining Phase

The first training phase is the pretraining phase, which uses the self-supervised learning
(SSL) technique to learn image representations. The architecture of MAE is shown in Figure
3.10. There are three key components:

• Masking: Similar to the standard ViT, input images are divided into non-overlapping
patches. For the commonly used MAE-ViT-Large Patch 16, images are resized to
[224×224] pixels, and each patch has a size of [16×16]. Therefore, there are a total
of 196 patches, as shown in Equation 3.11. A [CLS] token is also added to the start
of all patches, aiming to capture the information of the whole image. Thus, there
are 196+ 1 = 197 patches. A certain ratio of patches are randomly masked, with a
masking ratio of 75% showing the best performance.

224×224
16×16

= 196 patches (3.11)

• MAE Encoder: The encoder is a ViT, which embeds patches using a linear projection
with added positional embeddings and then processes the resulting set through a series
of Transformer blocks. It only encodes the unmasked patches to extract information.
The authors have provided several standard architectures of ViT in their official code,
as detailed in Table 3.3.

ViT Image Size Patch Size Embedding Dim Depth Heads
ViT Tiny Patch 16 224×224 16×16 192 12 3
ViT Small Patch 16 224×224 16×16 384 12 6
ViT Base Patch 16 224×224 16×16 768 12 12
ViT Large Patch 16 224×224 16×16 1024 24 16
ViT Huge Patch 14 224×224 14×14 1280 31 16

Table 3.3 Different types of ViT implementations in MAE

• MAE Decoder: The input to the MAE decoder is the full set of tokens, including both
encoded visible patches and mask tokens.

The masked sequence Zm is then fed into a decoder to reconstruct the original image.
The decoder first upsamples the sequence by filling in the masked positions with a
learnable embedding emask ∈ RD, D is the embedding dimension, creating a sequence
Zd that matches the original length N:
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Zd = Zm +(1−M)⊙ emask (3.12)

Where M is the mask indicator matrix. It is a binary matrix where each element
indicates whether a corresponding token in the original sequence was masked.

This sequence is then processed by the decoder, which consists of multiple layers of
transformer blocks:

x̂i = Decoder(Zd) (3.13)

where x̂i represents the reconstructed patch embeddings.

The decoder predicts the pixel values for each masked patch. The loss function for recon-
struction is the mean squared error (MSE) between the reconstructed and original images in
the pixel space. (Equation 3.4)

Pretraining Implementations

He et al. (2021) provided the pretrained checkpoint that has been trained on ImageNet-1K
(Russakovsky et al., 2015). To leverage the capabilities of transfer learning, our pretraining
process initialized the model with the parameters provided by the authors and subsequently
trained the model on our dataset. This approach allows the model to benefit from the extensive
training on a large dataset like ImageNet-1K, improving generalization, convergence speed
and performance on our specific task.

3.5.2 Fine-tuning Phase

The second stage is the fine-tuning phase. In this phase, the decoder is discarded, leaving
only the ViT to output a vector representing the input image. There are two ways to obtain
the learned vector:

• Use the [CLS] token

– A [CLS] (Class Token) is added to the start of image patches in Vision Trans-
formers. This token aggregates information for classification tasks (Dosovitskiy
et al., 2021).

• Pooling: Average/Max over all patches
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– Instead of feeding the [CLS] token into the MLP head, average and max pooling
(Equation 3.14) have also been widely utilised in recent transformers and have
demonstrated good performance in classification tasks (Z. Liu et al., 2021; Marin
et al., 2023).

Zavg =
1
N

N

∑
i=1

Z(i) (3.14)

where Z(i) ∈ RD represents the embedding of the i-th patch.

Both the [CLS] token and pooling techniques are experimented with in this dissertation.
An unmasked image is fed into the encoder. The learned vector is then input into an MLP
regression head that outputs the flow rate prediction. In our case, since the patch embedding
size for ViT-L that we use is 1024, the regression head has a structure of

y = ReLU(W1x+b1) (3.15)

Where W1 ∈ R1×1024 is the weight matrix, b1 ∈ R1 is the bias term.

The objective is to reduce the mean squared error (MSE) (Equation 3.16) and is optimised
using the Adam optimiser.

L (y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (3.16)

where yi represents the true flow rate and ŷi represents the predicted flow rate.

Fine-tuning Implementations

During the code implementation, the scale of the flow rate prediction y ranged from 0 to
2 by inputting 1000 images into the Vision Transformer (ViT) without any optimisation.
Since the actual flow rate labels y range from 33 to 300, a min-max scaling has been applied
to normalise the label data. This enhances convergence speed and numerical stability by
ensuring that the data is within a consistent range, which benefits the optimisation algorithm.
The min-max scaling is calculated using Equation 3.17.

x′ =
(x−original_min) · (target_max− target_min)

original_max−original_min
+ target_min (3.17)
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Fig. 3.11 MAE Fine-tune Architecture

Where original_min, original_max, target_min, target_max are the min/max values of the
original data range and the min/max values of the target data range respectively.

3.6 Evaluation Metrics

This section introduces the evaluation methods for both the Masked Autoencoder (MAE)
Vision Transformer (ViT) and the Visual Language Model (VLM). These evaluation metrics
are applied consistently across all experiments to enable a fair comparison of different
models.

3.6.1 Masked Autoencoder Performance Evaluation

Pretrain - Image Reconstruction

The primary quantitative metric used to measure the reconstruction quality of images is the
Mean Squared Error (MSE). The MSE evaluates the average squared difference between the
original and reconstructed images, providing a clear measure of reconstruction accuracy. The
formula for MSE, considering the masked patches, is given by Equation 3.16. Additionally,
qualitative evaluation involves visually inspecting the reconstructed images.
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Finetune - Flow Rate Estimation

For flow rate estimation, we employ the Mean Absolute Error as our evaluation metric. MAE
provides a clear measure of the average magnitude of errors in the predictions, which is
particularly useful for understanding how close the predicted flow rates are to the true labels.
The formula for MAE is given by:

Mean Absolute Error =
1
n

n

∑
i=1

|ŷi − yi| (3.18)

where ŷi and yi represent the predicted and true flow rates, respectively, and n is the number
of observations.

3.6.2 Visual Language Model Performance Evaluation

We evaluate the performance of the VLM on the 3D printing task based on four dimensions:
Flow Rate Estimation, Extrusion Quality Estimation, Language Consistency, and Text
Generation Quality.

Flow Rate Estimation

Flow rate is identified by searching for numeric values within five words of the term "flow".
The mean absolute error of flow rate estimation is then reported using the same MAE formula
described previously (Equation 3.18).

Extrusion Quality Estimation

To systematically measure the performance of the VLM in classifying extrusion quality (i.e.,
over-extrusion, under-extrusion, and good-extrusion), the evaluation is extracted from the
generated text by locating the keyword "extrusion" and checking nearby words for keywords
indicating its quality. The overall accuracy, precision per class, recall per class, and F1 score
per class are calculated. These metrics provide a comprehensive evaluation of the model’s
classification performance by considering both the positive and negative predictions. The
formulas for accuracy, precision, recall, and F1 score are given by:

Accuracy =
T P+T N

T P+T N +FP+FN
(3.19)

Precision =
T P

T P+FP
(3.20)
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Recall =
T P

T P+FN
(3.21)

F1 Score = 2× Precision×Recall
Precision+Recall

(3.22)

where T P, FP, and FN represent the true positives, false positives, and false negatives,
respectively.

Language Consistency

Language Consistency evaluates whether the predicted flow rate aligns with the described
extrusion quality in the generated text. Specifically, it checks if a flow rate below, equal to,
or above 100% is correctly described as under, good, or over-extrusion, respectively. For
example, the second text below is classified as inconsistent because it describes the extrusion
quality as "good" despite a flow rate greater than 100%.

• Consistent text: The extrusion nozzle seen here suggests the utilisation of material
extrusion, a technique frequently employed in additive manufacturing processes. Upon
inspecting the extrusion nozzle, it becomes apparent that the flowrate is 300 %. This
higher-than-desired flowrate suggests over extrusion, potentially causing issues such
as poor surface finish and dimensional inaccuracies

• Inconsistent text: Upon inspection of the extrusion nozzle, it seems that the flowrate
is 112 %. This consistent flowrate indicates good extrusion, ensuring proper material
deposition and layer adhesion, ultimately contributing to the structural integrity of the
printed object.

The percentage of consistent predictions is reported. The consistency can be mathematically
evaluated as follows:

Consistency =
Number of consistent predictions

Total number of predictions
×100% (3.23)

Text Generation Quality

To assess the natural language generation quality, we use BERTScore. Traditional metrics like
BLEU (Papineni et al., 2002) and METEOR (Banerjee & Lavie, 2005) provide quantitative
measures for text generation by evaluating n-gram overlap and flexible matching, respectively.
However, they often fail to capture the full semantic context, making them less suitable
for assessing nuanced text generation. In contrast, BERTScore (T. Zhang et al., 2020)
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evaluates semantic similarity using pre-trained BERT embeddings, offering a more robust,
context-aware assessment. BERTScore calculates precision, recall, and F1 score as follows:

PBERT =
1
|x̂| ∑

x̂ j∈x̂
max
xi∈x

x⊤i x̂ j (3.24)

RBERT =
1
|x| ∑

xi∈x
max
x̂ j∈x̂

x⊤i x̂ j (3.25)

FBERT = 2× PBERT ·RBERT

PBERT +RBERT
(3.26)

where x represents the set of tokens in the reference text, x̂ is the set of tokens in the generated
text, and x⊤i x̂ j denotes the cosine similarity between the BERT embeddings of tokens xi and
x̂ j. A BERTScore typically ranges from 0.85 to 0.90 or higher, indicating a close semantic
match between the generated and reference texts. This is crucial for ensuring the practical
usability of the model’s text outputs.

By applying these rigorous evaluation metrics, we ensure a comprehensive assessment of both
the MAE ViT and VLM models. These metrics not only provide quantitative measures of
performance but also offer qualitative insights that are essential for the practical deployment
of these models in real-world applications.

3.7 Chapter 3 Summary

Chapter 3 outlines the methodology behind our proposed system, LLaVA-IntelliPrint, the
first vision-language model designed for real-time quality assurance in 3D printing pro-
cesses. Built on the foundation of the LLaVA model, the system integrates a large language
model (LLM) with a Vision Transformer (ViT) and adopts a four-stage training approach to
enhance its ability to identify and correct defects during additive manufacturing. A novel
regression head is introduced to enable the LLM to perform numerical regression tasks, such
as estimating flow rates from visual inputs. The methodology also covers comprehensive
dataset preparation, including preprocessing steps and the use of a 3D printing dataset for
training. Additionally, the Masked Autoencoder (MAE) is employed as a vision encoder to
ensure accurate flow rate prediction and error detection. Evaluation metrics, including mean
absolute error for flow rate estimation and VerScore for text generation quality, are used to
assess the system’s performance.





Chapter 4

Experiments & Results

This section details the experimental setups and results for LLaVA-IntelliPrint, evaluated
on the test set of the 3D printing dataset. We conducted two primary sets of experiments:
one focused on the MAE Vision Encoder and the other on the LLaVA-IntelliPrint Vision-
Language Model. Additionally, we present ablation studies that investigate the impact of
each model component. Finally, we discuss the model’s performance in the context of its
relevance to the initial use case, highlighting its practical applicability.

4.1 Experiment Setup

4.1.1 Train Test Split

As mentioned in Section 3.3, the dataset used in this project consists of 500K labelled image-
text pairs. An 8-1-1 train-validation-test split was implemented, resulting in the following
dataset sizes:

Model Data Inputs Train Size Validation Size Test Size
MAE Image + Flow Rate Labels 400K 50K 50K
LLaVA-IntelliPrint Image + Text References 400K 50K 1K

Table 4.1 Dataset Distribution for Experiments

Notice that performing 50,000 test data point inferences on LLaVA-IntelliPrint would require
approximately 40 GPU hours on a single NVIDIA A100. Due to computational constraints,
1,000 data points were sampled from the 50,000 test data.
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4.1.2 MAE Vision Encoder Experiments Overview

Training Parameters

The experiments conducted with the MAE Vision Encoder included several ablation studies to
optimise its performance. Both the pretraining and fine-tuning phases were carried out using
4 NVIDIA A100 GPUs. The specific parameters utilised during pretraining and fine-tuning
are detailed in Table 4.2 and Table 4.3, respectively.

Parameter Value
Batch Size 64
Model ViT Large Patch16
Masking Ratio 0.75
Epochs 20
Base Learning Rate 1.5e-3
Weight Decay 0.05
Image Size 224

Table 4.2 Key Training Parameters for
MAE Pretrain

Parameter Value
Batch Size 256
Model ViT Large Patch16
Epochs 20
Base Learning Rate 1.5e-3
Layer Decay 0.75
Weight Decay 0.05
Drop Path Rate 0.2
Image Size 224
Gradient Clipping 1.0

Table 4.3 Key Training Parameters for
MAE Finetune

Ablation Studies

Two ablation studies were conducted to explore various aspects of the Masked Autoencoder
(MAE). The first ablation study focuses on evaluating the impact of different configurations
within the MAE architecture. The second study examines the effectiveness of various image
augmentation techniques applied within the MAE framework.

4.1.3 LLaVA-IntelliPrint VLM Experiments Overview

Training Parameters

The experiments conducted with the LLaVA-IntelliPrint Vision Language Model included
several ablation studies and model enhancement techniques to optimise its performance.
Both the pretraining and fine-tuning phases were carried out using 4 NVIDIA A100 GPUs.
The specific parameters utilised during pretraining and fine-tuning are detailed in Table 4.4
and Table 4.5, respectively.
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Parameter Value
Num Train Epochs 1
Per Device Train Batch Size 32
Per Device Eval Batch Size 4
Gradient Accumulation Steps 1
Learning Rate 1e-4
Warmup Ratio 0.03
LR Scheduler Type cosine
Model Max Length 2048

Table 4.4 Key Pretraining Parameters for
LLaVA-IntelliPrint

Parameter Value
Num Train Epochs 1
Per Device Train Batch Size 16
Per Device Eval Batch Size 4
Gradient Accumulation Steps 1
Learning Rate 2e-5
Warmup Ratio 0.03
LR Scheduler Type cosine
Model Max Length 2048

Table 4.5 Key Finetuning Parameters for
LLaVA-IntelliPrint

Ablation Studies

Table 4.6 summarises the 11 ablation studies conducted on various modules and architectures
of LLaVA-IntelliPrint. Experiment 0 serves as the baseline, demonstrating the performance
of fine-tuning the 3D printing dataset on the out-of-the-box LLaVA model without any
modifications. Experiments 1-6 investigate the effectiveness of different training compo-
nents within LLaVA-IntelliPrint. Experiments 7-8 assess the impact of various numerical
tokenisation approaches. Finally, Experiments 9-10 evaluate the influence of the novel
architecture by adding a regression head during training.

Pretrain
MAE

Fine-tune
MAE

Train
LLaVA

Numeric
Tokenisation

Regression
Head

Experiment 0 ✓

Experiment 1 ✓ ✓

Experiment 2 ✓ ✓

Experiment 3 ✓ ✓ ✓

Experiment 4 ✓ ✓

Experiment 5 ✓

Experiment 6 ✓

Experiment 7 ✓ ✓ ✓ ✓

Experiment 8 ✓ ✓

Experiment 9 ✓ ✓ ✓ ✓

Experiment 10 ✓ ✓

Table 4.6 LLaVA-IntelliPrint Ablation Study
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Data Efficiency Optimisation

Finally, we performed a data efficiency optimisation to determine whether the entire 500K
dataset is necessary for the model to converge.

4.2 MAE Vision Encoder Performance

4.2.1 Best Performing Model

The best-performing model is the ViT-Large Patch 16, which is both pre-trained and finetuned
on the 3D Printing dataset. This model utilised the [CLS] token connected with a regression
head to achieve superior performance in regression tasks. The image preprocessing steps
included resizing, interpolation, random flipping, and normalisation.

As some examples demonstrated in Figure 4.1, this model achieved a Mean Absolute Error
(MAE) of 6.49%, significantly outperforming the benchmark MAE of 8.64% (Margadji et al.,
2024). This improvement underscores the effectiveness of adding a regression head for MAE
for flow rate estimation in 3D printing applications.

Fig. 4.1 Examples of MAE Flow rate estimation.

4.2.2 Ablation Studies on MAE Architecture

This ablation study investigates how the Vision Transformer (ViT) size, pretraining strategies,
and image feature representation methods affect the MAE model’s ability to reconstruct and
estimate flow rates from 3D printing images.

The ablation study aims to explore three key areas:

1. Pretraining: The impact of pertaining stage is evaluated by comparing two approaches:

• Setup A: Pretraining on the 3D Printing Dataset on top of the ImageNet weights,
followed by finetuning.
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• Setup B: Use the publicly available pretraining weight on ImageNet and only
fine-tune it on the 3D Printing Dataset.

2. Feature Representation: The performance differences between using the [CLS] token
and the pooling technique as the image feature vector for flow rate regression are
examined.

3. Model Size: The study compares the performance of different ViT model sizes—ViT-
Small, ViT-Base, and ViT-Large—to assess how model capacity influences the results.

Table 4.7 presents the results for Training Setup A using different ViT sizes after pretraining
and finetuning on the 3D printing dataset. The corresponding image reconstruction results
are shown in Figure 4.2. Similarly, Table 4.8 shows the results for Training Setup B, with
finetuning based on ImageNet pretrained weights. The reconstruction results are shown in
Figure 4.3.

ViT Size Stage MAE (%) Validation Loss STD

Small-16
Pre-train on 3D Printing Data - 0.0511 0.0026

Fine-tune (Pooling) 39.47 - 7.50
Fine-tune (CLS Token) 27.83 - 3.14

Base-16
Pre-train on 3D Printing Data - 0.0460 0.0025

Fine-tune (Pooling) 38.90 - 5.22
Fine-tune (CLS Token) 25.49 - 2.03

Large-16
Pre-train on 3D Printing Data - 0.0374 0.002

Fine-tune (Pooling) 36.82 - 5.36
Fine-tune (CLS Token) 24.24 - 5.26

Table 4.7 Training Setup A - MAE flow rate regression results: Pretraining on 3D Printing
Data; Finetuning on the 3D Printing pre-trained weights.

Fig. 4.2 MAE ViT-L reconstruction of 3D Printing Data set based on weights pretrained on
the 3D printing dataset.
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ViT Size Stage MAE (%) std

Small-16
Fine-tune (Pooling) 40.32 6.10

Fine-tune (CLS Token) 28.23 4.14

Base-16
Fine-tune (Pooling) 39.15 6.72

Fine-tune (CLS Token) 25.82 2.23

Large-16
Fine-tune (Pooling) 36.44 6.56

Fine-tune (CLS Token) 24.93 5.59
Table 4.8 Training Setup B - MAE flow rate regression results: Finetuned on publicly
available pretrained weights from ImageNet.

Fig. 4.3 MAE ViT-L reconstruction of 3D Printing Data set based on weights pretrained on
ImageNet.

Analysis of Pretraining

Pretraining with ImageNet (Training Setup B) appears to have better reconstruction capa-
bilities, possibly due to the generalised nature of ImageNet, which contains a diverse set of
natural images. However, compared with the natural images, 3D printing nozzle images are
out of distribution, which may introduce noise during finetuning for this specific task, as they
differ significantly from the images in ImageNet. Despite this, it is important to note that a
better reconstruction quality does not necessarily correlate with better feature representation,
as suggested by He et al. (2021). This is evidenced by the lower Mean Absolute Error (MAE)
observed in Training Setup A (24.24%) than in Training Setup B (24.93%), which indicates
that pretraining on the 3D Printing Dataset better facilitated the specific task of flow rate
estimation.

Analysis of Image Feature Representation

In terms of image feature representation, the [CLS] token consistently outperformed the
pooling technique across all ViT sizes, yielding lower MAE values. The [CLS] token is
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specifically designed to encapsulate the global representation of the entire image through
self-attention in the inner network. In comparison, Pooling averages information across all
image patches, potentially leading to information loss.

Analysis of Model Size

The analysis of model size demonstrates that the ViT-Large model achieved the lowest
MAE, suggesting that its greater capacity allows it to capture more complex patterns and
features from the data. The enhanced performance of the ViT-Large model is likely due to its
superior ability to represent the intricate details within the 3D printing images, which are
crucial for accurate flow rate estimation. In comparison, smaller models, even though useful,
might not have the ability to capture all intricate information, which yields a slightly worse
performance. It also indicates that our 3D Printing dataset is complex enough that it did not
underfit ViT-Large.

Section 4.2.2 Summary

In summary, the ablation studies underscore the importance of both pretraining and finetuning
on the 3D Printing Dataset, utilising the [CLS] token for feature representation and leveraging
the ViT-Large model for optimal performance in flow rate estimation tasks.

4.2.3 Ablation Studies on Image Augmentation Methods

Despite identifying the best architecture in terms of Mean Absolute Error (MAE), the optimal
performance, with an MAE of 24.24%, is still significantly higher than the benchmark of
8.64% set by Margadji et al. (2024), who employed Convolutional Neural Networks (CNNs)
for the regression task. Given that Vision Transformers (ViTs) are generally considered more
powerful models, this discrepancy prompted an investigation into various image augmentation
methods to enhance model performance.

We evaluated random flipping, random erasing, and PCA colour augmentation as aug-
mentation techniques. Other preprocessing methods, such as resizing, interpolation, and
normalisation, were kept unchanged due to their importance in ensuring consistent input
data dimensions and distribution. Each augmentation technique was individually tested to
assess its impact on the model’s performance, focusing on the ViT-Large model, which
demonstrated the best performance in the previous analysis. The results are presented in
Table 4.9.
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Augmentation Technique Training Setup A Training Setup B
Random Flipping 6.99 ± 0.96% 6.49 ± 0.80%
Random Erasing 24.14 ± 0.61% 24.23 ± 0.47%
PCA Colour Augmentation 28.05 ± 0.72% 25.13 ± 0.54%

Table 4.9 Comparison of Regression MAE (Mean ± Std) for Different Augmentation Tech-
niques

Analysis of the Results

The results suggest that selective augmentation techniques can significantly influence model
performance:

• Random Flipping: The model achieved notably lower MAEs of 6.99% and 6.49%
when random flipping was the only augmentation method used. This indicates that
introducing variability through image orientation and not implementing the other two
techniques are beneficial.

• Random Erasing: The results show that not using random erasing led to improved
performance. While random erasing can reduce overfitting by discouraging the model
from relying on specific image regions. For 3D printing images, where critical infor-
mation is concentrated in specific areas (e.g., the nozzle), random erasing of these
areas will cause the model to fail to extract useful flow rate representations. That is
why removing such a technique reduces prediction errors.

• PCA Colour Augmentation: The model performed better when PCA colour augmen-
tation was omitted. Although PCA colour augmentation can improve generalisation by
altering colour distributions, in this scenario, it negatively impacted the model’s ability
to accurately estimate flow rates. Avoiding this technique helped preserve crucial
image features necessary for precise predictions.

Section 4.2.3 Summary

In conclusion, the study achieved state-of-the-art performance in flow rate estimation (6.49%
MAE) by employing a two-step approach: pretraining on the 3D Printing Dataset using
ImageNet weights, followed by finetuning on ImageNet data with the ViT-Large architecture.
The image preprocessing methods utilised resizing, interpolation, random flipping, and nor-
malisation, which collectively contributed to optimising model performance while ensuring
consistency and reliability.
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4.3 LLaVA-IntelliPrint VLM Performance

After identifying the optimal Vision Encoder setup for flow rate estimation, we integrated
it into our VLM—LLaVA-IntelliPrint. The performance is presented and discussed in this
section.

4.3.1 Best Performing Model

The best-performing model is based on the setup from Experiment 3, which employs a
Masked Autoencoder (MAE) pre-trained and fine-tuned ViT-Large Patch 16 model. This is
followed by training on LLaVA with a regression head added to the language model. This
model achieved impressive results in flow rate estimation mean absolute error (MAE) of
12.02%, a classification accuracy of 90%, language consistency of 94%, and text generation
quality, as evidenced by a BERTScore F1 of 0.91.

This model is the first Vision-Language Model (VLM) applied to the 3D printing domain. It
successfully demonstrated the ability to perform not only regression and classification tasks
but also to generate accurate free-text explanations. This establishes a robust benchmark,
proving that VLMs can be effectively utilised in 3D printing, and sets a foundation for
advancing machine learning applications in this field. An example of the model’s performance
is shown in Figure 4.4.

Fig. 4.4 Example of LLaVA-IntelliPrint

• Prompt: Estimate the flow rate and Describe the manufacturing process.

• Label: Material extrusion, a common technique in additive manufacturing, is hinted
at by the extrusion nozzle visible in this close-up.From this extrusion nozzle, there
are clear signs of over-extrusion, likely operating at 283 % flow rate. Over-extrusion,
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caused by a high feed rate or excessive temperature, may result in problems like nozzle
clogging or unsatisfactory surface finish.

• Prediction: The focal point of this image is the extrusion nozzle, which suggests
the operation of a material extrusion process, possibly within additive manufacturing.
There are clear indications of over-extrusion from this extrusion nozzle, potentially
functioning at 283 % flow rate. Over-extrusion can occur due to a high feed rate or
excessive temperature, leading to problems like nozzle clogging or inadequate surface
finish.

The LLaVA-IntelliPrint model demonstrates remarkable accuracy in identifying the extrusion
nozzle as the focal point of the image, which is critical in additive manufacturing processes.
The consistent identification of the extrusion nozzle as the focal point across all predictions
highlights its central role in determining the quality and outcome of material extrusion. The
model correctly diagnoses over-extrusion, quantified at 283% flowrate, and links this to
potential causes such as high feedrate or excessive temperature. This precise interpretation,
coupled with the use of domain-specific terminology, underscores the model’s advanced
understanding of the manufacturing process and its potential utility in quality control and
process optimisation.

In the next sections, we will conduct ablation studies to analyse the effect of each training
and architectural component.

4.3.2 LLaVA-IntelliPrint Ablation Study: Experiment 0

As illustrated in Table 4.10, Experiment 0 is served as a baseline which was carried out
by fine-tuning the original LLaVA model, without any modifications, on our 3D printing
dataset. This experiment serves as a reference point for assessing the effectiveness of the
LLaVA-IntelliPrint training pipeline and architecture.

Pretrain
MAE

Fine-tune
MAE

Train
LLaVA

Numeric
Tokenisation

Regression
Head

Experiment 0 ✓

Table 4.10 LLaVA-IntelliPrint Baseline Setup

The baseline model yielded a mean absolute error (MAE) of 62.4 %. This relatively high
error suggests that the out-of-the-box LLaVA model is not well-suited to the 3D printing
dataset. The suboptimal performance could be attributed to the model not being pre-trained
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Experiment
Number

Mean
Absolute

Error

Consistency
Percentage

Extrusion
Quality

Accuracy

Extrusion
Quality

Precision

Extrusion
Quality
Recall

Extrusion
Quality

F1

BERTScore
Precision

BERTScore
Recall

BERTScore
F1

0 62.4 1.0 0.51
[0.97
0.2

0.45]

[0.21
0.13
0.96]

[0.34
0.17
0.63]

0.91 0.91 0.91

Table 4.11 LLaVA on 3D Printing Dataset Baseline

on data that closely resembles the 3D printing domain, making it challenging for the model
to capture the intricate relationships between the input features and the output flow rate.

4.3.3 LLaVA-IntelliPrint Ablation Study: Experiment 1-6

To systematically analyse and understand the contributions of different modules to the
overall performance of the LLaVA-IntelliPrint VLM, 6 experiments were proposed. These
experiments focus on different stages of the vision encoder and language model training,
forming an ablation study to analyse the role of each component.

The setup is reiterated below in Table 4.12 to reduce flipping back and forth. The correspond-
ing results of Experiments 1-6 are summarised in Table 4.13.

Pretrain
MAE

Fine-tune
MAE

Train
LLaVA

Numeric
Tokenisation

Regression
Head

Experiment 0 ✓

Experiment 1 ✓ ✓

Experiment 2 ✓ ✓

Experiment 3 ✓ ✓ ✓

Experiment 4 ✓ ✓

Experiment 5 ✓

Experiment 6 ✓

Table 4.12 LLaVA-IntelliPrint Ablation Study on different training stages

Flow Rate Result Analysis

In Experiment 2, the model was pre-trained using a Masked Autoencoder without subsequent
fine-tuning, resulting in a Mean Absolute Error of 45.78%. While this improvement over the
baseline indicates that pre-training enables the model to learn useful data representations, the
performance is still not optimal. This suggests that pre-training alone, without task-specific
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Experiment
Number

Mean
Absolute

Error

Consistency
Percentage

Extrusion
Quality

Accuracy

Extrusion
Quality

Precision

Extrusion
Quality
Recall

Extrusion
Quality

F1

BERTScore
Precision

BERTScore
Recall

BERTScore
F1

0 62.4 1.0 0.51
[0.97
0.2

0.45]

[0.21
0.13
0.96]

[0.34
0.17
0.63]

0.91 0.91 0.91

1 13.86 0.97 0.89
[0.97
0.56
0.96]

[0.90
0.90
0.86]

[0.94
0.64
0.91]

0.92 0.92 0.92

2 45.78 0.95 0.63
[0.78
0.2

0.94]

[0.80
0.56
0.45]

[0.79
0.29
0.61]

0.91 0.91 0.91

3 13.8 0.96 0.9
[0.97
0.50
0.95]

[0.97
0.81
0.98]

[0.92
0.02
0.92]

0.91 0.91 0.91

4 N/A∗ 0 0
[0
0
0]

[0
0
0]

[0
0
0]

0.81 0.82 0.81

5 N/A∗ 0 0
[0
0
0]

[0
0
0]

[0
0
0]

0.81 0.81 0.81

6 N/A∗ 0 0
[0
0
0]

[0
0
0]

[0
0
0]

0.80 0.81 0.91

Table 4.13 Ablation study results for LLaVA-IntelliPrint, where N/A indicates the models
failed to predict any numerical value for the flow rate

adaptation, is insufficient for fully capturing the complex relationship between the learned
representations and the specific task of predicting flow rate.

Experiment 1, which focused on fine-tuning the model without prior pre-training, resulted
in a significantly lower MAE of 13.86 %. This highlights the critical role of fine-tuning, as
it allows the model to adapt specifically to the dataset at hand, better associating the input
features with the flow rate.

Experiment 3, which combined both pre-training and fine-tuning, achieved the best predic-
tive accuracy with an MAE of 13.8%. This demonstrates that while pre-training helps the
model to learn general representations, targeted fine-tuning is essential to refine these repre-
sentations for the specific task, thus significantly enhancing the model’s ability to generalise
and improve predictive accuracy.

Experiments 4, 5, and 6 assessed the performance of the LLaVA model when the MAE
encoder was directly integrated without either pre-training or fine-tuning. In these cases,
the model struggled to interpret the embeddings generated by the MAE encoder, leading to
poor performance. The misalignment between the MAE-encoded features and the task of
predicting flow rate, coupled with the lack of fine-tuning relevant to additive manufacturing,
resulted in the model generating inaccurate outputs. Consequently, all three models failed to
predict the flow rate and categorise extrusion quality effectively.
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When comparing the baseline (Experiment 0) with Experiment 2, it is evident that pre-training
with the MAE enhances representation learning, thereby improving model performance.
However, the inclusion of fine-tuning, as demonstrated in Experiments 1 and 3, is crucial for
aligning the learned representations with the flow rate prediction task, as evidenced by the
significantly improved results.

Overall, Experiment 3 yielded the lowest mean absolute error of 13.8%, significantly outper-
forming the LLaVA baseline of 62.5%, indicating the effectiveness of our 4-stage training
approach that both MAE pre-training and fine-tuning are critical. Especially fine-tuning,
which allows the model to effectively associate input features with the flow rate.

Classification Result Analysis

The fine-tuned models in Experiments 1 and 3 achieved high accuracy rates of 89% and
90% in classifying extrusion quality (i.e. Under/good/over extrusion), outperforming the
classification accuracy of 87.1% reported by Brion and Pattinson (2022b). However, it
is noted that the classification recall, precision, and F1 scores for the "good-extrusion"
class were lower than those for other classes. This discrepancy could be attributed to data
imbalance, as the "good extrusion" label constitutes only about 10.04% of the original dataset.
This bias imposes inherent difficulty in classifying underrepresented classes.

Consistency Result Analysis

The consistency of predictions was high, with results showing over 95% consistency. This
can be attributed to the nature of causal inference in language models, where later tokens
are influenced by previous predictions, thereby enforcing consistent prediction outcomes for
both flow rate and classification tasks.

Text Generation Quality Analysis

The BERTScores provide an indication of the semantic quality of the generated text, with
BERTScore (Precision, Recall, F1) values ranging from 0 to 1. A score of 0 represents
no semantic similarity, while a score of 1 indicates a perfect semantic match between the
candidate and reference texts. The higher score of BERTScores above 0.9 in Experiments
1-3 suggests that the generated text is coherent and of high quality, closely aligning with the
reference text. In contrast, for Experiments 4-6, where the ViT and LLaMA models were
not properly aligned, the BERTScore dropped to approximately 0.8, indicating a decline in
semantic quality.
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Qualitative Analysis

In addition to quantitative analysis, qualitative analysis was conducted to explore potential
reasons for errors. Three representative examples were selected based on common error
patterns identified:

1. Consistency Error Due to Ambiguous Extrusion Categorisation Label

• Image: Figure 4.5

• Prompt: Estimate the flow rate and provide a detailed description of the image.

• Reference: Examining closely, this seems to be a material extrusion process,
possibly additive manufacturing, with focus on the extrusion nozzle.Upon inspec-
tion, the extrusion nozzle demonstrates a flow rate of 112 %, ensuring consistent
material flow and layer adhesion. This is essential for producing functional
prototypes and end-use parts with precise geometries.

• Prediction: The focal point of this image is the extrusion nozzle, which suggests
the operation of a material extrusion process, possibly within additive manufac-
turing. The flow rate through this extrusion nozzle appears optimal, suggesting
favourable extrusion conditions with a flow rate of 112 %. This steady flow
promotes uniform material distribution, which is vital for intricate designs and
complex geometries.

• Analysis: This case was labelled as a consistency error due to the prediction of a
flow rate of 112%, which was incorrectly categorised as "favourable" extrusion.
The issue arises from a misalignment in the dataset’s labelling, where a flow rate
of 112% should have been categorised as over-extrusion rather than favourable.
There is ambiguity in extrusion quality categorisation, especially on what flow rate
should be classified as "good extrusion". Therefore, even though our prediction
closely matches the reference, it is still marked as inconsistent, indicating a need
for improved data labelling.

2. Misclassification of Desired Shape and Erroneous Flow Rate Prediction

• Image: Figure 4.6

• Prompt: Estimate the flow rate and describe the image in detail.

• Reference: The image highlights the extrusion nozzle, a key element in the
Fused Filament Fabrication (FFF) additive manufacturing process.There are clear
indications of over-extrusion from this extrusion nozzle, potentially functioning
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at 162 % flow rate. Over-extrusion can occur due to a high feed rate or excessive
temperature, leading to problems like nozzle clogging or inadequate surface
finish.

• Prediction: The focal point of this image is the extrusion nozzle, which suggests
the operation of a material extrusion process, possibly within additive manu-
facturing. The extrusion nozzle exhibits signs of under-extrusion, implying a
flow rate of 42 %. This diminished flow rate may stem from issues such as
improper filament tension, insufficient cooling, or even variations in environmen-
tal temperature, all of which affect material flow dynamics during the printing
process.

• Analysis: This error, with a high MAE of 120%, likely arose because the model
interpreted the layer-by-layer pattern as part of the intended geometry rather than
a consequence of over-extrusion. The focus on the nozzle area may have misled
the model into identifying signs of under-extrusion. This issue has been observed
across multiple examples, leading to significant MAEs.

3. Erroneous Estimation Due to Blurry Image

• Image: Figure 4.7

• Prompt: Estimate the flow rate and provide a thorough analysis of the image.

• Reference: Let’s examine the nozzle of this 3D printer.This extrusion nozzle
exhibits signs of under-extrusion, suggesting that the flow rate may be 69 %.
Under-extrusion commonly occurs when the feed rate is too low or the nozzle
temperature is insufficient, resulting in inadequate material deposition.

• Prediction: The focal point of this image is the extrusion nozzle, which suggests
the operation of a material extrusion process, possibly within additive manufactur-
ing. Upon inspecting the extrusion nozzle, it becomes apparent that the flow rate
is 188 %. This higher-than-ideal flow rate suggests over-extrusion, potentially
causing issues such as poor surface finish and dimensional inaccuracies.

• Analysis: The high discrepancy between the predicted and reference flow rates
could be attributed to the blurred and out-of-focus nature of the image. The
model may have misinterpreted the filament’s appearance, leading to an incorrect
categorisation as over-extrusion. This issue is prevalent in cases where the image
quality is poor, making accurate estimation challenging.
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Fig. 4.5 Example 1 Image Fig. 4.6 Example 2 Image Fig. 4.7 Example 3 Image

Summary of Section 4.3.3

Overall, LLaVA-IntelliPrint has demonstrated impressive capabilities in predicting flow
rates, explaining the rationale behind predictions, and providing suggestions to address
identified issues. However, potential improvements could be made to the dataset to ensure
image clarity and consistency in categorising under-extrusion, good extrusion, and over-
extrusion. Additionally, the model’s limitations in distinguishing between intended patterns
and extrusion failures could be further investigated. Future work should focus on enhancing
the dataset and refining the model’s ability to accurately interpret complex 3D printing
scenarios.

4.3.4 LLaVA-IntelliPrint Ablation Study: Experiment 7-8 Numeric
Tokenisation

In addition to the ablation studies, further experiments were conducted to explore techniques
that could potentially enhance the model’s performance. In large language models, text
generation occurs token by token, with each subsequent token influenced by the previous
tokens in the sequence due to the causal inference nature of these models. For instance,
LLaMA 2 has a vocabulary of 30,000 tokens, with numerical tokens represented only by the
digits 0-9. Consequently, any number greater than 9 is represented by multiple tokens (e.g.,
the number 284 is represented by three tokens: "2", "8", "4" rather than a single token "284").
We hypothesised that predicting numerical values as whole tokens, instead of token by token,
might improve numerical estimation accuracy.

Due to computational constraints, this experiment was conducted using the setup from
Experiment 3 (our best-performing model) and Experiment 0 (Baseline). The effect of
numerical tokenisation on Experiment 3 is reported as Experiment 7, while its effect on
Experiment 0 is reported as Experiment 8.
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The experimental setup is summarised in Table 4.14, and the results are presented in Table
4.15.

Pretrain
MAE

Fine-tune
MAE

Train
LLaVA

Numeric
Tokenisation

Regression
Head

Experiment 7 ✓ ✓ ✓ ✓

Experiment 8 ✓ ✓

Table 4.14 LLaVA-IntelliPrint Numeric Tokenisation Ablation Study

Experiment
Number

Mean
Absolute

Error

Consistency
Percentage

Extrusion
Quality

Accuracy

Extrusion
Quality

Precision

Extrusion
Quality
Recall

Extrusion
Quality

F1

BERTScore
Precision

BERTScore
Recall

BERTScore
F1

7 14.29 0.95 0.90
[0.97
0.61
0.91]

[0.91
0.68
0.96]

[0.94
0.64
0.94]

0.91 0.92 0.91

8 63.56 0.96 0.48
[0.96
0.18
0.42]

[0.56
0.20
0.92]

[0.35
0.21
0.61]

0.91 0.92 0.91

Table 4.15 Tokenisation Experiment Results

When compared Experiment 3 with 7, 0 with 8, there is no clear benefit from combining
numerical tokens into whole units. In fact, the MAE increased from 13.80% to 14.29% and
62.4% to 63.56%, indicating worse performance. This may be due to the fact that treating
numerical tokens as whole units can make the cross-entropy loss function less effective
in estimating flow rate. For example, if the reference value is 13 and the prediction is 18,
treating numbers separately allows for some alignment, as the first digit "1" matches and the
loss is calculated on the differences between "3" and "8". However, if numbers are treated
as whole units, the loss of "13" to "18" is treated similarly to any two-digit number (e.g.
"13" to "99"), potentially weakening the loss function’s ability to make accurate numerical
predictions.

This analysis underscores the need for careful consideration when altering tokenisation
strategies in language models, particularly when dealing with numerical data. The find-
ings indicate that the conventional token-by-token approach may be more robust for tasks
involving numerical prediction.

4.3.5 LLaVA-IntelliPrint Ablation Study: Experiment 9-10 Regression
Head

This ablation study aims to examine the effectiveness of the novel architecture of adding
a regression head during Vision-Language Model (VLM) training. Due to computational
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limitations, this study was conducted only on the baseline model (Experiment 0) and the
best-performing model (Experiment 3). The experimental setup is summarised in Table 4.16,
and the results are presented in Table 4.17.

Pretrain
MAE

Fine-tune
MAE

Train
LLaVA

Numeric
Tokenisation

Regression
Head

Experiment 9 ✓ ✓ ✓ ✓

Experiment 10 ✓ ✓

Table 4.16 LLaVA-IntelliPrint Regression Head Ablation Study

Experiment
Number

Mean
Absolute

Error

Consistency
Percentage

Extrusion
Quality

Accuracy

Extrusion
Quality

Precision

Extrusion
Quality
Recall

Extrusion
Quality

F1

BERTScore
Precision

BERTScore
Recall

BERTScore
F1

9 12.02 0.94 0.90
[0.98
0.58
0.93]

[0.88
0.82
0.95]

[0.93
0.68
0.94]

0.91 0.91 0.91

10 57.73 0.91 0.255
[0.44
0.12
0.91]

[0.01
0.94
0.36]

[0.03
0.22
0.51]

0.91 0.90 0.91

Table 4.17 Regression Head Experiment Results

The results clearly demonstrate that the addition of a regression head significantly improves
the model’s regression performance. For the best-performing model (Experiment 3), the
mean absolute error (MAE) decreased from 13.8 to 12.02, representing a 13% reduction.
Similarly, for the baseline model (Experiment 0), the MAE decreased from 62.4 to 57.73,
indicating a 7.5% reduction.

This improvement in regression accuracy, while maintaining language quality, classification
accuracy, and consistency, validates the hypothesis that incorporating a joint Mean Squared
Error (MSE) loss function alongside cross-entropy during training can enhance the overall
regression performance of language models without undermining their natural language
processing capabilities. The ability of the regression head to improve numerical prediction
accuracy within a VLM framework establishes a new standard for integrating regression
tasks in Large Language Models, particularly in specialised domains like 3D printing.

4.3.6 Data Efficiency Optimisation

During the training phase, rapid loss convergence was observed, leading to the hypothesis
that a smaller training dataset could yield similar results. Considering that acquiring labelled
free-text descriptions in the 3D printing domain is particularly challenging, a data efficiency
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analysis was conducted to potentially broaden the applicability of the LLaVA-IntelliPrint
framework across different domains.

In this experiment, a checkpoint was saved for every 10% increment in the training data
(i.e., a saving step of 40K) for the setups described in Experiments 1, 2, and 3. These
configurations were chosen as they produced meaningful and concise predictions. The results
of these experiments are depicted in Figures 4.8, 4.9, and 4.10.

Fig. 4.8 Experiment 1: Number of Data Points vs Evaluation Metrics

Fig. 4.9 Experiment 2: Number of Data Points vs Evaluation Metrics
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Fig. 4.10 Experiment 3: Number of Data Points vs Evaluation Metrics

The graphs indicate that the evaluation metrics remain relatively stable across varying
amounts of training data, including flow rate MAE, classification accuracy, consistency
percentage, and BERTScore F1. The standard deviation for these metrics, as shown in Table
4.18, further supports this observation.

Mean Absolute
Error std

Consistency
Percentage std

Classification
Accuracy std

BERTScore
F1 std

Experiment 1 0.64 0.005 0.005 0.005
Experiment 2 0.81 0.002 0.005 0.005
Experiment 3 0.53 0.005 0.005 0.005
Table 4.18 Standard deviation of evaluation metrics across different experiments

The low standard deviation values indicate that the model had already converged within
10% of the original dataset (40K), suggesting that the entire 400K training dataset may
not be necessary. The negligible performance improvements observed after training on
40K data points could be attributed to the dataset’s homogeneity (i.e., the nozzle images
from the 3D printing process share similar distributions). Once the model fully learns the
underlying patterns, additional data does not provide significant benefits. For this specific
task, a substantially smaller dataset can achieve performance comparable to that obtained
with a much larger dataset. This insight is particularly valuable in fields where acquiring large
labelled datasets is challenging, enhancing the versatility and adaptability of the LLaVA-
IntelliPrint framework to other specialised applications.
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4.4 Chapter 4 Summary

Chapter 4 first validated the effectiveness of the MAE Vision Encoder and then validated
the LLaVA-IntelliPrint model in enhancing additive manufacturing processes. The Masked
AutoEncoder demonstrated robust performance in reconstructing 3D printing images and
accurately estimating flow rates, highlighting the importance of the fine-tuning step in
aligning image features with flow rate estimation. The LLaVA-IntelliPrint model achieved
impressive results in flow rate estimation (12.02% Mean Absolute Error), extrusion quality
classification (90%), language consistency (94%), and text generation quality, as evidenced
by a BERTScore F1 of 0.91. This model has shown significant potential in enhancing human-
computer interaction by autonomously detecting printing errors and providing corrective
suggestions in real time.

Further enhancements revealed that only 10% (40K) of the original training dataset is suffi-
cient for the model to converge, demonstrating its versatility and data efficiency. Additionally,
the proposed regression task framework introduces a novel architecture that achieves state-
of-the-art results in Vision-Language Model (VLM) regression tasks, marking a first in the
existing literature. This approach has high potential for application in other fields with similar
objectives.





Chapter 5

Conclusions and Future Work

This dissertation introduced and validated LLaVA-IntelliPrint, a novel framework com-
bining Vision-Language Models (VLMs) with advanced vision transformers to enhance
additive manufacturing processes. As the first of its kind in the industry, LLaVA-IntelliPrint
demonstrates the efficacy of VLMs in accurately describing the quantitative properties of
Fused Deposition Modelling (FDM) processes, showcasing their potential as embodied
manufacturing agents.

The LLaVA-IntelliPrint model achieved state-of-the-art performance in key areas: flow rate
estimation (12.02% Mean Absolute Error), extrusion quality classification (90% accuracy),
language consistency (94%), and text generation quality (BERTScore F1 of 0.91). These
results underscore the model’s potential to enhance human-computer interaction by enabling
real-time identification and correction of printing errors. Section 4.3.1 provides a detailed
example of the model’s performance.

Given its strong performance, LLaVA-IntelliPrint is highly relevant to practitioners in FDM.
Its ability to accurately estimate flow rates and classify extrusion quality allows seamless
integration into existing workflows, enhancing both process reliability and product quality.
By diagnosing over-extrusion or under-extrusion from nozzle images, the model provides
real-time feedback and corrective suggestions, significantly reducing time and material waste.
The generated text not only identifies the causes of printing errors but also offers actionable
solutions, effectively automating the error detection and correction process.

By automating the detection and correction of common FDM issues, LLaVA-IntelliPrint
reduces the need for continuous human oversight, lowering operational costs and improving
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scalability. This capability is particularly valuable in high-volume manufacturing, where
consistent print quality is crucial.

Furthermore, the study revealed that the model could achieve comparable performance
with only 40K training data points, demonstrating its data efficiency and versatility. The
introduction of a regression head for LLMs and VLMs offers a novel approach to regression
tasks, with potential benefits extending beyond manufacturing to broader machine-learning
fields involving similar tasks.

In conclusion, LLaVA-IntelliPrint represents a significant advancement in integrating artificial
intelligence into additive manufacturing. It provides a robust solution for real-time quality
assurance and sets a new standard for intelligent manufacturing systems.

5.1 Future Work

We acknowledge the limitations of this work, which were influenced by time constraints (4
months) and computational resources (1000 GPU hours). Based on these limitations, we
propose the following areas for future research.

5.1.1 Upgrade the Language Model

During the course of this project, Meta AI released their latest version of LLaMA 3
(AI@Meta, 2024), which has been described as the "most capable openly available LLM to
date". In this work, we utilised LLaMA 2 as the language model within the LLaVA frame-
work. Future work could explore upgrading to LLaMA 3 to determine if a more powerful
language model can further enhance the performance of LLaVA-IntelliPrint, potentially
leading to more accurate flow rate predictions that matches the performance of a pure vision
encoder.

5.1.2 Post-processing Vision Encoder and Language Model for En-
hanced Flow Rate Estimation

As suggested in Section 4, the vision encoder achieved a mean absolute error of 6.49%
in flow rate estimation, whereas the combined Vision-Language Model (VLM) approach
resulted in an MAE of 12.02%. Until we identify methods to further improve the VLM
regression performance, one approach could involve a post-processing step where the flow
rate tokens predicted by the VLM are replaced with the values estimated by the vision
encoder. By combining the numerical accuracy of the vision encoder with the detailed
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process descriptions generated by the language model, we can potentially enhance both the
accuracy and interpretability of the flow rate predictions.

5.1.3 Rigorous Testing of the LLM Regression Head

Due to computational limitations, we only tested the novel architecture of adding a regression
head to the language model (LLM) on the best-performing model and the baseline LLaVA
model. Future work should involve more extensive testing across a variety of models and
datasets to thoroughly evaluate the architecture’s capability for regression tasks in LLMs.
This would help establish the generalisability and robustness of this approach.

5.1.4 Refining Extrusion Quality Labels

As discussed in Section 4.3.3, the current extrusion quality labels are ambiguous, lacking
a clear categorisation that aligns with specific flow rates. For instance, a flow rate of 112%
is labelled as "good extrusion", which could also be interpreted as over-extrusion. This
ambiguity undermines the model’s classification performance and could be addressed by
filtering and refining the dataset to establish more precise and consistent labels.

5.1.5 Expanding the Dataset with a Greater Variety of Information

Expanding the current 3D printing dataset with additional labelled data could significantly
enhance LLaVA-IntelliPrint’s capabilities for various tasks. For example, including G-code,
the language used to control 3D printers, in the training data could enable the model to
directly output commands that correct deviations in flow rate. Additionally, incorporating
nozzle and bed temperature data, which is a crucial parameter in 3D printing, could further
improve the model’s ability to assess and optimise print quality. This expansion could make
the model more versatile and effective in addressing a broader range of challenges in additive
manufacturing.

5.1.6 Evaluating the Model on Different Datasets

The current model was trained and tested on a dataset with similar images and labels. It would
be valuable to explore the model’s performance on other additive manufacturing datasets
with varying characteristics. This would provide insights into the model’s robustness and
generalisability, ensuring its applicability across different contexts and potentially leading to
improvements in its architecture and training process.





References

1. Abacha, A. B., Sarrouti, M., Demner-Fushman, D., Hasan, S. A., & Müller, H. (n.d.).
Overview of the VQA-Med Task at ImageCLEF 2021: Visual Question Answering
and Generation in the Medical Domain.

2. Agrawal, A., Batra, D., Parikh, D., & Kembhavi, A. (2018, June). Don’t Just Assume;
Look and Answer: Overcoming Priors for Visual Question Answering [arXiv:1712.00377
[cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/1712.00377

3. Agrawal, A., Lu, J., Antol, S., Mitchell, M., Zitnick, C. L., Batra, D., & Parikh, D.
(2016, October). VQA: Visual Question Answering [arXiv:1505.00468 [cs]]. Retrieved
July 29, 2024, from http://arxiv.org/abs/1505.00468

4. AI@Meta. (2024). Llama 3 Model Card. https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md

5. Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Men-
sch, A., Millican, K., Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T.,
Gong, Z., Samangooei, S., Monteiro, M., Menick, J., Borgeaud, S., . . . Simonyan,
K. (2022, November). Flamingo: A Visual Language Model for Few-Shot Learning
[arXiv:2204.14198 [cs]]. Retrieved April 7, 2024, from http://arxiv.org/abs/2204.14198

6. Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., & Zhang,
L. (2018, March). Bottom-Up and Top-Down Attention for Image Captioning and
Visual Question Answering [arXiv:1707.07998 [cs]]. Retrieved July 29, 2024, from
http://arxiv.org/abs/1707.07998

7. Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to construct
process maps for additive manufacturing using a support vector machine. Additive
Manufacturing, 27, 353–362. https://doi.org/10.1016/j.addma.2019.03.013

8. Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang, P., Lin, J., Zhou, C., & Zhou, J.
(2023, October). Qwen-VL: A Versatile Vision-Language Model for Understanding,
Localization, Text Reading, and Beyond [arXiv:2308.12966 [cs]]. Retrieved August
14, 2024, from http://arxiv.org/abs/2308.12966

9. Banerjee, S., & Lavie, A. (2005, June). METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In J. Goldstein, A.
Lavie, C.-Y. Lin, & C. Voss (Eds.), Proceedings of the ACL Workshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization
(pp. 65–72). Association for Computational Linguistics. Retrieved August 3, 2024,
from https://aclanthology.org/W05-0909

http://arxiv.org/abs/1712.00377
http://arxiv.org/abs/1505.00468
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2204.14198
http://arxiv.org/abs/1707.07998
https://doi.org/10.1016/j.addma.2019.03.013
http://arxiv.org/abs/2308.12966
https://aclanthology.org/W05-0909


80 References

10. Bao, H., Dong, L., Piao, S., & Wei, F. (2022, September). BEiT: BERT Pre-Training
of Image Transformers [arXiv:2106.08254 [cs]]. Retrieved April 7, 2024, from http:
//arxiv.org/abs/2106.08254

11. Brion, D. A. J., & Pattinson, S. W. (2022a). Quantitative and Real-Time Control of 3D
Printing Material Flow Through Deep Learning. Advanced Intelligent Systems, 4(11),
2200153. https://doi.org/10.1002/aisy.202200153

12. Brion, D. A. J., & Pattinson, S. W. (2022b). Generalisable 3D printing error detection
and correction via multi-head neural networks. Nature Communications, 13(1), 4654.
https://doi.org/10.1038/s41467-022-31985-y

13. Brion, D. A., Shen, M., & Pattinson, S. W. (2022). Automated recognition and correc-
tion of warp deformation in extrusion additive manufacturing. Additive Manufacturing,
56, 102838. https://doi.org/10.1016/j.addma.2022.102838

14. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei,
D. (2020, July). Language Models are Few-Shot Learners [arXiv:2005.14165 [cs]].
Retrieved April 7, 2024, from http://arxiv.org/abs/2005.14165

15. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A.
(2021, May). Emerging Properties in Self-Supervised Vision Transformers [arXiv:2104.14294
[cs]]. Retrieved July 27, 2024, from http://arxiv.org/abs/2104.14294

16. Chen, C.-T., & Gu, G. X. (2019). Machine learning for composite materials. MRS
Communications, 9(2), 556–566. https://doi.org/10.1557/mrc.2019.32

17. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Dhariwal, P., Luan, D., & Sutskever,
I. (2020). Generative Pretraining from Pixels.

18. Chen, X., Wang, X., Changpinyo, S., Piergiovanni, A. J., Padlewski, P., Salz, D.,
Goodman, S., Grycner, A., Mustafa, B., Beyer, L., Kolesnikov, A., Puigcerver, J.,
Ding, N., Rong, K., Akbari, H., Mishra, G., Xue, L., Thapliyal, A., Bradbury, J., . . .
Soricut, R. (2023, June). PaLI: A Jointly-Scaled Multilingual Language-Image Model
[arXiv:2209.06794 [cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/2209.06794

19. Chen, X., Xie, S., & He, K. (2021, August). An Empirical Study of Training Self-
Supervised Vision Transformers [arXiv:2104.02057 [cs]]. Retrieved July 28, 2024,
from http://arxiv.org/abs/2104.02057

20. Chen, Y.-C., Li, L., Yu, L., Kholy, A. E., Ahmed, F., Gan, Z., Cheng, Y., & Liu, J. (2020,
July). UNITER: UNiversal Image-TExt Representation Learning [arXiv:1909.11740
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/1909.11740

21. Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S.,
Zhuang, Y., Gonzalez, J. E., Stoica, I., & Xing, E. P. (2023, March). Vicuna: An
Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality | LMSYS Org.
Retrieved July 31, 2024, from https://lmsys.org/blog/2023-03-30-vicuna

http://arxiv.org/abs/2106.08254
http://arxiv.org/abs/2106.08254
https://doi.org/10.1002/aisy.202200153
https://doi.org/10.1038/s41467-022-31985-y
https://doi.org/10.1016/j.addma.2022.102838
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2104.14294
https://doi.org/10.1557/mrc.2019.32
http://arxiv.org/abs/2209.06794
http://arxiv.org/abs/2104.02057
http://arxiv.org/abs/1909.11740
https://lmsys.org/blog/2023-03-30-vicuna


References 81

22. Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham,
P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S.,
Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., . . . Fiedel, N.
(2022, October). PaLM: Scaling Language Modeling with Pathways [arXiv:2204.02311
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/2204.02311

23. Cordonnier, J.-B., Loukas, A., & Jaggi, M. (2020, January). On the Relationship
between Self-Attention and Convolutional Layers [arXiv:1911.03584 [cs, stat]]. Re-
trieved July 27, 2024, from http://arxiv.org/abs/1911.03584

24. Cunha, F. G., Santos, T. G., & Xavier, J. (2021). In Situ Monitoring of Additive
Manufacturing Using Digital Image Correlation: A Review. Materials, 14(6), 1511.
https://doi.org/10.3390/ma14061511

25. Dai, W., Li, J., Li, D., Tiong, A. M. H., Zhao, J., Wang, W., Li, B., Fung, P., & Hoi,
S. (2023, June). InstructBLIP: Towards General-purpose Vision-Language Models
with Instruction Tuning [arXiv:2305.06500 [cs]]. Retrieved August 14, 2024, from
http://arxiv.org/abs/2305.06500

26. Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M. F., Parikh, D., &
Batra, D. (2017, August). Visual Dialog [arXiv:1611.08669 [cs]]. Retrieved July 29,
2024, from http://arxiv.org/abs/1611.08669

27. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019, May). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding [arXiv:1810.04805
[cs]]. Retrieved May 31, 2024, from http://arxiv.org/abs/1810.04805

28. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021,
June). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
[arXiv:2010.11929 [cs]]. Retrieved April 7, 2024, from http://arxiv.org/abs/2010.11929

29. Equbal, A., Sood, A. K., & Mahapatra, S. (2011). Prediction of dimensional accuracy
in fused deposition modelling: A fuzzy logic approach [Publisher: Inderscience Pub-
lishers]. International Journal of Productivity and Quality Management, 7(1), 22–43.
https://doi.org/10.1504/IJPQM.2011.03773

30. Estelle, K. T., & Gozen, B. A. (2024). Precision flow rate control during micro-scale
material extrusion by iterative learning of pressure-flow rate relationships. Additive
Manufacturing, 82, 104031. https://doi.org/10.1016/j.addma.2024.104031

31. Farhan Khan, M., Alam, A., Ateeb Siddiqui, M., Saad Alam, M., Rafat, Y., Salik, N., &
Al-Saidan, I. (2021). Real-time defect detection in 3D printing using machine learning.
Materials Today: Proceedings, 42, 521–528. https://doi.org/10.1016/j.matpr.2020.10.
482

32. Fukui, A., Park, D. H., Yang, D., Rohrbach, A., Darrell, T., & Rohrbach, M. (2016,
September). Multimodal Compact Bilinear Pooling for Visual Question Answering
and Visual Grounding [arXiv:1606.01847 [cs]]. Retrieved July 29, 2024, from http:
//arxiv.org/abs/1606.01847

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/1911.03584
https://doi.org/10.3390/ma14061511
http://arxiv.org/abs/2305.06500
http://arxiv.org/abs/1611.08669
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
https://doi.org/10.1504/IJPQM.2011.03773
https://doi.org/10.1016/j.addma.2024.104031
https://doi.org/10.1016/j.matpr.2020.10.482
https://doi.org/10.1016/j.matpr.2020.10.482
http://arxiv.org/abs/1606.01847
http://arxiv.org/abs/1606.01847


82 References

33. Gan, Z., Li, L., Li, C., Wang, L., Liu, Z., & Gao, J. (2022, October). Vision-Language
Pre-training: Basics, Recent Advances, and Future Trends [arXiv:2210.09263 [cs]].
Retrieved July 29, 2024, from http://arxiv.org/abs/2210.09263

34. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang,
C. C., Shin, Y. C., Zhang, S., & Zavattieri, P. D. (2015). The status, challenges, and
future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89.
https://doi.org/10.1016/j.cad.2015.04.001

35. Goh, G. D., Sing, S. L., & Yeong, W. Y. (2021). A review on machine learning in 3D
printing: Applications, potential, and challenges. Artificial Intelligence Review, 54(1),
63–94. https://doi.org/10.1007/s10462-020-09876-9

36. Goodfellow, I., Bengio, Y., & Courville, A. (2017, January). Deep Learning. MIT
Press.

37. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., & Parikh, D. (2017, May). Making
the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question
Answering [arXiv:1612.00837 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/
abs/1612.00837

38. Gu, S., Choi, M., Park, H., Jeong, S., Doh, J., & Park, S.-i. (2023). Application
of artificial intelligence in additive manufacturing. JMST Advances, 5(4), 93–104.
https://doi.org/10.1007/s42791-023-00057-7

39. Guo, D., Xu, C., & Tao, D. (2019, February). Image-Question-Answer Synergistic
Network for Visual Dialog [arXiv:1902.09774 [cs]]. Retrieved July 29, 2024, from
http://arxiv.org/abs/1902.09774

40. Guo, J., Wu, J., Sun, Z., Long, J., & Zhang, S. (2019). Fault Diagnosis of Delta 3D
Printers Using Transfer Support Vector Machine With Attitude Signals [Conference
Name: IEEE Access]. IEEE Access, 7, 40359–40368. https://doi.org/10.1109/ACCESS.
2019.2905264

41. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2021, December). Masked
Autoencoders Are Scalable Vision Learners [arXiv:2111.06377 [cs]]. Retrieved June
25, 2024, from http://arxiv.org/abs/2111.06377

42. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

43. He, K., Zhang, Q., & Hong, Y. (2019). Profile monitoring based quality control method
for fused deposition modeling process. Journal of Intelligent Manufacturing, 30(2),
947–958. https://doi.org/10.1007/s10845-018-1424-9

44. Hinck, M., Olson, M. L., Cobbley, D., Tseng, S.-Y., & Lal, V. (2024, June). LLaVA-
Gemma: Accelerating Multimodal Foundation Models with a Compact Language
Model [arXiv:2404.01331 [cs]]. Retrieved August 4, 2024, from http://arxiv.org/abs/
2404.01331

http://arxiv.org/abs/2210.09263
https://doi.org/10.1016/j.cad.2015.04.001
https://doi.org/10.1007/s10462-020-09876-9
http://arxiv.org/abs/1612.00837
http://arxiv.org/abs/1612.00837
https://doi.org/10.1007/s42791-023-00057-7
http://arxiv.org/abs/1902.09774
https://doi.org/10.1109/ACCESS.2019.2905264
https://doi.org/10.1109/ACCESS.2019.2905264
http://arxiv.org/abs/2111.06377
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10845-018-1424-9
http://arxiv.org/abs/2404.01331
http://arxiv.org/abs/2404.01331


References 83

45. Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,
Casas, D. d. L., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., Driessche, G. v. d., Damoc, B., Guy, A., Osindero, S., Simonyan, K.,
Elsen, E., . . . Sifre, L. (2022, March). Training Compute-Optimal Large Language
Models [arXiv:2203.15556 [cs]]. Retrieved April 7, 2024, from http://arxiv.org/abs/
2203.15556

46. Holzmond, O., & Li, X. (2017). In situ real time defect detection of 3D printed parts.
Additive Manufacturing, 17, 135–142. https://doi.org/10.1016/j.addma.2017.08.003

47. Hou, L., Samaras, D., Kurc, T., Gao, Y., & Saltz, J. (2017). ConvNets with Smooth
Adaptive Activation Functions for Regression [ISSN: 2640-3498]. Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics, 430–439.
Retrieved August 3, 2024, from https://proceedings.mlr.press/v54/hou17a.html

48. Huang, T., Wang, S., Yang, S., & Dai, W. (2021). Statistical process monitoring
in a specified period for the image data of fused deposition modeling parts with
consistent layers. Journal of Intelligent Manufacturing, 32(8), 2181–2196. https :
//doi.org/10.1007/s10845-020-01628-4

49. Hudson, D. A., & Manning, C. D. (2019, May). GQA: A New Dataset for Real-World
Visual Reasoning and Compositional Question Answering [arXiv:1902.09506 [cs]].
Retrieved July 29, 2024, from http://arxiv.org/abs/1902.09506

50. Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q. V., Sung, Y., Li, Z.,
& Duerig, T. (2021, June). Scaling Up Visual and Vision-Language Representation
Learning With Noisy Text Supervision [arXiv:2102.05918 [cs]]. Retrieved July 29,
2024, from http://arxiv.org/abs/2102.05918

51. Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l.,
Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A.,
Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., & Sayed, W. E. (2023, October).
Mistral 7B [arXiv:2310.06825 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/
2310.06825

52. Jiang, J., Xiong, Y., Zhang, Z., & Rosen, D. W. (2022). Machine learning integrated
design for additive manufacturing. Journal of Intelligent Manufacturing, 33(4), 1073–
1086. https://doi.org/10.1007/s10845-020-01715-6

53. Jin, Z., Zhang, Z., & Gu, G. X. (2020). Automated Real-Time Detection and Prediction
of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial
Intelligence [_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.201900130].
Advanced Intelligent Systems, 2(1), 1900130. https://doi.org/10.1002/aisy.201900130

54. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick,
R. (2016, December). CLEVR: A Diagnostic Dataset for Compositional Language and
Elementary Visual Reasoning [arXiv:1612.06890 [cs]]. Retrieved July 29, 2024, from
http://arxiv.org/abs/1612.06890

55. Kingma, D. P., & Ba, J. (2017, January). Adam: A Method for Stochastic Optimization
[arXiv:1412.6980 [cs]]. Retrieved August 6, 2024, from http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
https://doi.org/10.1016/j.addma.2017.08.003
https://proceedings.mlr.press/v54/hou17a.html
https://doi.org/10.1007/s10845-020-01628-4
https://doi.org/10.1007/s10845-020-01628-4
http://arxiv.org/abs/1902.09506
http://arxiv.org/abs/2102.05918
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
https://doi.org/10.1007/s10845-020-01715-6
https://doi.org/10.1002/aisy.201900130
http://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1412.6980


84 References

56. Kuhnle, A., & Copestake, A. (2017, April). ShapeWorld - A new test methodology for
multimodal language understanding [arXiv:1704.04517 [cs]]. Retrieved July 29, 2024,
from http://arxiv.org/abs/1704.04517

57. Kuprashevich, M., & Tolstykh, I. (2023, September). MiVOLO: Multi-input Trans-
former for Age and Gender Estimation [arXiv:2307.04616 [cs]]. Retrieved August 2,
2024, from http://arxiv.org/abs/2307.04616

58. Li, C., Gan, Z., Yang, Z., Yang, J., Li, L., Wang, L., & Gao, J. (2023, September).
Multimodal Foundation Models: From Specialists to General-Purpose Assistants
[arXiv:2309.10020 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/2309.10020

59. Li, C., Liu, H., Li, L. H., Zhang, P., Aneja, J., Yang, J., Jin, P., Hu, H., Liu, Z., Lee, Y. J.,
& Gao, J. (2022, October). ELEVATER: A Benchmark and Toolkit for Evaluating
Language-Augmented Visual Models [arXiv:2204.08790 [cs]]. Retrieved May 13,
2024, from http://arxiv.org/abs/2204.08790

60. Li, C., Wong, C., Zhang, S., Usuyama, N., Liu, H., Yang, J., Naumann, T., Poon, H., &
Gao, J. (2023, June). LLaVA-Med: Training a Large Language-and-Vision Assistant
for Biomedicine in One Day [arXiv:2306.00890 [cs]]. Retrieved May 24, 2024, from
http://arxiv.org/abs/2306.00890

61. Li, J., Li, D., Savarese, S., & Hoi, S. (2023, June). BLIP-2: Bootstrapping Language-
Image Pre-training with Frozen Image Encoders and Large Language Models [arXiv:2301.12597
[cs]]. Retrieved July 23, 2024, from http://arxiv.org/abs/2301.12597

62. Li, J., Li, D., Xiong, C., & Hoi, S. (2022, February). BLIP: Bootstrapping Language-
Image Pre-training for Unified Vision-Language Understanding and Generation [arXiv:2201.12086
[cs]]. Retrieved May 16, 2024, from http://arxiv.org/abs/2201.12086

63. Li, J., Selvaraju, R. R., Gotmare, A. D., Joty, S., Xiong, C., & Hoi, S. (2021, October).
Align before Fuse: Vision and Language Representation Learning with Momentum
Distillation [arXiv:2107.07651 [cs]]. Retrieved July 30, 2024, from http://arxiv.org/
abs/2107.07651

64. Li, L. H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L., Zhang,
L., Hwang, J.-N., Chang, K.-W., & Gao, J. (2022, June). Grounded Language-Image
Pre-training [arXiv:2112.03857 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/
abs/2112.03857

65. Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei,
F., Choi, Y., & Gao, J. (2020, July). Oscar: Object-Semantics Aligned Pre-training
for Vision-Language Tasks [arXiv:2004.06165 [cs]]. Retrieved July 30, 2024, from
http://arxiv.org/abs/2004.06165

66. Liu, H., Li, C., Li, Y., & Lee, Y. J. (2023, October). Improved Baselines with Visual
Instruction Tuning [arXiv:2310.03744 [cs]]. Retrieved May 13, 2024, from http :
//arxiv.org/abs/2310.03744

67. Liu, H., Li, C., Wu, Q., & Lee, Y. J. (2023, December). Visual Instruction Tuning
[arXiv:2304.08485 [cs]]. Retrieved May 13, 2024, from http://arxiv.org/abs/2304.
08485

http://arxiv.org/abs/1704.04517
http://arxiv.org/abs/2307.04616
http://arxiv.org/abs/2309.10020
http://arxiv.org/abs/2204.08790
http://arxiv.org/abs/2306.00890
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2201.12086
http://arxiv.org/abs/2107.07651
http://arxiv.org/abs/2107.07651
http://arxiv.org/abs/2112.03857
http://arxiv.org/abs/2112.03857
http://arxiv.org/abs/2004.06165
http://arxiv.org/abs/2310.03744
http://arxiv.org/abs/2310.03744
http://arxiv.org/abs/2304.08485
http://arxiv.org/abs/2304.08485


References 85

68. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021,
August). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[arXiv:2103.14030 [cs]]. Retrieved July 27, 2024, from http://arxiv.org/abs/2103.14030

69. Lu, J., Batra, D., Parikh, D., & Lee, S. (2019, August). ViLBERT: Pretraining Task-
Agnostic Visiolinguistic Representations for Vision-and-Language Tasks [arXiv:1908.02265
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/1908.02265

70. Margadji, C., Brion, D. A., & Pattinson, S. W. (2024). Iterative learning for efficient
additive mass production. Additive Manufacturing, 89, 104271. https://doi.org/10.
1016/j.addma.2024.104271

71. Marin, D., Chang, J.-H. R., Ranjan, A., Prabhu, A., Rastegari, M., & Tuzel, O. (2023).
Token Pooling in Vision Transformers for Image Classification. 2023 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 12–21. https://doi.org/10.
1109/WACV56688.2023.00010

72. Marino, K., Rastegari, M., Farhadi, A., & Mottaghi, R. (2019, September). OK-
VQA: A Visual Question Answering Benchmark Requiring External Knowledge
[arXiv:1906.00067 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/1906.00067

73. Mbodj, N. G., Abuabiah, M., Plapper, P., El Kandaoui, M., & Yaacoubi, S. (2021). Bead
Geometry Prediction in Laser-Wire Additive Manufacturing Process Using Machine
Learning: Case of Study. Applied Sciences, 11(24), 11949. https://doi.org/10.3390/
app112411949

74. Ojala, R., & Seppänen, A. (2024). Lightweight Regression Model with Prediction
Interval Estimation for Computer Vision-based Winter Road Surface Condition Moni-
toring. IEEE Transactions on Intelligent Vehicles, 1–13. https://doi.org/10.1109/TIV.
2024.3371104

75. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez,
P., Haziza, D., Massa, F., El-Nouby, A., Assran, M., Ballas, N., Galuba, W., Howes,
R., Huang, P.-Y., Li, S.-W., Misra, I., Rabbat, M., Sharma, V., . . . Bojanowski, P.
(2024, February). DINOv2: Learning Robust Visual Features without Supervision
[arXiv:2304.07193 [cs]]. Retrieved August 2, 2024, from http://arxiv.org/abs/2304.
07193

76. Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002, July). Bleu: A Method for
Automatic Evaluation of Machine Translation. In P. Isabelle, E. Charniak, & D. Lin
(Eds.), Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (pp. 311–318). Association for Computational Linguistics. https://doi.org/
10.3115/1073083.1073135

77. Pham, H., Dai, Z., Ghiasi, G., Kawaguchi, K., Liu, H., Yu, A. W., Yu, J., Chen, Y.-T.,
Luong, M.-T., Wu, Y., Tan, M., & Le, Q. V. (2023, April). Combined Scaling for
Zero-shot Transfer Learning [arXiv:2111.10050 [cs]]. Retrieved July 29, 2024, from
http://arxiv.org/abs/2111.10050

78. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021, Febru-
ary). Learning Transferable Visual Models From Natural Language Supervision
[arXiv:2103.00020 [cs]]. Retrieved April 4, 2024, from http://arxiv.org/abs/2103.00020

http://arxiv.org/abs/2103.14030
http://arxiv.org/abs/1908.02265
https://doi.org/10.1016/j.addma.2024.104271
https://doi.org/10.1016/j.addma.2024.104271
https://doi.org/10.1109/WACV56688.2023.00010
https://doi.org/10.1109/WACV56688.2023.00010
http://arxiv.org/abs/1906.00067
https://doi.org/10.3390/app112411949
https://doi.org/10.3390/app112411949
https://doi.org/10.1109/TIV.2024.3371104
https://doi.org/10.1109/TIV.2024.3371104
http://arxiv.org/abs/2304.07193
http://arxiv.org/abs/2304.07193
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2111.10050
http://arxiv.org/abs/2103.00020


86 References

79. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., & Liu, P. J. (2023, September). Exploring the Limits of Transfer Learning with
a Unified Text-to-Text Transformer [arXiv:1910.10683 [cs, stat]]. Retrieved July 29,
2024, from http://arxiv.org/abs/1910.10683

80. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022, April). Hierarchi-
cal Text-Conditional Image Generation with CLIP Latents [arXiv:2204.06125 [cs]].
Retrieved July 29, 2024, from http://arxiv.org/abs/2204.06125

81. Rao, P. K., Liu, J. (, Roberson, D., & Kong, Z. ( (2015). Sensor-Based Online Process
Fault Detection in Additive Manufacturing. Volume 2: Materials; Biomanufacturing;
Properties, Applications and Systems; Sustainable Manufacturing, V002T04A010.
https://doi.org/10.1115/MSEC2015-9389

82. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022, April). High-
Resolution Image Synthesis with Latent Diffusion Models [arXiv:2112.10752 [cs]].
Retrieved July 29, 2024, from http://arxiv.org/abs/2112.10752

83. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015, January). ImageNet
Large Scale Visual Recognition Challenge [arXiv:1409.0575 [cs]]. Retrieved July 24,
2024, from http://arxiv.org/abs/1409.0575

84. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S. K. S.,
Ayan, B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J., & Norouzi,
M. (2022, May). Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding [arXiv:2205.11487 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/
abs/2205.11487

85. Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M., Pascanu, R., Battaglia, P.,
& Lillicrap, T. (2017, June). A simple neural network module for relational reasoning
[arXiv:1706.01427 [cs]]. Retrieved August 3, 2024, from http://arxiv.org/abs/1706.
01427

86. Schwenk, D., Khandelwal, A., Clark, C., Marino, K., & Mottaghi, R. (2022). A-
OKVQA: A Benchmark for Visual Question Answering Using World Knowledge
[Series Title: Lecture Notes in Computer Science]. In S. Avidan, G. Brostow, M. Cissé,
G. M. Farinella, & T. Hassner (Eds.), Computer Vision – ECCV 2022 (pp. 146–162,
Vol. 13668). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-20074-
8_9

87. Sharma, P., Ding, N., Goodman, S., & Soricut, R. (2018, July). Conceptual Captions:
A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning.
In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (pp. 2556–2565).
Association for Computational Linguistics. https://doi.org/10.18653/v1/P18-1238

88. Shen, X., Yao, J., Wang, Y., & Yang, J. (2004). Density Prediction of Selective Laser
Sintering Parts Based on Artificial Neural Network. In F.-L. Yin, J. Wang, & C. Guo
(Eds.), Advances in Neural Networks - ISNN 2004 (pp. 832–840). Springer. https:
//doi.org/10.1007/978-3-540-28648-6_133

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2204.06125
https://doi.org/10.1115/MSEC2015-9389
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/2205.11487
http://arxiv.org/abs/1706.01427
http://arxiv.org/abs/1706.01427
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.1007/978-3-540-28648-6_133
https://doi.org/10.1007/978-3-540-28648-6_133


References 87

89. Shi, W., Hu, Z., Bin, Y., Liu, J., Yang, Y., Ng, S.-K., Bing, L., & Lee, R. K.-W.
(2024, June). Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal
Large Language Models [arXiv:2406.17294 [cs]]. Retrieved August 4, 2024, from
http://arxiv.org/abs/2406.17294

90. Singh, A., Natarajan, V., Shah, M., Jiang, Y., Chen, X., Batra, D., Parikh, D., &
Rohrbach, M. (2019, May). Towards VQA Models That Can Read [arXiv:1904.08920
[cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/1904.08920

91. Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2012). Experimental investigation and
empirical modelling of FDM process for compressive strength improvement. Journal
of Advanced Research, 3(1), 81–90. https://doi.org/10.1016/j.jare.2011.05.001

92. Straub, J. (2015). Initial Work on the Characterization of Additive Manufacturing (3D
Printing) Using Software Image Analysis. Machines, 3(2), 55–71. https://doi.org/10.
3390/machines3020055

93. Suzuki, A., Shiba, Y., Ibe, H., Takata, N., & Kobashi, M. (2022). Machine-learning
assisted optimization of process parameters for controlling the microstructure in a laser
powder bed fused WC/Co cemented carbide. Additive Manufacturing, 59, 103089.
https://doi.org/10.1016/j.addma.2022.103089

94. Tan, H., & Bansal, M. (2019, December). LXMERT: Learning Cross-Modality Encoder
Representations from Transformers [arXiv:1908.07490 [cs]]. Retrieved July 30, 2024,
from http://arxiv.org/abs/1908.07490

95. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., & Fidler, S. (2016,
September). MovieQA: Understanding Stories in Movies through Question-Answering
[arXiv:1512.02902 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/1512.02902

96. Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D.,
& Li, L.-J. (2016). YFCC100M: The New Data in Multimedia Research [arXiv:1503.01817
[cs]]. Communications of the ACM, 59(2), 64–73. https://doi.org/10.1145/2812802

97. Torta, S., & Torta, J. (2019). 3D printing: An introduction [OCLC: on1024256466].
Mercury Learning; Information.

98. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2021,
January). Training data-efficient image transformers & distillation through attention
[arXiv:2012.12877 [cs]]. Retrieved April 7, 2024, from http://arxiv.org/abs/2012.12877

99. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & Jégou, H. (2021, April).
Going deeper with Image Transformers [arXiv:2103.17239 [cs]]. Retrieved August 3,
2024, from http://arxiv.org/abs/2103.17239

100. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M.,
Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., . . . Scialom, T. (2023, July).
Llama 2: Open Foundation and Fine-Tuned Chat Models [arXiv:2307.09288 [cs]].
Retrieved April 7, 2024, from http://arxiv.org/abs/2307.09288

http://arxiv.org/abs/2406.17294
http://arxiv.org/abs/1904.08920
https://doi.org/10.1016/j.jare.2011.05.001
https://doi.org/10.3390/machines3020055
https://doi.org/10.3390/machines3020055
https://doi.org/10.1016/j.addma.2022.103089
http://arxiv.org/abs/1908.07490
http://arxiv.org/abs/1512.02902
https://doi.org/10.1145/2812802
http://arxiv.org/abs/2012.12877
http://arxiv.org/abs/2103.17239
http://arxiv.org/abs/2307.09288


88 References

101. Trott, A., Xiong, C., & Socher, R. (2018, March). Interpretable Counting for Visual
Question Answering [arXiv:1712.08697 [cs]]. Retrieved August 3, 2024, from http:
//arxiv.org/abs/1712.08697

102. Tsimpoukelli, M., Menick, J., Cabi, S., Eslami, S. M. A., Vinyals, O., & Hill, F. (2021,
July). Multimodal Few-Shot Learning with Frozen Language Models [arXiv:2106.13884
[cs]]. Retrieved May 9, 2024, from http://arxiv.org/abs/2106.13884

103. Vacareanu, R., Negru, V.-A., Suciu, V., & Surdeanu, M. (2024, April). From Words
to Numbers: Your Large Language Model Is Secretly A Capable Regressor When
Given In-Context Examples [arXiv:2404.07544 [cs]]. Retrieved June 23, 2024, from
http://arxiv.org/abs/2404.07544

104. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2023, August). Attention Is All You Need [arXiv:1706.03762
[cs]]. Retrieved July 24, 2024, from http://arxiv.org/abs/1706.03762

105. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. Proceedings of the 25th
international conference on Machine learning - ICML ’08, 1096–1103. https://doi.org/
10.1145/1390156.1390294

106. Vosahlik, D., Cech, J., Hanis, T., Konopisky, A., Rurtle, T., Svancar, J., & Twardzik, T.
(2021). Self-Supervised Learning of Camera-based Drivable Surface Friction. 2021
IEEE International Intelligent Transportation Systems Conference (ITSC), 2773–2780.
https://doi.org/10.1109/ITSC48978.2021.9564894

107. Wang, J., Yang, Z., Hu, X., Li, L., Lin, K., Gan, Z., Liu, Z., Liu, C., & Wang, L. (2022,
December). GIT: A Generative Image-to-text Transformer for Vision and Language
[arXiv:2205.14100 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/2205.14100

108. Wang, P., Wu, Q., Shen, C., Hengel, A. v. d., & Dick, A. (2017, August). FVQA:
Fact-based Visual Question Answering [arXiv:1606.05433 [cs]]. Retrieved July 29,
2024, from http://arxiv.org/abs/1606.05433

109. Wang, R.-J., Li, J., Wang, F., Li, X., & Wu, Q. (2009). ANN model for the prediction of
density in Selective Laser Sintering [Publisher: Inderscience Publishers]. International
Journal of Manufacturing Research. Retrieved August 14, 2024, from https://www.
inderscienceonline.com/doi/10.1504/IJMR.2009.026579

110. Wang, W., Bao, H., Dong, L., Bjorck, J., Peng, Z., Liu, Q., Aggarwal, K., Mohammed,
O. K., Singhal, S., Som, S., & Wei, F. (2022, August). Image as a Foreign Language:
BEiT Pretraining for All Vision and Vision-Language Tasks [arXiv:2208.10442 [cs]].
Retrieved July 30, 2024, from http://arxiv.org/abs/2208.10442

111. Wang, Z., Yu, J., Yu, A. W., Dai, Z., Tsvetkov, Y., & Cao, Y. (2022, May). SimVLM:
Simple Visual Language Model Pretraining with Weak Supervision [arXiv:2108.10904
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/2108.10904

112. Wenger, L., Strauß, S., & Hubbuch, J. (2022). Automated and dynamic extrusion pres-
sure adjustment based on real-time flow rate measurements for precise ink dispensing in
3D bioprinting. Bioprinting, 28, e00229. https://doi.org/10.1016/j.bprint.2022.e00229

http://arxiv.org/abs/1712.08697
http://arxiv.org/abs/1712.08697
http://arxiv.org/abs/2106.13884
http://arxiv.org/abs/2404.07544
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1109/ITSC48978.2021.9564894
http://arxiv.org/abs/2205.14100
http://arxiv.org/abs/1606.05433
https://www.inderscienceonline.com/doi/10.1504/IJMR.2009.026579
https://www.inderscienceonline.com/doi/10.1504/IJMR.2009.026579
http://arxiv.org/abs/2208.10442
http://arxiv.org/abs/2108.10904
https://doi.org/10.1016/j.bprint.2022.e00229


References 89

113. Wielitzka, M., Dagen, M., & Ortmaier, T. (2018). Sensitivity-based Road Friction
Estimation in Vehicle Dynamics using the Unscented Kalman Filter [ISSN: 2378-5861].
2018 Annual American Control Conference (ACC), 2593–2598. https://doi.org/10.
23919/ACC.2018.8431259

114. Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN
Mechanical Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760

115. Wu, H., Wang, Y., & Yu, Z. (2015). In situ monitoring of FDM machine condition via
acoustic emission. The International Journal of Advanced Manufacturing Technology.
https://doi.org/10.1007/s00170-015-7809-4

116. Xu, J., Pan, Y., Pan, X., Hoi, S., Yi, Z., & Xu, Z. (2021, January). RegNet: Self-
Regulated Network for Image Classification [arXiv:2101.00590 [cs, eess]]. Retrieved
July 24, 2024, from http://arxiv.org/abs/2101.00590

117. Yadav, D., Jain, R., Agrawal, H., Chattopadhyay, P., Singh, T., Jain, A., Singh, S. B.,
Lee, S., & Batra, D. (2019, February). EvalAI: Towards Better Evaluation Systems for
AI Agents [arXiv:1902.03570 [cs]]. Retrieved August 3, 2024, from http://arxiv.org/
abs/1902.03570

118. Yang, J., Li, C., Zhang, P., Xiao, B., Liu, C., Yuan, L., & Gao, J. (2022, April). Unified
Contrastive Learning in Image-Text-Label Space [arXiv:2204.03610 [cs]]. Retrieved
July 29, 2024, from http://arxiv.org/abs/2204.03610

119. Yang, Y., Zha, K., Chen, Y.-C., Wang, H., & Katabi, D. (2021, May). Delving into
Deep Imbalanced Regression [arXiv:2102.09554 [cs]]. Retrieved August 3, 2024, from
http://arxiv.org/abs/2102.09554

120. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., & Wu, Y. (2022, June).
CoCa: Contrastive Captioners are Image-Text Foundation Models [arXiv:2205.01917
[cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/2205.01917

121. Yuan, L., Hou, Q., Jiang, Z., Feng, J., & Yan, S. (2021, June). VOLO: Vision Outlooker
for Visual Recognition [arXiv:2106.13112 [cs]]. Retrieved August 3, 2024, from
http://arxiv.org/abs/2106.13112

122. Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., Hu, H., Huang, X., Li, B.,
Li, C., Liu, C., Liu, M., Liu, Z., Lu, Y., Shi, Y., Wang, L., Wang, J., Xiao, B., Xiao, Z., . . .
Zhang, P. (2021, November). Florence: A New Foundation Model for Computer Vision
[arXiv:2111.11432 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/2111.11432

123. Zhang, H., Li, F., Zou, X., Liu, S., Li, C., Gao, J., Yang, J., & Zhang, L. (2023,
March). A Simple Framework for Open-Vocabulary Segmentation and Detection
[arXiv:2303.08131 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/abs/2303.08131

124. Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., & Gao, J. (2021,
March). VinVL: Revisiting Visual Representations in Vision-Language Models [arXiv:2101.00529
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/2101.00529

https://doi.org/10.23919/ACC.2018.8431259
https://doi.org/10.23919/ACC.2018.8431259
https://doi.org/10.5402/2012/208760
https://doi.org/10.1007/s00170-015-7809-4
http://arxiv.org/abs/2101.00590
http://arxiv.org/abs/1902.03570
http://arxiv.org/abs/1902.03570
http://arxiv.org/abs/2204.03610
http://arxiv.org/abs/2102.09554
http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/2106.13112
http://arxiv.org/abs/2111.11432
http://arxiv.org/abs/2303.08131
http://arxiv.org/abs/2101.00529


90 References

125. Zhang, T., Li, X., Fei, H., Yuan, H., Wu, S., Ji, S., Loy, C. C., & Yan, S. (2024,
June). OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and
Understanding [arXiv:2406.19389 [cs]]. Retrieved July 23, 2024, from http://arxiv.org/
abs/2406.19389

126. Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020, February).
BERTScore: Evaluating Text Generation with BERT [arXiv:1904.09675 [cs]]. Re-
trieved July 21, 2024, from http://arxiv.org/abs/1904.09675

127. Zhang, Y., Hare, J., & Prügel-Bennett, A. (2018, February). Learning to Count Objects
in Natural Images for Visual Question Answering [arXiv:1802.05766 [cs]]. Retrieved
August 2, 2024, from http://arxiv.org/abs/1802.05766

128. Zhang, Z., Fidan, I., & Allen, M. (2020). Detection of Material Extrusion In-Process
Failures via Deep Learning. Inventions, 5(3), 25. https://doi.org/10.3390/inventions5030025

129. Zhong, Y., Yang, J., Zhang, P., Li, C., Codella, N., Li, L. H., Zhou, L., Dai, X., Yuan,
L., Li, Y., & Gao, J. (2021, December). RegionCLIP: Region-based Language-Image
Pretraining [arXiv:2112.09106 [cs]]. Retrieved July 29, 2024, from http://arxiv.org/
abs/2112.09106

130. Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2017, November). Random
Erasing Data Augmentation [arXiv:1708.04896 [cs]]. Retrieved July 13, 2024, from
http://arxiv.org/abs/1708.04896

131. Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J. J., & Gao, J. (2019, December). Uni-
fied Vision-Language Pre-Training for Image Captioning and VQA [arXiv:1909.11059
[cs]]. Retrieved July 30, 2024, from http://arxiv.org/abs/1909.11059

http://arxiv.org/abs/2406.19389
http://arxiv.org/abs/2406.19389
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1802.05766
https://doi.org/10.3390/inventions5030025
http://arxiv.org/abs/2112.09106
http://arxiv.org/abs/2112.09106
http://arxiv.org/abs/1708.04896
http://arxiv.org/abs/1909.11059

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Additive Manufacturing
	1.2 Visual-Language Models (VLMs)
	1.3 Research Objective
	1.4 Contributions
	1.5 Roadmap

	2 Background
	2.1 Artificial Intelligence in Additive Manufacturing
	2.1.1 AI for Quality Assurance

	2.2 Vision Transformer (ViT)
	2.2.1 Vision Transformer Architecture
	2.2.2 ViT Pretrains

	2.3 Large Language Models (LLM)
	2.3.1 Architecture of Decoder-Only LLMs

	2.4 Visual-Language Model (VLM)
	2.4.1 Visual Question Answering (VQA)
	2.4.2 Visual Language Model (VLM)

	2.5 Visual-Language Model as a Quantity Estimator
	2.5.1 Visual Language Model as a Quantity Estimator
	2.5.2 Vision Encoder as a Quantity Regressor
	2.5.3 Large Language Model as Regressor

	2.6 Chapter 2 Summary

	3 Methodology
	3.1 Large Language and Vision Assistant (LLaVA)
	3.1.1 Architecture of LLaVA
	3.1.2 Training and Performance

	3.2 LLaVA-IntelliPrint
	3.2.1 Four-Stage Training Approach
	3.2.2 LLM Regression Head

	3.3 3D Printing Dataset
	3.3.1 Dataset Introduction
	3.3.2 Dataset Statistics

	3.4 Training Dataset
	3.4.1 Conversation Format Modification
	3.4.2 Image Pre-Processing

	3.5 Masked Autoencoder (MAE)
	3.5.1 Pretraining Phase
	3.5.2 Fine-tuning Phase

	3.6 Evaluation Metrics
	3.6.1 Masked Autoencoder Performance Evaluation
	3.6.2 Visual Language Model Performance Evaluation

	3.7 Chapter 3 Summary

	4 Experiments & Results
	4.1 Experiment Setup
	4.1.1 Train Test Split
	4.1.2 MAE Vision Encoder Experiments Overview
	4.1.3 LLaVA-IntelliPrint VLM Experiments Overview

	4.2 MAE Vision Encoder Performance
	4.2.1 Best Performing Model
	4.2.2 Ablation Studies on MAE Architecture
	4.2.3 Ablation Studies on Image Augmentation Methods

	4.3 LLaVA-IntelliPrint VLM Performance
	4.3.1 Best Performing Model
	4.3.2 LLaVA-IntelliPrint Ablation Study: Experiment 0
	4.3.3 LLaVA-IntelliPrint Ablation Study: Experiment 1-6
	4.3.4 LLaVA-IntelliPrint Ablation Study: Experiment 7-8 Numeric Tokenisation
	4.3.5 LLaVA-IntelliPrint Ablation Study: Experiment 9-10 Regression Head
	4.3.6 Data Efficiency Optimisation

	4.4 Chapter 4 Summary

	5 Conclusions and Future Work
	5.1 Future Work
	5.1.1 Upgrade the Language Model
	5.1.2 Post-processing Vision Encoder and Language Model for Enhanced Flow Rate Estimation
	5.1.3 Rigorous Testing of the LLM Regression Head
	5.1.4 Refining Extrusion Quality Labels
	5.1.5 Expanding the Dataset with a Greater Variety of Information
	5.1.6 Evaluating the Model on Different Datasets


	References

