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Abstract

Generating high-quality biomolecules is an important step in advancing the drug discovery
process and broader domains in natural sciences. This task becomes particularly challenging
when an increasing number of data modalities are involved (e.g. atom type, positions etc),
growing combinatorial in complexity due to the need for choosing effective interpolation
schedules for multiple intertwined modalities at training and inference time. Current methods
rely on manual tuning and heuristics. We propose to automate this process by optimizing the
transport path with respect to an objective derived on the basis of dynamic optimal transport
(OT) by training an interpolation schedule parametrized by a neural network.

Our approach, based on the work of Albergo and Vanden-Eijnden (2023) and Albergo
et al. (2023a), decouples the choice of path from the design of vector field, allowing a single
vector field to be trained over all possible paths. This vector field is then leveraged to learn
an optimal path by minimizing the Optimal Transport loss to generate straighter trajectories
in Euclidean space.

We validated our method on a toy Gaussian problem, confirming that optimizing the
path reduced OT loss and resulted in straighter trajectories. Extending this approach to
small molecule generation, we found that path optimization lead to consistent interpolation
schedules that reduce the OT loss. However, we observed that the reductions in OT loss did
not automatically translate into significant improvements in sampling efficiency or sample
quality, revealing areas for future investigation.

We proposed strategies that address potential sources of error, namely improving the
accuracy of the vector field and addressing the relationship between the path optimization
objective and integration errors, including exploring alternative path optimization norms.
Additionally, we highlighted the importance of considering local strain energy in molecular
design, as positional inconsistencies can impact quality. Since most drug discovery efforts
work in the low data domains under resource constraints, focusing on efficient, simulation-
free methods that can jointly model multiple modalities remains crucial.
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Chapter 1

Introduction

1.1 Motivation and Overview

Deep generative models aim to generate novel samples by learning from data. Recent
advances in diffusion models for image and video generation have significantly increased the
popularity of these methods and triggered extensions to other domains. Denoising diffusion
probabilistic models and score-based diffusion models rely on a forward noising process over
samples from the data distribution and a time-reversal stochastic process to map samples from
a noise distribution back to the desired target distribution. However, these methods require
solving a stochastic differential equation (SDE) at inference time, limiting the possibility to
get high quality samples in few discretisation steps. What is more, they are constrained in the
choice of the noise source, which needs to be an invariant distribution of the noising process.
This creates challenges when dealing with a combination of continuous and discrete data, a
common scenario in real-world problems across the natural sciences.

These limitations were addressed in Flow Matching (FM) (Lipman et al., 2023, Albergo
et al., 2023b, Liu, 2022), which is a computationally efficient generative paradigm based on
continuous flows induced by ordinary differential (ODE) equations, but alleviates the need to
simulate the ODE during training by directly regressing the vector field that gives rise to the
generative paths. Further extensions by Tong et al. (2024) and Albergo and Vanden-Eijnden
(2023) propose more general paths which allow for an arbitrary source density, rather than
requiring a Gaussian base by the construction of the path. The simplicity of their framework
allows for much more flexibility in the design of interpolants. This makes Flow Matching a
perfect candidate for building generative models over multiple modalities to tackle problems
prevalent in drug discovery and material sciences.

Such a generative model can learn the distribution over the space of biomolecules and,
therefore, generate valid biomolecules. By conditioning these models, one can tackle com-
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plex tasks, such as designing binders with specific properties for particular targets. Sampling
molecular structures with desired properties have the potential to accelerate chemical discov-
ery by reducing the need to engage in resource-intensive screening-based based discovery
paradigms. Application of generative models alongside geometric deep learning techniques
has been particularly successful in generating credible biomolecule structures under external
constraints, leading to a rapid expansion of this field of research (Torge et al., 2023, Mar-
tinkus et al., 2023, Corso et al., 2023, Didi et al., 2024). Yet the challenge of making better
biomolecules that exhibit desired properties and adhere to desired constraints remains.

Jointly modeling multiple modalities would enable the generation of meaningful samples
without the need run the generated 3D structure through a Protein Message Passing Neural
Network to get amino acids (Dauparas J, 2022). Current approaches such as FrameDiff
(Yim et al., 2023b), FrameFlow (Campbell et al., 2024), (Bose et al., 2024), MiDi (Vignac
et al., 2023a), FlowMol (Dunn and Koes, 2024) require manually selecting an interpolation
schedule between the source and the target density for each of these modalities. Doing so
has a significant impact on model performance. This becomes increasingly difficult since
the problem of choosing schedules grows combinatorially with the number of modalities,
further complicated by the fact that schedules live in the space of functions, and at present
most methods rely on different heuristics (Karras et al., 2022), (Vignac et al., 2023a), (Dunn
and Koes, 2024), (Yim et al., 2023a). Learning a schedule over all modalities jointly would
allow one to bypass manually tuning the schedule, but also to find one that could yield even
better samples.

Optimizing interpolation paths has been initially explored in (Albergo et al., 2023a) in
a multi-marginal setting with one modality. We build on their word to naturally extend
this framework to the multi modalities setting. This requires decoupling the path from the
vector field along the theoretical findings by Albergo et al. (2023a). This approach enables
training a vector field over all possible paths for every modality, offering the advantage
of training a single vector field rather than separate fields for each combination of paths.
Then at inference time, one can choose any path of their liking. In particular, we suggest to
learn the transport path which minimizes the OT loss, sinceLipman et al. (2023), Tong et al.
(2024) demonstrate that using Optimal Transport (OT) displacement interpolation to define
the conditional probability paths leads to faster training and sampling and results in better
generalization.
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1.2 Main Contributions

The thesis presents several key contributions to the field of generative modeling for small
molecules:

1. Our approach allows us to select any path at inference time by amortising the vector
field neural network trained over all possible paths. This framework, applied to
generating small molecules, extends the original methodology introduced by Albergo
et al. (2023a) to the multiple modalities setting.

2. This work proposes a method for automatically learning an optimal interpolation path
for each modality by minimizing the Optimal Transport (OT) loss, which extends the
methodology proposed by Albergo et al. (2023a) into multimodal setup.

3. We investigate the effect of the choice of path at training and inference time on the
sampling efficiency and quality of small molecule generation evaluated through the
lens of relevant metrics such as Posebusters (PB) validity and Strain Energy (SE).

4. Finally, we outline future research directions, focusing on potential improvements
in vector field approximation and alternative path optimization strategies for more
efficient and accurate molecular generation.

1.3 Thesis Outline

This thesis is structured as follows:
Chapter 1: Introduction. This chapter introduces the core motivation behind our re-

search. It explains the challenges associated with interpolation schedules in multimodal
settings, particularly the complexity that arises when dealing with multiple entangled modali-
ties. This chapter gives an overview the proposed methodology, which seeks to address these
issues through an automatically learned schedule using neural networks. Additionally, it
summarizes the main contributions of the thesis, which focus on improving the efficiency
and quality of sample generation.

Chapter 2: Background. The background chapter provides an overview of the theoreti-
cal foundations that inform this research. It discusses the flow matching framework and the
role of neural ODEs and probability flows between distributions. The chapter also covers the
background of optimal transport, introduces stochastic interpolants, and explains how they
allow to decouple the choice of path from the vector field and lays the foundations for our
methodology. It also provides an overview of Geometric Deep Learning (GDL), symmetry
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groups and their importance in the design of equivariant Graph Neural Networks (GNNs).
These concepts prepare the basis for applications of generative models in biomolecular
design.

Chapter 3: Optimal Path Flow: Methodology and Evaluation. In this chapter, the
core methodology is introduced, focusing on the two-step approach of training a vector
field over all possible paths and then using this vector field to optimizing interpolation
schedule parametrized by a neural network. The chapter illustrates the performance of the
proposed method in two main case studies. First, a simple scenario involving 2D Gaussian
distributions is used to validate the method and demonstrate its effectiveness. The second
case study applies the methodology to the more complex task of generating small molecules,
investigating the relationship between the learned interpolation paths, OT loss, sampling
efficiency, and sample quality.

Chapter 4: Concluding Remarks. This chapter discusses the strengths and limitations
of the proposed method, reflecting on the results from both the 2D Gaussian and molecular
generation case studies. It explains the reasons why some of the findings from the 2D
Gaussian setup did not translate into the gains in sampling efficiency and sample quality
and suggests approaches to address potential sources of error. Future research directions are
outlined, focusing on refining vector field learning, exploring alternative objectives for path
optimization, and considering local strain energy in molecular design.



Chapter 2

Background

2.1 Flow Matching Framework

Flow Matching is a generative modeling paradigm introduced by Lipman et al. (Lipman
et al., 2023). It combines ideas from Continuous Normalizing Flows (Chen et al., 2019) and
Diffusion Models Song and Ermon (2019), Ho et al. (2020). The former requires expensive
ODE simulations during training time, which makes them very slow. Score-based diffusion
models, on the other hand, requires expensive SDE simulations during inference. Flow
Matching is a faster simulation-free method that alleviates the need for expensive Ordinary
Differential Equation (ODE) integration during training or SDE simulations during inference.
Moreover, conditional Flow matching does not require the source distribution to be Gaussian,
nor does it require evaluation of p0 density.

2.1.1 Neural ODEs and Probability Flows Between Distributions

Generative modeling is a rapidly growing field, offering a range of solutions to the task of
fitting a mapping f between the source distribution q0 and the target distribution q1, such
that if x0 ∼ q0, then f (x0)∼ q1. Typically, the source distribution is either Gaussian or other
distribution that is easy to sample from. However, cases when both q0 and q1 are empirical
distributions represented by a finite set of samples are also considered.

Neural ODEs provide a powerful method to model continuous transformation of the data,
parameterized by differential equations, smoothly evolving samples from the source density
to the target density.
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Definition: A smooth time-varying vector fielda u : [0,1]×Rd→Rd defines the follow-
ing ODE:

d
dt

φt = ut(φt(x)), ∀t ∈ [0,1] (2.1)

where the flow maps φt(x) are solutions to ODE with the initial condition φ0(x) = x.
Transporting a sample x along the vector field u from time 0 to time t gives φt(x).

aVector field is also known as velocity (velocity field) or drift in diffusion and SDE literature.

We are interested in learning a sequence of generative models (i.e. probability densities)
(pt)

1
t=0 for t ∈ [0,1] such that p0 = q0 represents the source density and p1 = q1, the data

density.

Definition: Probability density path pt is said to be generated by a vector field ut if,
given a source density p0, its flow φt satisfies the push-forward equation:

pt = [φt ]# p0 (2.2)

The push-forward (also known as change of variables operator) is defined as

[φt ]# p0 = p0(φ
−1
t (x))det

[
∂φ
−1
t

∂x
(x)

]

The flow φt : [0,1]×Rd → Rd transports the initial density of points x∼ p0 along
the vector field u form time 0 to time t:

xt
∆
= φt(x0) = x0 +

∫ t

0
us(xs)ds

which is the ODE solution at time t.

Remark: We require ut(x) to be smooth to ensure the invertibility of the resulting flow
φt . This implies that ut must be at least locally Lipschitz in x and Bochner integrable1 in t
(Tong et al., 2024).

The time-evolution of the density pt , which can also be viewed as a function p : [0,1]×
Rd → R, is characterized by Continuity Equation, also generally known as the Transport
Equation (TE)2:

∂ pt(x)
∂ t

=−∇ · (ut(x)pt(x)) (2.3)

2From here onwards, we will use the term Transport Equation instead of Continuity Equation since our
focus is transporting points from source to target density.
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and the initial conditions p0.

Remark: The Transport Equation (2.3) is a Partial Differential Equation (PDE) that
provides a necessary and sufficient condition for vector field ut to generate probability
path pt (Villani, 2008).

Under these conditions, pt(x) represents the marginal probability path generated by an
ODE defined by ut(x) with initial state sampled from p0.

To approximate this ODE, we can employ a neural network to model a time-dependent
vector field vθ : [0,1]×Rd → Rd parameterized by θ . The vector field network must be
designed with Lipschitz continuity to ensure the rate of change remains bounded, preventing
abrupt shifts between points and preserving smooth transitions.

In Continuous Normalizing Flows (CNFs) this parametric vector field vθ (t,x) is trained
via maximum likelihood estimation

L (θ) = Ex∼q1[log p1(x)]

This training process requires integrating both the time evolution of xt and the log-likelihood
log pt , both of which are derived from vθ (t,x). The drawbacks of CNFs are that they involve
expensive ODE simulations during training time and the method does not scale well to
high-dimensional spaces.

On the other hand, Flow Matching (FM) offers an alternative by circumventing the need
for ODE simulations during training time. Instead, it directly regresses the vector field ut(x)
using the following Flow Matching objective (Loss-FM):

LFM = Et∼U(0,1),x∼pt(x)

[
∥ut(x)− vθ (t,x)∥2

]
(2.4)

However, this approach assumes that the probability path pt(x) and the vector field ut(x)
generating it are both known and that pt(x) can be tractably sampled, which is not feasible in
most cases.

2.1.2 Conditional Flow Matching

In practice, we do not have direct access to the marginal vector field ut which generates
the desired density pt . Therefore, Lipman et al. (2023) proposed to construct both pt

and ut by aggregating a mixture of simpler probability paths and vector fields defined per
sample, referred to as conditional probability paths pt(x | x1) and the conditional vector
fields ut(x | x1).
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Remark: While Lipman et al. (2023) constructed Conditional Flow Matching assuming
that the source distribution q0 is a Gaussian and conditioning the per-sample vector fields
and probability paths on the target samples x1, Tong et al. Tong et al. (2024) extended
the Conditional Flow Matching framework to a more general setting. Their approach
relaxes the constraints on the form of q0 and generalizes the conditioning to some variable
to z ∼ q(z). In Tong et al.’s notation, the conditional probability paths have the form
pt(x | z) and the conditional vector fields are ut(x | z), where z is a combination of the
initial and terminal points (x0,x1). The coupling q(z) can take a flexible form as long
as it has marginals q(x0) and q(x1). In this work, we adopt Tong et al.’s more general
formulation.

The conditional probability path, generated by the conditional vector field, also satisfies
the transport equation:

∂ pt(x | z)
∂ t

=−∇ · (ut(x | z)pt(x | z))

Definition: The marginal probability path pt can be obtained from the conditional
probability paths by marginalizing over q(z) in the following way:

pt(x) =
∫

pt(x | z)q(z)dz, (2.5)

At time t = 1, the marginal probability p1 is a mixture distribution that closely approxi-
mates the data distribution q1,

p1(x) =
∫

p1(x | z)q(z)dz≈ q1(x).

Definition: The marginal vector field ut(x) can be obtained by marginalizing over the
conditional vector fields ut(x | z) in the following way:

ut(x) = Ez∼p1|t [ut(x | z)] =
∫

ut(x | z)
pt(x | z)q(z)

pt(x)
dz (2.6)

Theorem: Given the conditional vector fields ut(x | z) which generate the conditional
probability paths pt(x | z) for any conditioning distribution q, the marginal vector field
ut(x) obtained via (2.6) generates the marginal probability path pt(x) obtained via
equation 2.5.



2.1 Flow Matching Framework 9

The proof relies on demonstrating that marginal ut(x) and pt(x) satisfy the transport
(2.3). See appendix A.1 for detailed proof.

Example: In Conditional Flow Matching, Tong et al. (Tong et al., 2024) models condi-
tionals z as Gaussian flows between x0 and x1 with standard deviation σ , characterized by
the following:

pt(x | z) = N (x|µt ,σ
2
t ) = N (x|tx1 +(1− t)x0,σ

2
t )

ut(x | z) = x1− x0

where µt = tx1+(1−t)x0 represents a conditional probability path (or interpolant), and
σt is a sequence of monotonically decreasing noise levels. As t→ 0, the noise approaches
zero, i.e. σ1 ≈ 0, and:

lim
t→1

pt(x | z)≈ δx1(x)

Theorem 2.1.2 enables us to replace the intractable vector field ut(x) in the Flow Matching
Objective (2.4) with a tracTable conditional vector field ut(x | z), marginalizing over z to
obtain Conditional Flow Matching objective (Loss-CFM):

LCFM = Et∼U(0,1),z∼q(z),x∼pt(x|z)

[
∥ut(x | z)− vθ (t,x)∥2

]
(2.7)

where vθ (t,x) is a neural network parameterized vector field.
Because both pt(x | z) and ut(x | z) are defined on a per-sample basis, we can efficiently

sample from pt(x | z) and compute ut(x | z), which allows us to obtain an unbiased estimator
using the tracTable Loss-CFM. Moreover, Loss-FM (2.4) and Loss-CFM (2.7) have identical
gradients w.r.t θ , which is formulated in theorem 2.1.2 in accordance with Lipman et al.
(2023), Theorem 2.

Theorem: Assuming that pt(x) > 0,∀x ∈ Rd and t ∈ [0,1], then, up to a constant
independent of θ , objectives Loss-CFM and Loss-FM are equivalent in the sense that

∇θLCFM(θ) = ∇θLFM(θ)

Thus, we can use Loss-CFM to train the parametric vector field vθ (t,x).

2.1.3 Static and Dynamic Optimal Transport

Optimal Transport (OT) is a problem that seeks to devise a mapping from one measure
to another that minimizes the cost of displacing mass. This concept is particularly useful
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when the goal is to find the most efficient mapping between two distributions q0 and q1.
In Static Optimal Transport, this task is approached without explicitly considering time or
the evolution of the transformation process. The 2-Wasserstein distance offers a convenient
framework for optimizing the displacement cost between q0 and q1 in Rd using the Euclidean
distance c(x0,x1) = ∥x0−x1∥ as a cost of moving mass from x0 to x1. Static OT is formulated
as the following optimization problem:

W (q0,q1)
2 = inf

π∈Π(q0,q1)

∫
Rd×Rd

c(x0,x1)
2 dπ(x0,x1),

where π is a coupling between a pair (x0,x1), Π represents the set of all joint probability
measures on Rd ×Rd whose marginals are q0 and q1. This conveniently aligns with the
requirement on conditional flow matching coupling q(z) between the source q0 and the target
q1 in remark 2.1.2.

Static OT provides a transport plan or map that moves mass directly from one point in q0

to a point in q1, without explicitly modeling the time evolution of probability distribution. In
contrast, Dynamic Optimal Transport introduces a time component to the transport problem,
making it a continuous path problem, often described by a flow of mass or trajectory between
distributions.

Definition: Dynamic Optimal Transport seeks to minimize the cost of transporting the
mass over the entire path, subject to continuity constraints. The 2-Wasserstein distance
in a dynamic setting can be expressed as an optimization problem over vector fields ut

that transform q0 into q1

W (q0,q1)
2 = inf

pt ,ut

∫
Rd

∫ 1

0
pt(x)∥ut(x)∥2 dtdx, (2.8)

where pt ≥ 0 and subject to boundary conditions p0 = q0 and p1 = q1 as well as the
Transport Equation 2.3

It has been proven by Benamou and Brenier (2000) that, under the assumption that q0

and q1 are compactly supported distributions with bounded densities, the static and dynamic
OT formulations are equivalent.

In their Conditional Flow Matching framework, Tong et al. (2024) consider both inde-
pendent coupling as well as OT coupling when designing the conditioning variable z for the
velocity field ut(x | z) and the resulting path pt(x | z) that it generates.
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Definition: Independent Coupling is defined as q(x0)q(x1), with marginals q0 and q1.
OT Coupling is a coupling π(x0,x1) given by OT plan between the source and target

points, with marginals q0 and q1.

In OT-CFM, Tong et al. propose using the 2-Wasserstein optimal transport map π as a
conditional distribution, i.e. q(z) := π(x0,x1), where pairs (x0,x1) are jointly sampled
according to π . While static OT plan can be computed exactly for small datasets, such as
single-cell data, however, it becomes impractical for larger datasets due to the computational
complexity. Specifically, computing OT scales cubically in time and quadratically in memory
with respect to the number of samples (Cuturi, 2013). To address this, Tong et al. (2024)
propose approximating the transport map using minibatch OT, where transport plan πbatch is
computed for each batch of data, significantly reducing the computational burden.

2.2 Interpolation Between Densities and Optimal Trans-
port

2.2.1 Stochastic Interpolants

From the perspective of optimal transport, the challenge in generative modeling lies in
designing a computationally efficient structure imposed on the transport between a simple
source density and a complex target density. This challenge can be approached by devising a
time-dependent map that interpolates between two arbitrary densities. Same as previously,
our goal is to construct probability path pt , in particular, a sequence of probability densities
(pt)

1
t=0 for t ∈ [0,1] such that p0 = q0 and p1 = q1, and we achieve this through a sequence

of conditional probability paths referred to as interpolants xt , which connect samples from p0

to samples from p1. This time-dependent map xt functions as s push-forward that transports
the base distribution at time t = 0 to the target distribution at time t = 1.

ẋt = ut(xt), x0 = x (2.9)

where the dot ẋt denotes derivative wrt t and ut(x) is the vector field governing the transport
(Albergo and Vanden-Eijnden, 2023).

Viewing the generative process from the perspective of interpolants offers several benefits:

• Flexibility in the design choice of the interpolant, depending on the task at hand, form
of the source and target distributions, whether we are interested in the intermediate
path.
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• Dtochastic interpolant formulation allows expressing both deterministic (ODE-based)
as well as stochastic (SDE-based) generative models under one paradigm.

• Decoupling velocity from the path, which allows us to minimize the path and further
optimize the transport.

Definition: Stochastic Interpolant between q0 and q1 is a stochastic process xt defined
(as per Albergo et al. (2023b)):

xt = I(t,x0,x1)︸ ︷︷ ︸
deterministic component

+ γ(t)z︸︷︷︸
stochastic component

, t ∈ [0,1] (2.10)

where

1. the deterministic component I ∈C2([0,1],(C2(Rd×Rd))d) in the space of twice
continuously differentiable functions, satisfies the boundary conditions the bound-
ary conditions I(0,x0,x1) = x0 and I(1,x0,x1) = x1,

2. the stochastic component γ : [0,1]→ R satisfies γ(0) = γ(1) = 0,γ(t)> 0 for all
t ∈ (0,1), and γ2 ∈C2([0,1])

3. z is a Gaussian random variable independent of the pair (x0,x1) drawn according
to the coupling with marginals q0 and q1 (see Definition 2.1.3) , i.e. z∼N (0, I)
and z⊥(x0,x1).

See (Albergo and Vanden-Eijnden, 2023) for proof that this formulation satisfies the Transport
Equation (2.3).

Generally, xt are designed as linear interpolants under the assumption of Euclidean
geometry; however, recent work (Kapusniak et al., 2024) has been done to learn interpolants
that approximate geodesics on non-Euclidean manifolds.

Definition: Spatially Linear Interponalts are a special case of stochastic interpolants
from equation 2.10 where the function I is linear is both x0 and x1, i.e.:

xlin
t = Ilin(t,x0,x1)︸ ︷︷ ︸

deterministic component

+ γ(t)z︸︷︷︸
stochastic component

= α0(t)x0 +α1(t)x1︸ ︷︷ ︸
deterministic component

+ γ(t)z︸︷︷︸
stochastic component

,
(2.11)
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where the curve α(t) is the interpolant schedule, which we also refer to as path, given
that it governs the transport trajectory. The start and end point (x0,x1) are sampled from
a coupling with marginals q0 and q1 (see Definition 2.1.3), z∼N (0, I) and z⊥(x0,x1),
and α0,α1,γ

2 ∈C2([0,1]) satisfy the conditions

α0(0) = α1(1) = 1;α0(1) = α1(0) = γ(0) = γ(1) = 0;∀t ∈ (0,1) : γ(t)> 0. (2.12)

Remark: Despite their simplicity, spatially linear interpolants offer substantial design
flexibility. Consider direct parallels between the linear interpolant formulation and the
formulation used different variations of Conditional Flow Matching:

• We can recover CFM formulation by Tong et al. (Tong et al., 2024) from example
2.1.2 setting µt = Ilin(t,x0,x1) = α0(t)x0 +α1(t)x1 = (1− t)x0 + tx1 and σt = γ(t).

• We can recover the original Flow Matching variant by Lipman et al., which only uses
one-sided conditioning (x | x1). Since in their formulation p0 = q0 = N (0,σ2

0 ) is a
known Gaussian, we can absorb x0 into the Gaussian component z leaving us with
a one-sided stochastic interpolant µt = Ilin(t,x1) = α1(t)x1 = tx1 and σt = γ(t). By
choosing σt = 0, we recover Rectified Flow formulation (Liu, 2022)

• In the case of generalized variance preserving (GVP) stochastic interpolant by (Albergo
and Vanden-Eijnden, 2023), µt = Ilin(t,x0,x1) = α0(t)x0 +α1(t)x1 = cos(1

2πt)x0 +

sin(1
2πt)x1 and σt = 0.

An extended comparison between interpolant formulation and Flow Matching variants can
be found in Table 2.1

Table 2.1 Probability path definitions for existing methods which fit in the generalized
conditional flow matching framework. Adapted on the basis of Tong et al. (Tong et al.,
2024).

CFM approach coupling (x0,x1) Ilin(t,x0,x1) = µt γ(t) = σt

Var. Exploding (Song and Ermon, 2019) q(x1) x1 σ1−t

Var. Preserving (Ho et al., 2020) q(x1) α1−t x1

√
1−α2

1−t

Flow Matching (Lipman et al., 2023) q(x1) tx1 tσ − t +1
Rectified Flow (Liu, 2022) q(x0)q(x1) tx1 +(1− t)x0 0
Generalized Var. Pres. SI (Albergo and Vanden-Eijnden, 2023) q(x0)q(x1) cos( 1

2 πt)x0 + sin( 1
2 πt)x1 0

Independent CFM (Tong et al., 2024) q(x0)q(x1) tx1 +(1− t)x0 σ

Optimal Transport CFM (Tong et al., 2024) π(x0,x1) tx1 +(1− t)x0 σ

Schrödinger Bridge CFM (Tong et al., 2024) π2σ2 (x0,x1) tx1 +(1− t)x0 σ
√

t(1− t)
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2.2.2 Interpolants Allow to Decouple Velocity from the Path

In conventional maximum likelihood training of flows one is forced to couple the minimising
the objective with the choice of path, leading to complicated optimization processes. Karras
et al. (2022) in their overview on noise schedule designs in both flows (ODE-based methods)
and diffusions (SDE-based methods), highlighted that the choice of α0 and α1 has major
practical implications on the integration of the resulting vector field. Albergo and Vanden-
Eijnden (2023) and Albergo et al. (2023a) showed that using the formalism of stochastic
interpolants allows decoupling the CFM optimization problem from choosing a transport
path governed by the interpolant schedule α(t), which paves the way to shortening the path
length. Since this work is aiming at optimizing the transport path, the implications of their
finding are important for setting up the methodology.

Definition: Consider a one-sided stochastic interpolant, a variant where γ(t) = 0:

xt = α0(t)x0 +α1(t)x1

Extending xt from the Definition 2.2.1 w.r.t. scalar t ∈ [0,1] to a more general definition
w.r.t. interpolation coordinate α = α0,α1, and specifying a curve α(t) governing the
transport path, paves way for a more general definition of the process x(α).

x(α(t)) = α0(t)x0 +α1(t)x1 (2.13)

where α0(t) and α1(t) are differentiable functions of t ∈ [0,1] subject to constraints
α0(0) =α1(1) = 1 and α0(1) =α1(0) = 0 which guarantee that xt=0 = x0 and xt=1 = x1.
Hence the density p(α,x) of x(α) reduces to p0(x) for α = (1,0) and to p1(x) for
α = (0,1) by construction.

While in (Albergo et al., 2023a) Albergo et al. studies barycentric interpolants
defined on the simplex, this is not a necessary condition for their findings to hold for
arbitrary interpolants, and the only requirement is that α0(t)2 +α1(t)2 > 0

If xt is the solution to ODE equation 2.9, Albergo and Vanden-Eijnden (2023) and Albergo
et al. (2023b) establish that under the stochastic interpolant formulation xt = α0(t)x0 +

α1(t)x1, the vector field factories into conditional expectations, which is also true for the
generalized process x(α) (Albergo et al., 2023a):

u(α,x) = E[ẋα | x(α) = x]

= α̇0(t)E[x0 | x(α) = x]+ α̇1(t)E[x1 | x(α) = x]

= α̇0(t)η0(α,x)+ α̇1(t)η1(α,x)

(2.14)
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where the expectation is taken over p0(x0)p1(x1). η1(α,x) = E[x1 | x(α) = x] is commonly
referred to as denoiser. Theorem 1 from Albergo et al. (2023a) and its proof stipulate that
each η is a unique minimizer of its respective objective:

Lη′(η
θ
0 ) =

∫
[0,1]2

E(x0,x1)∼ν(q0,q1)

[
∥ηθ

0 (α,x(α))∥2−2x0η
θ
0 (α,x(α))

]
dα

+ const. not dependent on θ

(2.15)

Lη∞
(ηθ

1 ) =
∫
[0,1]2

E(x0,x1)∼ν(q0,q1)

[
∥ηθ

1 (α,x(α))∥2−2x0η
θ
1 (α,x(α))

]
dα

+ const. not dependent on θ

(2.16)

where ν(q0,q1) is a coupling whose marginals are q0 and q1. We can see from (2.15) and
(2.16) that to minimize the objective for each conditional expectation η , we are not integrating
over the scalar time t ∈ [0,1] but marginalizing over the interpolation coordinate α ∈ [0,1]2.
This means that in order to find the optimal α∗(t), we do not need to train the vector field for
each α(t) curve separately, but we can train vector field u(α,x) (or conditional expectations
ηθ ) for all possible coordinates α = (α0,α1) on the unit cube and then amortize this network
to find the optimal path.

Using these results Albergo et al. (2023a) then defines a velocity field in corollary 2:

u(α,x) = α̇0(t)η0(α(t),x)+ α̇1(t)η1(α(t),x) (2.17)

which shows that the 2-Wasserstein loss (2.8) can be minimized with respect to the path α(t).
Having demonstrated that using the spatially linear interpolant formulation, the learning

problem for the vector field u can be decoupled from the choice of path α(t), Albergo et al.
(2023a) shows that the solution to

C(αφ )) = min
αφ

∫ 1

0
E
[∥∥∥u(αφ (t),x(αφ (t)))

∥∥∥2
]

dt

= min
αφ

∫ 1

0
E
[∥∥∥α̇φ 0(t)η0(α

φ (t),x(αφ (t)))+ α̇φ 1(t)η1(α
φ (t),x(αφ (t)))

∥∥∥2
]

dt

(2.18)

gives the transport with shortest path length in Wasserstein-2 metric over the class
of velocities uθ (t,x) = α̇φ 0(t)η0(α

φ (t),x)+ α̇φ 1(t)η1(α
φ (t),x), where the expectation is

taken over (x0,x1)∼ q0q1, and the minimization is over all paths αφ ∈C1([0,1]) such that
αφ (t) ∈ [0,1]2.
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Campbell et al. (2024) were the first to use the above approach to train a multimodal
generative model for protein design called MultiFlow, jointly modelling continuous protein
structure and discrete sequence by defining factorized flows for each data modality.

2.3 Equivariant Generative Models

2.3.1 Graph Neural Networks

Graph Neural Networks are the underlying blocks of Geometric Deep Learning (GDL) when
dealing with graphs that represent structures with nodes and edges (Bronstein et al., 2021).
Nodes and edges have specific attributes called node features and edge features. GNNs
provide a mechanism which models the exchange of information between the nodes through
the edges. Figure 2.1 explains dataflow in the three flavours of GNNs.

Fig. 2.1 The three flavours of GNN layers by Bronstein et al. (2021)

2.3.2 Equivariance and SE(3) Equivariant Graph Neural Networks

A symmetry of an object or system is a transformation that preserves some property or struc-
ture of that object or system (leaving them unchanged or invariant). These transformations
can be smooth, continuous, or discrete, and they leave certain properties invariant, meaning
that the object looks the same after the transformation. Symmetries can be found in many
disciplines, from geometry to physics and machine learning. They are especially relevant
in the context of Geometric Deep Learning, which concerns itself with unstructured sets,
grids, graphs, and manifolds. Bronstein et al. (2021) describe GDL as a unified collection of
methods that respect the structure and symmetries of objects in these domains.
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Symmetries can be combined to obtain new symmetries, in particular, if we have two
symmetries g and h, since each of them leaves an object invariant, so does their combination
g ◦ h3 or h ◦ g, hence their composition is also a symmetry. Moreover, symmetries are
invertible and such an inverse is also considered to be a symmetry. Consequently we can
define a group of symmetries as the set of all possible transformations that preserve the
structure or property of an object.

Definition: A symmetry group is a set G together with a binary operation ◦ :G×G→G,
called composition, that satisfies the following properties:

• Associativity:(g◦h)◦ f= g◦ (h◦ f) for all g,h, f ∈G.

• Identity: there exists a unique e ∈G satisfying e◦g= g◦ e= g for all g ∈G.

• Inverse: For each g ∈ G there is a unique inverse g−1 ∈ G such that g ◦ g−1 =

g−1 ◦g= e.

• Closure: The group is closed under composition, i.e., for every g,h ∈G, we have
g◦h ∈G.

Note that not all groups are commutative, and we may have groups for which g◦h ̸= h◦g

In the applications for the physical world, the Euclidean group, denoted by E(n), is
the most prevalent since it preserves distances and angles in Euclidean geometry. The most
noTable subgroups of E(n) are E(2) in 2D space and E(3) in 3D space, which include:

• Translations: moving a point or object in space without altering its shape or orientation.

• Rotations: rotating a point or object around a fixed point without changing distances
between points.

• Reflections: Flipping an object along a line (2D) or a plane (3D), resulting in a mirror
image.

The Euclidean Group E(3) is crucial in microbiology, particularly for analyzing 3D
microbiological structures while preserving their geometric properties. For instance, the
structure of proteins plays a fundamental role in determining their function, making it
essential to study these structures without distorting their spatial characteristics.

Studying molecules require Special Euclidean group SE(3), which only includes rota-
tions and translations, but not reflections, due to their stereochemical feature called chirality

3g◦h should be read right-to-left: h is applied first, g is applied afterwards.
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("hand" from Greek), which can arise due to the tetrahedral geometry of saturated carbon
and the associated three-dimensional properties. A molecule is called chiral if it cannot
be superposed on its mirror image by any combination of rotations, translations, and some
conformational changes, similar to human hands, as illustrated in Figure 2.2

Fig. 2.2 Illustration of chirality: two enantiomers of a generic amino acid that are chiral, i.e.
right-hand-side cannot be superimposed onto the left-hand-side reflection (NASA, 2018).

Equivariant Graph Neural Network (EGNN) proposed by Satorras et al. (2022) was the
first to mode which could learn graph neural networks equivariant to rotations, translations,
reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs).
Geometric Vector Perceptrons (GVP) (Jing et al., 2021) enabled even better performance
on biomolecular structures by extending standard dense layers to operate on collections of
Euclidean vectors. GNNs equipped with GVP layers are able to perform both geometric and
relational reasoning on efficient representations of macromolecules, which gave rise to their
widespread application across a range of drug discovery tasks, such as designing antibodies
(Boom et al., 2023), proteins and molecules (Dunn and Koes, 2024). Given their superior
performance for molecular tasks we will be using GVP layers in the vector field architecture
along the lines of Flowmol (Dunn and Koes, 2024).

2.3.3 Co-design of Molecular Topology and Conformations

The success of generative models of 3D molecules based on diffusion or flow matching relies
on their ability to utilize GNNs that perform message-passing with geometric quantities to
generate valid and energetically-stable large molecules. Physical inductive biases such as
invariant graph attention and molecular chirality both play significant roles in generating
valid 3D molecules (Morehead and Cheng, 2024). There is a significant number of studies
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that leverage diffusion for structure-based drug design (Peng et al., 2023, Torge et al., 2023,
Morehead and Cheng, 2024, Schneuing et al., 2023) with the following state-of-the-art
diffusion models for3D de novo small molecule generation MiDi (Vignac et al., 2023b),
MolDiff (Peng et al., 2023), (Huang et al., 2023). Recent studies started exploring the use of
Flow matching for these purposed, notably FlowMol (Dunn and Koes, 2024) which leverages
Geometric Vector Perceptrons to generate valid small molecules effectively.



Chapter 3

Optimal Path Flow: Methodology and
Evaluation

3.1 Methodology

Below, we outline the framework for optimizing the path αm(t) when jointly modeling
multiple modalities.

Definition:
Let M denote the number of modalities, m = {m1,m2, . . . ,mM} is a combination of

continuous or discrete (but relaxed, so in effect continuous) modalities that we aim to
generate concurrently.

Consider a generalized one-sided interpolant as defined in equation 2.13

x(α) = I(α,x0,x1) = α0(t)x0 +α1(t)x1

Same as previously α0(t) and end α1(t) are differentiable functions of t ∈ [0,1] subject
to constraints α0(0) = α1(1) = 1 and α0(1) = α1(0) = 0. However, in the scenario
with multiple modalities, we have a separate curve αmi(t) per each modality mi, where
i ∈ [0, ...M] αmi .

Then for a spatially linear interpolant of the type xt = (1− t)x0 + tx1, generalized to
the process x(α(t)), the path α(t) = (α0(t),α1(t)) = (1−α1(t),α1(t)) for M modalities
can be defined using a block diagonal matrix α1(t) = block_diag

(
[αm1

1 I, . . . ,αmM
1 I]

)
with α

mi
1 (t) ∈ [0,1] i.e. scalar and boundary conditions α1(0) = 0 and α1(1) = 1.
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Example: We illustrate the above definition for an example with a generalized spatially
linear interpolant x(α) with two modalities, i.e. m = {m1,m2} , where m1 (e.g., atom
types) and m2 (e.g., atom positions) as the following:

x(α(t)) = α0(t)x0 +α1(t)x1 = (1−α1(t))

(
xm1

0

xm2
0

)
+α1(t)

(
xm1

1

xm2
1

)

=

(
(1−α1(t))x

m1
0

(1−α1(t))x
m2
0

)
+

(
α1(t)x

m1
1

α1(t)x
m2
1

) (3.1)

By employing the interpolant x(α) as defined in the equation 3.1, we effectively decouple
the problem of learning the vector field u(α,x) from the challenge of designing a path α(t),
that governs the transport process. Building on the insights of Albergo et al. (2023a) as
discussed in Section 2.2.2, we propose a structured methodology for learning the optimal
path α∗(t) in two key stages:

1. Training the vector field network uθ (α,x) over all possible coordinates α = (α0,α1)

within the unit hypercube. In this phase, we sample α
m1
1 , . . . ,αmM

1 ∈U [0,1]⊗M within
the output space of the functions α

mi
1 (t) for each modality mi independently α

mi
1 ⊥α

m j
1

to cover all possible realizations of interpolant coordinates α . For illustration, see
Figure 3.1a.

2. Leveraging the trained vector field network uθ (α,x) from the first step to optimize
the path αφ (t) parametrized by a neural network. This step aims to approximate
the optimal curve α∗(t) for each modality, while modeling the modalities jointly to
determine the most efficient transport path. For illustration, see Figure 3.1b.

Below we outline the details for each of the two steps for the example with two modalities
m = {m1,m2}.

3.1.1 Step 1: Training the vector field uθ (α,x)

In order to train the vector field, we need to sample conditional path x(α). This requires
sampling for α in the following way:

α = [α0,α1] = [1−α1,α1] =
[
(1−α

m1
1 , . . . ,1−α

mM
1 ), (αm1

1 , . . . ,αmM
1 )

]
(3.2)

which results in α
m1
1 , . . . ,αmM

1 ∈U [0,1]⊗M
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(a) Step 1: α sampled in the output space on
the unit cube.

(b) Step 2: Curves α(t) as examples of
learned maps t : [0,1]→ [0,1]2 modalities.

Fig. 3.1 Illustration of α(t) in the two steps of Optimal Path Flow training for two
modalities. In step 1 (Figure a), during the vector field training α is sampled in the output
space on the unit cube. The coordinates are t as the input and αmi(t) are coordinates for
the output for each modality mi. In step 2 (Figure b), the vector field network is kept fixed
while we jointly optimize the path αφ (t) for each modality mi. The dashed lines represent
examples of potential learned curves.

Recall from Section 2.1.2 conditional flow matching framework specifies the probability
density pt(x) by marginalizing the conditional probability densities pt(x | z):

pt(x) =
∫

pt(x | z)q(z)dz

=
∫

pt (x | x0,x1) p0(x0)p1(x1)dx0 dx1

Similarly, we establish the probability density pα
t (x(α(t))) by marginalizing the conditional

probability densities pα
t (x(α(t)) | x0,x1)

pα
t (x(α(t)))≜

∫
pα

t (x(α(t)) | x0,x1) p0 (x(α(0))) p1 (x(α(1))) dx0 dx1 (3.3)

such that
lim
t→1

pt(x(α(t)) | x0,x1)≈ δx1(x(α(t)))

Recall that defining the flow through stochastic interpolant x(α(t)) enables us to use
factorization into conditional expectations:

x(α) = α0(t)E [x0 | x(α(t)) = x]+α1(t)E [x1 | x(α(t)) = x] (3.4)
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From here we can express E [x0 | x(α(t)) = x] = η0(α,x) in terms of E [x1 | x(α(t)) = x] =
η1(α,x):

E [x0 | x(α(t)) = x] =
1

α0(t)
(x(α)−α1(t)E [x1 | x(α(t)) = x]) (3.5)

or
η0(α,x) =

1
α0(t)

(x(α)−α1(t)η1(α,x)) (3.6)

Using this factorization we can define the vector field u(α,x) from equation 3.7 using only
the denoiser E [x1 | x(α(t)) = x] = η1(α,x):

u(α,x) = E[ẋα | x(α) = x]

= α̇0(t)E[x0 | x(α) = x]+ α̇1(t)E[x1 | x(α) = x]

= α̇0(t)η0(α,x)+ α̇1(t)η1(α,x)

=
α̇0(t)
α0(t)

x(α)− α̇0(t)
α0(t)

α1(t)η1(α,x)+α1(t)η1(α,x)

=
α̇0(t)
α0(t)

x(α)+

(
α̇1(t)−

α̇0(t)
α0(t)

α1(t)
)

η1(α,x)

(3.7)

This means that in order to obtain the vector field, it is sufficient to learn the denoiser ηθ
1 (α,x)

parametrized by a neural network with parameters θ . Using the insights from (2.16) that
in order minimize the flow matching objective for the denoiser, we are not integrating over
the scalar time t ∈ [0,1] but marginalizing over the interpolation coordinate α ∈ [0,1]M, we
define the objective for the denoiser model E[x1 | x(α(t)) = x] = ηθ

1 (α(t),x) as follows:

L (θ) = EαEx0,x1

[
∥ηθ

1 (α,x)− x1∥2
]

=
∫
[0,1]2

Ex0,x1[∥η
θ
1 (α(t),x)∥2−2x1η

θ
1 (α(t),x)]dxdα

+ const. not dependent on θ

(3.8)

The training procedure for Step 1 is summarized in the Algorithm 1.

3.1.2 Step 2: Optimizing the path αφ (t) by leveraging the vector field
uθ (α,x)

In this step α(t) is a map t : [0,1]→ [0,1]M. We do not need to retrain the vector field, instead,
we use the learned denoiser ηθ

1 and freeze its parameters. We first sample t ∼U(0,1) and
pass it through the map α

φ

1 , which is now parametized as a neural network with parameters
φ , to obtain the conditional path x(α(t)). Then we pass this x(α(t)) through the denoiser
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Algorithm 1 Training Denoiser (to obtain vector field)

Require: Empirical or samplable distributions p0, p1, initial network ηθ
1 (α(t),x) for ap-

proximating E[x1 | x(α) = x]
while Training do

x0 ∼ p0; x1 ∼ p1
Sample α in the output space: α ∼U(0,1)M

xα = (1−α0)x0 +α1x1
Calculate CFM Loss:
LCFM(θ)←∥ηθ

1 (α,xα)− x1∥2

θ ← Update(θ ,∇θLCFM(θ))
end while
return ηθ

1

η
θfrozen
1 with torch.no_grad and calculate the vector field u(αφ (t),x(αφ (t))) according

to the equation 3.7. The training procedure for Step 2 is summarized in the Algorithm 2.
The requirement for α

φ

1 (t) is that the curves α
φmi
1 (t) corresponding to each modality

mi, i ∈ [1, . . . ,M] must be continuous, monotonic and adhere to the boundary conditions
α

φ

1 (0) = 0 and α
φ

1 (1) = 1. We parametrise α
φmi
1 (t) with a Neural Network similar to Shaul

et al. (2023) Appendix B. These networks are trained jointly, but each is parameterized
independently to ensure that the resulting function α

φmi
1 (t) is monotonic for every modality

mi. α
φmi
1 (t) is defined as follows:

α
φmi
1 (t) =

| f φmi (t)− f φmi (0)|
| f φmi (1)− f φmi (0)|

(3.9)

where f φmi is an MLP defined as:

f φmi (t) = sigmoid(Lmi
1 (t)+Lmi

3 (2sigmoid(Lmi
2 (t))−1) (3.10)

where Lmi
i , i ∈ [3], are linear layers: Lmi

1 : R→ R; Lmi
2 : R→ R2; Lmi

3 : R2→ R. In total,
the model for α uses 10 learnable parameters for each modality mi.

Based on Equation 2.18 we define the loss function for the model for optimal path to be
2-Wasserstein loss from Equation 2.8 which is minimized with respect to the path α(t). We
refer to it as the OT-Loss:

L (φ) =
∫ 1

0
Ex0,x1∼p0,p1

[∥∥∥u(αφ (t),x(αφ (t)))
∥∥∥2
]

dt (3.11)
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Taking the gradient of the OT loss leads to:

∇φ

∫ 1

0
Ex0,x1∼p0,p1

[∥∥∥u(αφ (t),x(αφ (t)))
∥∥∥2
]

dt (3.12)

=
∫ 1

0
Ex0,x1∼p0,p1

[∥∥∥∇φ u(αφ (t),x(αφ (t)))
∥∥∥2
]

dt (3.13)

Equation 3.12 is providing us with a mechanism to obtain optimal path under the assumption
that the learned vector field from step 1 corresponds to the true process(es) (pt)

1
t=0 of

transporting density from the source p0 to the target p1. In this sense, the expectation in
the equation 3.12 can also be considered with respect to p(α(t)).

To obtain the path α∗(t) the resulting objective is minimized with respect to the path
αφ (t):

min
αφ

∫ 1

0

∥∥∥u(αφ (t),x(αφ (t)))
∥∥∥2

p(α(t),x)dxdt (3.14)

Algorithm 2 Training the Optimal Path

Require: Empirical or samplable distributions p0, p1, trained denoiser network ηθ
1 (α(t),x)

from step 1, initial f φ network for calculating α(t).
while Training do

x0 ∼ p0; x1 ∼ p1
t ∼U(0,1)
α(t) is a map: [0,1]→ [0,1]M modalities

x(α(t)) = (1−α(t))x0 +α(t)x1
Calculate OT Loss:
Lα(φ)←

∫ 1
0 Ex0,x1∼p0,p1

[∥∥u(αφ (t),x(αφ (t)))
∥∥2
]

dt
φ ← Update(φ ,∇φLα(φ))

end while
return αφ

3.2 Optimizing Paths Between 2D Gaussians

In order to demonstrate the efficacy of the proposed methodology, we conduct two case
studies. We begin with a simplified scenario involving 2D Gaussian distributions, where
both the source and target distributions are Gaussian. This toy example serves as a useful
framework for developing insights and intuitions that can be extended to more complex
cases, such as molecular conformations discussed in the subsequent case study. Moreover,
the analytical tractability of the Optimal Transport (OT) loss in this context allows for a
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straightforward validation of the methodology, ensuring that the observed outcomes align
with the theoretical expectations.

3.2.1 Setup

We consider a source distribution q0 ∼N (µ0, I) and a target distribution q1 ∼N (µ1, I),
where the target is displaced by 10 units along the x-axis. Specifically, the mean values are
given as µ0 = (0,0) and µ1 = (10,0). For this example, the two axes (x and y) represent the
two modalities, with the x-axis corresponding to dimension 0 and the y-axis to dimension
1. Accordingly, the methodology outlined in Section 3.1 is applied, with the number of
modalities set to two, i.e m1,m2. For Step 1 the implementation follows the algorithm 1 to
train the denoiser ηθ

1 with α sampled in the output space on the unit cube as shown in Figure
3.1a. The architecture of ηθ

1 consists of four linear layers, each containing 512 hidden units,
with ReLU activation functions applied to introduce non-linearity. In step two, the learned
denoiser η

θfrozen
1 is used to train the path αφ (t) parametrized by a neural network as described

in equations 3.9 and 3.10.The network structure includes two separate sub-networks, each
corresponding to one of the two modalities, and each sub-network contains 10 parameters,
resulting in a total of 20 trainable parameters that are optimized jointly.

3.2.2 Results

Given that there is no displacement along the y-axis (dimension 1), we anticipate more rapid
changes in the y-component, as the displacement between the source and target distributions is
significantly smaller compared to the x-axis. From Figure 3.2, we can see that the dimension
which which require less displacement to match the target is also denoised faster. This is
particularly evident in Figure 3.2b, where for αdim 0(t) = 0.5, the x-axis has reached halfway,
while the y-axis has already progressed to αdim 1(t)≈ 0.8. Moreover, when αdim 0(t) = 0.75
the y-axis has nearly completed its transition, reaching αdim 1(t) = 0.9

We aim to investigate the impact of path optimization on the learned trajectories, par-
ticularly in this simplified setting where the effects are more easily visualized. Figure 3.3a
presents the trajectories obtained by transporting 500 samples from the source distribution
p0 ∼N (0, I) along the vector field u(t,x) obtained from step 1 using a linear path for each
dimension. In contrast, Figure 3.3b depicts the trajectories produced by transporting the
same 500 points along the same vector field, but following the learned path αφ (t) as shown
in Figure 3.2b.

It is well known that the OT coupling between two Gaussians differing only in the mean
results in all straight lines (Peyré and Cuturi, 2019). This setup allows us to compute the
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(a) α(t) marginals (b) Path α(t) (c) Vector field u(α(t),x)

Fig. 3.2 Learned αφ (t) for optimal path between two 2D Gaussians with the source distribu-
tion mean µ0 = (0,0) and target distribution mean µ1 = (10,0).

theoretical 2-Wasserstein loss for the dynamic optimal transport problem. For the source
and target distributions defined as p0 =N (µ0, I) and p1 =N (µ1, I), the OT coupling is the
coupling νOT that minimizes the expected squared distance between the points in the source
and target distributions:

E(X0,X1)∼νOT

[
∥X0−X1∥2]= min

ν
E(X0,X1)∼ν

[
∥X0−X1∥2]

Since it is known that the optimal coupling corresponds to a straight-line path, the OT
coupling is

νOT : X0 ∼ p0 and X1 = X0 +(µ1−µ0)

This coupling preserves the marginals, as detailed in the OT definition 2.1.3. In this case,
computing the expected distance is straightforward:

∥X0−X1∥2 = ∥X0− (X0 +(µ1−µ0))∥2 = ∥µ1−µ0∥2

Thus, for the two Gaussians with means µ0 = (0,0) and µ1 = (10,0) the theoretical OT loss
is:

E(X0,X1)∼νOT

[
∥X0−X1∥2]= ∥µ1−µ0∥2 = 102 = 100

Based on the above, the degree to which the learned path approximates a straight line is a
strong indicator of its optimality. Visual inspection of the Figures 3.3b and 3.3a confirms this
expectation: the trajectories learned via the neural network are noticeably straighter compared
to those generated by the linear schedule. To quantitatively validate this observation, we
compute the integral of the loss function described in Equation 3.12 over a the grid of 1000
steps and compare the resulting OT loss for the two paths. As seen in Figure 3.3c the results
suggest that optimizing the path αφ (t) reduces the OT loss compared to the linear schedule.



28 Optimal Path Flow: Methodology and Evaluation

Specifically, the OT loss for the optimized schedule is 100.7, compared to 101.4 for the linear
path, which is closer to the theoretical value of 100.

(a) Linear t (b) Learned αφ (t) (c) OT loss

Fig. 3.3 Marginal trajectories pt under linear t vs. learned αφ (t) with OT loss com-
parison measured by 2-Wasserstein distance. OT loss integral from equation 3.12 is
approximated on the grid of 1000 steps and evaluated at the end of the training process for
optimizing the path. The results indicate that the path αφ (t) parameterized by a Neural
Network shortens the distances between the source and target samples and is closer to the the-
oretical value of 100, calculated for two Gaussians with means µ0 = (0,0) and µ1 = (10,0).

Summary

In this Section, we investigated the impact of optimizing the transport path between two
2D Gaussian distributions. By comparing a linear time schedule with curves learned by
αφ (t), we found that the learned path produced straighter trajectories, resulting in a lower OT
loss closer to the theoretical 2-Wasserstein distance. We observed that the modality which
aligns faster with the target distribution was denoised more quickly. These findings provide
valuable insights to inform our hypothesis and guide the design of experiments for generating
molecular conformations, as explored in the subsequent Section.

3.3 Optimizing Paths for De Novo Molecule Design

In this Section, we apply the proposed methodology to the more complex task of generating
molecular conformations. By examining multiple trajectories of molecules generated from
Gaussian noise using the FlowMol model by Dunn and Koes (2024), we observed that atom
positions tend to stabilize slightly faster than other modalities, such as atom types, charges,
and bond orders. This observation is illustrated in Figure 3.4. Based on the theoretical insights
discussed in Section 3.1 and the findings from our earlier case study on 2D Gaussians, we
formulate the following hypotheses:

• H1: Atom positions are expected to denoise more rapidly than other modalities, and
this should be reflected in the learned curves αφ (t).
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• H2: Optimizing the path will reduce the OT loss during sample generation for design
of molecular conformations.

• H3: Minimizing the OT loss will enable more efficient sampling, allowing to achieve
the same quality of samples generated at fewer integration steps.

• H4: Minimizing the OT loss induces better sample quality (↑ Posebusters validity and
↓ Strain Energy) attributed to reduced integration error.

Fig. 3.4 Trajectory of a valid molecule generated from Gaussian noise in 100 ODE steps.
The generated modalities are atom positions, atom types, charges and bond orders. The
molecule is generated using the FlowMol model by Dunn and Koes (2024).

These hypotheses not only reflect the underlying theoretical framework but are also
grounded in our observations from both the molecular trajectories and the simpler 2D
Gaussian case. The subsequent Sections will detail how these hypotheses are tested in the
molecular design context.

3.3.1 Setup and Implementation

A molecule with N atoms is modeled as a fully-connected graph, where each atom is
represented as a node. Each atom has a position in space denoted by X = {xi}N

i=1 ∈RN×3, an
atom type (corresponding to the atomic element) represented by A = {ai}N

i=1 ∈ RN×na , and a
formal charge given by C = {ci}N

i=1 ∈ RN×nc . Furthermore, each pair of atoms is associated
with a bond order E = {ei j,∀i, j ∈ N | i ̸= j} ∈ R(N2−N)×ne . Here, na, nc, and ne represent
the number of possible atom types, charges, and bond orders, respectively. These modalities,
being categorical, are encoded as one-hot vectors. The molecular graph is a tuple of the
components, denoted by g = (X ,A,C,E), forms the basis for subsequent computations, and
the varying dimensions across these components will influence how we compute the norm of
the vector field, as these components differ in their respective dimensionalities.

We rely on the findings in Flowmol (Dunn and Koes, 2024), which demonstrate the
superior performance of a simpler continuous setting for all the modalities over a more
complex setting, which involves introducing simplex constraints to account for categorical
modalities. Therefore, we set the source distribution g0 as a Gaussian for each modality.
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For training the denoiser ηθ
1 (α,x) in step 1, we adopt a similar approach to the FlowMol

architecture and Flow Matching Loss specifics introduced by Dunn and Koes (2024) (see
Figure 3.5). Certain modifications are made to the neural network architecture and the time
sampling procedure to account for the decoupled interpolation schedules for the modalities
involved. These modifications were necessary to accommodate the separate time sampling for
each modality, as illustrated in Figure 3.1a. Unlike the previous example with 2D Gaussians,
where we sampled α on the unit cube with two modalities, the current setup involves four
distinct modalities. Each node ni in a molecular graph has 3 dimensions corresponding to
the spatial coordinates, the atom types can be one of five categories (for the QM9 dataset);
charges have six distinct categories, each edge ei j has a bond order and bond orders between
atoms are classified into five categories (none, single, double, triple, aromatic). The number
of edges is N2−N, where N is the number of nodes. This motivates two distinct approaches
for defining the norm of the vector field, which we compute for each batch of molecules:

• norm definition 1 (normalized by modalities), which involves flattening each compo-
nent of the vector field, taking the norm and then taking a mean with respect to the
number of modalities.

• norm definition 2 (normalized by modalities and modality dimensions). This method
involves taking the mean of the norms for each component of the vector field and then
averaging across modalities. This approach ensures that each modality contributes
proportionally to the overall norm, making it more balanced.

Following the terminology introduced by Dunn and Koes (2024), we refer to the denoiser
ηθ

1 as an "endpoint" (EP) parameterization, as it estimates the expectation of the target point
given intermediate point E[g1 | g(α) = g]. For consistency, we adhere to this nomenclature
throughout the study. In the context of molecular graphs, the endpoint-parameterized flow
matching loss is defined as:

L (EP) = Eα,gα

[
α̇t

1−αt
∥ηθ

1 (α,gα)−g1∥
]

(3.15)

where gα =α0(t)g0+α1(t)g1 =(1−α1(t))g0+α1(t)g1. Similarly we replace the interpolant-
dependent loss weight α̇t

1−αt
with a capped weight function ω(t)=min(max(0.005, α̇t

1−αt
),1.5)

since when α(t)→ 1, the fraction α̇t
1−αt

explodes.
The final loss for Step 1 is a weighted sum of the losses for each modality, represented as:

L = ωXLX +ωALA +ωCLC +ωELE (3.16)
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Fig. 3.5 Modified FlowMol Architecture. Top left: An input molecular graph gt is
transformed into a predicted final molecular graph g1 by being passed through multiple
molecule update blocks. Top right: A molecule update block uses NFU, NPU, and EFU sub-
components to update all molecular features. Bottom: Update equations for graph features.
φ and ψ are used to denote Multilayer perceptions (MLP) and Geometric Vector Perceptrons
(GVP)s, respectively. Source: FlowMol (Dunn and Koes, 2024)

where {ωX ,ωA,ωC,ωE} are scalar weights determining the contribution for each modality
to the final endpoint objective.

Optimizing the paths in Step 2 follows the same logic as in the case with two Gaussians
presented in Section 3.2, with the number of modalities extended to four, resulting in 40
learnable parameters. When calculating the OT loss (3.12), we use two different ways to
calculate norm of the vector field described above.

Dataset: due to the resource limitations, we concentrate on the dataset QM9 (Wu et al.,
2018) containing small molecules with up to 9 heavy atoms.

Metrics to evaluate molecular validity:

• Posebusters (PB) validity (Buttenschoen et al., 2023), which measures the validity of
the molecules across nine categories measuring chemical validity and consistency as
well as intramolecular validity. If a molecule is passing all 9 tests it is considered PB
valid.

• Strain energy, which refers to the "internal energy stored within a ligand as a result of
conformational changes upon binding. Lower strain energy results in more favourable
binding interactions and potentially more effective therapeutics" (Harris et al., 2023).
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3.3.2 Results

In this Section, we present the results for optimal path flow following the training process for
the vector field in Step 1, and the subsequent joint optimization of the path for each of the
four modalities in Step 2, as outlined in Section 3.3.1.

We trained the vector field in Step 1 using two different parameterizations: the endpoint
parametrization (referred to as denoiser in the previous case with two Gaussians) ηθ

1 (α,g)
which is the expectation E[g1 | g(α) = g]; and a direct vector field parameterization. We
then evaluated the performance of these models on 1000 small molecules generated using
a linear schedule for the ODE integration. The results, presented in Figure 3.6, report the
mean pose busters (PB) validity rate and 95% confidence intervals based on five batches of
1000 molecules generated from five different seeds. This evaluation across different ODE
integration timesteps helps to guide our further experiments.

A significant difference in performance was observed between the endpoint parameteriza-
tion and the direct vector field parameterization. Specifically, the endpoint parameterization
consistently achieved PB validity rates exceeding 90% starting at 50 ODE timesteps, while
the direct vector field parameterization showed notably lower performance, with PB validity
remaining below 80%. These results align with previous findings by Dunn and Koes (2024),
which suggest that regressing the expectation E[g1 | g(α) = g] better captures the complex
molecular properties required for accurate sample generation. Based on these results, we con-
tinue using the endpoint parameterization in subsequent experiments, as our approach relies
on the assumption that the vector field from Step 1 is capable of accurately approximating
transport paths between the source and target distributions.

Next, we explore whether optimizing the transport path improves performance with fewer
ODE steps during inference, as it is designed to make the transport paths more efficient.
To this end, we are interested in further evaluating the learned schedules for the points
where the performance of the endpoint vector field begins to decline. Figure 3.6 highlights a
marked drop in performance between 10 and 20 ODE timesteps, making 15 timesteps a good
candidate for further investigation. Additionally, performance begins to plateau around 30
timesteps, identifying this as another point of interest. Finally, 100 timesteps is selected as a
third benchmark, in alignment with other flow matching studies such as (Dunn and Koes,
2024).

After establishing that the vector field parameterized via the endpoint method should be
used going forward, we freeze the weights of the ηθ

1 (α,x) model and amortize it to train
α

φ

1 (t) in Step 2 and investigate the effect of path optimization on the OT Loss. The OT loss
is evaluated every ten epochs during the training of the interpolant schedule αφ (t). The
integral in equation 2.18 is approximated on a 100-timestep grid using 1600 samples from
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Fig. 3.6 Posebusters validity of 1000 samples generated with a range of ODE integration
timesteps. Mean and 95% confidence intervals are calculated based on 5 batches of 1000
samples generated with five different seeds. Black dashed lines indicate points of further
investigation (15, 30, 100 integration steps) for comparing the learned paths with the baseline
model.

the validation split. This evaluation is conducted for two different setups: one with a more
balanced vector field norm (see Figure 3.7a) and another with a less balanced norm (see
Figure 3.7b).

In both setups, the results demonstrate that optimizing the transport paths leads to a
reduction in OT loss, providing clear support for our hypothesis 2. This implies that the
learned paths indeed straighten the trajectories of the samples transported from the source
Gaussian noise to the target point along the vector field from Step 1. To further contextualize
these results, we include reference lines representing the OT loss for both the linear schedule
and the per-modality cosine schedule used in the FlowMol model (Dunn and Koes, 2024).
Interestingly, for the setup with the more balanced norm, the optimized interpolant schedule
reduces the OT loss to a level slightly below that of the linear schedule (see Figure 3.7a).
This outcome implies that the optimal schedule for the learned endpoint model may be quite
close to the linear schedule.

To ensure that the learned paths are robust to initialization and that no imbalance arises
from the joint optimization of multiple modalities, we conduct several ablation studies.

First, we examine the results of training each modality independently, keeping the others
fixed to a linear schedule (see Figure 3.8). In this experiment, we use the more balanced
norm. The results show that atom types (denoted as a), atom charges (c), and bond orders (e)
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(a) OT loss calculated with a more balanced
definition of VF norm (normalized across fea-
tures and feature dimensions).

(b) OT loss calculated with a less balanced
definition of VF norm (normalized across fea-
tures).

Fig. 3.7 OT loss decreases over the course of training the NN parametrized schedule
αφ (t). Integral 2.18 approximated on the grid of 100 steps, evaluated every 10 epochs for
the same 1600 randomly selected molecules from the validation split.

converge to a near-linear schedule, while atom positions (x) converge to a curve above the
diagonal.

Fig. 3.8 Independently trained curves one modality at a time α
mi
1 (t), keeping schedule

for all other modalities linear. QM9 dataset.

We then proceed to evaluate the sensitivity of the optimal path αφ (t) to different ini-
tializations and vector field norm definitions. The results of these experiments are shown
in Figure 3.9. For the case with a more balanced norm, we directly compare the schedules
learned independently for each modality against those trained jointly. The resulting curves
converge to the same shapes. This further reinforces the consistency and robustness of the
learned paths.

In both the less balanced and more balanced norm setups, the atom types, charges, and
bond orders follow near-linear schedules, with only the relative position of the curve for
atom positions differing. With a more balanced norm, the x curve lies slightly to moderately
above the diagonal (see Figure 3.9a), consistent with hypothesis 1 that atom positions should
be denoised faster than other modalities. Interestingly, with the less-balanced norm 3.9b,



3.3 Optimizing Paths for De Novo Molecule Design 35

the x curve is below the diagonal, suggesting slower denoising of atom positions, which
contradicts hypothesis 1.

This discrepancy can likely be attributed to the differing contributions of modalities to
the overall vector field norm. In the less balanced case, bond orders—having the largest
dimensionality ((N2−N)×5), have a dominant weight in the norm calculation, while atom
positions, with N× 3 values for N nodes in a batch, contribute with the smallest weight.
By contrast, in the more balanced norm, the relative contributions of each modality are
proportionate, mitigating these effects.

(a) α
φ

1 (t) learned with a more balanced definition of
the VF norm.

(b) α
φ

1 (t) learned with a less balanced defi-
nition of the VF norm.

Fig. 3.9 Paths αφ (t) learned with different definitions of the vector files norm starting
from different initializations. Top row: initialization. Bottom row: learned paths.

After confirming that optimizing the path reduces the OT loss relative to typical choices
of paths made in practice and validating the consistency of the learned paths, we now turn
to the final part of our investigation, where we examine the impact of reduced OT loss on
the efficiency of sample generation and sample quality during inference. For this evalua-
tion, we compare several interpolation schedules, as illustrated in Figure 3.10, namely the
cosine schedule "cos(t)" used in the FlowMol paper, "linear t" and two learned interpolation
schedules, one with atom positions denoised faster than other modalities (which was learned
with a more balanced VF norm, corresponding to the OT loss in Figure 3.7a), and one with
atom positions denoised slower than other modalities (learned with a less balanced VF norm,
corresponding to the OT loss in Figure 3.7b)

In Table 3.1, we present a comparison of Posebusters validity rates across the four
interpolation schedules for five batches of 1000 samples generated with 100, 30 and 15 ODE
integration steps. Based on our hypothesis, we anticipated that the samples generated with
the optimized path α(t) would show superior performance. However, our findings do not
provide evidence in support of this hypothesis; at 100 integration steps, we observed no
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Fig. 3.10 Interpolation schedules for evaluation on QM9 dataset. αφ (t) schedules are the
ones learnt during the path optimization.

improvement over the linear or cosine schedules. This implies that reducing OT error does
not necessarily lead to reductions in the integration error, challenging hypothesis 4.

To further investigate the link between OT loss reduction and sample quality, we also
analyzed the Strain Energy distributions for the generated molecular conformations. Figure
3.11 shows the cumulative distribution functions (CDFs) of Strain Energy for 1000 molecular
conformations generated with different schedules, compared to 1000 random molecules
from the QM9 dataset. Zooming in to the range of greater interest 1-10 SE in subFigure
3.11b, we observe that the learned schedule with faster denoising of atom positions, as well
as the cos(t) schedule used in FlowMol (Dunn and Koes, 2024), schedule from FlowMol,
produce CDFs most similar to the actual QM9 data. Both of these schedules share the
characteristic of denoising atom positions faster than other modalities. Additionally, we note
a drop in PB validity at 15 integration steps for the learned schedule where atom positions are
denoised slower, reinforcing the idea that atom positions may play a critical role in molecular
conformation generation and should not be denoised at a slower rate than other modalities.

These findings warrant further investigation, particularly for larger molecules that tend
to exhibit higher strain energy stored in rotational bonds, as the effect of atom position
denoising on sample quality might be more pronounced.

Turning our attention to the efficiency of sample generation with fewer ODE integration
steps, we found no improvement over the linear or cosine schedules for either 30 or 15
integration steps. This result contradicts our hypothesis 3, as reducing the OT loss does not
appear to lead to more efficient sampling in these cases.

The observed results, which challenge our expectation that reducing OT loss would lead
to improvements in sampling efficiency and sample quality, can be attributed to two potential
sources of error in flow matching:

• Vector field approximation.

• Integration error.
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(a) Strain Energy 1-100 range (b) Zoom into the range 1-10

Fig. 3.11 Strain Energy of 1000 molecules from QM9 dataset vs. 1000 samples generated
with different time schedules.

ODE Integration Steps Cos(t) Linear t
Learned α(t)

x denoised faster x denoised slower

100
90.69 90.94 89.92 90.44

(89.35, 92.05) (89.95, 91.93) (87.94, 91.9) (89.0, 90.98)

30
87.14 87.88 87.66 87.34

(85.83, 88.45) (86.68, 89.08) (86.88, 88.43) (86.1, 88.56)

15
82.56 82.34 81.94 79.78

(81.9, 83.22) (80.35, 84.33) (80.38, 83.5) (78.0, 81.56)

Table 3.1 Posebusters Validity (%) for the selected schedules across different numbers of
ODE integration steps. The same endpoint model was used for the vector field. Reported are
mean values (with 95% confidence intervals) across 5 batches of 1000 generated molecules.

If the learned vector field from Step 1 does not approximate the true vector field that
transports samples between the source and the target density, the insights about the optimal
paths learned in Step 2 might be incomplete. Although we trained the vector field for 1200
epochs—longer than the 1000 epochs suggested by Dunn and Koes (2024) - the log-scaled
validation loss curve for the endpoint vector field training shows a continued downward trend
(see Figure A.1). This suggests that further training could potentially enhance performance.
In high-dimensional generative modeling tasks, prolonged training beyond the point of
plateauing loss is often required to achieve optimal results. Despite this, further training
and hyperparameter optimization for the endpoint vector field, particularly for the QM9 and
GEOM Drugs datasets, was beyond the scope and budget of this project.

The primary focus of this study has been optimizing the transport paths for "straightness"
with OT loss with the assumption that this leads to lower integration error. However, other
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approaches which rely on the Liptschitsness (smoothness) of the vector field could also be
considered.

We discuss the implications of these potential sources of error in greater detail, along
with proposed mitigation strategies, in Section 4.1.

Summary

In this section, we applied the proposed methodology to generate molecular conformations.
Our results strongly support the hypothesis that optimizing the paths leads to a reduction in
OT loss, implying straighter sample trajectories. However, this reduction did not translate
into significant improvements in sampling efficiency or sample quality measured by Strain
Energy distributions and Posebusters (PB) validity evaluated at different numbers of ODE
integration steps, raising concerns about hypotheses 3 and 4. A comparison of the quality of
samples generated using linear, cosine, and learned schedules revealed no clear advantage for
the learned schedules despite their lower OT loss. These findings suggest that the connection
between OT loss reduction and sample quality warrants further investigation, focusing on
two key areas:

1. Refining the learned vector field approximation to the true vector field generating the
transport process.

2. A closer inspection of into the relationship between improving the path efficiency and
integration error. Particularly by considering not only straighter paths but also those
that optimize for smoothness in the vector field.

3.4 Related Work

As discussed in Section 1.1, the choice of interpolation paths in Flow Matching and noising
schedules in diffusion models is critical for the quality of generated samples (Yim et al.,
2023a, Karras et al., 2022). However, most approaches still rely on heuristics.

Several studies have explored automated path optimization within the Flow Matching
framework. One such study is MultiFlow (Campbell et al., 2024), which shares similarities
with our approach and is also derived from (Pass, 2014). Campbell et al. (2024) applied this
method to protein design, working with two modalities: continuous structure and categorical
sequence of amino acids. They use a rate matrix which generates the probability paths in
discrete space, as opposed to the vector field approach used in our method.

Another study by Shaul et al. (2023) delves into the theoretical foundations for devising
an optimal path. They use the notion of kinetic energy to guide the design of the interpolation
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schedule. Rather than optimizing for straightness using the OT loss, they focus on minimizing
kinetic energy of the paths. Their approach also follows a two-stage process, but with a
reversed order: they first optimize the path and then train the vector field based on the derived
path. Notably, they do not investigate setting with multiple modalities. Nevertheless, their
neural network design for optimizing the path has informed the neural network architecture
in our method, which we tested on the settings with multiple modalities.



Chapter 4

Concluding Remarks

4.1 Discussion and Future Work

The previous chapter revealed both the strengths and limitations of the proposed optimal path
flow methodology. While the approach effectively reduced OT loss and resulted in straighter
transport trajectories, particularly in the simpler 2D Gaussian case, it did not consistently
lead to improvements in sampling efficiency or sample quality for molecular conformation
generation. This suggests that several aspects of the method require further refinement along
the following sources of error:

Vector Field Approximation. The first source of error may arise if the learned vector
field uθ (t,x)1 is an imperfect approximation of the true vector field u(t,x), which generates
the true processes whose flow transport samples from source p0 to target p1 as described
in Section 2.1.1. In this scenario, the learned endpoint vector field does not accurately
correspond to the true process {pt}1

t=0 that interpolates between the Gaussian source and
the target distribution of valid molecular conformations. Consequently, even if the OT
loss—defined as the expected squared norm of the vector field—is minimized, the transport
process induced by the learned vector field during inference might deviate from the target
process, resulting in suboptimal sample quality and reduced efficiency. Several strategies
could address this issue:

• Calculate Actual Intermediate Paths: One possible approach is to calculate the actual
intermediate paths during the training of the vector field by transporting the points
p0 along the learned vector field in a fine-grained manner. This would match the
process induced by the learned vector field more closely to the true flow. However, this
method is computationally prohibitive as it requires numerous integration steps at every

1In this case, we consider the vector field parametrized with the endpoint, but the same reasoning applies.
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training iteration, negating the advantages of simulation-free training. Nonetheless,
this approach could still be informative when tested on a simplified case to inform
further improvements.

• Improve the Vector Field Network: A more practical solution is to enhance the vector
field network to achieve a closer approximation of the true process. We propose the
following improvements:

– Network Architecture Enhancements: Introducing architectural improvements
tailored to better capture the molecular conformation process may enhance the
accuracy of the vector field.

– Longer Training and Hyperparameters Optimization: In this study, the vector
field was trained for 1200 epochs on the QM9 dataset, but an inspection of the
validation loss at the end of the training indicated the potential for further reduc-
tion. Given the complexity of high-dimensional datasets like small molecules
(QM9), more extensive training may be necessary to fully converge to an ac-
curate vector field, especially in the case of larger molecules (GEOM Drugs).
Careful hyperparameter tuning, improved regularization, and batch normalization
techniques could further enhance performance.

Integration Error. The second source of error relates to the integration process itself.
Even though OT loss reduction suggests a more efficient path, optimizing for “straight lines”
may not always lead to improved integration performance. Euler integration can be more
challenging for piecewise linear functions (e.g., integrating over a triangle) compared to
smooth curves (Butcher, 2016). While a straighter path is shorter, a longer curved path might
result in lower integration error if the flow is smoother. To address integration error, we
suggest the following directions:

• Use an explicit measure of integration error to inform further experiments based on
the direct relation between the OT loss based on the norm of the vector field and the
integration error.

• Instead of directly optimizing the norm of the vector field, an alternative approach
could involve optimizing the norm of the Jacobian of the vector field, which measures
the smoothness of the vector field and optimizing for it could lead to greater reductions
in the error term for the Euler updates. This approach could lead to more accurate
integration and better sampling efficiency.

Although Dunn and Koes (2024) has found that when generating small molecules with
Flow Matching, keeping all modalities in continuous space with a simple Gaussian source
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performs better than moving the process to a simplex, recent advances in discrete flow
matching by Gat et al. (2024) may offer a promising alternative inviting further exploration.

While the strain energy in the generated small molecules closely matched the actual QM9
data, the evaluation only looked at the global structure. Local imperfections, potentially due
to poor position modeling, may still exist. For de novo molecule design, we recommend
calculating strain energy with a focus on local strain, which is particularly sensitive to
distortions in atomic positions.

4.2 Conclusions

In this thesis, we proposed a methodology for learning an optimal transport path to improve
the efficiency and quality of sample generation in multi-modalities settings. Motivated
by the challenges in selecting effective schedules for multiple intertwined modalities, we
sought to automate the process by leveraging neural networks. Our approach, based on
the stochastic interpolant framework proposed by Albergo and Vanden-Eijnden (2023) and
theoretical basis proposed in Albergo et al. (2023a), decouples the path from the vector field,
enabling the training of a single vector field that can sample across all potential paths for
multiple modalities. This avoids the need to train separate vector fields for each combination
of modalities and leveraging the advantage of training one vector field network and then
optimizing the path instead.

Guided by the efficiency implications of utilizing dynamic optimal transport in flow
matching framework (Tong et al., 2024), we defined an optimization objective to minimize
OT loss, focusing on achieving straighter trajectories in Euclidean space. This objective
was then applied to train the interpolation path αφ (t), parameterized by a neural network,
ensuring continuous, monotonic interpolation schedules for α1(t)

We validated this methodology first on a simple case of 2D Gaussian distributions, where
theoretical OT loss was available as a benchmark. We found that optimizing the path does
reduce the OT loss and produces straighter sample trajectories. We also observed that the
modality that aligns with its targets faster is denoised more quickly.

Building on these results, we extended our approach to a more complex scenario: gen-
erating small molecules. We found that our approach produces consistent paths regardless
of initialization or individual impact of modalities on joint optimization of the path. While
path optimization did lead to lower OT loss in this setting, it did not translate into significant
improvements in sampling efficiency or sample quality, as measured by Posebusters (PB)
validity and Strain Energy (SE) distributions. This suggested that further refinement is
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needed, particularly in the vector field approximation and the understanding of integration
error.

We hypothesize that simply optimizing the path is insufficient for generating high-quality
samples; the accuracy of the learned vector field in approximating the true vector field
governing the transport process is crucial. We proposed several strategies to improve vector
field such as network architecture enhancements and refining the training of the vector
field network. We also suggest exploring recent advancements from discrete flow matching
(Gat et al., 2024, Campbell et al., 2024) in the multimodal setting. Another aspect of the
proposed future work is considering alternative norms for path optimization and exploring
the smoothness of the vector field through the norm of the Jacobian of the vector field, which
could potentially lead to greater reductions in integration error.

Lastly, we highlighted the importance of local strain energy in molecular design, as
positional inconsistencies may affect the quality of generated structures.

As a final remark, it is important to note that the current leading model for drug design,
AlphaFold 3, uses a simplified diffusion process (Abramson et al., 2024), even discarding
some equivariance constraints from the previous versions of Alphafold version, yet it out-
performs other approaches by leveraging the scale of transformers and vast amounts of data.
However, since such extensive resources are not accessible to most research institutions
working on drug discovery, it remains crucial to focus on simulation-free methods that can
efficiently model multiple modalities jointly while maintaining high sample quality.
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Appendix A

Additional Information

A.1 Marginal and Conditional Vector Field

Theorem: Given the conditional vector fields ut(x | z), which generate the conditional
probability paths pt(x | z) for any conditioning distribution q, the marginal vector field
ut(x) obtained via equation 2.6 generates the marginal probability path pt(x) obtained
via equation 2.5.

Proof: Our aim is to show that the marginal vector field ut(x) derived from conditional
vector field (ut(x | z) satisfies the Transport Equation:

∂ pt(x)
∂ t

=−∇ · (ut(x)pt(x))

∂ pt(x)
∂ t

=
∂

∂ t

∫
pt(x | z)q(z)dz

=
∫

∂

∂ t
pt(x | z)q(z)dz

=−
∫

∇ · (ut(x | z)pt(x | z))q(z)dz

=−
∫

∇ · (ut(x | z)pt(x | z)q(z))dz

=−∇ ·
∫
(ut(x | z)pt(x | z)q(z))dz

=−∇ ·
(∫

ut(x | z)
pt(x | z)q(z)

pt(x)
pt(x)dz

)
=−∇ ·

(∫
ut(x | z)

pt(x | z)q(z)
pt(x)

dzpt(x)
)

=−∇ · (ut(x)pt(x))
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This is a sufficient and necessary condition for ut(x) to generate pt(x).

A.2 Validation Loss From the Vector Field Training

Fig. A.1 Validation loss at the end of the endpoint vector field training for QM9 dataset
(y-axis is on the log scale). The loss keeps decreasing, suggesting potential room for further
improvement.
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