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Abstract

Neural computations such as those underlying motor control, perception, navigation, and decision-

making have been proposed to be supported by a dynamical system defined in low-dimensional latent

space. Dynamical systems typically produce state-space trajectories that are consistent with a lawful

flow-field. The trajectories are thus temporally non-reversible, such that they do not have equal proba-

bility of occurring in reverse. Therefore, enhancing our understanding of cortical function could benefit

from techniques that facilitate investigation of non-reversible structure in population-level data. This

thesis presents sequential components analysis (SCA), a dimensionality reduction method seeking pro-

jections of the data that maximise non-reversibility. Specifically, SCA defines a second-order measure of

non-reversibility, which is optimised in a stochastic gradient fashion. Importantly, the SCA optimisation

objective can be restated to promote kernelisation of the algorithm. SCA and kernel SCA (kSCA) were

validated on a range of synthetic datasets with known ground-truth non-reversible dynamics. Notably,

kSCA, but not SCA, successfully retrieved non-reversible structure even when it was not linearly acces-

sible. (k)SCA was then applied to recordings from the monkey motor (M1) and dorsal premotor (PMd)

cortices. The resulting latents exhibited rotational dynamical structure, which appeared behaviourally

relevant. Indeed, the (k)SCA-derived non-reversible components of neural data were more reflective

of hand kinematics relative to principal components. Overall, the results highlight the value of non-

reversibility as a learning goal for dynamic time series analysis, with potential applications extending

beyond neuroscience.
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1 Introduction

1.1 Motivation

The brain can be viewed as constituting a complex, high-dimensional coordinate system, whereby

each coordinate axis represents the firing of a single neuron (Saxena & Cunningham, 2019). An increas-

ingly popular view posits that the apparently high-dimensional biophysics of neural circuits implement

a dynamical system confined to a lower-dimensional subspace, or manifold (Duncker & Sahani, 2021;

Pandarinath et al., 2018b). This is compatible with the high recurrent connectivity of cortical networks

(Mastrogiuseppe & Ostojic, 2018). Exploring the organisation of such population-level dynamics could

contribute to enhancing our knowledge of how neuronal response patterns integrate into representations

that ultimately support behaviour, a central goal in neuroscience (Gallego et al., 2017).

An important property of autonomous dynamical systems is that the state-space trajectories they

generate are governed by a consistent flow field (Rutten et al., 2020a). This implies that the trajectories

are temporally non-reversible, or equivalently, sequential. That is, they do not have equal probability of

occurring in the reverse order. Accordingly, sequentiality appears to characterize population-level activity

patterns across multiple neural systems. This is exemplified in the motor domain. Monkey primary

motor (M1) and dorsal premotor (PMd) cortical activity during behaviours such as reaching and cycling

exhibits low-dimensional sequential structure in the form of rotations of the neural state (Churchland

et al., 2012; Lara et al., 2018; Russo et al., 2018; Rutten et al., 2020a). In the avian premotor nucleus

HVC, which has been described as a potential analog of the mammalian motor cortex (Pfenning et al.,

2014), neurons produce precisely timed, non-reversible sequences during birdsong vocalisations (Lynch

et al., 2016; Picardo et al., 2016).

In the decision-making domain, accumulation of evidence, reflective of the formation of a decision, is

represented by graded firing rates that ultimately result in a commitment to a choice (Gold & Shadlen,

2007). This can be demonstrated using a random-dot motion paradigm (Newsome et al., 1989), where

subjects (e.g., monkeys, humans; Hanks et al., 2011; Roitman and Shadlen, 2002) are required to

discriminate the direction of motion of dots, only a percentage of which move coherently towards one of

two peripheral targets. Just before the decision is communicated by a saccadic eye movement, activity of

neurons in the lateral intraparietal cortex (LIP) encodes the accumulation of sensory evidence (Roitman

& Shadlen, 2002). This accumulation process unfolds until the neurons tuned to the chosen target reach

a threshold firing rate. On the other hand, a decline in firing rate is observed when the alternative target

is selected, consistent with mounting evidence against the target the neurons are tuned to (Roitman &

Shadlen, 2002). Therefore, such accumulation preceding commitment is inherently non-reversible, since

activity either increases or decreases without retracting.

In the spatial navigation domain, trajectories in the environment induce precisely ordered spike se-

quences of spatially-tuned cells (Drieu & Zugaro, 2019). These include place cells in the cornu ammonis

1 (CA1) region of the hippocampus, active when the animal traverses a specific location in the envi-

ronment. Notably, place cells were found to be directional such that different heading directions elicit

different response patterns (Acharya et al., 2016; Navratilova et al., 2012; Stachenfeld et al., 2017).

Therefore, the statistical profile of hippocampal population activity is anticipated to be non-reversible

even during back-and-forth navigation in a linear track environment. Moreover, the place cell firing se-

quences observed during wakefulness are also recapitulated during periods of rest, a phenomenon referred

to as replay (Lee & Wilson, 2002; Nádasdy et al., 1999; Ólafsdóttir et al., 2015; Skaggs & McNaughton,

1996). Instances of pre-activation (i.e., preplay) of hippocampal cells, potentially encoding future planned

trajectories, have also been reported (Ólafsdóttir et al., 2015).
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1.2 Previous work and limitations

The above examples demonstrate the prevalence of non-reversibility in the brain. Consequently, un-

derstanding the computational algorithms driving cortical networks could possibly benefit from techniques

compressing population-level recordings in a way that facilitates probing of sequentiality in data. Previous

studies have already leveraged dimensionality reduction approaches to uncover latent trajectories that

are shared across the population and behave in agreement with lawful flow fields. For instance, jPCA is

a linear dimensionality reduction method that seeks projections (onto an orthonormal basis) capturing

rotational structure in data (Churchland et al., 2012). While initially deployed to probe monkey mo-

tor cortex latent variables, jPCA-obtained rotations have since been studied in various brain areas and

species (Kuzmina et al., 2024). However, the specific form of dynamical structure sought by jPCA (i.e.,

rotations wherever they occur) has been criticised (Lebedev et al., 2019). There is indeed no a priori

reason to assume that purely rotational dynamics dominate neural data, and other types of dynamics

(e.g., contractions, shear, expansions; Lara et al., 2018) might have been overlooked. Alternative di-

mensionality reduction algorithms alleviating these concerns have been introduced (Lara et al., 2018;

Rutten et al., 2020a; see also Mackevicius et al., 2019, which directly extracts temporal sequences

from high-dimensional data). These include GPFADS (Gaussian Process Factor Analysis with Dynamical

Structure; Rutten et al., 2020a). GPFADS constructs a Gaussian Process kernel that promotes the

extraction of latent factors with non-reversible temporal evolution. It is then incorporated in a Gaussian

Process Factor Analysis (GPFA) framework to learn latent processes statistics. GPFADS successfully

revealed non-reversible population-level dynamics in both synthetic and neuroscience datasets.

Whilst theoretically appealing, there are still potential limitations to GPFADS. First, even though the

non-reversible GPFADS kernel admits a Kronecker factorization that helps increase scalability, it remains

relatively difficult to scale the method to very large datasets. Yet, these are increasingly prevalent in

neuroscience given the advent of powerful recording technologies with large volume coverage (Jun et

al., 2017; Siegle et al., 2021). Moreover, GPFADS is restricted to the identification of 2-dimensional

subspaces. Although individual planes can be combined (Rutten et al., 2020a), it would be useful to

develop a more straightforward approach towards identifying higher-dimensional subspaces. This seems

particularly necessary given that the dimensionality of neural computational manifolds often matches or

exceeds the dimensionality of corresponding task-related variables, which can be greater than 2 (e.g.,

3-dimensional location; Duncker and Sahani, 2021; Jeffery et al., 2015; see also Low et al., 2018; Nieh

et al., 2021). Finally, GPFADS-extracted subspaces are linear. Facilitating identification of nonlinear

subspaces might nonetheless be crucial in certain cases. As will be shown in this thesis, trajectories

satisfying an intuitive notion of non-reversibility can sometimes be (spuriously) deemed fully reversible by

linear methods. For instance, the inherent non-reversibility of pure rotations will be missed if these are

generated in the polar coordinate system but are subsequently converted to the Cartesian domain. In

addition to enhancing the robustness of the method, promoting nonlinear transformations might confer

greater biological relevance. Nonlinearities are indeed ubiquitous in the brain (e.g., in the motor cortex;

Paninski et al., 2004, in the hippocampus; Low et al., 2018; Nieh et al., 2021), alluding to the possibility

that meaningful non-reversible trajectories that are not linearly accessible exist.

1.3 Thesis outline and contributions

This project builds on the prototype of sequential components analysis (SCA) introduced by Rutten

et al. (2020b), which provides an alternative, more flexible approach to examining the spatio-temporal

structure of sequentiality in data. SCA directly searches for the lower-dimensional (potentially non-linear)

projection for which sequentiality is maximised. It does so by defining a measure of temporal non-

reversibility, which serves as an objective to be optimised (e.g., in a stochastic gradient-based fashion).

The dimensionality of the resulting SCA-defined subspaces is not limited to planes. Additionally, SCA can

be readily kernelised to accommodate higher-dimensional (incl. infinite) feature spaces, thereby allowing
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for nonlinear dimensionality reduction. The mathematical foundations relevant to linear SCA and kernel

SCA (kSCA) are described in further details in Sections 2.1 and 2.2, respectively. The method is then

validated on a range of synthetic datasets with known ground-truth non-reversible structure in Section

3. Section 4 highlights the potential of SCA-obtained projections to address questions about neural

representational and computational properties in the motor domain.
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2 Linear and nonlinear sequential component analysis

2.1 Mathematical foundations of linear SCA

Consider a set of zero-mean spatio-temporal observations {Xk ∈ RN×T }k=1,...,K , where T denotes the
number of time bins, N the number of units, and K the number of samples. For instance, in a neuroscience

setting, N could represent the recorded neurons and K the individual trials, or conditions if trial-averaged

data is used. Xk will be deemed reversible if, and only if p(Xkti , Xkt′ i ′ ) = p(Xkt′ i , Xkti ′ ) for two different

units i , i ′ and time points t, t ′. This definition is analogous to the concept of detailed balance, which

applies to stationary Markov processes and implies that the probability of transitioning between any two

states is invariant under time reversal, though it extends to non-stationary processes. An example of such

time-reversibility is the statistical structure of noise. In contrast, for structured space-time trajectories,

such as those observed in the motor cortex, LIP, and the hippocampus (see Introduction), the reversibility

criterion is unlikely to be met. The trajectories are thus considered non-reversible, or sequential.

The organisation of sequentiality in data can be specifically probed by considering the space-time

covariance matrix C ∈ RTN×TN , given by

C = E[vec(X⊤k )vec(X⊤k )⊤] (1)

where vec is the vectorisation operator (vertically stacks the columns of Xk), and the expectation is taken

over the spatio-temporal samples (K in total). This yields N × N blocks of dimension T × T , denoting
the temporal covariance between pairs of units. On the diagonal, these would correspond to the temporal

covariance of a given unit with itself i.e., its auto-covariance (e.g., C11 in Figure 1). Off-diagonal blocks

specify the cross covariance between pairs of units at different lags. C can then be decomposed by adding

or subtracting its time-transposed version σ(C) i.e., the matrix obtained by separately transposing each

T × T block

C(+) = C + σ(C)

C(−) = C − σ(C) (2)

This effectively replaces each T×T cross-covariance matrix by its symmetric (·(+)) or its skew-symmetric
(·(−)) component (Figure 1). Notably, the structure of C(+) reflects that of a reversible process. Indeed,
symmetric blocks in C(+) capture the even parts of the cross-correlograms between units. The opposite

is true for C(−), which captures the odd parts of the cross-correlograms, and thus describes the spatio-

temporal structure of sequentiality in the data at least up to second-order moments. The degree of

sequentiality, or equivalently, the departure from reversibility, of a spatio-temporal process can then be

quantified using

ζ =

∥∥C(−)∥∥2
F∥∥C(+)∥∥2
F

(3)

with ∥·∥2F indicating the squared Frobenius norm, corresponding to the sum of squares of individual
elements. Conveniently, this ratio is provably bounded between 0 (i.e., perfectly reversible process) and 1

(i.e., systematic ordering between units; Rutten et al., 2020a). Note already that, under the linear SCA

metric, 1-dimensional dynamics will always be reversible, since C(−) is 0, which results from subtracting

the transpose of symmetric matrices (see diagonals in Figure 1). This potentially undesirable property

does not apply for kernel SCA, described in the next section.

In its linear form, SCA seeks a unitary matrix U ∈ RN×d that maximizes the sequentiality of the
spatially-projected samples {Yk = U⊤Xk} (with space-time covariance CU). The numerator in ζ (equation
3) can thus be treated as a sequentiality objective to be optimised, subject to orthonormality of U (i.e.,

U⊤U = Id). To this end, it can be re-expressed using a computationally efficient stochastic estimator,
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Figure 1: Obtaining C(−) from a multivariate time series. The space-time covariance of a spatio-

temporal process (e.g., corresponding to the activity of N neurons over T time steps, for K conditions)

is computed. The matrix σ(C), where each T × T block has been transposed, is subtracted, thereby
retaining the skew-symmetric parts. Figure from Rutten et al. (2020b).

which will become particularly helpful for kernelisation purposes. First, Hutchinson’s trace estimator

identity is used to yield

S(U) =
∥∥∥C(−)U ∥∥∥2

F
= Tr[C

(−)
U C

(−)
U ] = Tr

[
C
(−)
U C

(−)
U Ev∼N (0,I)[vv

⊤]
]
= E

[
Tr[C

(−)
U C

(−)
U vv

⊤]
]

= E
[
Tr[v⊤C

(−)
U C

(−)
U v ]

]
= E

[
v⊤C

(−)
U C

(−)
U v

]
(4)

which leverages the linear as well as the cyclic nature of the trace. Additionaly, the matrix-vector products

C
(−)
U v can be re-expressed as

1
K

∑K
k=1 vec(Tr[YkV

⊤]Yk − YkV ⊤Yk) (Rutten et al., 2020b). This results in

S(U) =
1

K2

∑
k,k ′

Ev∼N (0,I)

[
Tr
[(
Tr[YkV

⊤]Yk − YkV ⊤Yk
) (
Tr[Yk ′V

⊤]Yk ′ − Yk ′V ⊤Yk ′
)⊤]]

=
1

K2

∑
k,k ′

E

[
Tr
[
Tr[YkV

⊤]Tr[Yk ′V
⊤]YkY

⊤
k ′ − Tr[YkV ⊤]YkY ⊤k ′ V Y ⊤k ′ − Tr[Yk ′V ⊤]YkV ⊤YkY ⊤k ′ + YkV ⊤YkY ⊤k ′ V Y ⊤k ′

]]

=
2

K2

∑
k,k ′

[
Tr2[YkY

⊤
k ′ ]− Tr[YkY ⊤k ′ YkY ⊤k ′ ]

]
(5)

where the sum is performed over all pairs (k, k ′) of projected samples (see Appendix A for a full proof).

The sequentiality objective S(U), written as an average, can be approximated by Monte-Carlo sampling
using mini-batched pairs. SCA therefore lends itself to stochastic gradient-based optimisation of the

subspace U. Note that optimising the numerator in ζ, rather than the ratio, which no longer evaluates

to an average, is necessary to help avoid biased estimates when computations are based on subsets of

samples.

Additionally, an important consideration is that U is parameterised as the Q factor in the QR decom-

position of an otherwise unconstrained matrix Ũ of free parameters, thereby enforcing orthonormality of

the basis while facilitating an unconstrained optimisation procedure.

2.2 Mathematical foundations of kSCA

Inspection of equation 5 reveals that the projected data only appears in inner products reducing the

spatial dimension (though note that terms inside the trace could have been shifted, thus targeting the

temporal dimension instead; see also Section 5). This formulation implies that the kernel trick (Berlinet
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& Thomas-Agnan, 2004) may be used, such that the inner products are replaced by positive definite

kernel functions k(·, ·). Their outputs are by definition equal to the implicitly computed inner products
between nonlinear, potentially high- or even infinite-dimensional feature representations φ(·) of the data.
Nonlinear solutions are thus obtained only based on evaluations of the kernel, while alleviating the need

to explicitly compute and store mappings to the feature space, an endeavour that could be infeasible

in the case of infinite dimensional embeddings. Notably, multiple classical algorithms, including PCA

and support vector machines (SVMs), have been kernelised in this fashion, allowing to address problems

that could not be solved otherwise (e.g., SVM-facilitated classification of non-linearly separable data;

Hofmann et al., 2008; Scholkopf and Smola, 2002).

Specifically focusing on the SCA setting, consider a feature map with potentially infinitely many

coordinates φ(Xk) ∈ R∞×T . The sequentiality objective is then restated as

S[φ(U)] =
2

K2

∑
k,k ′

Tr2
[
φ(U)⊤φ̃(Xk)φ̃(Xk ′)

⊤φ(U)
]

(6)

− Tr
[
φ(U)⊤φ̃(Xk)φ̃(Xk ′)

⊤φ(U)φ(U)⊤φ̃(Xk)φ̃(Xk ′)
⊤φ(U)

]
where ·̃ denotes the removal of the across-trial mean (i.e., yielding centred feature representations).
To enforce orthonormality of the (to-be-optimised) d-dimensional subspace {φ(U)} in feature space, a
minimizer to the Lagrangian L = S[φ(U)] − Tr[Λφ(U)⊤φ(U)] is sought, where Λ is a d × d symmetric
matrix of Lagrange multipliers. Differentiating with respect to φ(U) reveals that the solution lies in the

span of

φ(U) = φ̃(A)α (7)

where A ∈ RN×KT is the matrix of all spatial samples collected at all trials and times, and α ∈ RKT×d
is a matrix of parameters. Therefore, kernel SCA consists in optimising α (e.g., in a stochastic gradient

manner) according to the revised objective

S(α) =
2

K2

∑
k,k ′

Tr2 [α⊤HK(A,Xk)K(Xk ′ , A)Hα]︸ ︷︷ ︸
Q

−Tr[QQ]

 (8)

where K(A,Xk) = ⟨φ(A), φ̃(Xk)⟩ is a KT ×T Gram matrix, K(Xk ′ , A) is the equivalent with dimensions
swapped, and H a centring matrix given by

H = IT ⊗
(
IK −

1

K
1K

)
(9)

where ⊗ is the Kronecker product, I is the identity and 1K is a K × K matrix of ones, such that
H performs across-trial mean removal for each time-step individually. Importantly, in addition to the

centring of φ(A), achieved by the multiplication by H, the mean across conditions k also needs to be

removed from K(A,Xk) and K(Xk ′ , A), in line with the centred feature representation of X (see equation
6). Again, this is estimated in a Monte-Carlo fashion, with the same mini-batched samples as those used

to estimate S(α). Test samples φ(X∗) can then be spatially projected onto the learned basis φ(U)
according to ⟨φ(U), φ(X∗)⟩ = α⊤HK(A,X∗).
Importantly, as for linear SCA, the projection vectors need to be orthonormal, although now in feature

space

⟨φ(U), φ(U)⟩ = α⊤HKHα = α⊤K̃α = Id (10)

where K = K(A,A) = ⟨φ(A), φ(A)⟩ is the KT ×KT Gram matrix. This is achieved through appropriate
parametrisation of α, discussed in Section 2.3.
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2.3 Scaling up kSCA using inducing points

Computing the potentially large Gram matrices in Section 2.2 can prove computationally expensive.

This could remain feasible for off-the-shelf kernel functions without learnable parameters, as these can

be computed once, outside the optimization loop. Still, approaches for scaling up kSCA are warranted,

particularly so for kernels with free parameters, which need re-computation at every iteration, and/or for

Gram matrices that are too large to fit in memory.

Here, we capitalise upon inducing point methods, originally introduced to address the computational

limitations associated with Gaussian processes (GP; Quinonero-Candela and Rasmussen, 2005; Ras-

mussen and Williams, 2006). Unless specified otherwise, kernel-based analyses included in this thesis

were conducted using inducing points-based approximations, thereby promoting faster computations by

alleviating the need to compute and store full Gram matrices. Sparse approximations of the kernel are

formulated in terms of a matrix C ∈ RN×c , for c latent inducing points. Specifically, the subset of
regressors (SoR; Silverman, 1985) approximation reads

K(B,B′) ≈ KSoR(B,B′) ≜ K(B,C)K(C,C)−1K(C,B′) (11)

for B, B′ matrices ∈ RN×KT , where K(B,C) ∈ RKT×c , K(C,C) ∈ Rc×c , and K(C,B′) ∈ Rc×KT are
obtained from the exact kernel. Here, KSoR(A,A) replaces K(A,A), and KSoR(A,Xk) replaces K(A,Xk).
The SoR approximation method is advantageous since, apart from introducing approximate covariances,

it does not otherwise alter the algorithmic pipeline (Quinonero-Candela & Rasmussen, 2005): we will

simply use KSoR as a drop-in replacement for K everywhere. In addition, unlike alternative approximation
techniques (e.g., random Fourier features; Rahimi and Recht, 2007), it is compatible with any valid

kernel function. Note however that the SoR-conferred simplicity, which incidentally implies covariances

matrices of rank at most equal to c , has been criticised and more faithful kernel interpolations have been

proposed (Quinonero-Candela & Rasmussen, 2005; Wilson & Nickisch, 2015). Still, as shown below,

approximated kernels were found to perform well for kSCA, hence justifying their appropriateness for the

purposes of the present thesis.

To enforce orthonormality in this inducing point setting (i.e., αT K̃SoRα equal to the identity; equation
10), we propose the following parametrisation based on the QR decomposition of K(A,C) = QR and
the Cholesky decomposition of K(C,C) = LL⊤:

α = QR−⊤Lα̃ with K̃SoR(A,A) = HQRL−⊤L−1R⊤Q⊤H (12)

where α̃ ∈ Rc×d is a unitary matrix obtained as the Q factor of a QR-decomposed, same-shaped matrix
of free (unconstrained) parameters. Note that jax lets us seamlessly differentiate through all of these

linear algebra operations, such that we can automatically obtain gradients of our sequentiality objective

w.r.t. those free parameters. Note also that a Cholesky and QR-based approach is advantageous, for

instance relative to SVD. SVD can indeed emphasise ill-conditioning-related issues, producing numerical

errors for close-to-zero singular values. Moreover, for kernels with free parameters that need to be

differentiated through, SVD appears unsuitable as the associated backpropagation results tend to be

numerically unstable (Wang et al., 2019).

An important caveat is that orthonormality is only fulfilled in the feature space of the kernel with its

inducing points. This becomes relevant, for example when computing the percentage of the total variance

explained and comparing with kernel-, and hence inducing points-free approaches (see also Section 2.5).

Another element to consider concerns the choice of the inducing points. In the following analyses,

these are initialised as a random subset of the KT spatial vectors. Their locations C are then optimised

with respect to the sequentiality objective in Equation 8, an approach analogous to the GP realm, where

C is normally optimised w.r.t. the same log marginal likelihood objective as for the other GP kernel

hyperparameters (Quinonero-Candela & Rasmussen, 2005).

11



2.4 kSCA kernel functions

Kernel SCA can be interpreted as running the linear SCA algorithm in the space of feature-mapped

data. Therefore, when a linear kernel

k(z, z ′) = ⟨z, z ′⟩ (13)

is used for spatial patterns z, z ′ ∈ RN , the implied feature map is the identity map, φ(z) = z . Equations
5 and 6 are thus equivalent and linear SCA is retrieved (though solutions are not expected to be identical

if inducing points are used; see Section 2.5).

To leverage nonlinear kSCA, the principal kernel function used in this thesis is the radial basis function

(RBF) kernel (but note that in principle, alternative valid kernels that evaluate to dot products in feature

space could be used). It is defined as

k(z, z ′) = exp

(
−
∥z − z ′∥2

2ℓ2

)
(14)

with ℓ denoting the length-scale, separating the distances between z and z ′ that SCA will consider

to constitute small versus large differences. Importantly, the RBF kernel function promotes nonlinear

behaviour, as its outputs are provably equivalent to the result of a dot product after infinite expansion in

terms of basis functions (Bishop & Nasrabadi, 2006; Rasmussen & Williams, 2006). This implies that

kSCA can operate on higher-order moments.

Again, as for the inducing points, the ℓ free parameter of the RBF kernel used was optimized with

respect to the sequentiality objective in equation 8. It was initialised at 0.1, though precautions were

taken to yield sensible results. These were motivated by recognising that computing the Gram matrices

in equations 8 and 10 involves aggregating over N. If each element of the spatial vectors have O(1)
activity, then the sum of the squared differences will be O(N). The length-scale should thus be set in
O(
√
N) to achieve kernel outputs in O(1) for large N. Alternatively, averaging, instead of summing over

squared differences, can be performed. This latter solution was used here.

2.5 Variance captured

To assess the quality of the fits, the fraction of total data variance explained by (k)SCA projections

was calculated as 1 minus the normalised reconstruction error. For SCA, this is the same approach as

that for PCA, yielding

Var =
Tr[U⊤ΣU]

Tr[Σ]
(15)

where Σ is the N × N covariance matrix of the data (training or test set) with collapsed condition and
time. For kSCA, the approach is analogous though the fraction of variance explained is now computed

in feature space. The reconstruction error E is given by

E = Tr
[(
φ̃(A∗)− φ(U)φ(U)⊤φ̃(A∗)

)⊤(
φ̃(A∗)− φ(U)φ(U)⊤φ̃(A∗)

)]
= Tr

[
φ̃(A∗)

⊤φ̃(A∗)− 2φ̃(A∗)⊤φ(U)φ(U)⊤φ̃(A∗) + φ̃(A∗)⊤φ(U) (φ(U)⊤φ(U))︸ ︷︷ ︸
Id

φ(U)⊤φ̃(A∗)
]

= Tr
[
φ̃(A∗)

⊤φ̃(A∗)
]
− Tr

[
φ̃(A∗)

⊤ φ(U)︸ ︷︷ ︸
φ̃(A)α

φ(U)⊤φ̃(A∗)
]

= Tr[K̃(A∗, A∗)]− Tr[α⊤K̃(A,A∗)K̃(A∗, A)α] (16)
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with A∗ indicating the N ×K′T test set comprising K′ samples. Further dividing by Tr[K̃(A∗, A∗)] gives
the normalised reconstruction error. The fraction of variance captured is thus calculated as

Var =
Tr[α⊤K̃(A,A∗)K̃(A∗, A)α]

Tr[K̃(A∗, A∗)]
(17)

When linear kernels are relied on, and when there are no sparse approximations of the Gram matrices

(e.g., inducing points-based), equations 15 and 17 are provably equivalent. Yet, in the inducing point

framework used throughout this thesis, α is parameterised such that φ(U) constitutes an orthonormal

basis in the feature space implied by the approximated kernel, which potentially differs from that implied

by the exact kernel. Consequently, the sensitivity to inducing points of the numerator in equation 17

prevents direct comparisons between the outputs of equations 15 and 17 even when a linear kernel is

used.

2.6 Summary

Sequentiality is an anticipated property of most dynamical systems in which state-space trajectories

obey a lawful flow-field, except if the system is strongly driven by external inputs (Rutten et al., 2020a).

This sequentiality can be identified and its organisation can be studied using SCA, which performs di-

mensionality reduction through maximising a second-order measure of non-reversibility. Additionally, the

ability to kernelise the SCA algorithm allows to include higher-order moments. As will be shown in this

thesis, a kernel-based approach is sometimes crucial to recover non-linearly accessible sequentiality.

The (k)SCA method could be valuable, for instance to study neural computations suggested to be

instantiated by a dynamical system (Churchland et al., 2012; Galgali et al., 2023). Still, possible appli-

cations extend beyond neuroscience. Non-reversibility as a learning goal could indeed serve to extract

meaningful projections in various domains, such as bioinformatics and genomics, where developmental

patterning trajectories characterise how fate specification emerges from initially transcriptionally equiva-

lent cells (Mi et al., 2018; Shi et al., 2021).
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3 Recovering synthetic sequential spatio-temporal processes

3.1 (k)SCA surpasses PCA in discovering noise-corrupted, linearly accessible

latent dynamics

Linear SCA and its kernel counterpart were first validated on a range of synthetic datasets with known

ground truth non-reversible dynamics. First, K = 100 pure rotations were generated from combined sine

and cosine oscillations starting at varying phases and associated with different radii. Time ranged from

0 to 2π, corresponding to a full rotation. These highly reversible processes were then projected onto

a 50-dimensional orthonormal basis, and low-rank, temporally correlated noise was added. The low-

dimensional noise subspace was generated as Bϵt , where B is a N × 3 random orthogonal matrix. To
obtain ϵt , normal samples from a distribution N (0, σ2), generated anew for each time step and condition,
were multiplied by the lower-triangular Cholesky factor of a T ×T RBF Gram matrix, whose length-scale
was set to approximately match the dynamics of the rotational signal. In this setting, as σ2 becomes

larger, the plane where the rotational trajectories of interest unfold is expected to be discarded by PCA,

which will instead capture the high-variance noise fluctuations. In contrast, corruption by large low-

rank signals is not anticipated to be as detrimental for SCA and kSCA. This is because (k)SCA should

not capture statistically reversible noise. In the examples that follow, σ2 was selected to highlight this

important difference between (k)SCA and PCA.

(k)SCA-based projections were learned according to the sequentiality objectives in Sections 2.1 and

2.2 on a training set consisting of 80 (out of 100) trajectories, with mini-batches of 100 pairs. The

parameters for U (SCA) and α (kSCA) were randomly initialised according to a standard normal distribu-

tion. For kSCA, c = 30 inducing points started as a randomly selected subset of the spatial vectors. The

Adaptive Moment Estimation (Adam) optimizer with initial learning rate 10−3 was used. Convergence

under these settings was verified by tracking the losses (i.e., −S(U) and −S(α); see Appendix C for
losses associated with all Figures in this Section).

Results are displayed in Figure 2 for the training set (left) and for 20 test set trajectories (right).

2-dimensional ground-truth, high-ζ, trajectories (upper row) appeared to be better recovered by SCA

(training: ζ = 0.84, test: ζ = 0.63) and by kSCA (training: ζ = 0.90, test: ζ = 0.79 with the RBF

kernel) relative to PCA (training: ζ = 0.01, test: ζ = 0.02), which failed to de-mix rotational signals

from the high-variance distractor.

Furthermore, PCA projections captured a greater percentage of the total data variance (training:

48.85%, test: 49.19%) relative to SCA (training: 36.24%, test: 31.22%) and kSCA (training: 22.01%,

test: 21.43%). These results are in line with the variance-maximising learning goal of the PCA algorithm,

which in this case does not constitute the most adapted inductive bias.

Similar findings were obtained for PCA, SCA, and kSCA, when evaluated on additional trajectories

that also followed lawful flow fields: the Van der Pol oscillator, with determined derivatives dx1dt = x2 and
dx2
dt = (1 − x1)

2x2 − x1 (Figure 3a), and the Duffing oscillator, given by dx1dt = x2 and
dx2
dt = x1 − x

3
1

(Figure 3b). The procedure to obtain the embedded, noise-corrupted trajectories, as well as to train the

models was the same as for Figure 2. Again, in both cases, (k)SCA, but not PCA, retrieved the ground-

truth structure, whereas explained variance was higher for PCA. Overall, these results demonstrate that

(k)SCA performance is not contingent on a high signal-to-noise ratio.

3.2 Potential relevance of (k)SCA processing in neuroscience settings

This ability to extract sequential dynamics in spite of distractor noise processes appears particularly

valuable for the analysis of noise-laden neural data. To illustrate this, we generated high-dimensional,

noise-corrupted neuronal spike-like sequences in a system of N = 50 units. At each k ∈ K = 100 trial
(split as before between 80 training and 20 test), a particle travels clockwise on a circle, starting from

a random phase in [0, 2π) and continuing until a full rotation is achieved. Each neuron n ∈ N has a
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Figure 2: SCA and kSCA recover embedded latent rotations. Pure rotations (upper row) were

projected in higher-dimensional space plus temporally correlated noise (drawn from a Gaussian Process

with a smooth RBF kernel) of variance σ2 = 1. The 2-dimensional rotational dynamics were recovered

by SCA (3rd row) and kSCA (RBF kernel; 4th row), with the degree of sequentiality indicated by ζ.

PCA (2nd row) appeared to have captured the low-rank noise dynamics instead. The percentage of the

total data variance explained is indicated in grey. The training (80 conditions) and test (20 conditions)

set results are shown on the left and right columns, respectively. Colour-coding indicates time in radians,

from earlier time steps (blue) to more recent ones (red).

preferred direction θn, around which its response function falls off according to a Von Mises tuning curve.

That is, at position θ, the unit activity is given by

f (θ − θn) = exp
(
cos(θ − θn)− 1

κ

)
(18)

where κ denotes the tuning curve width. Therefore, as the particle moves around the circle, different,

albeit similarly-tuned units, will be recruited. The signal was then mixed with low-rank, temporally-

reversible noise, generated in the same fashion as that described earlier. Notably, this dataset can be

related to the fast sequences of precisely timed hippocampal place cell spikes recorded during replay

events (Drieu & Zugaro, 2019; Ólafsdóttir et al., 2015).

Results for PCA, SCA and kSCA are shown in Figure 4 for σ2 = 1.25 and κ = 0.1. Similar to Figures

2 and 3, SCA (training: ζ = 0.92, test: ζ = 0.96) and kSCA (training: ζ = 0.96, test: ζ = 1.0), but not

PCA (training ζ = 0.0, test: ζ = 0.02), were able to identify a 2-dimensional, highly sequential manifold,
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Figure 3: SCA and kSCA recover embedded dynamical systems. Same as Figure 2 but for (a) the

Van der Pol (noise variance σ2 = 2) and (b) the Duffing (noise variance σ2 = 3) oscillators, whose

determined derivatives imply statistical sequentiality.

in which the neural dynamics unfold. Analogous results were obtained across values of κ, up to a point

for sufficiently small κ ≤ 10−3 (i.e., little co-activity between units), where SCA and kSCA failed (not
shown). This could be because the sequence becomes higher-dimensional, making it less straightforward

to infer a corresponding 2-dimensional plane. Still, neighbouring biological receptive fields (e.g., in the

hippocampus; Drieu and Zugaro, 2019) do often overlap, supporting that a (k)SCA approach could prove

appropriate to unveil population dynamics in a neuroscience setting.

3.3 Performance differences between SCA and kSCA for non linearly accessible

latent dynamics

For the time series investigated thus far, kSCA-mediated nonlinear dimensional reduction did not seem

crucial to recover ground-truth, non-reversible dynamics. Yet, as alluded to in the introduction, certain

trajectories that are intuitively non-reversible are missed by linear SCA, which constitutes an important

limitation of the method. This is exemplified in Figure 5. Pure rotations in the polar domain were

generated in the same manner as for Figure 2. These were then converted to the Cartesian domain as

x = r cos(θ) and y = r sin(θ), for radius r and angle θ (in radians), yielding the infinity-looking trajectories

in Figure 5 (upper row). The training set was associated with ζ = 0.02, already demonstrating that

sequentiality was not captured by the linear SCA metric.

Again, the trajectories were embedded in a 50-dimensional space and temporally-correlated noise was
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Figure 4: SCA and kSCA recover the dynamics of a biologically-inspired high-dimensional system.

Sequential dynamics of a travelling particle, whose position is encoded by N = 50 direction-sensitive

neurons (tuning width κ = 0.1), corrupted by noise of variance σ2 = 1.25, could be extracted by SCA

and kSCA but not by PCA. Figure arrangement is the same as for Figure 2 (except that multi-dimensional

ground-truth trajectories are not shown).

added (σ2 = 0.75). Had noise been absent, it would have been possible to retrieve the ground-truth

dynamics using linear SCA, as it would return its input, with no de-mixing of the relevant trajectories

taking place (not shown). Yet, when incorporating noise, SCA can only perform well if there is a sequential

signal it can pick up. This was not the case, and linear SCA failed to retrieve the ground-truth dynamics

(Figure 5). In contrast, noise was not as detrimental for kSCA. Indeed, it appeared to have successfully

converted the 2 wing-trajectory into a single, more rotation-like pattern with high ζ = 0.67 (training

set) and ζ = 0.41 (test set; Figure 5). The rotational structure that can be learned with kSCA is

more apparent in the bottom row of Figure 5. It shows learned projections based on the same polar to

Cartesian rotation dataset embedded in 50-dimensional space, but without adding noise. kSCA yielded

ζ = 0.80 (training set) and ζ = 0.45 (test set).

The results highlight the potential of kSCA in identifying curved manifolds where sequential dynamics

unfold, even when these are not accessible to linear SCA. This flexibility supports that the kSCA method

can be used to robustly discover latent states across a large range of possible dynamical systems. Appendix

B presents another example of non-reversible trajectories that are considered reversible by linear SCA,

but not by kSCA, with applications to the neural bases of decision-making.

3.4 Discussion

This Section has highlighted the performance differences between PCA, SCA, and kSCA. In particular,

it has demonstrated that the learning goals inherent to PCA and (k)SCA, variance and sequentiality-

related, respectively, result in varying robustness to noise corruption. This appears particularly beneficial

for processing real-life noise-laden datasets. These extend beyond the hippocampal reactivation-inspired
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Figure 5: Differences in SCA and kSCA performance for certain datasets. Same as Figure 2 up to

the second-to-last row, but for polar domain rotations converted to Cartesian coordinates (noise variance

σ2 = 0.75). Bottom row, indicated by the * sign, shows learned kSCA projections based on the same

dataset (i.e., polar to Cartesian rotations) projected in 50-dimensional space, though without adding

temporally correlated noise. In that case, SCA can recover infinity-looking trajectories, but achieves low

ζ = 0.03 (training set; not shown).

dataset in Section 3.2. For instance, functional magnetic resonance imaging (fMRI)-recorded blood-

oxygen level dependent (BOLD) signals are typically dominated by slow, global, and reversible fluctuations

(Bolt et al., 2022), which need to be statistically controlled for (Chiu et al., 2012). It is plausible that a

(k)SCA-based approach could help de-mixing such reversible fluctuations from signals of interest.

Section 3.3 has also demonstrated that certain non-reversible datasets fail to be recognised as such

by linear SCA. Instead, they are deemed highly reversible with ζ ≈ 0. Consequently, such datasets do
not constitute a strong enough signal to be captured by linear SCA when sufficient levels of distractor

noise are present. This is an important limitation, as it restricts the range of forms of dynamics whose
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spatio-temporal organisation can be studied with linear SCA. Importantly, these concerns were alleviated

using RBF kSCA, thereby showing the potential usefulness of the kSCA algorithm.
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4 SCA in the motor domain

4.1 Motivation & background

Having validated (k)SCA on synthetic datasets, it is now deployed on electrophysiologically-recorded

neurons in PMd and M1. Differing theoretical accounts have been put forward to characterise the

response patterns of motor and premotor cortical neurons, as well as the mechanisms by which they

control movement (Churchland & Shenoy, 2007; Churchland et al., 2012). One early view has been

that neural activity represents movement parameters, such as hand velocity or target position, which

was supported by evidence of spatial (e.g., direction) tuning (Georgopoulos et al., 1982). Still, detailed

descriptions of the spatio-temporal properties of neuron responses challenged this view. These have

repeatedly been described as multiphasic and highly heterogeneous, spanning a larger space than would

be anticipated if they encode a moderate number of movement parameters (Churchland & Shenoy, 2007).

This has led researchers to propose that the motor cortex instead constitutes a dynamical system that

drives muscles, generating and controlling movement (Churchland et al., 2012; Suresh et al., 2020).

In this case, motor control is not contingent upon a direct mapping between individual neurons and

specific movement covariates (although such a relationship may occur incidentally), but rather depends

on enforcing the right latent state-space trajectory at the neural population level (Churchland & Shenoy,

2007; Gallego et al., 2017). Reports of dependencies amongst motor cells, consistent with population-

level coding, aligned with a dynamical account of motor cortical function (Elsayed & Cunningham, 2017;

Paninski et al., 2004).

Additional support for a dynamical systems perspective was obtained using jPCA-based dimensionality

reduction, which revealed the existence of rotations of the population state in monkeys (Churchland et

al., 2012), but also in other species (incl. humans; Pandarinath et al., 2015). Notably, population-level

rotational dynamics were replicated using alternative approaches to jPCA (Lara et al., 2018; Pandarinath

et al., 2018a; Rutten et al., 2020a; Sani et al., 2021; Schimel et al., 2022). This shows that the structure

identified in Churchland et al. (2012) was not due to the rotation-oriented search, thereby addressing

potential concerns (Lebedev et al., 2019). Simulation studies further suggested that rotational structure

in biological data results from latent dynamics. Researchers trained a recurrent neural network (RNN) to

generate the electromyographic (EMG) signals elicited during reaching. jPCA projections of the resulting

neural population responses revealed rotations resembling those observed in the motor cortex (Sussillo

et al., 2015; see also Hennequin et al., 2014; Michaels et al., 2016, for other instances of artificial

dynamical systems yielding rotational dynamics despite not being trained on empirical neural data).

However, the precise means by which low-dimensional circuit dynamics relate to movement are yet to

be elucidated. In this regard, isolating the least reversible components of neural activity through (k)SCA

could prove valuable. Indeed, if these estimate the movement-generating activity manifold, chances are

that they will be most reflective of the associated behaviour. The spatio-temporal structure of non-

reversibility could then be explored, and the nature of the relationship with associated behavioural signals

could be assessed.

4.2 Dataset and pre-processing

(k)SCA was applied to the MC Maze neural dataset (https://dandiarchive.org/dandiset/000128) from

Pei et al. (2021). Data was recorded as a rhesus monkey engaged in a Maze task involving delayed

reaching movements (Churchland et al., 2010). Specifically, the animal used a cursor, projected above

its fingertips. At the beginning of each trial, it held the cursor inside a central fixation point. A target was

then presented, along with virtual barriers to avoid, as well as unreachable distractor targets that needed

to be ignored. Following a subsequent go cue, the monkey broke fixation and made a reach directed at

the target. Different trials comprised different boundaries configurations and target locations, yielding

K = 108 behavioural conditions.
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Electrophysiological recordings were performed using multi-electrode arrays, implanted in the M1

and PMd cortical regions. Spike sorting was then conducted offline. In total, the dataset included 182

neurons over 1721 trials. The analyses below either focused on peri-stimulus time histograms (PSTHs) or

on single trials. Notably, single trial-level insight is crucial to understand the representational properties

of natural movements, which are typically non-repeated and hence cannot be averaged across trials

(Pandarinath et al., 2018b).

Pre-processed outputs provided by Pei et al. (2021) were relied on. Specifically, to compute PSTHs,

activity was convolved with a Gaussian kernel (70 ms standard deviation) before being averaged across

trials belonging to the same condition, thereby providing a de-noised representation. For single trials,

only Gaussian smoothing with the same 70 ms standard deviation was performed (Pei et al., 2021). In

both cases, data was aligned based on movement onset, from 250 ms before to 450 ms after, and neural

activity was grouped in 20-ms bins. Additionally, vx− and vy−fingertip velocities were monitored, thereby
allowing to relate neural activity to behaviour. Again, both same-condition trial averages and individual

trial versions of the monkey hand velocity data were considered.

PSTH and single trial neural responses were further pre-processed prior to dimensionality reduction.

These were first divided by a normalisation constant given by the maximum between the maximal activity

for each neuron across conditions and times and 0.1. This is analogous to the soft-normalisation in

Churchland et al. (2012), which ensured that weakly active cells had less than unity range and that

highly active neurons did not dominate. For PCA and linear SCA, activity of each neuron was then mean-

centred across conditions (this is automatically achieved in the kSCA implementation; see Section 2.2).

As noted previously (Churchland et al., 2012), removing the mean ensures that the data variance retained

is condition-specific. Otherwise, spatial projections would be similar for all conditions, potentially making

it more difficult to rule out more trivial, dynamical system-unrelated reasons underlying population-level

findings.

4.3 (k)SCA unveils rotation-like structure in neural population responses

SCA and RBF kSCA projections were learned from the neural PSTHs according to the optimisation

procedure described previously. That is, training was performed on mini-batches of 100 pairs using the

Adam optimiser with initial learning rate 10−3 (see Section 3 for more details). The procedure was

repeated for subspace dimensionalities d ranging from 2 to 10, and convergence was confirmed (see

losses for this Section in Appendix C). Results are shown in Figures 6a, b, c, d. Again, for comparison,

PCA projections are included.

The projections for d = 2 are displayed in Figure 6a. While PCA failed to detect rotational patterns

(ζ = 0.00), SCA (ζ = 0.26) and kSCA (ζ = 0.30) both exhibited rotational structure analogous to

that accessed through jPCA (Churchland et al., 2012), which directly seeks pure rotations. In contrast,

(k)SCA searches for rotational dynamics in an indirect fashion through identification of sequential be-

haviour. Being able to still recover rotations thus adds to the previous work (Lara et al., 2018; Rutten

et al., 2020a) that validates the findings in Churchland et al. (2012).

Sequentiality, quantified using the ζ index, is additionally displayed as a function of the subspace

dimensionality in Figure 6b. ζ was higher for spatial projections to higher-dimensional subspaces, poten-

tially due to the emergence of multiple sequential (e.g., rotatory) planes. Moreover, nonlinear subspace

identification with kSCA appeared to confer greater sequentiality relative to SCA. Still, both kSCA and

SCA exhibited a higher ζ relative to PCA, in line with their sequentiality-maximising optimisation goal.

The percentage of variance captured by the projections is also indicated in Figure 6c. The explained

variance was higher for PCA relative to SCA and kSCA, reflecting the variance-maximising goal of PCA.

Finally, similarity between latent trajectories extracted by PCA, SCA, and kSCA, was examined using

canonical correlation analysis (CCA). Briefly, CCA seeks vectors (i.e., canonical directions) that linearly

transform pairs of projections (each reshaped as KT × d) such that the re-weighted datasets (i.e.,

21



canonical variables) are maximally correlated. A subsequent pair of canonical variables is then extracted,

subject to the constraint that these are uncorrelated to the previous pair of canonical variables. This

procedure can be repeated up to the minimum number of units across both datasets (i.e., d here). The

resulting sets of canonical variables are naturally ordered according to their degree of correlation ρ, where

ρ = 1 indicates that the two datasets comprise the same underlying patterns, whereas ρ = 0 denotes no

common underlying pattern (Raghu et al., 2017; Sussillo et al., 2015). The average canonical correlation

ρ (i.e., sum of the canonical correlations divided by d) is reported in Figure 6d as a summary statistic.

ρ was the highest across subspace dimensionalities for kSCA and SCA, indicating similar projections, in

line with the visualisations in Figure 6a. This is consistent with the observation that linear (rotational)

dynamics, which are accessible to both SCA and kSCA, are a dominant feature of motor population

responses (Churchland et al., 2012; Lara et al., 2018). In contrast, kSCA- and PCA-, as well as SCA-

and PCA-extracted trajectories were more dissimilar according to CCA.

Figure 6: Application of (k)SCA to PSTHs. (a) 2-dimensional embeddings obtained via PCA, SCA,

and kSCA. PCA produced a low ζ = 0.00, reversible projection. SCA and kSCA captured rotational-like

structure, with ζ = 0.26 and ζ = 0.30, respectively. In contrast, the explained variance was higher for

PCA (22.31%) relative to SCA (18.82%) and kSCA (11.12%). Time is colour-coded, from earlier time

steps in blue (250 ms prior to movement onset) to more recent ones in red (450 ms after movement

onset). (b) ζ as a function of the dimensionality of the embeddings. The kSCA-extracted projections

were the most sequential, followed by the SCA- and the PCA-obtained ones. (c) Percentage of variance

explained as a function of dimensionality. It was the highest for PCA, followed by SCA, and kSCA. Note

that the variance explained values for kSCA, indicated in faded green, should technically not be directly

compared with those obtained for PCA and SCA due to their sensitivity to inducing points (see Section

2.5). (d) Average canonical correlation ρ as a function of dimensionality. Trajectories were the most

similar for kSCA-SCA, followed by SCA-PCA, and by kSCA-PCA.
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The above analyses were also conducted on the single trial neural data. Most of the claims deduced

from condition-averaged data remained true: (k)SCA produced rotating projections (Figure 7a). More-

over, kSCA attained the highest ζ scores, followed by SCA, with PCA projections exhibiting the lowest

sequentiality (Figure 7b). The variance explained was higher for PCA relative to SCA and kSCA (Figure

7c). Finally, for most d settings, kSCA and SCA trajectories exhibited the highest similarity according

to CCA (Figure 7d). This alignment with PSTH-derived findings highlights the capacity of (k)SCA to

discover population-level latent dynamics (e.g., rotational) based on single trial data. Note that this is

not a trivial endeavour given the trial-to-trial variability in the activity of individual neurons (Galgali et al.,

2023).

Figure 7: Application of (k)SCA to single trial neural data. Same as Figure 6 but for single trial

neural spiking data.

4.4 Regression-based mapping between (k)SCA-represented neural activity and

behaviour

4.4.1 Predicting hand velocity

We then evaluated the extent to which the projections in Section 4.3 mapped onto behaviour. The

PSTH projections were separated into a test set (20 behavioural conditions) and a training set (88

remaining conditions), and were reshaped collapsing the condition and time dimensions. The training set

trajectories were then entered as input to a linear regression model that predicted hand velocity with a

100-ms lag (determined to maximise decoding in Pei et al., 2021), which accounted for the fact that

behaviour lags behind the neural activity that controls it. The model was trained to minimise the mean

squared error (MSE) between predicted and actual hand velocity. L2 weight regularisation constrained
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the regression to mitigate over-fitting. The regularisation parameter λ was selected to maximise MSE

performance via leave-one-out cross-validation (Pedregosa et al., 2011).

Test set R2 scores are shown as a function of the dimensionality of the subspace in Figure 8 (left).

SCA and kSCA achieved similar performances, except for a R2 drop for SCA at d = 8, which could

be due to local minima in the loss landscape. Note that, with extended computational and temporal

resources, training multiple instances of the (k)SCA dimensionality reduction models, starting at varying

initialisation settings, could have further helped confirm the robustness of the findings. Still, kSCA

therefore did not appear to strongly improve predictive performance relative to SCA. This is consistent

with the CCA-revealed output similarity between both methods in the motor control context (Figure 6d).

At low dimensions, there was no predictive advantage for (k)SCA relative to PCA, suggesting that

capturing more variance, rather than sequentiality, benefits hand velocity prediction. For higher dimen-

sions, (k)SCA appeared to enhance behavioural predictivity relative to PCA, though this effect was not

strong. Notably, this difference started to emerge at d = 6. This also constituted a point at which the

variance explained by (k)SCA grew (Figure 6c), and the CCA-indicated similarity between kSCA-PCA

and SCA-PCA increased (Figure 6d). Therefore, though sequentiality might contribute to accounting

for hand velocity behaviour, variance captured remains essential.

These regression-based analyses were replicated for the single trial data (Figure 9). The procedure

was similar except that 200 trials (out of 1721) were used for the test set. Results were analogous to

the condition-averaged case: a predictive advantage for (k)SCA emerged at points where CCA-indicated

overlap with PCA trajectories increased.

It is also noteworthy that, for both PSTHs and individual trials, hand velocity predictivity was sys-

tematically lower for all dimensionality reduction methods relative to the R2 obtained based on the N

neural activity traces (grey horizontal line). This is consistent with the previously identified underlying

dimensionality of the data, found to be 10–20 dimensions (Churchland & Shenoy, 2007; Yu et al., 2009).

4.4.2 Predicting movement-generating torques

For all experiments thus far, the advantage of (k)SCA over PCA was limited. This could be because,

while muscle contractions giving rise to movement in the Maze task are largely sequential, the observed

hand position and velocity might not be. For example, the monkey could move the cursor forward

and backwards to reach the target, implying statistical reversibility, despite different underlying muscle

commands. This is supported by low a sequentiality score for hand velocity data (ζ=0.04). To further

explore this, we instead evaluated predictions of movement-generating torques, extracted by G. H. from

a two-jointed arm model (Kao et al., 2021; Li & Todorov, 2004).

The model posits a two-link arm, where the upper and lower arms are connected at the elbow. The

two links are each associated with mechanical parameters L1 and L2 lengths, M1 and M2 masses, as

well as I1 and I2 moments of inertia, determined previously (Kao et al., 2021; Li & Todorov, 2004).

Additionally, a distance S2 separates the centre of mass of the lower limb from the elbow. These allow

to form matrices forM inertia, X centripetal and Coriolis forces, as well as B joint friction (Kao et al.,
2021)

M(θ) =
(
a1 + 2a2 cos θ2 a3 + a2 cos θ2
a3 + a2 cos θ2 a3

)

X (θ, θ̇) = a2 sin θ2
(
−θ̇2(2θ̇1 + θ̇2)

θ̇21

)
B =

(
0.05 0.025

0.025 0.05

)
(19)

where a1 = I1 + I2 + M2L
2
1, a2 = M2L1S2, a3 = I2, and θ = (θ1; θ2)

⊤ indicates the joint angles

determining the arm position (see Kao et al., 2021 for further details). A differential equation describing

the evolution of θ is then defined as
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M(θ)θ̈ + X (θ, θ̇) + Bθ̇ = m(t) (20)

where m(t) corresponds to the momentary torques of interest at time step t.

Together, the angular position and velocity, θ and θ̇, respectively, were used to define a state. The

dynamics of the arm model were integrated given the current state and the momentary torques, yielding

angular velocity θ̇ and acceleration θ̈ according to Equation 20. At each time step, hand position

estimates in Euclidean space could be obtained from the angular state as(
x̂

ŷ

)
=

(
L1 cos θ1 + L2 cos(θ1 + θ2)

L1 sin θ1 + L2 sin(θ1 + θ2)

)
(21)

The time series of torques were optimised using Adam with initial learning rate 10−1. An MSE loss

enforced a matching between the states-derived estimated hand position and velocity and the actual

time-varying position (discretised as x(t) = x(t − 1) + v x(t)∆t and y(t) = y(t − 1) + v y (t)∆t, with
∆t = 10−3) and velocity. An L2 squared norm penalty with parameter λ = 10−3 on the torques
additionally helped ensure that these were as small as possible, while capturing behaviour.

Predicting torques enhanced the distinction between sequentiality and variance-focused dimensional-

ity reduction methods (Figure 8, right). Therefore, the results support a greater information content

overlap between (k)SCA neural projections and behaviour in torque space, which better reflects the

sequential nature of the movement generation process. Note that torques were only obtained for the

condition-averaged data. Establishing the extent to which the results transfer to individual trials could

thus constitute the focus of future work.

Figure 8: Information content overlap between (k)SCA-projected population activity and behaviour

for PSTHs. Test R2 scores as a function of the subspace dimensionality for the linear regression model.

PCA, SCA, and kSCA-extracted neural manifolds predicting hand velocity (left) and torques (right).

Grey horizontal lines denote test R2 achieved by the N neural activity traces.

4.5 Most sequential components of neural data reflect the most sequential com-

ponents of behaviour

4.5.1 Canonical correlation analysis

The above results suggested that the most sequential components of neural activity map onto be-

haviour, at least for sequential signals such as torques. It is thus possible that performing (k)SCA also on

behavioural data, and hence extracting its most non-reversible components, could better reveal a putative
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Figure 9: Information content overlap between (k)SCA-projected population activity and behaviour

for single trials. Same as Figure 8 (left) but for single trial neural spiking data.

isomorphism (i.e., structure-preserving mapping) between brain and behaviour. To examine this, SCA,

kSCA, and PCA were applied to augmented behavioural data, which combined hand position, velocity,

and torques, thereby providing a more exhaustive characterisation of the movements with ζ = 0.30.

Moreover, the mapping between neural and behavioural projections was evaluated using methods provid-

ing a finer-grained insight into possible differences across dimensionality reduction methods relative to

regression.

First, CCA was applied to (k)SCA and PCA-extracted projections of neural activity and of augmented

behaviour (reshaped as KT×d), with a lag of 100 ms. The dimensionality d of the projections used was 6,
the maximum possible here, matching the dimensionality of the augmented behaviour. Results for PCA,

SCA, kSCA are shown in Figures 10a, b, and c, respectively. Columns correspond to the response patterns

shared across neural activity and behaviour, where each individual line indicates a different behavioural

condition unfolding over time. The canonical correlations denote the Pearson correlation coefficient

between the canonical variables. For the most correlated canonical variable CV1, neural and behavioural

patterns were similar irrespective of the dimensionality reduction technique used. Still, at least one very

high correlation can often be anticipated, particularly so for datasets with broad similarities. This is

the case here as, irrespective of the dimensionality reduction method used, both neural and behavioural

datasets encode the same reaching task, suggesting shared basic temporal properties such as motor

preparation followed by motion-associated activity (Sussillo et al., 2015).

For less correlated canonical variables (e.g., CV5, CV6), neural and behavioural patterns matched to

a greater extent for kSCA and SCA. In contrast, PCA-derived neural and behaviour canonical variables

appeared more discrepant. Quantitatively, this is reflected in the canonical correlations, which remained

higher even at CV6 for SCA (ρ = 0.12) and kSCA (ρ = 0.22), whereas ρ had dropped to 0.01 for

PCA. To summarise, the average canonical correlation ρ was additionally calculated for all dimensionality

reduction methods. It was higher for SCA (0.58) and kSCA (0.65) than for PCA (0.52). These results

support a greater number of matching patterns for the (k)SCA-extracted most sequential components

of neural activity and of behaviour relative to PCA.

4.5.2 Representational similarity analysis

To complement these findings, shared structure between PCA or (k)SCA-represented behavioural and

neural data was additionally assessed using representational similarity analysis (RSA; Kriegeskorte et al.,

2008). RSA characterises representations as the dissimilarity structure of activity patterns, assessed in
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Figure 10: Canonical correlation analysis for PCA, SCA, and kSCA. (a) Time-varying canonical

variables for 11 example conditions (randomly selected) for 6-dimensional PCA projections of neural

PSTHs (upper row) and of augmented behaviour (lower row). Each column denotes a set of canonical

variables, from the most (CV1) to the least (CV6) correlated ones. The canonical correlation ρ is

indicated. Time is from 150 ms prior to movement onset to 450 ms after, corresponding to the movement

timing after accounting for a 100 ms lag. (b) Same for SCA. (c) Same for kSCA. (d) Full spectrum of

canonical correlations ρ, along with the average across canonical variables ρ.

terms of representational dissimilarity matrices (RDMs). These are K × K square symmetric matrices,
where each off-diagonal entry is the dissimilarity between the spatial patterns elicited by two different
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conditions. On-diagonal elements denote comparisons for the same condition, and are thus equal to 0.

Here, the spatial patterns are the d-dimensional vectors obtained from either PCA or (k)SCA. d was

again set to 6. We used 1 minus the Pearson correlation coefficient to measure the distance between

the patterns (see Kao et al., 2021 for an analogous, correlation-based approach). Different RDMs were

obtained for each time step, thereby allowing to probe the temporal evolution of representations in a

more straightforward fashion relative to regression and CCA.

The Pearson correlation r between the flattened RDMs of spatially projected neural data and aug-

mented behaviour was computed at each time step (with a 100 ms lag). The results are displayed in

Figure 11a. Notably, after movement was initiated, neural and behavioural RDMs became more corre-

lated for (k)SCA relative to PCA, an effect that persisted for a few hundreds of ms. This is also shown

in Figure 11b, which plots the RDMs 150 ms after movement onset. For behaviour, all dimensionality

reduction approaches appeared to have yielded representations that discriminated between conditions in

an almost binary fashion. At the neural level, this was also true for SCA and kSCA, but to a lesser

extent for PCA, thereby explaining a lower r = 0.68 relative to r = 0.76 (SCA) and r = 0.78 (kSCA).

Notably, these binary-like representational properties were already hinted by the 2-wing nature of the

(k)SCA projections in Figure 6a, absent for PCA. Processing neural data using (k)SCA thus appears to

better reveal the behaviourally relevant aspects of population activity.

Figure 11: Representational similarity analysis for PCA, SCA, and kSCA. (a) Temporal evolution of

the Pearson correlation coefficient r between flattened RDMs of spatially-projected neural PSTHs and

augmented behaviour, with a lag of 100 ms. (b) Neural (upper row) and behavioural (lower row) RDMs

150 ms after movement onset for PCA (left), SCA (middle) and kSCA (right) projections. The Pearson

correlation r between the flattened RDMs is indicated. For visibility, the conditions have been sorted

according to reach direction, heuristically-derived from the angle at the end point of hand position.

4.6 Discussion

There exists convincing evidence that the motor system acts as an autonomous pattern generator,

at least for the control of certain movements such as reaching (but see Suresh et al., 2020). The

results in Section 4.3 further highlight the dynamical representational properties of the motor cortex.

Yet, accepting a computation through dynamics view of motor function (Pandarinath et al., 2018a)

will ultimately require deepening our understanding of how movement arises downstream of population

dynamics.

To address this, we first conducted regression-based analyses. Behavioural predictivity of joint torques

was generally greater for (k)SCA-represented neural data relative to PCA. Moreover, CCA revealed

a resemblance between the most sequential components of neural responses and of behaviour, which

persisted across canonical variables. RSA additionally showed that (k)SCA promoted greater resemblance

between the RDM-indicated representational geometry of neural and behavioural responses. Overall,
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these results are consistent with a matching between the structure of neural and behavioural activity.

Notably, such an isomorphism supports that the neural code produced by a dynamical motor system is

adapted to the resulting behaviour.

Note that, unlike other existing methods (Sani et al., 2021), (k)SCA learned neural dynamics that were

relevant w.r.t. the measured behavioural variables despite the absence of behavioural learning signals.

This is essential, helping to ensure that (k)SCA can be applied even in the case of little behavioural

correlates (e.g., evidence accumulation during decision-making, hippocampal system reactivation during

sleep).

It is also worth noting that previous methods have attained greater behavioural predictivity, for example

on single trials, than the results presented here (Pandarinath et al., 2018a; Schimel et al., 2022). This was

the case for latent factor analysis via dynamical systems (LFADS), a sequential variational autoencoder,

whose latent representations even surpassed population activity when predicting hand kinematics. In

LFADS, a recurrent neural network (RNN) provides a generative model of spiking activity, assumed to

emanate from low-dimensional dynamics (Pandarinath et al., 2018a). The variational lower bound on the

log-likelihood of the observed neural activity given the rates predicted by the model is then maximised.

Yet, while highly powerful, such deep learning-based techniques are computationally intensive. Therefore,

(k)SCA could be preferable for problems that do not warrant a deep learning approach.
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5 Conclusion and future work

5.1 Summary

Improving our understanding of dynamical computation will ultimately necessitate to identify the

dynamical rule that determines the temporal evolution of neuronal activity. This can be achieved using

latent dynamical models, which provide differential equations that model the latent state in terms of linear

(Kao et al., 2015) or nonlinear (Wang et al., 2005) dynamics. Deep RNN-based models such as LFADS

(Pandarinath et al., 2018a) also facilitate dynamical system identification. The features of the dynamics,

which can be illustrated with a flow field, then provide insight into circuit computation. In contrast, while

dimensionality reduction approaches can provide latents that estimate the dynamical state, they typically

do not allow to statistical identify the underlying computational dynamics (Duncker & Sahani, 2021).

(k)SCA (and previously GPFADS; Rutten et al., 2020a) contribute to address this limitation, as they yield

low-dimensional embeddings most consistent with dynamics. Specifically, (k)SCA focuses on identifying

and leveraging temporal non-reversibility, ubiquitous in state-space trajectories governed by lawful flow

fields (at least for a largely non-input-driven system). Additionally, kSCA allows for the identification of

nonlinear subspaces, a yet absent property of most existing dimensionality reduction approaches exploring

neural dynamics (Churchland et al., 2012; Lara et al., 2018; Mackevicius et al., 2019; Rutten et al.,

2020a; Sani et al., 2021; but see Low et al., 2018; Nieh et al., 2021).

The analyses on synthetic datasets demonstrated the utility of the non-reversibility-based learning

goal in SCA, as well as the nonlinear flexibility conferred by kSCA. When applied to motor cortical

data, (k)SCA discovered rotational dynamics that appeared to better predict behaviour relative to PCA,

consistent with the proposal that population dynamics underpin movement generation (Churchland et

al., 2012). Moreover, CCA and RSA suggested a structural mapping between the most sequential

components of neural activity and of behaviour. This supports that the dynamic nature of the motor

control neural code allows it to be adapted to the corresponding movements. Together, these results

illustrate the potential of (k)SCA in addressing questions about representations and computations in

neural populations.

5.2 Directions for future work

The kSCA experiments reported in this thesis relied on the RBF kernel. Yet, this kernel is not

necessarily the most appropriate for all problems relevant to kCSA. For example, it might be necessary

to incorporate periodicity when investigating neural circuits such as those supporting the head direction

system, where tuning curves exhibit cyclic boundary conditions. More generally, the optimal kernel type

is not necessarily known in advance. To enhance expressivity, the non-parametric, and hence, flexible

nature of kernel approaches could be combined with neural networks, which can act as universal function

approximators (Cybenko, 1989) to uncover meaningful representations. This idea constitutes the basis

of deep kernel learning, where the inputs to the kernel (e.g., RBF) are the outputs of deep models such

as convolutional neural networks (Wilson et al., 2016). The neural network parameters are optimised

jointly with the kernel parameters (e.g., RBF length-scale). In the original deep kernel learning framework,

which was applied to Gaussian process regression problems, this was done through the marginal likelihood.

In the kSCA setting, the parameters could instead maximise the sequentiality objective. Conveniently,

scalability can also be improved using inducing point approximation in deep kernel learning (Wilson et al.,

2016).

It is also worth noting that the inner products in the (k)SCA objective reduced the spatial dimension.

Alternatively, the temporal dimension could be targeted. The cyclic property of the trace indeed allows

to swap elements to yield T × T matrices in equations 5 and 6. Therefore, the kSCA algorithm can
readily be capitalised upon for kernelising in time. Future work could explore potential applications, such

as smoothing neural spikes prior to dimensionality reduction.
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Moreover, the analyses applied to a neuroscience context focused on the motor system. This made

sense since motor-related activity is tied to behavioural signals (e.g., hand kinematics), thereby promoting

investigation of the link between neural activity and behaviour. However, in the future, (k)SCA could

prove useful in other brain areas, such as decision-making ones. In reaction time variants of the random-

dot motion paradigm, accuracy and reaction time tend to increase as a function of the difficulty of the

task, such that higher motion coherence yields more accurate, faster choices. This is consistent with

accumulation of noisy evidence up to a decision threshold (Gold & Shadlen, 2007). Notably, neural

correlates of this behaviour appear to confine to a lower-dimensional space, where activity associated

with different saccade choices grows towards distinct directions with differing magnitudes according to

evidence strength (Mante et al., 2013). (k)SCA could potentially discover such a subspace, and could

be leveraged to further reveal its properties (e.g., clear identification of the decision threshold).

Another potential neuroscience application of (k)SCA is to the navigation system. In addition to the

precisely ordered hippocampal place cell spike sequences mentioned in the Introduction, other spatially-

tuned neuronal populations have been proposed to exhibit dynamical structure. Attractors (i.e., involving

multiple stable states) were used to describe head-direction cells, which indicate direction, as well as grid

cells, which support self-motion integration and trajectory planning (Chaudhuri et al., 2019; McNaughton

et al., 2006; Seelig & Jayaraman, 2015). Extracting non-reversible latents from navigation-related activity

could thus yield meaningful trajectories. Analysing their spatio-temporal organisation could potentially

help to disambiguate the navigation neural code, a challenging endeavour, for example since the hip-

pocampus encodes a wide range of variables including position-, but also sensory- and decision-related

ones (Bimbard et al., 2023; Nieh et al., 2021). Moreover, navigation-related activity appears to be

constrained to nonlinear subspaces. This was true for the head-direction circuit (Chaudhuri et al., 2019;

Jensen et al., 2020) as well as for place cells (Low et al., 2018; Nieh et al., 2021). Therefore, in contrast

with the motor system, a nonlinear, kSCA-based approach might become essential.

Importantly, for the above systems, analyses on a trial-by-trial basis might become crucial given sub-

stantial variations across trials in decision-making and navigation tasks (Low et al., 2018; Nieh et al.,

2021; Yu et al., 2009), preventing to average responses across trials. Notably, the learning goal inherent

to PCA appears particularly unsuitable when confronted with single trial noise. PCA does not distinguish

between maximising the variance shared between neurons from the variance independent across neurons

(Kao et al., 2015; Pandarinath et al., 2018b; Yu et al., 2009), thus possibly resulting in a poor charac-

terisation of the intrinsic manifold. By contrast, in seeking non-reversible latents consistent with a lawful

flow field, (k)SCA restricts the trajectories that can be identified (e.g., clockwise rotating trajectories

cannot unexpectedly reverse to counterclockwise, and vice-versa; Kao et al., 2015), potentially enhancing

robustness to trajectory-deviating noise. Single-trial analyses (beyond those in Section 4) that directly

evaluate this claim, could constitute an interesting avenue for future work.

5.3 Conclusion

Large-scale neural recordings are being increasingly prevalent to study the circuit dynamics under-

lying behaviour (Jun et al., 2017; Siegle et al., 2021). Population-level findings have the potential to

offer qualitatively different insight relative to single-neuron responses (Chaudhuri et al., 2019; Elsayed

& Cunningham, 2017; Pandarinath et al., 2018b). (k)SCA complements existing neural data analysis

approaches that interpret neural population activity as evolving on a lower-dimensional manifold (Church-

land et al., 2012; Low et al., 2018; Nieh et al., 2021; Pandarinath et al., 2018a; Schimel et al., 2022),

with a focus on extracting non-reversible latents. This thesis leveraged (k)SCA to characterise the neural

dynamics underlying motor control, though the method holds promise in probing collective dynamics in

a wider range of (neural) systems involving non-reversible time-series.
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A Mathematical derivation of the SCA algorithm

The following computes each term of second-to-last line in equation 5 to prove that it evaluates to

the sequentiality objective used throughout this thesis

Ev∼N (0,I)[Tr(YkV ⊤)Tr(Yk ′V ⊤)Tr(YkY ⊤k ′ )] = E[(y⊤v)(v⊤z)]Tr(YkY ⊤k ′ )

= (y⊤E[vv⊤]z)Tr(YkY ⊤k ′ )

= (y⊤Iz)Tr(YkY
⊤
k ′ )

= Tr2(YkY
⊤
k ′ )

E[Tr(YkV ⊤)Tr(YkY ⊤k ′ V Y ⊤k ′ )] = E[(y⊤v)Tr(Y ⊤k ′ YkY ⊤k ′ V )]

= E[(y⊤v)(v⊤vec(Y ⊤k ′ YkY ⊤k ′ )]

= y⊤E[vv⊤]vec(Y ⊤k ′ YkY ⊤k ′ )

= y⊤vec(Y ⊤k ′ YkY
⊤
k ′ )

= Tr(YkY
⊤
k ′ YkY

⊤
k ′ )

E[Tr(Yk ′V ⊤)Tr(YkV ⊤YkY ⊤k ′ )] = Tr(YkY ⊤k ′ YkY ⊤k ′ )

E[Tr(YkV ⊤YkY ⊤k ′ V Y ⊤k ′ )] = E[Tr(V ⊤YkY ⊤k ′ V Y ⊤k ′ Yk)]

= E[v⊤vec(YkY ⊤k ′ V Y ⊤k ′ Yk)]

= E[v⊤[(Y ⊤k Yk ′)⊗ (YkY ⊤k ′ )]v ]
= Tr[(Y ⊤k Yk ′)⊗ (YkY ⊤k ′ )]
= Tr[Y ⊤k Yk ′ ]Tr[YkY

⊤
k ′ ]

= Tr2(YkY
⊤
k ′ )

which uses the cyclic nature of the trace, Tr(AB) = vec(A⊤)⊤vec(B), vec(AXB) = (B⊤ ⊗ A)vec(X),
as well as Tr(A⊗ B) = Tr(A)Tr(B).
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B Additional synthetic dataset to evaluate kSCA versus SCA: drift

diffusion model

Another example highlighting SCA/kSCA performance differences relates to the progressive inte-

gration of noisy evidence during decision making, for example during the random-dot motion task (see

Introduction). This process can be described by the drift diffusion model (DDM) of behaviour (Gold &

Shadlen, 2002). In the continuous time limit, it is given by the stochastic differential equation

dx = µkdt + σdW (22)

where x is the decision variable (DV), whose temporal evolution reflects the accumulation of evidence. µk
denotes the drift rate, with greater values implying higher stimulus strength, or motion coherence. dW is

a standard Wiener process, such that its variance grows linearly with time. σ scales this diffusive process.

Without the σdW diffusion term, the DV would grow linearly with slope µk . Conversely, the absence of

the µk term would result in a Brownian motion-like trajectory, with standard deviation proportional to√
t. The stochastic diffusion in equation 22 can be simulated using

x(t + 1) = x(t) + µkdt + σ
√
dtN (0, 1) (23)

where N (0, 1) indicates a random number with mean 0 and standard deviation 1, generated anew at
each time step.

Here, we generated trajectories with motion coherence µk ∈ ±{0.0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64}
(i.e., 13 in total), where the sign models the direction of motion (e.g., leftward versus rightward). Each

motion coherence level was repeated for 30 trials (20 training, 10 test). σ was set to 0.35 to match

empirical psychometric functions (Gold & Shadlen, 2007). There were T = 100 time steps. The trial

and condition (i.e., motion coherence) dimensions were collapsed to allow for single trial-based analysis.

The dataset was then projected onto a 50-dimensional orthonormal basis, before being fed to a relu

function, thereby providing a (simplistic) model of LIP activity during evidence integration. Training was

performed in a similar fashion as that described in Section 3. While PCA and SCA yielded ζ = 0.0

on both the training and the test sets, kSCA achieved ζ = 0.26 (training) and ζ = 0.24 (test). This

supports the ability of kSCA to identify sequentiality in inherently 1-dimensional, expansion-like data.

Moreover, though preliminary, the results suggest that (k)SCA could prove useful to examine the neural

correlates of decision-making (see also Discussion). Note however that real neural datasets are expected

to differ in important aspects. These include the termination of the increase in neural activity when a

putative decision threshold is reached (versus uninterrupted growth here).

38



C Losses

Figure C.1: Losses corresponding to the learned projections in Section 3. (a) SCA (left) and

kSCA (right) losses for the rotation dataset in Figure 2. Inspection of the (k)SCA losses confirms that

convergence had been reached. For illustration purposes, the mean losses across 20 consecutive iterations

are displayed, with standard deviations denoted by the fill. (b) Same for the Van der Pol oscillator (Figure

3a). (c) Same for the Duffing oscillator (Figure 3b). (d) Same for the particle (Figure 4). (e), (f) Same

for the polar rotations converted to the Cartesian domain (Figure 5), with (e) and without (f) noise

corruption.
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Figure C.2: Losses corresponding to the learned projections in 6 dimensions in Section 4. (a) Losses

for the PSTHs-extracted projections in Figure 6a. (b) Losses for the single trial-extracted projections in

Figure 7a. Analogous outcomes (i.e., convergence) were obtained for the other d settings. Mean losses

across 20 consecutive iterations are displayed, with standard deviations denoted by the fill.
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