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Abstract

Additive manufacturing (AM) traditionally relies on predefined parameters and post-production
inspections to ensure print quality. This approach, while effective, can be time-consuming,
prone to errors, and lacks real-time adaptability to dynamic conditions during the printing
process.

This dissertation introduces LLaVA-IntelliPrint, the first framework to integrate Vision-
Language Models (VLMs) into AM. By combining advanced vision transformers (ViT)
and large language models (LLMs), LLaVA-IntelliPrint provides continuous, automated
quality assurance during the printing process. The system diagnoses defects and offers
natural language corrective suggestions, significantly improving the accuracy, efficiency, and
reliability of AM processes.

LLaVA-IntelliPrint leverages self-supervised learning from Masked Autoencoders (MAEs)
and cross-modality from LLaVA to estimate process parameters like flow rate, achieving a
mean absolute error of 6.49%, improving on the state-of-the-art (SoTA) of 8.64%. When
integrated with an LLM, it maintains a competitive error rate of 12.02%, while also offering
broader capabilities like extrusion quality classification, error detection, and enhanced human-
computer interaction.

Additionally, this thesis presents a novel architecture that enhances LLMs’ regression
capabilities, with potential applications beyond AM. LLaVA-IntelliPrint represents the first
application of VLMs in AM, setting a new benchmark for real-time quality assurance in
intelligent manufacturing systems.
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Chapter 1

Introduction

1.1 Additive Manufacturing

Additive Manufacturing (AM), commonly known as 3D printing, is renowned for its capa-

bility to manufacture intricate and customised products layer by layer from digital models.

This process signi�cantly reduces the time and cost associated with product development,

minimises human interaction, and shortens the overall product development cycle. AM

might revolutionise some key industries such as aerospace and medical devices (Wong &

Hernandez, 2012).

Several types of 3D printers are prevalent, including Fused Deposition Modeling (FDM),

Digital Light Processing (DLP), and Stereolithography (SL). FDM, in particular, operates

like a hot glue gun with a small nozzle attached to a computer-controlled mechanical carriage

that methodically outlines and builds an object layer by layer (Torta & Torta, 2019). The

leftmost image in Figure 1.2 depicts a typical FDM printer. This dissertation focuses on

FDM printers due to their widespread use, low cost, ease of operation, and compatibility

with various materials such as polymers, metals, and ceramics.

However, the inherent complexities of AM processes often lead to high error rates and

operational inef�ciencies that can undermine its bene�ts. Currently, the identi�cation and

correction of these errors rely heavily on skilled technicians who monitor the AM processes

and make adjustments manually. This dependence not only increases production costs due

to the need for continuous human oversight but also limits the scalability and speed of

AM operations. Furthermore, training operators to achieve pro�ciency with 3D printing
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technologies is a time-consuming and costly endeavour, exacerbated by the rapid evolution

of these technologies, which continuously reshapes the required skill sets.

1.2 Visual-Language Models (VLMs)

Addressing these challenges, there has been growing interest in developing intelligent error

detection and correction systems. Traditional methods have employed various sensors to

monitor processes and detect anomalies such as nozzle clogs, including acoustic (Wu et al.,

2015), inertial (J. Guo et al., 2019), pressure (Estelle & Gozen, 2024), and current(Wu et al.,

2015). However, data from these sensors are often insuf�cient for comprehensive error

detection and correction (Gao et al., 2015).

Recent advancements in arti�cial intelligence, particularly in natural language processing

and computer vision, have paved the way for more sophisticated solutions. Models such as

T5 (Raffel et al., 2023), GPT-3 (Brown et al., 2020), and LLAMA (Touvron et al., 2023) have

demonstrated the potential of Large Language Models (LLMs) as general-purpose assistants.

The introduction of Vision Transformer (ViT) (Dosovitskiy et al., 2021) has shown state-of-

the-art capabilities in image feature extractions. Cross-modality mixing techniques, including

Flamingo (Alayrac et al., 2022), Contrastive Language-Image Pretraining (CLIP) (Radford

et al., 2021), Bootstrapping Language-Image Pre-training (BLIP) (J. Li et al., 2022), and

Large Language and Vision Assistant (LLaVA) (H. Liu, Li, Wu, & Lee, 2023), show great

potential for visual-language interaction.

Current deep learning models mainly utilise convolutional neural networks (CNNs) for real-

time defect detection in additive manufacturing, addressing issues such as nozzle clogs and

layer misalignment (Brion & Pattinson, 2022b; Brion et al., 2022; Farhan Khan et al., 2021;

Margadji et al., 2024). However, CNNs pose challenges in scalability, and the performance is

not always satisfying. Vision Transformers (ViTs), which utilise self-attention mechanisms,

offer promising alternatives but remain largely unexplored in this context. Additionally,

integrating language models for human-computer interaction can enhance real-time system

usability by providing explanations and suggestions, thus bridging automated detection and

human expertise. This potential remains unexplored.

1.3 Research Objective

The objective of this thesis is to develop a Vision-Language Model (VLM) that comprehends

the Fused Deposition Modelling (FDM) printing process, estimates key parameters, associates
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visual features with textual outputs, and suggests speci�c actions. Current state-of-the-art

VLMs, such as GPT-4o and LLaVA 1.5, cannot interpret nozzle images or estimate �ow

rates, as shown in Figure 1.1. This highlights a clear application and research gap in the �eld.

Fig. 1.1 An example of the current state-of-the-art model's performance on an FDM nozzle
image.

This dissertation introducesLLaVA-IntelliPrint , a novel integration of advanced vision-

language models (VLMs) and large language models (LLMs) into 3D printers. By equip-

ping these printers with enhanced vision and language processing capabilities, they can

autonomously monitor, diagnose, and correct errors in real time, thereby improving the

ef�ciency and reliability of additive manufacturing.

As illustrated in Figure 1.2, the system utilizes Vision-Language Models (VLMs) to:

1. Describe overall printing quality (e.g., over-extrusion, optimal extrusion, under-extrusion).

2. Estimate the current printing �ow rate.

3. Detect errors and analyse their causes using natural language processing.

4. Provide corrective suggestions for identi�ed errors.
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Fig. 1.2 LLaVA-IntelliPrint system �owchart.

This work demonstrates the power of integrating VLMs with language models to create a more

intelligent, user-friendly, and ef�cient 3D printing system. By combining visual analysis with

natural language processing, LLaVA-IntelliPrint autonomously identi�es and explains errors,

offers actionable suggestions, and provides operators with valuable insights. This approach

not only reduces the learning curve and training costs but also enhances decision-making,

productivity, and the overall reliability of additive manufacturing processes.

1.4 Contributions

The main contributions of this dissertation include:

• State-of-the-art Vision Encoder for �ow rate estimation: Developed a transformer-

based self-supervised learning method (Masked Autoencoder) to estimate printing �ow

rate with a Mean Absolute Error of 6.49%, surpassing previous CNN-based approaches

(Margadji et al., 2024).

• First VLM in Additive Manufacturing : Introduced VLM in the �eld of Additive

Manufacturing, signi�cantly improving error detection accuracy and effectiveness

compared with existing methods and offering functionalities such as interpretability

and human-computer interaction that were previously unavailable.

• VLM for Regression: Introduced a novel architecture that enables VLMs to perform

quantitative regression, allowing the estimation of numerical properties from images

(e.g., determining �ow rate from a nozzle image).
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1.5 Roadmap

This thesis is organised into �ve chapters, each addressing a critical component of the research

process, from background knowledge to the development and evaluation of the proposed

system.

• Chapter 1: Introduction - Introduces additive manufacturing and Vision-Language

Models (VLMs), outlining the research objectives and contributions.

• Chapter 2: Background - Reviews related literature on AI techniques in manufactur-

ing, Vision Transformers (ViTs), and Large Language Models (LLMs), focusing on

the integration of these technologies into VLMs.

• Chapter 3: Methodology - Details the design and implementation of the LLaVA-

IntelliPrint system, including the architecture, dataset, training process, and evaluation

metrics.

• Chapter 4: Experiments and Results- Presents the experimental setup, results,

and analysis, including performance evaluation and ablation studies of the LLaVA-

IntelliPrint system.

• Chapter 5: Conclusion and Future Work - Summarises the research �ndings,

discusses contributions, and proposes directions for future research.





Chapter 2

Background

This chapter reviews the relevant literature, including existing arti�cial intelligence tech-

niques in additive manufacturing, the architecture of Vision Transformers (ViTs) and Large

Language Models (LLMs), and the integration of these technologies into VLMs. The chapter

also discusses the challenges and opportunities in using VLMs for regression tasks within

the context of additive manufacturing.

2.1 Arti�cial Intelligence in Additive Manufacturing

Additive manufacturing (AM) technology has seen signi�cant advancements over the past

decade, �nding applications in �elds such as medicine, aerospace, and construction (Wong

& Hernandez, 2012). As the technology's use expands, its maturity continues to improve.

Ensuring that AM products meet mechanical, material, and functional design standards

requires a thorough understanding of the technology's characteristics, careful selection of

suitable materials and processes, and optimisation of process parameters. To this end, various

methodologies have been developed to enhance the effective application of AM technology.

One particularly impactful development is the integration of arti�cial intelligence (AI)

through machine learning, which enables the detailed analysis of the physical phenomena

associated with AM. Gu et al. (2023) categories AI techniques in AM into four main areas

Figure 2.1.

The �rst area involves AI for design optimisation speci�c to AM technology, streamlining

the design process. (Goh et al., 2021; J. Jiang et al., 2022).
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Fig. 2.1 Additive Manufacturing Categories

The second areauses AI to develop and analyse new materials for AM, focusing on material

properties. Various AI techniques have been proposed for material selection, development,

and properties prediction based on simulations of existing materials synthesis (C.-T. Chen &

Gu, 2019).

The third area includes AI for quality assurance and real-time optimisation. By applying

AI techniques, models on the relationship between process variables and output quality are

generated. This approach allows for various output quality indicators such as dimensions

(C.-T. Chen & Gu, 2019), surface quality (Aoyagi et al., 2019), mechanical properties (Sood

et al., 2012), density (Mbodj et al., 2021), and microstructure (Suzuki et al., 2022) to be

applied.

The fourth area employs AI for predicting output quality, aiming to ensure the quality

certi�cation of �nished AM products (Equbal et al., 2011; Shen et al., 2004; R.-J. Wang

et al., 2009).

2.1.1 AI for Quality Assurance

Parameters to Estimate

The focus of this dissertation is on ensuring real-time AM printing quality, falling under the

third category of AI applications in AM. The key objective for 3D printing quality assurance

is estimating the printing parameters such as the actual and target temperatures for the hot-end

and bed, �ow rate, lateral speed and Z offset. (Brion & Pattinson, 2022b).

Out of the printing parameters, the �ow rate, or the extrusion multiplier, determines the

amount of plastic to extrude (Wenger et al., 2022). The correct �ow rate is crucial for dimen-

sionally accurate 3D prints. A �ow rate greater than, approximately equal to, and less than

100% is classi�ed as over-extrusion, optimal-extrusion, and under-extrusion, respectively. If



2.1 Arti�cial Intelligence in Additive Manufacturing 9

the �ow rate is too high, over-extrusion occurs, causing issues like excessive �lament use,

blobbing, stringing, and poor dimensional accuracy. Conversely, a low �ow rate leads to

under-extrusion, resulting in problems like gaps, weak layer adhesion, and poor surface �nish

(Torta & Torta, 2019). Compared to controlling temperature, which involves heating the

hot-end and bed, adjusting the �ow rate by sending G-code to the stepper motors is faster and

easier, and it provides more immediate feedback (Torta & Torta, 2019). This dissertation will

focus on estimating and correcting the printing �ow rate, while the estimation of temperature

will be considered for future work.

3D Printing Quality Assurance Models

Various indirect methods have been developed to estimate parameters and detect errors

during additive manufacturing, such as monitoring acoustic emissions (Wu et al., 2015),

printer vibrations (Rao et al., 2015), inertial measurements (J. Guo et al., 2019), pressure

(Estelle & Gozen, 2024), and motor current (Wu et al., 2015). However, data from these

sensors often lack the richness needed for comprehensive error detection and correction,

relying on accurate physical models and costly equipment. Vision sensors, on the other hand,

provide more detailed information, enabling the detection of larger defects like layer shifts

and low-quality in�lls using traditional computer vision techniques (He et al., 2019; Huang

et al., 2021; Straub, 2015). Multi-camera systems, which offer perspectives beyond a single

visible-spectrum camera, have also been explored (Cunha et al., 2021; Holzmond & Li, 2017;

Straub, 2015), allowing for more detailed error detection. However, these approaches are

often expensive, require complex calibration, are sensitive to lighting and surface properties,

and may be limited by scanner resolution.

Recently, deep learning-based vision approaches have been used for autonomous error

correction after printing, effectively addressing errors that develop as the material cools,

such as cracking and warping (Jin et al., 2020; Z. Zhang et al., 2020). To further reduce and

correct errors during printing, vision technology can be integrated with traditional real-time

feedback loop strategies. Brion et al. (2022) adapted Convolutional Neural Networks (CNNs)

and multi-head neural networks for this purpose, also creating a specialised image dataset for

extrusion quality classi�cation. These models can estimate material �ow rate categories (e.g.,

over-extrusion, good extrusion, under-extrusion) during printing. Using the self-regulated

network 8GF (RegNet) (Xu et al., 2021) backbone, their model achieved a mean squared

error of 92 and a mean absolute error of 9.5 % in �ow rate prediction (Brion & Pattinson,

2022a).
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Margadji et al. (2024) proposed an iterative learning framework that improves performance

by learning from its own errors during repeated build cycles of the same part. This iterative

learning approach has been shown to enable robust error detection and correction, reaching a

mean absolute error of 8.64 % in estimating the extrusion �ow rate. This performance was

achieved by using a RegNet as the convolutional backbone, which was then �ne-tuned on 15

typical 3D printing geometries.

With the introduction of the attention mechanism (Vaswani et al., 2023), Vision Transformers

(ViTs) have been used as powerful encoders to capture image visual information (Dosovitskiy

et al., 2021). However, a Vision Transformer-based model has not yet been developed to

estimate 3D printing parameters (i.e., extrusion �ow rate). One objective of this thesis is to

implement a ViT-based model on 3D printing nozzle images and evaluate its performance in

estimating the �ow rate.

2.2 Vision Transformer (ViT)

Vision Transformers (ViTs) adopt an attention-based architecture that has rapidly become a

leading deep-learning model for computer vision tasks. Notably, Cordonnier et al. (2020)

theoretically demonstrated the equivalence between multi-head self-attention mechanisms

and Convolutional Neural Networks (CNNs), laying the groundwork for subsequent devel-

opments. Building on this foundation, Dosovitskiy et al. (2021) extended the Transformer

architecture (Vaswani et al., 2023) to facilitate large-scale pertaining.

Along with derived pretraining methods such as CLIP (Radford et al., 2021), MAE (He

et al., 2021), and BEiT (Bao et al., 2022), as well as advancements in language-augmented

foundational vision models (Gan et al., 2022; C. Li et al., 2022), ViT has signi�cantly

enhanced capabilities in visual understanding tasks. These tasks encompass classi�cation

(Pham et al., 2023; Radford et al., 2021; J. Yang et al., 2022; Yuan, Chen, et al., 2021),

detection (L. H. Li et al., 2022; Y. Zhong et al., 2021), segmentation (C. Li, Gan, et al., 2023;

H. Zhang et al., 2023), and captioning (J. Li et al., 2023; J. Wang et al., 2022), alongside

visual generation and editing (Ramesh et al., 2022; Rombach et al., 2022; Saharia et al.,

2022).

2.2.1 Vision Transformer Architecture

Figure 2.2 illustrates the ViT architecture, highlighting its key components:
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• Patch Partitioning: Given an imagex 2 RH� W� C, it's divided into a grid of non-

overlapping patches, each of sizeP� P. The number of patchesN is:

N =
H � W

P2 (2.1)

whereH andW are the image's height and width,P is the patch size, andN denotes

the total number of patches. Each patch is embedded into a vector of dimensionD,

forming a sequence of embeddingsZ = [ z1;z2; : : : ;zN] 2 RN� D.

• Position Embedding: Positional information is added by a learnable position embed-

dingP 2 RN� D:

Zpos= Z + P (2.2)

whereZpos represents the position-enhanced patch embeddings.

• [CLS] Token: A learnable classi�cation tokenzcls 2 RD is prepended to the sequence:

Z0 = [ zcls;z
pos
1 ;zpos

2 ; : : : ;zpos
N ] (2.3)

whereZ0 serves as the input to the Transformer encoder.

• Transformer Encoder: The encoder, consisting of multiple layers, includes self-

attention and feedforward networks.

– Self-Attention: The input sequenceZ 2 R(N+ 1)� D is projected to query, key,

and value matrices:

Q = ZWQ; K = ZWK; V = ZWV (2.4)

whereWQ, WK, andWV are learnable projection matrices. Attention scores are

computed as:

Attention(Q;K;V) = softmax
�

QK>
p

dk

�
V (2.5)

with dk being the dimension of the key vectors.

– Feedforward Neural Network: The output of the self-attention is passed through

a feedforward network:

FFN(z) = ReLU(zW1 + b1)W2 + b2 (2.6)

whereW1 andW2 are weight matrices, andb1 andb2 are bias vectors.
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• Classi�cation Head: The [CLS] token from the �nal layerL is passed through an

MLP head for classi�cation:

y = softmax(zL
clsWcls+ bcls) (2.7)

whereWcls 2 RD� K andbcls 2 RK are the weights and bias of the classi�cation head,

K is the number of classes, andy represents the predicted class probabilities.

Fig. 2.2 Vision Transformer Architecture (Dosovitskiy et al., 2021)

2.2.2 ViT Pretrains

Due to the intensive computational resources required in training Vision Transformers (ViTs),

which typically involve millions of parameters, pretraining ViTs has become a common

practice for feature representation that can be used in downstream tasks. This involves

training them on large datasets to learn rich, general visual representations. The pretraining

phase enables the models to develop a strong understanding of visual features and spatial

hierarchies. Transfer learning then �ne-tunes these pre-trained models on speci�c tasks,

leveraging the general knowledge gained during pretraining to achieve high performance

with relatively less data and computational effort. Some common ViT pretraining approaches

include:

Supervised Pre-Training

• ViT (Vision Transformer) : Supervised training directly on the [CLS] token of ViT on

large labelled datasets like ImageNet.
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Self-Supervised Pre-Training

Self-supervised learning (SSL) involves training a model to predict part of the input from

other parts, which does not require labelled data. Common self-supervised learning tech-

niques include Context as supervision (i.e., predicting the relative location between patches),

Inpainting (i.e., �lling in masked parts), and Colourisation (i.e., adding colour to a grayscale

image) (Goodfellow et al., 2017).

• MAE (Masked Autoencoders)(He et al., 2021): Trains the model to reconstruct

masked parts of the input image. The masking ratio is usually 75%.

• BEiT (Bidirectional Encoder Representation from Image Transformers)(Bao et

al., 2022): Similar to MAE, BEiT masks random patches of the input image. However,

instead of reconstructing image pixels, it predicts discrete tokens for these masked

patches using a discrete variational autoencoder (dVAE) tokenizer.

• DINO (Self-Distillation with No Labels) & DINO v2 (Caron et al., 2021) (Oquab

et al., 2024): Uses self-distillation with knowledge distillation, where a model is trained

to match the output distribution of a teacher model without using labelled data. On top

of the original DINO, DINO v2 automates the data curation, which enhances stability

and training ef�ciency.

• Momentum Contrast (MoCo) v3 (X. Chen et al., 2021): Employs both self-supervised

learning (SSL) and contrastive learning. It takes two crops of each image under random

data augmentation, encodes them with separate encoders, and minimises the contrastive

loss between the two outputs.

Contrastive Learning

Contrastive learning involves training a model to distinguish between similar and dissimilar

pairs of data points. It often uses a loss function that encourages the model to bring similar

data points closer and push dissimilar ones apart (Goodfellow et al., 2017).

• CLIP (Contrastive Language-Image Pre-Training) (Radford et al., 2021): CLIP

learns visual concepts from natural language descriptions by training on a large dataset

of images and their corresponding text descriptions.

Other Learning Models

• Swin Transformer (Shifted Windows Transformer) (Z. Liu et al., 2021): Introduces

a hierarchical architecture with shifted windows for local and global self-attention,
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improving ef�ciency and scalability for dense prediction tasks like object detection

and segmentation.

• DeiT (Data-ef�cient Image Transformers) (Touvron, Cord, Douze, et al., 2021): En-

hances the data ef�ciency of vision transformers by integrating knowledge distillation

from a convolutional neural network teacher, which provides additional supervision to

the transformer during training.

Method pre-train data ViT-B ViT-L/16 ViT-H

iGPT (M. Chen et al., 2020)
IN1K 1 +

Labelled Data2
68.7 72.0 72.6

DINO (Caron et al., 2021) IN1K 82.8 - -
MoCo v3 (X. Chen et al., 2021) IN1K 83.2 84.1 -
BEiT (Bao et al., 2022) IN1K+DALLE 83.2 85.2 -
MAE (He et al., 2021) IN1K 83.6 85.9 86.9

Table 2.1 Comparisons of self-supervised learning ViT pre-trains on ImageNet-1K Top-1
Accuracy. Where [1] stands for ImageNet 1K; [2] Includes CIFAR-10, CIFAR-100 and
STL-10

These ViT pre-training methods are strong candidates for use as vision encoders in VLMs.

Notably, self-supervised learning approaches stand out, especially given the high cost of

acquiring labelled 3D printing data described in natural language. The ability of these

methods to learn without labelled data makes them particularly well-suited for the objectives

of this dissertation.

The Masked Autoencoder (MAE) is chosen as the vision encoder in this dissertation due

to its outstanding performance on the ImageNet-1K dataset (Table 2.1). MAE excels in

classi�cation accuracy, simplicity, and stability, making it superior to other self-supervised

learning methods. Its masking and reconstruction approach effectively learns rich visual

representations, leading to robust generalisation across tasks. The simplicity of MAE's

architecture also ensures ease of implementation and reliability. making it an ideal vision

encoder for this research. By leveraging MAE as the vision encoder, this research ensures

that the model bene�ts from robust visual features, enhancing performance in tasks like �ow

rate estimation and error detection in additive manufacturing.

2.3 Large Language Models (LLM)

Large Language Models (LLMs), on the other hand, have gained signi�cant attention due

to their universal interface and capability as general-purpose assistants based on instruction.
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These models are based on Transformer architecture (Vaswani et al., 2023), with state-of-

the-art modles including BERT (Devlin et al., 2019), T5 (Raffel et al., 2023), GPT-3 (Brown

et al., 2020), Mistral (A. Q. Jiang et al., 2023), Chinchilla (Hoffmann et al., 2022), PaLM

(Chowdhery et al., 2022) and LLaMA (Touvron et al., 2023).

LLMs can be classi�ed into two main types:

• Decoder-Only Models:These models, such as GPT (Radford et al., 2021), use only

the decoder part of the Transformer, generating text in an autoregressive manner by

predicting tokens sequentially. They excel at tasks like text generation and completion.

• Encoder-Decoder Models:Models like BERT (Devlin et al., 2019) and T5 (Raffel et

al., 2023) employ both the encoder and decoder components. The encoder processes the

input sequence to create context-aware representations, while the decoder generates the

output sequence. These models are particularly effective for tasks such as translation

and summarisation.

2.3.1 Architecture of Decoder-Only LLMs

State-of-the-art models such as GPT (Radford et al., 2021) and LLaMA (Touvron et al.,

2023) are prominent examples of Large Language Models (LLMs) that have demonstrated

exceptional capabilities in natural language processing tasks. These models primarily utilise

a decoder-only architecture, which is particularly effective for generating coherent and

contextually relevant free-text outputs from a wide range of input prompts. The decoder-only

architecture is designed to predict the next token in a sequence, making it highly suitable

for tasks that involve text generation, summarisation, translation, and conversational agents.

LLaVA-IntelliPrint could leverage the capability of decoder-only LLMs and generate concise

descriptions on 3D printing images. As illustrated in Figure 2.3, key steps in processing text

data include:

• Tokenisation : Text is divided into tokens, representing words, subwords, or characters.

Subword tokenisation methods, such as Byte Pair Encoding (BPE) (Goodfellow et al.,

2017), are common in LLMs.

• Embedding: Tokens are converted into high-dimensional vectors called embeddings:

ei = Weti (2.8)

whereWe is the embedding matrix andti is the ith language token.
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Fig. 2.3 Decoder-Only LLM Architecture (Touvron et al., 2023)

• Positional Embedding:Positional information is added to token embeddings to re�ect

the order of tokens in a sequence:

e0
i = ei + pi (2.9)

Wherepi is the positional information.

• Self-Attention Mechanism: The Transformer's core innovation, self-attention, assigns

importance to different tokens based on their relevance:

Attention(Q;K;V) = softmax
�

QKT
p

dk

�
V (2.10)

whereQ, K, andV are the query, key, and value matrices derived from the embeddings,

anddk represents the dimensionality of the key vectors.
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• Feedforward Network: The output is processed through a feedforward neural net-

work:

FFN(x) = ( xW1 + b1)W2 + b2 (2.11)

whereW1 andW2 are weight matrices, andb1 andb2 are bias vectors.

• Softmax Function: The �nal output is converted into a probability distribution over

the vocabulary:

P(yi = jjx) =
exp(z j )

åV
k= 1exp(zk)

(2.12)

wherez j is the logit corresponding to tokenj, andV is the size of the vocabulary.

• Cross-Entropy Loss: During training, the model's predictions are evaluated using

cross-entropy loss:

Loss= �
V

å
i= 1

yi log(pi) (2.13)

whereyi represents the true distribution (which is 1 for the correct token and 0 for

others), andpi denotes the predicted probability for thei-th token in the vocabulary.

Minimising this loss aids the model in improving its predictions by increasing the

probability of the correct next token.

A thorough understanding of LLM architecture is crucial for effectively exploring and opti-

mising Vision-Language Models (VLMs). By tailoring and re�ning LLMs for speci�c tasks,

we can enhance model performance and achieve superior outcomes in targeted applications.

In this research, we hypothesise that modifying the tokeniser and loss function in the LLM

could signi�cantly improve its numeric regression capabilities. Further details on these

modi�cations will be discussed in Chapter 3.

2.4 Visual-Language Model (VLM)

After reviewing state-of-the-art vision encoders and language models, this section aims to

present and analyse the common architectures and methods in the literature that combine

these modalities to achieve multimodal functionalities.

2.4.1 Visual Question Answering (VQA)

With the advancements in Computer Vision (CV) and Natural Language Processing (NLP),

tasks requiring the understanding of images described by natural language have become

increasingly prevalent. Common applications include image captioning (Anderson et al.,
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2018), visual grounding (Fukui et al., 2016), visual question answering (VQA) (Agrawal

et al., 2016), and visual dialogue (Das et al., 2017; D. Guo et al., 2019). Image captioning

involves describing the content and context of an image. VQA, on the other hand, is the task

of answering open-ended questions based on an image, producing natural language responses

to natural language questions.

The objective of this dissertation—developing a vision-language model as an embodied man-

ufacturing agent—falls at the intersection of VQA and visual dialogue. This project involves

describing printing quality, identifying and correcting errors through natural language, and

engaging in multiple rounds of conversation, including queries about �ow rate, extrusion

quality, and printing corrections.

VQA Dataset

As shown in Figure 2.4, VQA datasets typically include an image, a question, and a corre-

sponding gold-standard answer. Several types of VQA datasets exist, including:

Fig. 2.4 Examples from the VQA v2.0 dataset (Goyal et al., 2017)

• General VQA: Includes datasets such as VQA v2.0 (Goyal et al., 2017), MovieQA

(Tapaswi et al., 2016), and Visual Question Answering under Changing Priors (VQA-

CP) (Agrawal et al., 2018).

• Scene-speci�c VQA Datasets: These require spacial understanding, such as CLEVR

(Johnson et al., 2016), GQA (Hudson & Manning, 2019), and ShapeWorld (Kuhnle &

Copestake, 2017).



2.4 Visual-Language Model (VLM) 19

• Knowledge-Based VQA: These datasets necessitate external knowledge not directly

evident from the image, including OK-VQA (Marino et al., 2019), FVQA (P. Wang

et al., 2017), and A-OKVQA (Schwenk et al., 2022).

• Other Domain-Speci�c VQA Datasets: These focus on particular domains, such

as TextVQA (Singh et al., 2019), which concentrates on text understanding, and

VQA-MED-2021 (Abacha et al., n.d.), which focuses to VQA in the medical �eld.

2.4.2 Visual Language Model (VLM)

To tackle VQA problems, Visual Language Models (VLMs) are employed. A vision-language

model is an integration of vision and natural language models. It processes images and

their respective textual descriptions as inputs and learns to associate knowledge from both

modalities. The vision component captures spatial features from the images, while the

language model generates text from encoded information.

Vision-language models (VLMs) combine vision models with language models through

various techniques and architectures. Pre-training VLMs is crucial for integrating visual and

textual data, enabling these models to perform tasks such as image captioning and visual

question answering effectively. This process allows the model to learn shared representations

for images and text, enhancing its ability to generate accurate descriptions and understand

complex queries. Pre-training on large-scale datasets ensures robust generalisation across

various tasks without the need for extensive task-speci�c data for downstream applications,

which require further �ne-tuning. Based on training techniques, vision-language pretraining

(VLP) can be classi�ed into End-to-End VLP and Modular VLP.

End-to-End Visual-Language Pretraining

End-to-end vision-language pretraining (VLP) involves training all components simulta-

neously on the same data and objectives. Depending on how modalities are combined,

end-to-end VLP can be classi�ed into four architectures (Figure 2.5).
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Fig. 2.5 Four architectures for end-to-end VLP

Fig. 2.6 Uni�ed transformer architecture Fig. 2.7 Fusion-encoder architecture

• Uni�ed transformer architecture employs transformer-based systems to process and

fuse image and text embeddings. As shown in Figure 2.6, this modality is usually

combined before feeding into transformers. Notable contributions include the work by

Zhou et al. (2019), which �rst demonstrates improved performance in image captioning

and visual question answering through uni�ed vision-language pre-training. W. Wang

et al. (2022) proposed BEiT-3, which treats images similarly to text by dividing them

into patches and applying a transformer model. This model masks certain tokens,

learning to predict them, effectively capturing contextual relationships within images.

The BLIP framework by J. Li et al. (2022) introduced an image-grounded text encoder

and decoder, achieving state-of-the-art results.

• Fusion-encoder architecturehas separate encoders for modalities and integrates them

at an intermediate stage by cross-attention before producing the �nal prediction by a

multimodal encoder (Figure 2.7). Notable models include Learning Cross-Modality
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Encoder Representations from Transformers (LXMERT) (Tan & Bansal, 2019), which

uses cross-attention layers for tasks like visual question answering, while Align Before

Fuse (ALBEF) (J. Li et al., 2021) aligns modalities using cross-modal contrastive loss

before fusing, enhancing joint representation learning.

• Dual-Encoder Architecture leverages distinct encoders for processing visual and

textual data independently, with their outputs integrated at a subsequent stage. As illus-

trated in Figure 2.8, this architecture includes separate encoders for images and text,

and employs contrastive learning to effectively distinguish between similar and dissim-

ilar pairs of data points. Prominent examples include Contrastive Language–Image

Pre-training (CLIP) (Radford et al., 2021), which employs contrastive learning on

a large-scale dataset of images and captions to generate joint visual-textual embed-

dings. The Large-scale ImaGe and Noisy-text embedding (ALIGN) model (Jia et al.,

2021) extends this approach by using an even larger and more uncurated dataset to

enhance model robustness. Furthermore, Contrastive Captioning (CoCa) (Yu et al.,

2022), which focuses on image captioning, integrates contrastive learning with caption

generation, resulting in outputs that are more contextually relevant.

Fig. 2.8 Dual-encoder architecture

• Encoder-decoder architectureinvolves two stages: the encoder converts input data

into a latent representation, and the decoder transforms this representation into the

target output. Representative models include Vision-and-Language BERT (ViLBERT)

(Lu et al., 2019), which extends BERT to jointly encode visual and textual inputs before

decoding for various tasks; Simple Visual Language Model Pretraining with Weak
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Supervision (SimVLM) (Z. Wang et al., 2022), which employs weakly supervised data

to enhance visual-language pretraining; and Pathways Language and Image model

(PaLI) (X. Chen et al., 2023), designed for multilingual and multimodal tasks.

Fig. 2.9 Encoder-decoder architecture

Of the four architectures described above, theUni�ed Transformer architecture and the

Encoder-Decoder architectureare the most suitable for our project, as both involve decoders

for natural language generation. These models leverage decoders to produce free-form text,

enabling more �exible and detailed outputs. In contrast, while the Dual-Encoder and Fusion-

Encoder architectures can be extended to support text generation, they are primarily designed

for tasks involving the matching of images with prede�ned labels, making them less suitable

for our objective of generating free text descriptions of 3D printing processes. In this

dissertation, we explore the Uni�ed Transformer architecture due to its inherent capability to

handle complex, multimodal data and generate coherent textual descriptions. The Encoder-

Decoder model, though promising, is reserved for future work, as it typically requires more

extensive training data and computational resources to achieve similar levels of performance

in multimodal text generation tasks.

The exploration of these architectures leads us to consider the broader landscape of vision-

language pre-training (VLP) methods, which commonly perform end-to-end pre-training

using large-scale image-text pair datasets. However, as model sizes increase, the computa-

tional cost of pre-training escalates signi�cantly. Moreover, end-to-end pre-trained models

often lack �exibility, making it dif�cult to incorporate readily available unimodal pre-trained

models, such as large language models (LLMs) (J. Li et al., 2023). This challenge under-
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scores the need for architectures like the Uni�ed Transformer, which can ef�ciently integrate

multimodal data while mitigating the computational and �exibility constraints associated

with traditional VLP methods.

Modular Visual-Language Pretraining

Modular vision-language pretraining involves using pre-trained unimodal models (e.g., vision

encoders and language models) and keeping them frozen while �ne-tuning additional layers

for vision-language alignment. Each module is optimised for its speci�c task or domain

before integration into the larger system. This approach leverages existing models to reduce

computational costs and enhance performance.

Modular vision-language pretraining involves using pre-trained unimodal models, such as

vision encoders and language models, and keeping them frozen while �ne-tuning additional

layers for vision-language alignment. Each module is optimised for its speci�c task or

domain before integration into the larger system. This approach leverages existing models to

reduce computational costs and enhance performance.

Early work in this area employed a frozen object detector to extract visual features, with

notable examples including Universal Image-Text Representation Learning (UNITER) (Y.-C.

Chen et al., 2020), OSCAR (X. Li et al., 2020), and VinVL (P. Zhang et al., 2021). Recently,

to bridge the gap between vision encoders and vision-language models, many state-of-the-art

models freeze the language model and/or vision model for vision-to-language generation

tasks. Notable models employing this approach include:

• Frozen (Tsimpoukelli et al., 2021): This model connects the �nal output vector of the

vision encoder and linearly maps the output toD � n channels, subsequently reshaping

the result into a sequence ofn embeddings. Here,D represents the token embedding

dimension of the language model.

• Flamingo (Alayrac et al., 2022): This model enhances the integration of visual features

by inserting new cross-attention layers into the large language model (LLM). These

layers are speci�cally pre-trained to inject visual information into the model effectively.

• BLIP-2 (J. Li et al., 2023): Bootstrapping Language-Image Pre-training (BLIP)-2

introduces a Querying Transformer (Q-Former), which consists of both an image

transformer and a text transformer. These components jointly optimise three objectives

that enforce the queries (a set of learnable embeddings) to extract visual representations

most relevant to the accompanying text.
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• LLaVA (H. Liu, Li, Wu, & Lee, 2023): LLaVA (Large Language and Vision Assistant)

integrates modalities by introducing a projection layer between the open-set visual

encoder of CLIP (Radford et al., 2021) and the language decoder Vicuna (Chiang et al.,

2023). LLaVA also marks the �rst attempt to extend instruction-tuning to the language-

image multimodal space, paving the way for the development of a general-purpose

visual assistant.

Fig. 2.10 Comparison of VLM on 12 benchmarks (H. Liu, Li, Li, & Lee, 2023)

H. Liu, Li, Li, and Lee (2023) conducted a comprehensive evaluation of LLaVA 1.5 against

state-of-the-art (SoTA) models, as depicted in Figure 2.4. Their �ndings revealed that LLaVA

outperformed all other models in 11 out of 12 benchmarks and achieved a second-place

ranking in the remaining benchmarks. This impressive performance underscores LLaVA's

robustness and versatility.

Additionally, several derived works from LLaVA, such as LLaVA-Med (C. Li, Wong, et al.,

2023), LLaVA-Gemma (Hinck et al., 2024), OMG-LLaVA (T. Zhang et al., 2024), and

Math-LLaVA (Shi et al., 2024), have further demonstrated its adaptability and effectiveness

across various domains and specialised tasks. These derivatives show LLaVA's capability to

handle a wide range of applications, from medical imaging to mathematical problem-solving,

highlighting its �exibility and broad applicability.
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Given LLaVA's outstanding performance, relatively straightforward architecture, and proven

ability to adapt to diverse tasks, it has been chosen as the project's foundational model.

2.5 Visual-Language Model as a Quantity Estimator

2.5.1 Visual Language Model as a Quantity Estimator

This project has a unique aspect as it utilises the VLM to estimate the �ow rate of the 3D

printing process. This requires using VLM as a numerical regressor. To ensure accurate

regression, Mean Squared Error (MSE) (Equation 2.14) is typically employed. However, the

loss function for most decoder-based LLMs, such as LLAMA (Touvron et al., 2023), GPT-3

(Brown et al., 2020), and T5 (Raffel et al., 2023), is cross-entropy (Equation 2.15), which

optimises the probabilities of correctly classifying tokens in a �xed vocabulary. Using an

LLM as a regressor effectively applies a classi�cation loss function to solve a regression

task. This also explains why in the VQA Challenge 2021 (Yadav et al., 2019), answering

numerical questions had the worst performance out of all types of questions, as illustrated by

Table 2.2. For example, numerical questions usually have a form like: "Count the number of

people" or "How many shoes are there" (Goyal et al., 2017).

L MSE =
1
N

N

å
i= 1

Mi � (xi � x̂i)2 (2.14)

L (y; ŷ) = �
n

å
i= 1

yi log(ŷi) (2.15)

wherey is the true label vector (one-hot encoded) and ˆy is the predicted probability vector.

To address the challenge, Trott et al. (2018) trained a sequential counting mechanism with a

reinforcement learning loss on the counting question subsets of VQA v2 and Visual Genome.

They achieved a small increase in accuracy, but their method is not widely applicable to

the traditional VQA framework. Models by Santoro et al. (2017) and Johnson et al. (2016)

successfully counted on the synthetic CLEVR VQA dataset without bounding boxes and

supervision of where the objects to count are. Y. Zhang et al. (2018) took a step further

and proposed a neural network that leverages attention maps to allow robust counting,

which improved the counting accuracy by 6.6% on the VQA v2 data. These methods have

successfully improved the accuracy of numerical questions. However, they are not directly

applicable to our project. The methods they propose primarily involvecounting objects

present in the image, whereas our VLM aims tocapture numerical information and features
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Rank Participant team yes/no number other overall
1 PaLI-X - Google Research 96.78 74.14 79.46 86.06
2 PaliGemma-3B (�netune, 448px) 96.39 76.29 78.41 85.64
3 Zhipu AI 95.71 71.97 77.99 84.68
4 PaLI - Google Research 96.13 69.07 77.58 84.34
5 BEiT-3 (Microsoft) 96.43 73.63 75.92 84.18
6 mPLUG-single 94.83 69.82 77.02 83.62
7 MLLM A (MLLM-A-base) 94.69 69.46 75.80 82.94
8 xxw 94.85 72.24 74.15 82.52
9 CoCa - Google Brain 94.55 70.25 74.46 82.33
10 TiMix 94.37 67.28 74.82 82.10

Table 2.2 TOP 10 model accuracyAcc(ans) = min
� #humans that saidans

3 ;1
	

in the VQA Chal-
lenge 2021 in August 2024 (start from 2021, no end date) (Yadav et al., 2019)

within the image and estimate their parameters (i.e. �ow rate). This task is more complex

and intricate than simple counting. As a result, this dissertation aims to close the gap in using

VLMs to regress property values (not counting) from an input image.

2.5.2 Vision Encoder as a Quantity Regressor

Vision Encoder to Estimate Tyre-to-Road Friction

Prior work has employed vision encoders to regress properties from images. Vosahlik et al.

(2021) utilised Convolutional Neural Networks (CNNs) combined with an Unscented Kalman

Filter (Wielitzka et al., 2018) to estimate tyre-to-road interface friction parameters. Further

advancing this concept, Ojala and Seppänen (2024) eliminated the need for sensor fusion

via a Kalman �lter by using ResNet50 (He et al., 2016) as the vision backbone. The authors

simply added a regression head to the end of the vision backbone to output the friction

estimation and its associated uncertainty.

Vision Encoder to Estimate Age

In the task of estimating a person's age from an image, several studies have focused on using

Convolutional Neural Networks (CNNs) as feature extractors (Hou et al., 2017; Ojala &

Seppänen, 2024). Recently, more attention has shifted towards Transformer-based approaches

(Touvron, Cord, Sablayrolles, et al., 2021; Yuan, Hou, et al., 2021). Kuprashevich and

Tolstykh (2023) proposed MiVOLO, which extracts facial and bodily features separately

using Vision Transformers. These features are then processed by a regression head optimised
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with a Weighted Mean Squared Error (WMSE) function (Y. Yang et al., 2021), effectively

addressing the issue of imbalanced labels and features.

Overall, in both applications, it can be summarised that researchers typically add a regression

head at the end of vision encoders, achieving high performance in estimating parameters

inherent in images.

2.5.3 Large Language Model as Regressor

Recent research by Vacareanu et al. (2024) demonstrates that LLMs like GPT-4 and Claude

3 can perform linear and non-linear regression tasks using in-context learning. This work

demonstrated that LLMs can generalise from a limited set of input-output pairs presented

during inference, without requiring additional training or �ne-tuning.

In their study, Vacareanu et al. (2024) utilised synthetic regression datasets for their experi-

ments. For instance, in one of their linear regression tasks, they generated datasets where

the relationship between the input and output was de�ned by a simple linear equation, such

asy = wx+ b, wherew andb are coef�cients. The training dataset consisted of several

input-output pairs (e.g.,(x1;y1); (x2;y2); : : : ; (xn;yn)).

To test LLMs like GPT-4, they provided a few examples of input-output pairs directly as

context during inference. The LLM then used these examples to predict the output for a new

input without any additional training.

This is relevant in the context of our project, where the VLM's task of estimating �ow rates in

a 3D printing process can be seen as a regression problem. The empirical evidence provided

by the work suggests that LLMs, when given appropriate in-context examples, can potentially

achieve good performance in regression tasks.

There is a noticeable gap in leveraging VLMs to regress property values (e.g., �ow rate) from

images. A VLM could exploit the vision encoder's ability to capture detailed information

while using the LLM to enhance interactivity, provide interpretable reasoning, and offer

suggestions. Additionally, beyond estimating �ow rate, a VLM could correct errors, assess

extrusion quality, and provide explanations, which is beyond the capability of a pure vision

encoder. This research aims to address this gap.
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2.6 Chapter 2 Summary

In this chapter, we explored the integration of arti�cial intelligence in additive manufacturing

for quality assurance.

We identi�ed Masked Autoencoder (MAE)as a robust and ef�cient vision encoder due to

its accuracy, simplicity, and stability.LLaVA was selected as the foundational model for

its outstanding performance and adaptability across diverse tasks. To estimate numerical

parameters (i.e. �ow rate) from both image and text prompts, we decided to add a regression

head to vision encoders.

These methodologies set the stage for the detailed implementation and experimental proce-

dures in the following chapters.



Chapter 3

Methodology

This chapter details the design and implementation of the LLaVA-IntelliPrint system. It

covers the architecture of the system, including the use of Masked Autoencoders (MAE)

as the vision encoder and the integration of a regression head into the LLM. The chapter

also describes the dataset used, the training process, and the evaluation metrics employed to

assess system performance.

3.1 Large Language and Vision Assistant (LLaVA)

As explained in Chapter 2, LLaVA is selected as the foundational model due to its outstanding

performance and adaptability across diverse tasks. This section introduces the architecture

and properties of LLaVA, along with modi�cations made to our dataset to align with LLaVA's

requirements.

3.1.1 Architecture of LLaVA

LLaVA (Large Language and Vision Assistant), developed by H. Liu, Li, Wu, and Lee (2023),

is designed to understand and generate responses to both visual and language inputs. Its

architecture consists of two primary components: the vision encoder and the language model.

The visual featureZv = g(Xv) is extracted from the input imageXv. A projection matrixW

convertsZv into language embedding tokensHv, aligning with the word embedding space of

the language model:

Hv = W � Zv; with Zv = g(Xv) (3.1)
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Image patches are treated as language tokens and are directly fed into the language model to

generate responses, as illustrated in Figure 3.1.

The vision encoder in LLaVA utilises the CLIP (Contrastive Language–Image Pre-training)

visual encoder ViT-L/14 (Radford et al., 2021), which generates visual features from input

images. The input image resolution is336� 336with a patch size of14� 14. The embedding

dimension is 1024, resulting in336� 336
14� 14 = 576 patches, and thus image features represented

by a vector ofZv 2 RB� 576� 1024

For the language model, LLaVA incorporates Vicuna (Chiang et al., 2023), an open-source

language model renowned for its superior instruction-following capabilities, �ne-tuned on

top of LLaMA 2 (Touvron et al., 2023). The vision encoder and the language model are

connected via a linear MLP layer. The input embedding dimension of each token for LLaMA

2 is 5120. Therefore, to map the vision representation into the same space as the language

model, a two-layer projection layer is used, consisting of transformations from 1024 to 5120,

as shown in Equation 3.2.

Hv = ReLU(W2 � ReLU(W1 � Zv + b1) + b2) (3.2)

whereW1 2 R1024� 5120;W2 2 R5120� 5120; b1 andb2 are the biases

3.1.2 Training and Performance

LLaVA's training process involves a two-stage instruction-tuning procedure. Figures 3.1 and

3.2 illustrate the pre-training and �ne-tuning stages, respectively, with frozen components

indicated by snow symbols and active training components by �re symbols:

1. Pre-training for Feature Alignment: Using 595K image-text pairs from the �ltered

Conceptual Caption 3M dataset (Sharma et al., 2018), LLaVA is pre-trained to align

visual features with the language model's word embeddings. This stage trains the

projection matrixW while keeping the visual encoder and language model weights

frozen (Figure 3.1).

2. Fine-tuning End-to-End: LLaVA is then �ne-tuned on a multimodal instruction-

following dataset (LLaVA-Instruct-158K) for tasks such as multimodal chatbot. This

stage updates both the projection layer and the language model (Figure 3.2).

Both pretraining and �ne-tuning use the Adam optimiser (Kingma & Ba, 2017), and the loss

function is cross-entropy loss:
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L (y; ŷ) = �
n

å
i= 1

yi log(ŷi) (3.3)

wherey is the true label vector and ˆy is the probability of each token logits.

LLaVA demonstrates impressive performance across various tasks. For instance, on the

ScienceQA dataset, LLaVA achieved a state-of-the-art accuracy of 92.53%, surpassing

previous models, including BLIP2 (J. Li et al., 2023), InstructBLIP (Dai et al., 2023) and

Qwen-VL-Chat (Bai et al., 2023).

Fig. 3.1 LLaVA Pretrain Stage (H. Liu, Li, Wu, & Lee, 2023)

Fig. 3.2 LLaVA Finetune Stage (H. Liu, Li, Wu, & Lee, 2023)

3.2 LLaVA-IntelliPrint

As mentioned in previous sections, LLaVA uses Hugging face CLIP ViT-L/14 as its vision

encoder and Vicuna as the language model. However, after training the off-the-shelf LLaVA

on the 3D printing dataset, the performance was unsatisfactory (discussed further in the

Experimental Results Section), with the estimated �ow rate showing a mean absolute error

(MAE) of 62.4%

CLIP ViT-L/14 was pre-trained on publicly available image-caption data. This was achieved

through a combination of web crawling and using commonly used pre-existing image datasets

such as YFCC100M (Thomee et al., 2016). These data mainly comprise media objects and
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explain the rationale behind their creation, which do not typically include manufacturing

images, and even less so 3D printing nozzles. Since the 3D printing dataset is so different

from the pretraining images, the model may not have the appropriate capability to capture

�ow rate and extrusion quality information.

Therefore, pretraining and �ne-tuning the vision encoder becomes the next immediate task.

As mentioned in Chapter 2, due to the dif�culty in collecting a labelled 3D printing dataset,

self-supervised training is preferred to reduce the need for labelled data. Masked Autoencoder

is selected as the vision encoder's evaluation metric.

To address this issue, we propose a four-stage training approachon the 3D printing dataset

and anovel architecture to handle LLM for regression tasks:

3.2.1 Four-Stage Training Approach

As illustrated in Figure 3.3, the four-stage training process includes Pretraining the MAE

ViT, Fine-tuning the MAE ViT, Pretraining LLaVA, and Fine-tuning LLaVA.

Fig. 3.3 LLaVA-IntelliPrint four-stage training

Stage 1: Pretraining MAE ViT

In this stage, the vision encoder is trained on an extensive 3D printing dataset using self-

supervised learning (SSL). This method enables the model to learn meaningful represen-

tations from the data without the need for labelled examples (Section 3.5.1). The primary

objective is to minimize the Mean Squared Error (MSE) between the reconstructed and
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original image pixels, which is calculated as:

L MSE =
1
N

N

å
i= 1

Mi � (xi � x̂i)2 (3.4)

wherexi is the original pixel value,̂xi is the reconstructed pixel value, andMi is the mask

indicator function, which is 1 if the patch is masked and 0 otherwise.

Stage 2: Fine-tuning MAE ViT

Following pretraining, the vision encoder is �ne-tuned on a labelled 3D printing dataset to

specialize in �ow rate estimation. (Section 3.5.2). The objective is minimising the Mean

Squared Error (MSE) of �ow rate predictions, calculated as:

L (y; ŷ) =
1
n

n

å
i= 1

(yi � ŷi)2 (3.5)

whereyi represents the true �ow rate and ˆyi represents the predicted �ow rate.

Stage 3: Pretraining LLaVA

With the �ne-tuned vision encoder, the next step is to pre-train the LLaVA model using our

multimodal dataset (Section 3.4), which includes both visual and textual data related to 3D

printing. The vision transformer (ViT) remains frozen during this stage. Visual features from

the MAE ViT are projected into the word embedding space of the language model through a

trainable projection multilayer perceptron (MLP). The goal is to align these visual features

with the language model using the Cross-Entropy loss, de�ned as:

L (t; t̂) = �
n

å
i= 1

ti log(t̂i) (3.6)

whereti denotes the true token andt̂i denotes the predicted probability of the token.

Stage 4: Fine-tuning LLaVA

The �nal stage involves �ne-tuning the LLaVA model on a task-speci�c dataset (Section 3.4)

to improve its performance on multimodal tasks relevant to 3D printing. During this phase,

both the projection layer and the language model are updated. The �ne-tuning process aims

to optimise the model's ability to understand and generate accurate responses to multimodal
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instructions by minimising the Cross-Entropy loss of the language model tokens, which is

the same as Equation 3.6.

By following this four-stage training approach, we aim to signi�cantly improve the model's

performance in estimating �ow rates in 3D printing processes and enhance its overall

multimodal capabilities.

3.2.2 LLM Regression Head

Building upon the Four-Stage Training Approach, an effective pipeline for achieving the

dissertation's objectives, we propose a novel architectural enhancement for Vision-Language

Models (VLMs). This enhancement introduces a dual-objective function that simultaneously

optimises regression loss and language loss, thereby improving the accuracy of �ow rate

estimation. This architecture represents a signi�cant advancement in using VLMs for

regression tasks and can be extended to other �elds with similar requirements.

As depicted in Figure 3.4, the architecture begins by embedding the vision and language

inputs, which are subsequently processed by the LLAMA model to generate corresponding

image and text outputs. Inspired by ViT, which employs a [CLS] token to aggregate image

information, we integrate a similar concept into our architecture. Given the causal attention

mechanism in language models, where only subsequent tokens can attend to preceding

ones, we introduce a [SEP] token at the end of the image patch embeddings and before the

text embeddings. This [SEP] token is designed to encapsulate all preceding image-related

information.

The [SEP] token is then passed into a regression head responsible for predicting �ow rates,

which is optimised using the mean squared error (MSE) loss function. Concurrently, the

language tokens are used in a cross-entropy loss function to re�ne the model's language

predictions. These dual objectives are optimised simultaneously, resulting in a joint loss

function, as shown in Equation 3.7:

L =
1
N

N

å
i= 1

(yi � ŷi)
2 +

1
N

N

å
i= 1

C

å
c= 1

yi;c log p̂i;c (3.7)

Here,N represents the number of samples,yi is the true value for theith sample,ŷi is the

predicted value for theith sample,yi;c is a binary indicator (0 or 1) indicating whether class

labelc is the correct classi�cation for samplei, andp̂i;c is the predicted probability of sample

i belonging to classc.
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Fig. 3.4 LLaVA-IntelliPrint Architecture

During inference, the output from the regression head is not used, as it does not in�uence the

�nal text-based prediction. The hypothesis is that during training, the [SEP] token can attend

to all preceding image patch tokens. Backpropagation through the regression head may

enhance the model's numerical prediction by integrating this information. Additionally, since

later language tokens attend to the [SEP] token, accurately representing numerical values

could improve the language model's precision and knowledge, leading to better performance.
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3.3 3D Printing Dataset

To effectively implement the Four-Stage Training Approach and the novel LLM Regres-

sion Head architecture, the dataset must align with the foundation model's (i.e., LLaVA)

requirements. Section 3.3.1 introduces our 3D Printing dataset, while Section 3.4 details the

preprocessing steps taken to adapt it for the Four-Stage Training.

3.3.1 Dataset Introduction

The dataset used in this research was developed by the Computer-Aided Manufacturing

Group at the Department of Engineering, University of Cambridge. It comprises over

500,000 labelled images capturing the material deposition process in extrusion additive

manufacturing (AM). The images were generated using a Creality CR-20 Pro 3D printer

equipped with an endoscope camera and a Raspberry Pi Model 4 B+ to record high-resolution

images of the extrusion process. This dataset is crucial for training deep learning models for

real-time control of 3D printing processes, enabling accurate prediction and correction of

�ow rates, thereby improving print quality and ef�ciency (Brion & Pattinson, 2022a).

Each image has a size of [350� 350], and is labelled with metadata, speci�cally, the current

material �ow rate, obtained through a custom data acquisition system that integrates �rmware

metadata with real-time video. The dataset includes images sampled at 19 different �ow rate

levels, ranging from one-third to three times the optimal �ow rate, ensuring a comprehensive

representation of various printing conditions. Additionally, a natural language description of

the 3D printing process is included. As shown in Figure 3.5, there are three main components

in the text description:

1. Additive Manufacturing Description: Highlighted in blue, this section states the

type of AM process (i.e., FDM).

2. Printing Quality: Highlighted in green, this section comprises two main pieces of

information, which are the primary parameters to estimate:

• Flow Rate: This percentage number de�nes the �ow rate of the current printing

process.

• Extrusion Quality: There are three categories of extrusion quality: over-

extrusion, good extrusion, and under-extrusion, corresponding to a �ow rate

greater than, approximately equal to, and less than 100%, respectively.
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3. Explanation: The last section, highlighted in grey, explores the potential reasons why

this problem may have occurred and provides suggestions to alleviate it.

Fig. 3.5 Examples of the Dataset

3.3.2 Dataset Statistics

Out of the 500,000 data points, the dataset statistics are summarised in the following sections:

Image Colour Statistics

The RGB (Red, Green, Blue) values provide a quantitative measure of the average colour

and variation in the images captured during the 3D printing process. As the colour of

training images varies depending on the material colour, understanding these statistics helps

in normalising the image for training.

• Dataset Image RGB Mean:(0.56101511, 0.57580587, 0.54373282)

• Dataset Image RGB Standard Deviation:(0.24505545, 0.2083447, 0.22679123)

The RGB values are scaled between 0-1. The mean values indicate a balanced colour

distribution with a slight emphasis on green and blue channels. The standard deviations

suggest moderate variability in colour, with the red channel showing the highest variation,

which could be due to the material's re�ectivity under the printing conditions. Figure 3.6

illustrates the proportion of dataset images based on their dominant colour, providing a

comprehensive view of the colour variability present in the images.
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Fig. 3.6 Dataset dominant colours distribution

Extrusion Quality Distribution

Table 3.1 presents the extrusion quality distribution, revealing a data imbalance, with 48.48%

of prints exhibiting under-extrusion and 41.49% showing over-extrusion. Only 10.04% of

the prints achieve good extrusion quality. This imbalance underscores the challenges in

maintaining optimal �ow rates, potentially leading to relatively lower classi�cation accuracy

for the Good Extrusion class.

Extrusion Quality Count Percentage
Over-Extrusion 207,432 41.49%
Good Extrusion 50,191 10.04%
Under-Extrusion 242,377 48.48%

Table 3.1 Extrusion Quality Distribution

Flow Rate Data Statistics

The �ow rate data provides insights into the material deposition process, which is critical for

maintaining the quality of the 3D print. Table 3.2 displays a wide range of �ow rates, with a

mean of 121.38 and a large standard deviation of 76.05, indicating signi�cant variability in

the printing conditions.
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Fig. 3.7 Flow Rate Data Distributions

Statistic Value

Median 100.00

Mean 121.38

Standard Deviation 76.05

Minimum 33.00

25th Percentile 56.00

50th Percentile 100.00

75th Percentile 168.00

Maximum 300.00
Table 3.2 Flow Rate Data Statistics

3.4 Training Dataset

Modi�cations and preprocessing have been applied to the 3D printing dataset to meet the

requirements of LLaVA and Masked Autoencoder (MAE). This section details the changes

made to the conversation data and the image augmentation techniques applied to the images,

ensuring the model effectively learns and adapts to the speci�c characteristics of the data.

3.4.1 Conversation Format Modi�cation

Pretraining Dataset

The pretraining dataset for LLaVA comprises one turn of conversation. The original LLaVA

pretraining dataset is a subset of the CC3M dataset. To adapt the dataset for our purposes, we

have developed a Python script that converts the 3D printing dataset as described in section

3.1 to the required format. The pretrain text description follows the format below:

Human: <image>\n Estimate the flow rate and + [Prompt]

GPT: [Answer]

To ensure that the model consistently predicts the critical parameter of �ow rate, the text

"Estimate the �ow rate and" is added to each prompt. To adapt to various prompts, the

[Prompt] in the dataset is a random sample from the list of instructions for image description.

These instructions maintain the same meaning with natural language variance.
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List of Instructions for Image Description

• Describe the following image in detail

• Provide a detailed description of the given image

• Give an elaborate explanation of the image you see

• Share a comprehensive rundown of the presented image

• Offer a thorough analysis of the image

• Explain the various aspects of the image before you

• Clarify the contents of the displayed image with great detail

• Characterize the image using a well-detailed description

• Break down the elements of the image in a detailed manner

• Walk through the important details of the image

• Portray the image with a rich, descriptive narrative

• Narrate the contents of the image with precision

• Analyze the image in a comprehensive and detailed manner

• Illustrate the image through a descriptive explanation

• Examine the image closely and share its details

• Write an exhaustive depiction of the given image

• Describe the manufacturing process.

An example of the pretrain data is given below:

Example of Pretrain Data

Human: <image>\n Estimate the flow rate and offer a thorough

analysis of the image

GPT: The FDM 3D printer's nozzle can be seen.This extrusion

nozzle exhibits signs of under-extrusion, suggesting that the

flowrate may be 62 %. Under-extrusion commonly occurs when the

feedrate is too low or the nozzle temperature is insufficient,

resulting in inadequate material deposition.

Fine-tuning Dataset

Multi-turn instruction-following data is used to �ne-tune the model. Based on the available

information in the 3D printing dataset, the �ne-tuned text description follows the format

below:
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Human: <image>\n Estimate the flow rate and + [Prompt]

GPT: [Answer]

Human: Estimate the flow rate

GPT: [Flow rate label]

Human: Describe the extrusion quality

GPT: [Extrusion quality label]

Similar to pertaining the [Promot] is randomly sampled from the list of instructions. To

extract �ow rate and extrusion quality labels from the free text, the following algorithm has

been used and is capable of accurately extracting the information:

• Flow rate: The algorithm �rst splits the text into individual words. It identi�es the

�ow rate by searching for numeric values that are before and after �ve words of the

term "�ow".

• Extrusion quality : The algorithm �rst splits the text into individual words. It looks for

the word "extrusion" and checks nearby words for keywords indicating over-extrusion,

under-extrusion, or good extrusion. Notice that several words have been used in the

dataset to represent good extrusion. Therefore, a dictionary that has similar meanings

to "good extrusion" based on the dataset has been built. If any of these words are found,

it is classi�ed as good extrusion.

Terms indicating good extrusion

"good", "proper", "optimal", "favorable", "consistent",

"effective", "reliable", "steady", "controlled"

An example of the �netune data is given below:
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Example of Finetune Data

Human: <image>\n Estimate the flowrate and Illustrate the image

through a descriptive explanation

GPT: In our sights is the nozzle of a 3D printer, specifically an

FFF type.This extrusion nozzle exhibits signs of under-extrusion,

suggesting that the flowrate may be 66 %. Under-extrusion

commonly occurs when the feedrate is too low or the nozzle

temperature is insufficient, resulting in inadequate material

deposition.

Human: Estimate the flow rate

GPT: 66 %

Human: Describe the extrusion quality

GPT: under-extrusion

3.4.2 Image Pre-Processing

In this study, image preprocessing is a crucial step to ensure the ef�cacy of the Masked Au-

toencoder model. Proper preprocessing enhances the model's ability to learn and generalise

from the input data. The following steps outline the speci�c transformations applied to the

images before they are fed into the model:

• Resize Images:All images from the 3D printing dataset have a dimension of [350�

350] and are downscaled to a standard input size of [224� 224]. This standardisation

ensures consistent input dimensions for the model.

• Interpolation: Use bicubic interpolation for resizing images. Bicubic interpolation

can be represented as:

I0(x;y) =
3

å
i= 0

3

å
j= 0

w(i; j) � I (x+ i � 1;y+ j � 1); (3.8)

whereI is the input image,I0 is the resized image,i and j are incices that iterate over

the4� 4 neighbourhood andw(i; j) are the bicubic interpolation weights computed as:

w(i; j) = ( 1� j ij=a)(1� j j j=a) (3.9)

with a being a parameter controlling the smoothness of the interpolation.
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• Random Flipping: Apply random horizontal �ipping to the images. This augmenta-

tion technique helps in making the model invariant to the orientation of objects in the

images.

• Normalisation: Normalise the images using pre-de�ned meanmand standard de-

viation s values for each channel. As presented in Section 3.1.2, the dataset has a

mean of (0.561, 0.576, 0.544) and a standard deviation of (0.245, 0.208, 0.227). The

normalisation process is represented as:

I0=
I � m

s
; (3.10)

ensuring that the pixel values are consistent, which improves the model's performance.

The effect of the image processing applied to a raw image can be observed below:

Fig. 3.8 Original Image Fig. 3.9 Image after preprocessing

By applying these transformations, the dataset becomes more robust, mitigating over�tting

and ensuring that the Masked Autoencoder can generalise well to unseen data. The impact

of each transformation on the dataset's quality and the model's performance is critically

analysed in subsequent sections.

Some other image processing techniques, such as Random Erasing and PCA Colour Aug-

mentation, have also been attempted.

• Random Erasing: Random erasing introduces the removal of parts of an image with

a certain probability (Z. Zhong et al., 2017).

• PCA Colour Augmentation: Following Brion and Pattinson (2022a), PCA colour

augmentation was attempted. This technique adjusts the principal components of the

image's colour distribution to introduce slight variations.
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However, during the ablation studies of image preprocessing techniques, they demonstrated a

negative effect on �ow rate estimation and were subsequently removed in the MAE training,

which will be presented in Chapter 4.2.

3.5 Masked Autoencoder (MAE)

The �rst two stages of the proposed four-stage training involve pretraining and �ne-tuning

the MAE vision encoder. This section presents the technical details of these two stages.

Masked Autoencoders (MAE) (He et al., 2021) adapt the autoencoder framework, which

includes an encoder to represent images in a latent space and a decoder to reconstruct

the original signal from the latent representation. This concept extends from denoising

autoencoders, which extract important features and reduce noise by reconstructing a clean

version of the input (Vincent et al., 2008). MAE employs an asymmetric design, allowing

the encoder to operate only on the partial, observed signal (without mask tokens), while

a lightweight decoder reconstructs the full signal from the latent representation and mask

tokens. This ensures that most of the learning is done by the encoder, with the decoder being

less complex and discarded when using the Vision Transformer (ViT) as an image encoder.

Fig. 3.10 Masked Autoencoder Architecture (He et al., 2021)
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3.5.1 Pretraining Phase

The �rst training phase is the pretraining phase, which uses the self-supervised learning

(SSL) technique to learn image representations. The architecture of MAE is shown in Figure

3.10. There are three key components:

• Masking: Similar to the standard ViT, input images are divided into non-overlapping

patches. For the commonly used MAE-ViT-Large Patch 16, images are resized to

[224� 224] pixels, and each patch has a size of [16� 16]. Therefore, there are a total

of 196 patches, as shown in Equation 3.11. A [CLS] token is also added to the start

of all patches, aiming to capture the information of the whole image. Thus, there

are196+ 1 = 197patches. A certain ratio of patches are randomly masked, with a

masking ratio of 75% showing the best performance.

224� 224
16� 16

= 196 patches (3.11)

• MAE Encoder: The encoder is a ViT, which embeds patches using a linear projection

with added positional embeddings and then processes the resulting set through a series

of Transformer blocks. It only encodes the unmasked patches to extract information.

The authors have provided several standard architectures of ViT in their of�cial code,

as detailed in Table 3.3.

ViT Image Size Patch Size Embedding Dim Depth Heads
ViT Tiny Patch 16 224� 224 16� 16 192 12 3
ViT Small Patch 16 224� 224 16� 16 384 12 6
ViT Base Patch 16 224� 224 16� 16 768 12 12
ViT Large Patch 16 224� 224 16� 16 1024 24 16
ViT Huge Patch 14 224� 224 14� 14 1280 31 16

Table 3.3 Different types of ViT implementations in MAE

• MAE Decoder: The input to the MAE decoder is the full set of tokens, including both

encoded visible patches and mask tokens.

The masked sequenceZm is then fed into a decoder to reconstruct the original image.

The decoder �rst upsamples the sequence by �lling in the masked positions with a

learnable embeddingemask2 RD, D is the embedding dimension, creating a sequence

Zd that matches the original lengthN:
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Zd = Zm+ ( 1� M) � emask (3.12)

WhereM is the mask indicator matrix. It is a binary matrix where each element

indicates whether a corresponding token in the original sequence was masked.

This sequence is then processed by the decoder, which consists of multiple layers of

transformer blocks:

x̂i = Decoder(Zd) (3.13)

wherex̂i represents the reconstructed patch embeddings.

The decoder predicts the pixel values for each masked patch. The loss function for recon-

struction is the mean squared error (MSE) between the reconstructed and original images in

the pixel space. (Equation 3.4)

Pretraining Implementations

He et al. (2021) provided the pretrained checkpoint that has been trained on ImageNet-1K

(Russakovsky et al., 2015). To leverage the capabilities of transfer learning, our pretraining

process initialized the model with the parameters provided by the authors and subsequently

trained the model on our dataset. This approach allows the model to bene�t from the extensive

training on a large dataset like ImageNet-1K, improving generalization, convergence speed

and performance on our speci�c task.

3.5.2 Fine-tuning Phase

The second stage is the �ne-tuning phase. In this phase, the decoder is discarded, leaving

only the ViT to output a vector representing the input image. There are two ways to obtain

the learned vector:

• Use the [CLS] token

– A [CLS] (Class Token) is added to the start of image patches in Vision Trans-

formers. This token aggregates information for classi�cation tasks (Dosovitskiy

et al., 2021).

• Pooling: Average/Max over all patches
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– Instead of feeding the [CLS] token into the MLP head, average and max pooling

(Equation 3.14) have also been widely utilised in recent transformers and have

demonstrated good performance in classi�cation tasks (Z. Liu et al., 2021; Marin

et al., 2023).

Zavg =
1
N

N

å
i= 1

Z(i) (3.14)

whereZ(i) 2 RD represents the embedding of thei-th patch.

Both the [CLS] token and pooling techniques are experimented with in this dissertation.

An unmasked image is fed into the encoder. The learned vector is then input into an MLP

regression head that outputs the �ow rate prediction. In our case, since the patch embedding

size for ViT-L that we use is 1024, the regression head has a structure of

y = ReLU(W1x+ b1) (3.15)

WhereW1 2 R1� 1024 is the weight matrix,b1 2 R1 is the bias term.

The objective is to reduce the mean squared error (MSE) (Equation 3.16) and is optimised

using the Adam optimiser.

L (y; ŷ) =
1
n

n

å
i= 1

(yi � ŷi)2 (3.16)

whereyi represents the true �ow rate and ˆyi represents the predicted �ow rate.

Fine-tuning Implementations

During the code implementation, the scale of the �ow rate predictiony ranged from 0 to

2 by inputting 1000 images into the Vision Transformer (ViT) without any optimisation.

Since the actual �ow rate labelsy range from 33 to 300, a min-max scaling has been applied

to normalise the label data. This enhances convergence speed and numerical stability by

ensuring that the data is within a consistent range, which bene�ts the optimisation algorithm.

The min-max scaling is calculated using Equation 3.17.

x0=
(x� original_min) � (target_max� target_min)

original_max� original_min
+ target_min (3.17)
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Fig. 3.11 MAE Fine-tune Architecture

Whereoriginal_min, original_max, target_min, target_maxare the min/max values of the

original data range and the min/max values of the target data range respectively.

3.6 Evaluation Metrics

This section introduces the evaluation methods for both the Masked Autoencoder (MAE)

Vision Transformer (ViT) and the Visual Language Model (VLM). These evaluation metrics

are applied consistently across all experiments to enable a fair comparison of different

models.

3.6.1 Masked Autoencoder Performance Evaluation

Pretrain - Image Reconstruction

The primary quantitative metric used to measure the reconstruction quality of images is the

Mean Squared Error (MSE). The MSE evaluates the average squared difference between the

original and reconstructed images, providing a clear measure of reconstruction accuracy. The

formula for MSE, considering the masked patches, is given by Equation 3.16. Additionally,

qualitative evaluation involves visually inspecting the reconstructed images.
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Finetune - Flow Rate Estimation

For �ow rate estimation, we employ the Mean Absolute Error as our evaluation metric. MAE

provides a clear measure of the average magnitude of errors in the predictions, which is

particularly useful for understanding how close the predicted �ow rates are to the true labels.

The formula for MAE is given by:

Mean Absolute Error=
1
n

n

å
i= 1

jŷi � yi j (3.18)

whereŷi andyi represent the predicted and true �ow rates, respectively, andn is the number

of observations.

3.6.2 Visual Language Model Performance Evaluation

We evaluate the performance of the VLM on the 3D printing task based on four dimensions:

Flow Rate Estimation, Extrusion Quality Estimation, Language Consistency, and Text

Generation Quality.

Flow Rate Estimation

Flow rate is identi�ed by searching for numeric values within �ve words of the term "�ow".

The mean absolute error of �ow rate estimation is then reported using the same MAE formula

described previously (Equation 3.18).

Extrusion Quality Estimation

To systematically measure the performance of the VLM in classifying extrusion quality (i.e.,

over-extrusion, under-extrusion, and good-extrusion), the evaluation is extracted from the

generated text by locating the keyword "extrusion" and checking nearby words for keywords

indicating its quality. The overall accuracy, precision per class, recall per class, and F1 score

per class are calculated. These metrics provide a comprehensive evaluation of the model's

classi�cation performance by considering both the positive and negative predictions. The

formulas for accuracy, precision, recall, and F1 score are given by:

Accuracy=
TP+ TN

TP+ TN+ FP+ FN
(3.19)

Precision=
TP

TP+ FP
(3.20)
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Recall=
TP

TP+ FN
(3.21)

F1 Score= 2�
Precision� Recall
Precision+ Recall

(3.22)

whereTP, FP, andFN represent the true positives, false positives, and false negatives,

respectively.

Language Consistency

Language Consistency evaluates whether the predicted �ow rate aligns with the described

extrusion quality in the generated text. Speci�cally, it checks if a �ow rate below, equal to,

or above 100% is correctly described as under, good, or over-extrusion, respectively. For

example, the second text below is classi�ed as inconsistent because it describes the extrusion

quality as "good" despite a �ow rate greater than 100%.

• Consistent text: The extrusion nozzle seen here suggests the utilisation of material

extrusion, a technique frequently employed in additive manufacturing processes. Upon

inspecting the extrusion nozzle, it becomes apparent that the �owrate is300 %. This

higher-than-desired �owrate suggestsover extrusion, potentially causing issues such

as poor surface �nish and dimensional inaccuracies

• Inconsistent text: Upon inspection of the extrusion nozzle, it seems that the �owrate

is 112 %. This consistent �owrate indicatesgood extrusion, ensuring proper material

deposition and layer adhesion, ultimately contributing to the structural integrity of the

printed object.

The percentage of consistent predictions is reported. The consistency can be mathematically

evaluated as follows:

Consistency=
Number of consistent predictions

Total number of predictions
� 100% (3.23)

Text Generation Quality

To assess the natural language generation quality, we use BERTScore. Traditional metrics like

BLEU (Papineni et al., 2002) and METEOR (Banerjee & Lavie, 2005) provide quantitative

measures for text generation by evaluating n-gram overlap and �exible matching, respectively.

However, they often fail to capture the full semantic context, making them less suitable

for assessing nuanced text generation. In contrast, BERTScore (T. Zhang et al., 2020)
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evaluates semantic similarity using pre-trained BERT embeddings, offering a more robust,

context-aware assessment. BERTScore calculates precision, recall, and F1 score as follows:

PBERT =
1
jx̂j å̂

x j2x̂
max
xi2x

x>
i x̂ j (3.24)

RBERT =
1
jxj å

xi2x
max
x̂ j2x̂

x>
i x̂ j (3.25)

FBERT = 2�
PBERT � RBERT

PBERT+ RBERT
(3.26)

wherex represents the set of tokens in the reference text,x̂ is the set of tokens in the generated

text, andx>
i x̂ j denotes the cosine similarity between the BERT embeddings of tokensxi and

x̂ j . A BERTScore typically ranges from 0.85 to 0.90 or higher, indicating a close semantic

match between the generated and reference texts. This is crucial for ensuring the practical

usability of the model's text outputs.

By applying these rigorous evaluation metrics, we ensure a comprehensive assessment of both

the MAE ViT and VLM models. These metrics not only provide quantitative measures of

performance but also offer qualitative insights that are essential for the practical deployment

of these models in real-world applications.

3.7 Chapter 3 Summary

Chapter 3 outlines the methodology behind our proposed system, LLaVA-IntelliPrint, the

�rst vision-language model designed for real-time quality assurance in 3D printing pro-

cesses. Built on the foundation of the LLaVA model, the system integrates a large language

model (LLM) with a Vision Transformer (ViT) and adopts a four-stage training approach to

enhance its ability to identify and correct defects during additive manufacturing. A novel

regression head is introduced to enable the LLM to perform numerical regression tasks, such

as estimating �ow rates from visual inputs. The methodology also covers comprehensive

dataset preparation, including preprocessing steps and the use of a 3D printing dataset for

training. Additionally, the Masked Autoencoder (MAE) is employed as a vision encoder to

ensure accurate �ow rate prediction and error detection. Evaluation metrics, including mean

absolute error for �ow rate estimation and VerScore for text generation quality, are used to

assess the system's performance.





Chapter 4

Experiments & Results

This section details the experimental setups and results for LLaVA-IntelliPrint, evaluated

on the test set of the 3D printing dataset. We conducted two primary sets of experiments:

one focused on the MAE Vision Encoder and the other on the LLaVA-IntelliPrint Vision-

Language Model. Additionally, we present ablation studies that investigate the impact of

each model component. Finally, we discuss the model's performance in the context of its

relevance to the initial use case, highlighting its practical applicability.

4.1 Experiment Setup

4.1.1 Train Test Split

As mentioned in Section 3.3, the dataset used in this project consists of 500K labelled image-

text pairs. An 8-1-1 train-validation-test split was implemented, resulting in the following

dataset sizes:

Model Data Inputs Train Size Validation Size Test Size
MAE Image + Flow Rate Labels 400K 50K 50K
LLaVA-IntelliPrint Image + Text References 400K 50K 1K

Table 4.1 Dataset Distribution for Experiments

Notice that performing 50,000 test data point inferences on LLaVA-IntelliPrint would require

approximately 40 GPU hours on a single NVIDIA A100. Due to computational constraints,

1,000 data points were sampled from the 50,000 test data.
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4.1.2 MAE Vision Encoder Experiments Overview

Training Parameters

The experiments conducted with the MAE Vision Encoder included several ablation studies to

optimise its performance. Both the pretraining and �ne-tuning phases were carried out using

4 NVIDIA A100 GPUs. The speci�c parameters utilised during pretraining and �ne-tuning

are detailed in Table 4.2 and Table 4.3, respectively.

Parameter Value
Batch Size 64
Model ViT Large Patch16
Masking Ratio 0.75
Epochs 20
Base Learning Rate 1.5e-3
Weight Decay 0.05
Image Size 224

Table 4.2 Key Training Parameters for
MAE Pretrain

Parameter Value
Batch Size 256
Model ViT Large Patch16
Epochs 20
Base Learning Rate 1.5e-3
Layer Decay 0.75
Weight Decay 0.05
Drop Path Rate 0.2
Image Size 224
Gradient Clipping 1.0

Table 4.3 Key Training Parameters for
MAE Finetune

Ablation Studies

Two ablation studies were conducted to explore various aspects of the Masked Autoencoder

(MAE). The �rst ablation study focuses on evaluating the impact of different con�gurations

within theMAE architecture . The second study examines the effectiveness of variousimage

augmentation techniquesapplied within the MAE framework.

4.1.3 LLaVA-IntelliPrint VLM Experiments Overview

Training Parameters

The experiments conducted with the LLaVA-IntelliPrint Vision Language Model included

several ablation studies and model enhancement techniques to optimise its performance.

Both the pretraining and �ne-tuning phases were carried out using 4 NVIDIA A100 GPUs.

The speci�c parameters utilised during pretraining and �ne-tuning are detailed in Table 4.4

and Table 4.5, respectively.
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Parameter Value
Num Train Epochs 1
Per Device Train Batch Size 32
Per Device Eval Batch Size 4
Gradient Accumulation Steps 1
Learning Rate 1e-4
Warmup Ratio 0.03
LR Scheduler Type cosine
Model Max Length 2048

Table 4.4 Key Pretraining Parameters for
LLaVA-IntelliPrint

Parameter Value
Num Train Epochs 1
Per Device Train Batch Size 16
Per Device Eval Batch Size 4
Gradient Accumulation Steps 1
Learning Rate 2e-5
Warmup Ratio 0.03
LR Scheduler Type cosine
Model Max Length 2048

Table 4.5 Key Finetuning Parameters for
LLaVA-IntelliPrint

Ablation Studies

Table 4.6 summarises the 11 ablation studies conducted on various modules and architectures

of LLaVA-IntelliPrint. Experiment 0 serves as the baseline, demonstrating the performance

of �ne-tuning the 3D printing dataset on the out-of-the-box LLaVA model without any

modi�cations. Experiments 1-6investigate the effectiveness of different training compo-

nents within LLaVA-IntelliPrint.Experiments 7-8assess the impact of various numerical

tokenisation approaches. Finally,Experiments 9-10evaluate the in�uence of the novel

architecture by adding a regression head during training.

Pretrain

MAE

Fine-tune

MAE

Train

LLaVA

Numeric

Tokenisation

Regression

Head

Experiment 0 X

Experiment 1 X X

Experiment 2 X X

Experiment 3 X X X

Experiment 4 X X

Experiment 5 X

Experiment 6 X

Experiment 7 X X X X

Experiment 8 X X

Experiment 9 X X X X

Experiment 10 X X
Table 4.6 LLaVA-IntelliPrint Ablation Study
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Data Ef�ciency Optimisation

Finally, we performed a data ef�ciency optimisation to determine whether the entire 500K

dataset is necessary for the model to converge.

4.2 MAE Vision Encoder Performance

4.2.1 Best Performing Model

The best-performing model is the ViT-Large Patch 16, which is both pre-trained and �netuned

on the 3D Printing dataset. This model utilised the [CLS] token connected with a regression

head to achieve superior performance in regression tasks. The image preprocessing steps

included resizing, interpolation, random �ipping, and normalisation.

As some examples demonstrated in Figure 4.1, this model achieved a Mean Absolute Error

(MAE) of 6.49%, signi�cantly outperforming the benchmark MAE of 8.64% (Margadji et al.,

2024). This improvement underscores the effectiveness of adding a regression head for MAE

for �ow rate estimation in 3D printing applications.

Fig. 4.1 Examples of MAE Flow rate estimation.

4.2.2 Ablation Studies on MAE Architecture

This ablation study investigates how the Vision Transformer (ViT) size, pretraining strategies,

and image feature representation methods affect the MAE model's ability to reconstruct and

estimate �ow rates from 3D printing images.

The ablation study aims to explore three key areas:

1. Pretraining: The impact of pertaining stage is evaluated by comparing two approaches:

• Setup A: Pretraining on the 3D Printing Dataset on top of the ImageNet weights,

followed by �netuning.
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• Setup B: Use the publicly available pretraining weight on ImageNet and only

�ne-tune it on the 3D Printing Dataset.

2. Feature Representation: The performance differences between using the [CLS] token

and the pooling technique as the image feature vector for �ow rate regression are

examined.

3. Model Size: The study compares the performance of different ViT model sizes—ViT-

Small, ViT-Base, and ViT-Large—to assess how model capacity in�uences the results.

Table 4.7 presents the results for Training Setup A using different ViT sizes after pretraining

and �netuning on the 3D printing dataset. The corresponding image reconstruction results

are shown in Figure 4.2. Similarly, Table 4.8 shows the results for Training Setup B, with

�netuning based on ImageNet pretrained weights. The reconstruction results are shown in

Figure 4.3.

ViT Size Stage MAE (%) Validation Loss STD

Small-16

Pre-train on 3D Printing Data - 0.0511 0.0026

Fine-tune (Pooling) 39.47 - 7.50

Fine-tune (CLS Token) 27.83 - 3.14

Base-16

Pre-train on 3D Printing Data - 0.0460 0.0025

Fine-tune (Pooling) 38.90 - 5.22

Fine-tune (CLS Token) 25.49 - 2.03

Large-16

Pre-train on 3D Printing Data - 0.0374 0.002

Fine-tune (Pooling) 36.82 - 5.36

Fine-tune (CLS Token) 24.24 - 5.26
Table 4.7 Training Setup A - MAE �ow rate regression results: Pretraining on 3D Printing
Data; Finetuning on the 3D Printing pre-trained weights.

Fig. 4.2 MAE ViT-L reconstruction of 3D Printing Data set based on weights pretrained on
the 3D printing dataset.
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