
Efficient and Unbiased Sampling of
Molecular Energy Functions via

Consistency Models

Fengzhe Zhang

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Downing College October 2024



I would like to dedicate this thesis to my loving parents and grandparents.



Declaration

I, Fengzhe Zhang of Downing College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

Software Declaration: In Section 4.2, the molecular dataset is generated using the code
provided by Javier Antorán and Laurence Midgley. The implementation of the Equivariant
Graph Neural Network is based on the EGNN repository. All other implementations are
carried out using standard Python packages.

Word Count: 14981

Fengzhe Zhang
October 2024

https://github.com/vgsatorras/egnn


Acknowledgements

I would like to begin by expressing my gratitude to Prof. José Miguel Hernández Lobato for
making this project possible. The last four months have been incredibly instrumental to my
growth, and I thoroughly enjoyed every discussion we had. I deeply appreciate the guidance
and suggestions you provided.

I am also profoundly grateful to my co-supervisors: Jiajun He, Javier Antorán, and Laurence
Midgley. Thank you for proposing and refining the central idea of this project. Special
thanks to Jiajun for your expertise in Consistency Models, and to Javier and Laurence
for your expertise in molecular experiments. I am sincerely thankful for your valuable
suggestions throughout the project, your patience in answering my countless questions, and
your unwavering support to ensure I fully understood every concept. It was truly a rewarding
experience collaborating with you all, and you have each been a great inspiration to me.

I would like to extend a very special thanks to my girlfriend, Zhuoyue Huang. Thank you for
your support over the past three years, from Jinan to London to Cambridge. Your brilliance
as a mathematician and machine learning researcher has been a constant source of inspiration
for me. I could not have achieved what I have today without you, and I look forward to the
many more years we will share together.

I also want to express my heartfelt thanks to my friends in the MLMI cohort, Nanze Chen,
Junyi Qian. You have brought so much color and joy to my life over the past year.

Finally, I would like to thank my parents and grandparents for their unwavering support
throughout my journey. Thank you for giving me the courage to keep moving forward.



Abstract

Sampling from molecular energy functions has been a pivotal research area due to its
potential to predict properties of new drugs or materials solely through computer simulations.
However, this task is exceedingly challenging, as current sampling methods, particularly those
using Markov Chain Monte Carlo (MCMC) (Hastings, 1970; Metropolis et al., 1953), are
computationally expensive and time-consuming. A promising direction involves leveraging
recently developed diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015), which
can be trained to learn distributions according to energy functions and subsequently generate
samples. However, two significant challenges persist with this approach. First, generating
samples from diffusion models remains inefficient, often requiring hundreds of time steps to
produce high-quality samples. Second, there is an inherent bias in the generated samples.
Due to the finite training data and limited model capacity, diffusion models typically learn an
approximation of the true distribution rather than the exact one. As a result, predictions made
using these biased samples can lead to incorrect and potentially misleading conclusions.

There are solutions to these challenges. Importance Sampling (IS) can correct the bias in
the samples, while the newly developed Consistency Models (CMs) (Kim et al., 2023; Li
and He, 2024; Song et al., 2023) significantly accelerate sampling from diffusion models.
In this thesis, we propose a novel sampling method that strategically combines IS with
CMs, allowing us to obtain unbiased samples using only 3-10 time steps. We validate our
proposed method on a toy dataset and conduct experiments on the dynamics of supercooled
water molecules, a notoriously challenging problem due to the complex interactions between
atoms.
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Chapter 1

Introduction

Sampling from molecular energy functions has been a key focus in the field of natural
science. Efficient sampling would enable the prediction of properties for new materials and
drugs solely through computational simulations, avoiding the need for expensive real-world
experiments. However, sampling from molecular energy functions is extremely challenging
due to their high dimensionality and multimodal nature. Traditional approaches, such as
Monte Carlo Markov Chain (MCMC) (Hastings, 1970; Metropolis et al., 1953) methods, are
extremely time-consuming for this task.

Recently, advancements in Diffusion Models (DMs) (Ho et al., 2020; Sohl-Dickstein et al.,
2015) have opened a promising direction by training these models to learn the distribution
of molecular energy functions. Once trained, samples can be generated from the diffusion
models instead of running MCMC. However, this approach presents two significant issues.
Firstly, generating samples from diffusion models is slow, often requiring hundreds of
evaluations to produce high-quality samples. Secondly, estimates derived from these samples,
such as integrals, are biased. This bias arises because it is impossible to achieve a perfect
diffusion model that draws samples exactly matching the target energy functions, leading to
a discrepancy between the generated sample distribution and the true distribution. This is
particularly undesirable for molecular applications, where accurate predictions are crucial.

In this thesis, we aim to address these two problems associated with sampling molecular
energy functions using DMs. To obtain unbiased samples, we can utilize a straightforward
technique called Importance Sampling (IS). IS allows for the generation of unbiased samples
when we can evaluate the target distribution (i.e., molecular energy functions) but cannot
sample from it directly. Instead, we use a proposal distribution (i.e., diffusion models) from
which we can draw samples and then reweight them to achieve unbiased samples from
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the target distribution. However, naively combining IS with diffusion models still requires
hundreds of steps to achieve low variance in IS estimation.

Leveraging recent advancements in Consistency Models (CMs) (Kim et al., 2023; Li and
He, 2024; Song et al., 2023), which are a new type of generative model trained through
distillation from pre-trained diffusion models, enables sampling using only one step. This
significantly accelerates the sampling process. However, the deterministic nature of CMs
means they do not define a valid proposal distribution and thus cannot be straightforwardly
combined with IS.

In this work, we develop an algorithm that carefully integrates CMs and IS, reducing the
number of steps to between 3 and 10 while achieving the same IS variance that previously
required hundreds of steps. This approach significantly speeds up the sampling process while
maintaining the primary advantage of IS: obtaining unbiased samples.

1.1 Contributions

Our contributions can be summarized as follows:

• We provide a comprehensive review of diffusion models, with a particular focus
on score-based diffusion models and the family of consistency models. We summa-
rize their theoretical foundations and highlight the strengths and limitations of each
approach.

• We develop a novel sampling method that combines importance sampling with
consistency models. This approach significantly reduces the computational cost of
obtaining unbiased samples from molecular energy functions. We present a rigorous
mathematical formulation and validate its effectiveness through extensive experiments.

• Inspired by the formulation of Bidirectional Consistency Models (BCMs), we ex-
tend the training methodology of Consistency Trajectory Models (CTMs) to develop
Bidirectional CTMs (BCTMs). Furthermore, we enhance the family of Consistency
Models (CMs) by introducing E(3)-Equivariant CMs, which improve performance on
molecular datasets. This is achieved by integrating Equivariant Graph Neural Networks
(EGNN) (Hoogeboom et al., 2022; Satorras et al., 2021) with CMs.

• We propose potential improvements to our algorithm and outline directions for future
research.
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1.2 Outline

This thesis is organized as follows:

• Chapter 2 introduces the background knowledge required for our method. We first
cover the basics of Importance Sampling, laying the foundation for later chapters and
introducing the metrics we will use. Then, we provide background knowledge on
diffusion models, focusing on score-based diffusion models. We further discuss the
family of consistency models, which build upon and are closely related to score-based
diffusion models.

• Chapter 3 details both the baseline method and our novel approach. For the baseline
method, we describe it in greater detail and provide mathematical formulations for
combining diffusion models directly with importance sampling, discussing the potential
limitations of this method. Then, we elaborate on our novel method, where we redesign
the proposal and target distributions, and explain how consistency models accelerate
the entire sampling process.

• Chapter 4 is dedicated to experiments. We conduct two experiments: one with a toy
dataset generated by a Gaussian Mixture Model (GMM) to verify our method using an
analytical score function, and another using a trained model to approximate the score
function. We provide a detailed comparison between our method and the baseline in
different spaces and dimensions. Subsequently, we conduct experiments in a more
practical setting, simulating the dynamics of water molecules at very cold temperatures,
comparing our method with the baseline in this context.

• Chapter 5 concludes the thesis, summarizing the experimental results, discussing the
limitations of our method, and suggesting possible future directions.



Chapter 2

Background

In this chapter, we provide the necessary background and theoretical foundations for this
dissertation. We present a detailed introduction to the methods and models briefly described
in Chapter 1, laying the groundwork for the novel method presented in Chapter 3. Our
discussion is structured as follows:

1. We begin with a comprehensive review of Importance Sampling, a crucial sampling
technique that underpins our proposed algorithm.

2. We then focus on two key areas: Diffusion Models and the family of Consistency
Models. For each, we explore core concepts, recent developments and state-of-the-art
approaches, as well as strengths and limitations in current applications.

This thorough examination of existing methodologies serves as a foundation for under-
standing the novel contributions presented in subsequent chapters. By elucidating these
fundamental concepts, we aim to provide readers with the necessary context to appreciate
the innovations and advancements proposed in our work.

2.1 Importance Sampling

Consider the task of estimating integrals of the form Ex∼p[φ(x)] for some target distribution
p that we can draw samples and a function φ that we can evaluate. One way to estimate this
integral is through Monte Carlo (MC) estimation:

Ex∼p[φ(x)] =
∫

φ(x)p(x)dx≈ 1
N

N

∑
n=1

φ(x(n)) =: φ̂
N
MC, (2.1)
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where x(n) ∼ p and N is the total number of samples used. The MC estimator φ̂ N
MC is unbiased

(the expectation of the estimate equals the true value) and consistent (the variance of the
estimate decreases to zero as the number of samples N increases to infinity).

However, in practice, sampling directly from p is often impossible, and we can only evaluate it.
An alternative approach is to use Importance Sampling (IS). Consider a proposal distribution
q from which we can sample and evaluate (and the support1 of q contains the support of p).
We can rewrite the integral as:

∫
φ(x)

p(x)
q(x)

q(x)dx = Ex∼q

[
p(x)
q(x)

φ(x)
]
≈ 1

N

N

∑
n=1

p(x(n))
q(x(n))

φ(x(n)) =: φ̂
N
IS, (2.2)

where x(n) ∼ q. Define wn := p(x(n))
q(x(n))

for n = 1, . . . ,N as the importance weights. The IS
estimator is still unbiased and consistent, but the variance of the IS estimator depends on
both the target distribution p and the function φ . The main challenge of IS is designing the
proposal distribution such that the IS variance is minimized. This will be a key focus of our
later method.

In practice, to assess the effectiveness of the IS estimator, the metric called Effective Sample
Size (ESS) is used. Intuitively, ESS indicates the number of samples from the proposal
distribution that are equivalent to the samples from the target distribution for estimating the
integral. ESS can be estimated as:

ÊSS
prop

:=
(∑N

n=1 wn)
2

∑
N
n=1 w2

n
, (2.3)

where 1≤ ÊSS
prop
≤ N. This ESS is estimated using the samples from the proposal. There

is another formulation to estimate ESS based on samples from the target:

ÊSS
tar

:=
N

Ex∼p

[
p(x)
q(x)

] . (2.4)

The estimation ÊSS
tar

provides a more reliable assessment when the proposal distribution
adequately covers2 the target distribution. When ESS is very low, the variance of the estimate
will be large. However, a high ESS does not necessarily imply a reliable IS estimate with

1The support of a probability density function q is defined as the set of all x for which q(x)> 0.
2Mathematically, "cover" means the support of the proposal distribution contains the support of the target

distribution. While our Gaussian proposal used later theoretically has infinite support, in practice, samples
aren’t drawn from extreme tails. Thus, we define "covering" practically: the sample distribution from the
proposal (using a large, finite number of samples) should completely encompass that from the target.
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low variance, as it is still possible that the proposal distribution does not adequately cover
the target distribution. In such cases, samples from the proposal may miss important regions
of the target distribution. To assess the efficiency of the proposal, we need to test it using
different φ to estimate the integral. If the variances of the estimates are consistently low
across various φ , we can be confident that the proposal design is effective.

Another challenge for IS arises when the normalizing constant for the target distribution is
unknown, which is the case for molecular energy functions. In such scenarios, we denote the
unnormalized target distribution as p̄ and employ Self-Normalizing Importance Sampling
(SNIS). Rewriting the integral in terms of p̄:

∫
φ(x) p̄(x)

q(x)q(x)dx∫ p̄(x)
q(x)q(x)dx

≈
1
N ∑

N
n=1

p̄(x(n))
q(x(n))

φ(x(n))

1
N ∑

N
n=1

p̄(x(n))
q(x(n))

=
∑

N
n=1 wnφ(x(n))

∑
N
n=1 wn

=
N

∑
n=1

w̄nφ(x(n)), (2.5)

where w̄n := wn/∑
N
m=1 wm are the normalized importance weights. It is important to note

that SNIS is asymptotically unbiased and consistent, meaning the IS estimation becomes
unbiased only as the number of samples approaches infinity.

IS is a crucial technique for obtaining asymptotically unbiased estimations of integrals. In
the following section, we will review diffusion models. Subsequently, in Chapter 3, we will
explore the combination of IS with diffusion models as a baseline method.

2.2 Diffusion Models

In this section, we will review diffusion models, including their theoretical foundations and
recent developments. First, we will discuss the foundational concepts for diffusion models in
general, including the definition of the diffusion process and the reverse process. Then, we
will review recently developed score-based diffusion models, which form the foundation for
the family of consistency models introduced later.

2.2.1 Denoising Diffusion Probabilistic/Implicit Models

Diffusion probabilistic models (DPMs) (Sohl-Dickstein et al., 2015) are powerful generative
models that generate samples by progressively adding noise to perturb the data and then
creating samples from noise via sequential denoising steps. In this section, we aim to cover
the basic setup of diffusion models, including the theoretical foundations, which will be
crucial for the subsequent chapter. We review the formulation of diffusion models following
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the settings in Kingma et al. (2021), including recent advancements like Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020) and Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2020a).

Diffusion Process

Given a data point sampled from the data distribution x0 ∼ pdata(x), the diffusion process
adds noise to the data, defined by a multivariate normal distribution for t = 1, . . . ,T :

q(xt |x0) := N (xt ;αtx0,σ
2
t I), (2.6)

where αt ∈ R+ controls how much of the data is retained and σt ∈ R+ controls how much
noise is added. Note that the diffusion process is Markovian and thus can be written as (for
s < t):

q(xt |xs) = N (xt |αt|sxs,σ
2
t|sI), (2.7)

where αt|s = αt/αs and σ2
t|s = σ2

t −α2
t|sσ

2
s . As a special case, DDPM (Ho et al., 2020) sets

αt =
√

1−σt so that the diffusion process is variance-preserving. Conversely, DDIM (Song
et al., 2020a), score-based diffusion models (Karras et al., 2022; Song and Ermon, 2019;
Song et al., 2020b), and the family of consistency models (Kim et al., 2023; Li and He,
2024; Song et al., 2023) set α2

t = 1 as a variance-exploding process. We will focus on the
variance-preserving process for now, as we review models like DDPM. We will turn our
attention to the variance-exploding process later, and all our experiments will be based on
the variance-exploding process.

The entire diffusion process can be written as:

q(x0,x1, . . . ,xT ) = q(x0)
T

∏
t=1

q(xt |xt−1), (2.8)

where we sample from the data distribution to get x0 ∼ q(x0) and then progressively add
noise to it, eventually resulting in xT resembling a simple noise distribution.

Denoising Process

For the true denoising process, the posterior distribution conditioned on x0 gives the inverse
of the diffusion process:

q(xs|x0,xt) = N (xs|µ t→s(x0,xt),σ
2
t→sI), (2.9)
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with µ t→s(x0,xt) and σ2
t→s defined as:

µ t→s(x0,xt) =
αt|sσ

2
s

σ2
t

xt +
αsσ

2
t|s

σ2
t

x0, σt→s =
σt|sσs

σt
. (2.10)

However, in practice, the true value of x0 is unknown, so it is replaced by the model’s predic-
tion x̂0 = φθ (xt , t), given by the neural network φθ . Therefore, the denoising distribution is
defined as:

pθ (xs|xt) = N (xs|µ t→s(x̂0,xt),σ
2
t→sI). (2.11)

Thus, the entire denoising process can be written as:

pθ (x0,x1, . . . ,xT ) = pθ (xT )
T

∏
t=1

pθ (xt−1|xt), (2.12)

where pθ (xT ) is the base distribution and it allows us to sample noise and then progressively
denoise it according to the denoising distribution with the denoising model, eventually
generating the sample x0. Note that the hyperparameter T is important. A large T allows the
diffusion process to add enough noise so that xT follows a simple Gaussian distribution, from
which we can easily draw samples. However, the denoising process described above needs to
be performed sequentially, not in parallel, to obtain x0. Therefore, sampling from diffusion
models is time-consuming and much slower than other deep generative models, potentially
limiting their applicability in tasks where computational resources are limited and latency is
critical.

Training Objective

To train the diffusion model, we aim to minimize the negative log-likelihood. To do so, we
aim to minimize the negative variational lower bound:

E [− log pθ (x0)]≤ Ex0:T∼q

[
− log

pθ (x0:T )

q(x1:T |x0)

]
(2.13)

= Ex0:T∼q

[
− log p(xT )−∑

t≥1
log

pθ (xt−1|xt)

q(xt |xt−1)

]
:= L (2.14)
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Note that L can be further simplified as

L = Ex0:T∼q

DKL(q(xT |x0)∥p(xT ))︸ ︷︷ ︸
LT

+∑
t≥1

DKL(q(xt−1|xt ,x0)∥pθ (xt−1|xt))︸ ︷︷ ︸
Lt

− log pθ (x0|x1)︸ ︷︷ ︸
L0


(2.15)

Although the above training objective can be employed to train the model, Ho et al. (2020)
identified some further improvements for the parameterization and training objective to
enhance model performance. Initially, the network φθ was parameterized to directly predict
x̂0, but Ho et al. (2020) found that the training process is more stable and easier if the model
is parameterized to predict the noise at time t, i.e., ε̂θ (xt , t) = φθ (xt , t). If xt = αtx0 +σtε ,
then the predicted x̂0 is given by:

x̂0 =
1
αt

xt−
σt

αt
ε̂θ (xt , t) (2.16)

This predicted x̂0 can then be used in the denoising distribution.

Ho et al. (2020) also found that the following training objective, a variant of the variational
lower bound, leads to better performance and is easier to implement:

Lsimple(θ) := Et,x0,ε

[
∥ε− ε̂θ (αtx0 +σtε, t)∥2] (2.17)

where t is uniformly sampled between 1 and T . This objective is the same as that used in noise
conditional score networks (Song and Ermon, 2019) based on score matching (Hyvärinen
and Dayan, 2005; Vincent, 2011).

DDIM: Accelerated Sampling

Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2020a) were proposed to acceler-
ate the DDPM sampling process. One key observation that motivates the proposal of DDIM
is that the training objective, like Lsimple, only depends on the (conditional) marginal q(xt |x0)

and not directly on the (conditional) joint q(x1:T |x0). Since many inference distributions
(joints) have the same marginals, this motivates the exploration of alternative inference pro-
cesses that are non-Markovian, leading to new generative processes. Remarkably, Song et al.
(2020a) showed that these non-Markovian inference processes lead to the same surrogate
objective function as DDPM.
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For DDPM, we assume the Markovian property in the diffusion and denoising processes.
However, DDIM generalizes this assumption to be non-Markovian and derives the corre-
sponding diffusion and denoising processes. They identified and proved a crucial property:
models trained based on the training objective Lsimple not only learn the generative process
for the Markovian inference process considered in DDPM but also for many non-Markovian
forward processes. Thus, we can essentially use pre-trained DDPM models as solutions to
new objectives and focus on finding a generative process better suited to our needs.

While Song et al. (2020a) derived the DDIM denoising process for the variance-preserving
process, we will focus on the variance-exploding process, as it will be utilized in later sections.
Let us derive the DDIM denoising process for this case. Consider the variance-exploding
process with α2

t = 1. The diffusion process is given as q(xt |x0) = N (xt ;x0,σ
2
t I). The

corresponding generative denoising process is given as:

pθ (xt−1|xt , x̂0) = N

(
xt−1;

σ2
t−1

σ2
t

xt +
σ2

t −σ2
t−1

σ2
t

x̂0,
(σ2

t −σ2
t−1)σ

2
t−1

σ2
t

I

)
(2.18)

Now consider a different generative denoising process given as:

qγ(xt−1|xt , x̂0) = N

xt−1;xt

√
σ2

t−1− γ2
t−1

σ2
t

+ x̂0

1−

√
σ2

t−1− γ2
t−1

σ2
t

 ,γ2
t−1I

 (2.19)

We define γt−1 as:

γt−1 = η

√
(σ2

t −σ2
t−1)σ

2
t−1

σ2
t

(2.20)

where η can be any value between 0 and 1. It can be shown via Bayes’ rule that both denoising
generative processes have the same forward marginal distribution q(xt |x0) = N (xt ;x0,σ

2
t I).

Therefore, if a DDPM model is trained for the generative denoising process as in Eq. (2.18),
then Eq. (2.19) is also a valid way to obtain samples from the trained diffusion model for any
η ∈ [0,1].

Interestingly, when η = 1, Eq. (2.19) is exactly the DDPM denoising distribution in Eq.
(2.18). When η = 0, the generative process becomes deterministic and is given by:

xt−1 =
σt−1

σt
xt +

(
1− σt−1

σt

)
x̂0 (2.21)



2.2 Diffusion Models | 11

This is exactly the first-order Euler solver of the Probability Flow Ordinary Differential
Equation (Song et al., 2020b) in the case α2

t = 1, which is known to produce high-quality
samples using fewer time steps. We will introduce more about this in the next section.

2.2.2 Score-based Diffusion Models

In this section, we explore a different yet closely related perspective on diffusion models
through score modeling. Generally, there are two primary approaches to corrupting clean
data and subsequently training a model to reverse this process for generating new data:

1. The Denoising Diffusion Probabilistic Model (DDPM) approach, which we introduced
in the previous section. This method trains a sequence of probabilistic models to
reverse each step of the noise corruption process, using these models to draw samples
starting from pure noise.

2. The Score Matching with Langevin Dynamics (SMLD) method (Song and Ermon,
2019). This approach estimates the score at each noise level, denoted as ∇x log p(x;σt).
Sampling is then performed using Langevin dynamics to sample from a sequence of
decreasing noise scales during the generation process.

It’s worth noting that for continuous state spaces, the DDPM training objective implicitly
computes the score at each noise level. Recognizing the underlying connections between
these approaches, Song et al. (2020b) proposed a unifying framework by defining forward
and reverse stochastic differential equations (SDEs). This unification provides a more
comprehensive understanding of the relationship between these seemingly distinct methods.

Forward and Reverse SDE

The diffusion process is defined by the following forward SDE:

dx = f (x, t)dt +g(t)dw (2.22)

Here, t is a continuous variable defined as t ∈ [0,T ], and w is the standard Wiener process.
f and g are the drift and diffusion coefficients of xt , respectively. As t increases, the data
will be perturbed more and eventually become white noise. The score model sθ (·, ·) can be
trained via score matching (Hyvärinen and Dayan, 2005; Song and Ermon, 2019). To draw
samples, we follow the reverse SDE using the results from Anderson (1982):

dx =
[

f (x, t)−g(t)2
∇x log pt(x)

]
dt +g(t)dw̄ (2.23)
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where w̄ is a standard Wiener process running backwards in time. In practice, ∇x log pt(x)
will be replaced by the modeled score sθ to generate samples.

Probability Flow ODE

ODE TrajectoriesData Noise

Fig. 2.1 Illustration of the sampling process of score-based diffusion models. The green
curves represent PF ODE trajectories, which establish a one-to-one correspondence between
samples from the noise distribution and the data distribution. The actual score for the PF
ODE is modeled by sφ (xt , t), trained via score matching. To generate samples, we start from
noise sampled from the base distribution and then solve the PF ODE using the modeled score
at each time step, gradually moving towards the data distribution.

Remarkably, Song et al. (2020b) proved that there exists a deterministic ordinary differential
equation (ODE) corresponding to this reverse SDE, given as:

dx =
[

f (x, t)− 1
2

g(t)2
∇x log pt(x)

]
dt (2.24)

This PF ODE possesses a unique property: moving along its trajectory forward in time adds
noise, while moving backward in time removes noise. Importantly, any off-the-shelf ODE
solver (e.g., 1st order Euler solver) can be employed to solve the PF ODE, generating samples
at time 0 given the initial noise xT at time T (see Figure 2.1).

It’s crucial to note that the ODE itself is deterministic; the only source of randomness comes
from the initial point. Song et al. (2020b) highlight that generating samples by solving the
PF ODE not only produces high-quality samples but also allows for an explicit trade-off
between accuracy and efficiency. Specifically, by increasing the error tolerance, we can solve
the PF ODE with fewer discretization steps, thus achieving better computational efficiency.
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In the next section, we will explore how, through extensive experiments conducted by Karras
et al. (2022), carefully chosen architecture, preconditioning, and sampling methods can
significantly enhance the performance of score-based diffusion models using the PF ODE
approach.

2.2.3 Elucidating the Design Space of Score-based Diffusion Models

Building on the score-based diffusion models introduced in the previous subsection, Karras
et al. (2022) identified several changes to the diffusion model architecture, sampling, and
training process. These changes have led to significant improvements in model performance
and are employed in consistency models, making them crucial to review here. We highlight
the key changes and briefly introduce the motivations behind them. The settings used by
Karras et al. (2022) will be utilized in all our subsequent experiments.

ODE Formulation Revisited

Recall the formulation of the PF ODE previously reviewed in Eq. (2.24). After extensive
experiments, Karras et al. (2022) argue that the optimal choices for f (x, t) and g(t) are
f (x, t) = 0 and g(t) =

√
2t. With this setting, the forward diffusion SDE can be written as

dx =
√

2tdw (2.25)

where w is the standard Wiener process. Hence, for s < t, the forward diffusion process is
defined as q(xt |xs) = N (xt ;xs, t2− s2). Simultaneously, with these choices, the PF ODE
simplifies to

dx
dt

=−t∇x log pt(x) (2.26)

for t ∈ [ε,T ], where ε = 0.002 and T = 80 as set by Karras et al. (2022). This PF ODE
formulation will be used throughout the consistency models and our experiments.

Preconditioning and Training

Since the optimal σt found by Karras et al. (2022) is σt = t, we use σt and t interchangeably
in our discussion. As previously mentioned, parameterizing the neural network to directly
predict x̂0 is not ideal, because the input xt = x0 +n is a combination of the clean signal x0

and noise n∼N (0,σ2
t I), whose magnitude varies significantly depending on the noise level.

The common practice is to train a neural network Fθ , from which the denoiser Dθ can be
derived to predict x̂0. For example, in DDPM, Fθ is trained to predict the noise scaled to unit
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variance. The denoiser Dθ is then constructed as Dθ (x,σt) = x−σtFθ (x,σt). However, this
approach has a drawback: for large values of σt , the neural network Fθ must finely tune the
output to cancel the noise, ensuring the prediction is at the correct scale.

Karras et al. (2022) propose parameterizing the denoiser as follows:

Dθ (x,σt) = cskip(σt)x+ cout(σt)Fθ (cin(σt)x,cnoise(σt)) (2.27)

where Fθ is the neural network to be trained. The preconditioning functions are defined as:

cskip(σt) =
σ2

data

σ2
t +σ2

data
cout(σt) =

σt ·σdata√
σ2

t +σ2
data

cin(σt) =
1√

σ2
t +σ2

data

cnoise(σt) =
1
4

log(σt)

where cskip modulates the skip connection and is chosen to amplify errors in Fθ as little as
possible. cin and cout scale the input and output magnitudes such that inputs and training
targets have unit variance. cnoise maps the noise level into a conditioning input for Fθ , and its
formula is chosen empirically.

To train the diffusion model, the following training objective is used:

L(θ) = Eσt∼ptrain,x0∼pdata,n∼N (0,σ2I)
[
λ (σt)∥Dθ (x0 +n,σt)− x0∥2

2
]

(2.28)

where the noise distribution is defined as logσt ∼N (Pmean,Pstd) (with Pmean = −1.2 and
Pstd = 1.2). This choice is based on experimental results which reveal that significant
reduction is possible only at intermediate noise levels. Therefore, Karras et al. (2022) target
the training efforts to the relevant range using a simple log-normal distribution for ptrain(σt).

The loss weight λ (σt) is defined as λ (σt) =
1

cout(σt)2 =
σ2

t +σ2
data

(σt ·σdata)2 , which greatly stabilizes
the training process. These preconditioning and training settings will be employed in the
consistency models and our subsequent experiments as well.

Sampling

To generate samples using score-based diffusion models, it is necessary to solve the PF ODE
numerically, which requires approximating the true trajectory. At each step, a truncation
error is introduced by the solver, which accumulates over N steps. The local error generally
scales superlinearly with respect to the step size, and thus higher N will improve the accuracy
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of the approximation for the true trajectory. The commonly used first-order ODE solver is
Euler’s method, which has O(h) local error with respect to the step size h.

After extensive experiments, Karras et al. (2022) found that Heun’s second-order method
(Ascher and Petzold, 1998) provides an excellent trade-off between truncation error and
neural function evaluations (NFE). It has O(h3) local error at the cost of one additional
evaluation of Dθ per step. However, we will not review the details of different ODE solvers
as they will be replaced by consistency models introduced later. For experimental and
illustration purposes in later chapters, we use the first-order Euler’s method.

In addition to the ODE solver, it is also important to specify the time steps {ti}N
i=1 to determine

how the step sizes, and thus truncation errors, are distributed between different noise levels.
After extensive experiments, Karras et al. (2022) found the following optimal time step
arrangement, assuming ε = t1 < t2 < · · ·< tN = T :

ti =
(

ε
1
ρ +

i−1
N−1

(
T

1
ρ − ε

1
ρ

))ρ

(2.29)

where ρ = 7. Intuitively, ρ controls how much the steps near ε are shortened at the expense
of longer steps near T . Analysis in (Karras et al., 2022) shows that ρ = 3 nearly equalizes the
truncation error at each step, but ρ values from 5 to 10 perform better for sampling images.
In terms of combining importance sampling with diffusion models, we found that during
experiments, the setting ρ → ∞ generally gives the highest ESS. We will explain more about
this time schedule in Section 3.1.3.

2.2.4 E(3) Equivariant Diffusion Models

Molecular datasets exist in physical 3D spaces and are subject to geometric symmetries such
as translations, rotations, and possibly reflections. These symmetries are referred to as the
Euclidean group in 3 dimensions, E(3). To effectively train models with molecular datasets, it
is crucial to utilize these symmetries, as they significantly enhance the generalization ability
of the model. In this subsection, we will discuss E(3) equivariant diffusion models, which
will be utilized in our experiments involving water molecules in Chapter 4.

Equivariance

We first present the definition of equivariance. Suppose Tg : X→ X is a set of transformations
on X for the abstract group g ∈ G. A function φ : X → Y is called equivariant to g if there
exists an equivariant transformation Sg : Y → Y such that φ(Tg(x)) = Sg(φ(x)). In our case,
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we consider the Euclidean group E(3), which is generated by translations, rotations, and
reflections. We use R, an orthogonal matrix, to represent rotations and reflections, and
t to represent translations of coordinates. For example, we say φ is E(3) equivariant if
φ(Rx+ t) = Rφ(x)+ t.

Similar to Hoogeboom et al. (2022), we consider point clouds x = (x1, . . . ,xM) ∈ RM×3 with
corresponding features h = (h1, . . . ,hM) ∈ RM×nf where nf is the dimension of the node
feature. The features h are invariant to group transformations, while the positions x are
equivariant to rotations, reflections, and translations such that Rx+ t = (Rx1+ t, . . . ,RxM + t).
We define the function (zx,zh) = f (x,h) to be equivariant if for all R and t, we have

Rzx + t,zh = f (Rx+ t,h) (2.30)

Equivariant Graph Neural Networks

E(n) Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) are a special
type of graph neural network that satisfy the equivariant constraints specified in (2.30).
Considering the interactions between all atoms, we assume a fully connected graph G with
nodes vi ∈ V . Each node vi is associated with coordinates xi ∈ R3 and features hi ∈ Rd .
EGNN consists of a composition of multiple Equivariant Graph Convolutional Layers
(EGCL), i.e., xl+1,hl+1 = EGCL

[
xl,hl] which are defined as

mi j = φe(hl
j,h

l
i,d

2
i j,ai j) (2.31)

hl+1
i = φh(hl

i,∑
j ̸=i

ẽi jmi j) (2.32)

xl+1
i = xl

i +∑
j ̸=i

xl
i− xl

j

di j +1
φx(hl

i,h
l
j,d

2
i j,ai j) (2.33)

where l indexes the layers of EGCL, di j = ∥xl
i− xl

j∥ is the Euclidean distance between nodes
vi and v j, and ai j are optional edge attributes (Hoogeboom et al. (2022); Satorras et al. (2021)
set ai j = ei j but they can also include additional edge information). The attention mechanism
is used to infer a soft estimation of the edges ẽi j = φinf(mi j). All learnable functions (φe

(edge operations), φh (node operations), and φinf) are parameterized by fully connected neural
networks. Therefore, with this definition, the entire architecture of EGNN is composed of L
EGCL layers, i.e., x̂, ĥ = EGNN[x0,h0].
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Equivariant Diffusion Models

Hoogeboom et al. (2022) propose E(3) Equivariant Diffusion Models (EDMs), which define
the diffusion process on both node positions and features, and learn the generative denoising
process using EGNN. We will review their definitions and model setups here, which are
important for our supercooled water experiments.

Diffusion Process: Considering a single data pair (x0,h0), representing the positions and
features respectively. Denote [·, ·] as concatenation. Using notations from previous sections,
the diffusion process is defined as (zt = [xt ,ht ]):

q(zt |x0,h0) = Nxh(zt |αt [x0,h0],σ
2
t I) (2.34)

for t = 1, . . . ,T . Nxh denotes the product of two distributions, one for noised coordinates Nx

and another for noised features N , given as:

Nx(xt |αtx0,σ
2
t I) ·N (ht |αth0,σ

2
t I) (2.35)

For better readability, xt ,ht , and zt should be two-dimensional variables (one axis for point
identifier and another axis for features), but they are treated as if flattened to one-dimensional.
The noise distribution for h is defined as the conventional normal distribution. However,
the noise distribution for x is defined as the normal distribution on a subspace defined by

∑i xi = 0 to preserve the equivariant property of the model (Xu et al., 2022).

Generative Denoising Process: To define the noise posterior, we replace the true x and h
with network predictions x̂ and ĥ:

p(zs|zt) = Nxh(zs|µ t→s([x̂, ĥ],zt),σ
2
t→sI) (2.36)

Similar to DDPM, Hoogeboom et al. (2022) use the network φ to predict the noise ε̂ =

[ε̂(x), ε̂(h)] and predictions are given by:

[x̂, ĥ] =
zt

αt
− ε̂ · σt

αt
(2.37)

However, in our experiments, we aim to train both equivariant diffusion models and equiv-
ariant consistency models on molecular datasets, and both types of models are based on
the settings used by Karras et al. (2022). Hence, we will use a parameterization similar to
Karras et al. (2022) but different from Hoogeboom et al. (2022). Similar to Eq. (2.27), we
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parameterize the model Dθ (zt ,σt) as:

Dθ (zt ,σt) = cskip(σt)zt + cout(σt)Fθ (cin(σt)zt ,cnoise(σt)) (2.38)

The preconditioning functions are the same as in Karras et al. (2022). Note that Fθ will be
parameterized using EGNN. In this way, Dθ will have all the equivariance properties needed
for molecular applications. We will later demonstrate how a similar architecture can be used
for consistency models to preserve equivariance properties. The same training objective as in
Eq. (2.28) will be used to train this score-based equivariant diffusion model. We will assess
the performance of this model in Chapter 4.

So far, we have reviewed all aspects of the diffusion model relevant to our methods and
experiments. In the next section, we will focus on the family of consistency models, which
will form an important part of our novel method.

2.3 Family of Consistency Models

One limitation of the diffusion models we introduced earlier is the slow sample generation
process. Even with ODE solvers such as the first-order Euler’s method or Heun’s second-
order method, generating samples with competitive results still requires evaluating the score
model at each iteration, necessitating at least 10 evaluations. To address this issue, a new
type of model, Consistency Models (CMs), was proposed by Song et al. (2023). These
models learn the trajectory of the PF ODE, supporting single-step generation of samples.
Additionally, they allow for iterative generation to enhance sample quality, offering a trade-off
between sample quality and computational cost.

In this section, we will review three members of the family of consistency models: the
original Consistency Models (CMs), which are trained to map points on the trajectory to the
origin of the same trajectory; Consistency Trajectory Models (CTMs) (Kim et al., 2023),
which map any point on the same trajectory to any point prior to it; and Bidirectional
Consistency Models (BCMs) (Li and He, 2024), which map any point on the trajectory to
any other point on the same trajectory.

2.3.1 Consistency Model

In this section, we will review the type of model that is central to the method introduced later:
Consistency Models (CMs) (Song et al., 2023). The idea behind all types of consistency
models is straightforward: learn the PF ODE trajectory to accelerate the sampling process.
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ODE TrajectoriesData Noise

Fig. 2.2 Illustration of the sampling process of consistency models. Unlike score-based diffu-
sion models, which model the score, consistency models directly learn the ODE trajectories
between samples from the base distribution and the data distribution. To generate samples,
a well-trained consistency model f θ directly maps samples from the noise distribution or
any point along the ODE trajectory to their corresponding samples in the data distribution
(highlighted in orange).

Here, we will introduce the original CMs, covering their definition, parameterization, and
two training methods—one for distillation and one trained in isolation. While the first CMs
proposed have their limitations, which we will discuss, they are not used in subsequent
experiments. However, their parameterization and training method significantly influenced
the later proposed CTMs and BCMs, which are extensively used in our experiments.

Definition of Consistency Functions

The main motivation for CMs lies in the definition of consistency functions. Suppose
{xt}t∈[ε,T ] is a solution trajectory of the PF ODE in Eq. (2.24), then a function defined as
f : (xt , t)→ xε is called a consistency function if it satisfies the self-consistency property
defined as:

f (xt , t) = f (xt ′, t
′), ∀t, t ′ ∈ [ε,T ] (2.39)

In other words, the consistency function will map any point on the same solution trajectory
to the same starting point. The goal for CMs is to train a function f θ according to the data to
approximate f as accurately as possible.
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Parameterization

As observed from the self-consistency property in Eq. (2.39), the constraint or boundary
condition for consistency functions is f (xε ,ε) = xε , meaning that f (·,ε) must be an identity
function. To enforce this boundary condition, a simple modification of the parameterization
proposed by Karras et al. (2022) can be employed. The consistency model is parameterized
as:

f θ (x, t) = cskip(t)x+ cout(t)Fθ (x, t) (2.40)

where cskip and cout are modified from Karras et al. (2022) and are defined as:

cskip(t) =
σ2

data

(t− ε)2 +σ2
data

, cout(t) =
σdata(t− ε)√

σ2
data + t2

(2.41)

These functions satisfy cskip(ε) = 1 and cout(ε) = 0, which naturally enforces the boundary
condition for f θ .

Sampling from Consistency Models

Sampling from CMs is straightforward and efficient. Suppose we have a well-trained CM
f θ (·, ·). First, we sample from the initial distribution x̂T ∼N (0,T 2I), and then evaluate the
consistency model to obtain x̂ε = f θ (x̂T ,T ). This process requires only one evaluation of the
model, enabling sample generation in a single step (see Figure 2.2). Importantly, the sample
quality can be further improved by performing multiple denoising and noise injection steps.
However, multiple-step sampling is not used in our method and subsequent experiments.

Training Consistency Models

CMs can be trained through two distinct approaches: Consistency Distillation (CD) and
Consistency Training (CT). CD utilizes a pre-trained score model, while CT trains the model
in isolation without relying on pre-trained models. Our preliminary experiments revealed
that CT often requires significantly longer training time compared to CD, yet yields models
with superior performance. However, as CMs are not utilized in our proposed algorithm or
subsequent experiments, we have included the detailed training methods for both approaches
in Appendix A.1.
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Fig. 2.3 Illustration of the sampling process of consistency trajectory models. Unlike
consistency models, which can only map noise directly to samples in the data distribution,
Consistency Trajectory Models can map a sample to an intermediate point t and then from t
to time 0, producing samples in the data distribution (highlighted in orange). This approach
offers a better trade-off between computational cost and sample quality.

2.3.2 Consistency Trajectory Models

One limitation of CMs is that they do not provide a satisfactory trade-off between accuracy
and computational cost. For example, Song et al. (2023) found that using 3 Neural Function
Evaluations (NFE) leads to the best sample quality when using consistency models. However,
increasing the NFE beyond 3 does not continue to improve the quality of the samples.
Kim et al. (2023) have demonstrated this limitation and proposed a new sampling method,
γ-sampling, which leverages Consistency Trajectory Models (CTMs).

Stronger Consistency Functions

Recall that the consistency functions defined in Eq. (2.39) are functions that map any
point on the same PF ODE trajectory to the origin of the PF ODE. Given the trajectory
{xt}t∈[ε,T ], Kim et al. (2023) propose functions G : (xt , t,s)→ xs with s ≤ t that satisfy
stronger self-consistency properties defined as:

G(xt , t,s) = G(xt ′, t
′,s), ∀t, t ′ ∈ [ε,T ] and ∀s ∈ [ε,min{t, t ′}] (2.42)

CTMs are functions Gθ that approximate G. Intuitively, a well-trained CTM can map any
point on the same PF ODE trajectory to any point prior to it, offering greater flexibility than
CMs. This flexibility is the key reason why CTMs can provide a better trade-off between
sampling quality and computational cost, as we will discuss later.
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Parameterization

Assume we use the same diffusion SDE and PF ODE as used by Karras et al. (2022); Song
et al. (2023), shown in Eq. (2.25) and Eq. (2.26), respectively. Inspired by the Euler solver,
Kim et al. (2023) propose the following parameterization of G, which is written as a mixture
of xt and an additional function g:

G(xt , t,s) := xt +
∫ s

t

xu−E[x|xu]

u
du =

s
t
xt +

(
1− s

t

)
g(xt , t,s) (2.43)

where g(xt , t,s) = xt +
t

t−s
∫ s

t
xu−E[x|xu]

u du. One benefit of using this parameterization is that
in the limit of s→ t, we have:

lim
s→t

g(xt , t,s) = xt + t lim
s→t

1
t− s

∫ s

t

xu−E[x|xu]

u
du = E[x|xt ] (2.44)

which corresponds to the denoiser function. Therefore, estimating g not only captures the
t-to-s-jump but also the denoiser function. In practice, g will be parameterized by gθ , a
neural network with a similar form to CMs, and is given as:

gθ (xt , t,s) = cskip(t)xt + cout(t)Fθ (xt , t,s) (2.45)

where cskip and cout use the same preconditioning as in Karras et al. (2022). Then, the CTM
model Gθ will be:

Gθ (xt , t,s) =
s
t
xt +

(
1− s

t

)
gθ (xt , t,s) (2.46)

Sampling from Consistency Trajectory Models

Due to the property of gθ shown in Eq. (2.44), gθ effectively models the score, thus
supporting standard score-based sampling with ODE/SDE solvers. Additionally, Kim et al.
(2023) propose a novel γ-sampling method for a sequence of sampling time steps ε = t0 <
t1 < · · ·< tN = T . The γ-sampling method proceeds as follows:

1. Denoise the sample xtn to some time t̃ < tn−1 using the CTM model Gθ .

2. Add noise according to the diffusion SDE to reach tn−1.

3. Alternately perform steps 1 and 2 until reaching the final time point t03.

The parameter γ ∈ [0,1] controls the amount of noise added at each time step. Notably, when
γ = 0, the entire process becomes deterministic (see Figure 2.3). Kim et al. (2023) found

3Our proposed method also draws inspiration from this sampling approach, see Figure 3.3.
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that γ = 0 is the only setting that approximates the performance of the Heun’s solver as the
number of NFE increases.

Training Consistency Trajectory Models via Distillation

Unlike Consistency Models (CMs), the design choices for Consistency Trajectory Models
(CTMs) in Kim et al. (2023) are suited only for consistency distillation and are not applicable
for training in isolation4. Therefore, we focus on the scenario where a pre-trained diffusion
model is available. Due to the distinct parameterization of CTMs compared to CMs, the
training method also differs. The training loss for CTMs consists of two components: the
soft consistency loss and an auxiliary loss to enhance training performance and facilitate the
learning of the student model.

Soft Consistency Loss: Suppose we have an ODE solver, a pre-trained score model φ , a
student model Gθ , and a teacher model Gθ− where θ− = stopgrad(µθ−+(1−µ)θ). Given
a fixed time interval [ε,T ], we first sample a time point t ∈ [ε,T ] and then sample a time
point s ∈ [ε, t). We then sample another time point u ∈ [s, t). Next, we sample x0 ∼ pdata

from the data distribution and add noise to x0 to obtain xt following the forward diffusion
SDE.

For the teacher model, we use the ODE solver to move from t to u using the pre-trained score
model. We then obtain the sample at time s using the teacher model, which is subsequently
mapped to time t0 = ε to obtain xtarget. The process is summarized as follows:

x̃u = Solver(xt , t,u;φ) (2.47)

x̃s = Gθ−(x̃u,u,s) (2.48)

xtarget = Gθ−(x̃s,s,ε) (2.49)

where ε ≤ s≤ u < t ≤ T .

For the student model, we directly map xt from time t to time s and then map it again to time
ε . The process is summarized as follows:

x̃s = Gθ (xt , t,s) (2.50)

xest = Gθ (x̃s,s,ε) (2.51)

4While the original paper mentioned a method for training CTM in isolation, our experiment results show
that CTM’s design is not suitable for training without a pre-trained diffusion model.
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The loss function is defined as the distance between xtarget and xest:

LCTM(θ ;φ) := Et,s,u,x0Ext |x0

[
d(xtarget,xest)

]
(2.52)

Auxiliary Losses: In addition to the soft consistency loss, Kim et al. (2023) introduce two
auxiliary losses to facilitate student learning: the Denoising Score Matching (DSM) loss and
an adversarial loss. The DSM loss is used to enforce that gθ (xt , t, t) should act as a denoiser
for any t. The DSM loss is given by:

LDSM(θ) := Ex0,tExt |x0

[
∥x0−gθ (xt , t, t)∥2

2
]

(2.53)

In our experiments, we found that the adversarial loss did not significantly improve perfor-
mance (it was mainly used to enhance image quality in the original paper), so we omit the
adversarial loss and focus on the CTM and DSM losses.

Extending Consistency Trajectory Models to Bidirectional

In later experiments, inspired by Bidirectional Consistency Models (BCMs), which will be
introduced in the next section, we found that it is not necessary to restrict s to be smaller than
t. Instead, by relaxing this constraint and only requiring s ̸= t, the CTM distilled from the
pre-trained score model becomes a Bidirectional Consistency Trajectory Model (BCTM).
This extension allows us to travel along the PF ODE trajectory not only backward in time
but also forward in time using only 1 NFE. We will demonstrate the effectiveness of this
extended model in the later experiment section.

2.3.3 Bidirectional Consistency Models

CTMs offer an improved balance between sample quality and computational efficiency
through γ-sampling, allowing mapping from any point at time t to any earlier point at time
s < t along the PF ODE trajectory. However, despite the accelerated generation process
in CMs and CTMs, one challenge remains in inversion tasks. For instance, a drawback of
γ-sampling is that, while it enhances the quality of generated images, it can alter the content
of the image. To unify the framework of generation and inversion, Li and He (2024) propose
Bidirectional Consistency Models (BCMs), which learn a stronger, bidirectional consistency
property that can map any point on the PF ODE trajectory to any other point, both forward
and backward in time, providing ultimate flexibility.
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ODE TrajectoryData Noise

Fig. 2.4 Illustration of the sampling process of bidirectional consistency models. Bidirectional
consistency models further improve upon CTMs by offering the ability to map any point on
the sample PF ODE trajectory to any other point. This includes mapping in the denoising
direction (highlighted in orange) and in the noising direction (highlighted in blue).

Bidirectional Consistency Functions

Suppose the solution trajectory is given by {xt}t∈[ε,T ]. A function f : (xt , t,s)→ xs satisfies
the bidirectional consistency property if:

f (xt , t,s) = f (xt ′, t
′,s), ∀t, t ′,s ∈ [ε,T ] (2.54)

BCMs, denoted as f θ , are trained to approximate this function. For a well-trained function,
any point on the same trajectory at any time can be mapped to any other time. In Chapter 3,
we will explore how this property can be utilized in our method.

Parameterization

BCMs inherit the parameterization of CMs with slight modifications to the coefficients cskip

and cout. The BCM is parameterized as:

f θ (x, t,s) = cskip(t,s)x+ cout(t,s)Fθ (x, t,s) (2.55)

with cskip and cout defined as:

cskip(t,s) =
σ2

data + ts
σ2

data + t2 , cout(t,s) =
σdata(t− s)√

σ2
data + t2

(2.56)
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Notice that cskip(t, t) = 1 and cout(t, t) = 0, which enforce the boundary condition that
f θ (xt , t, t) = xt .

Sampling from Bidirectional Consistency Models

Sampling from BCMs is similar to methods used in CTMs, but with a unique advantage.
Exploiting the bidirectional consistency property of BCMs, Li and He (2024) introduce
Zigzag sampling. This technique enhances sample quality using additional steps while
preserving sample content. For a detailed algorithm, since this is not directly related to our
work, we refer readers to the original paper by Li and He (2024).

Training Bidirectional Consistency Models in Isolation

The loss function for BCMs consists of two parts. The first part is the CT loss, similar to the
one used in Eq. (A.3). The second part, specific to BCMs, is designed to train the model to
follow the ODE trajectory both forward and backward in time. Suppose we have randomly
sampled two time steps t and s such that t ̸= s. We want to construct a model that learns the
mapping from xt to xs. When s < t, the model learns to denoise, and when s > t, it learns to
add noise. This dual capability allows BCMs to unify generative and inverse tasks within a
single framework.

The training process is as follows: Given two sampled time points t and s, we first map xt

from time t to time s using the student model to obtain xs = f θ (xt , t,s). Then, both xs and
xt are mapped to time 0 using the teacher model to obtain xest and xtarget, respectively. The
process is summarized as:

x̃s = f θ (xt , t,s) (2.57)

xest = f
θ
−(x̃s,s,ε) (2.58)

xtarget = f
θ
−(xt , t,ε) (2.59)

The second loss function is then defined as:

L N
BCT(θ) = Ez,x,t,s

[
λ
′(t,s)d(xest,xtarget)

]
(2.60)

where the weight λ ′ is defined as λ ′(t,s) = 1
|t−s| . Thus, the total loss function used to train

BCMs is given by L N(θ) = L N
BCT(θ)+L N

CT(θ), where L N
CT(θ) is given in Eq. (A.3).

This describes the training process for BCMs in isolation. However, in practice, training
BCMs in isolation requires a very long time for the parameters to converge and may fail to
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converge if the parameters are poorly initialized (as observed in the experiments with water
molecules). Therefore, it is desirable to train BCMs via distillation to accelerate the training
process. Inspired by the distillation process described for CTMs, we can extend the training
process to BCMs and train them via distillation, given a pre-trained score-based diffusion
model. To train the model, we replace the BCT loss with the CTM loss shown in Eq. (2.52).
However, we found that this approach does not achieve the same performance as BCTMs.
We leave further improvements as future work.

2.3.4 Summary of Family of Consistency Models

We summarize the properties of the family of consistency models in Table 2.1.

Table 2.1 Summary of Consistency Model Family Properties.

Property CM BCM CTM BCTM

Bidirectional No Yes No Yes
Training Method CT/CD CT CD CD
Time Constraint f θ (xt , t,s) s = ε s ̸= t s < t s ̸= t
Special Sampling – Zigzag γ-sampling Zigzag or

γ-sampling
Pre-trained Model Required No* No Yes Yes

* Not required for CT, required for CD.

2.4 Chapter Summary

In this chapter, we have provided a comprehensive review of three key areas: importance
sampling, score-based diffusion models, and the family of consistency models. These
concepts form the foundation for our subsequent work. In the next chapter, we will build
upon this knowledge to formulate a baseline method that integrates importance sampling
with score-based diffusion models. Furthermore, we will introduce our novel approach,
which combines importance sampling with bidirectional consistency (trajectory) models.
This novel method aims to leverage the strengths of both importance sampling and the latest
advancements in generative modeling to achieve improved performance and efficiency.



Chapter 3

Importance Sampling with Consistency
Models

In this chapter, we introduce the application of IS to correct biases in the sample distributions
generated by diffusion models or consistency models. The chapter is divided into two main
sections. The first section presents a baseline approach that integrates importance sampling
with score-based diffusion models in a straightforward manner. Although this baseline
method is theoretically sound, it has several practical limitations that hinder its feasibility
for real-world deployment. The second section introduces our novel approach, which aims
to achieve unbiased samples more efficiently than the baseline by leveraging the family of
consistency models.

Throughout this chapter and in subsequent experiments, we adopt the settings used by Karras
et al. (2022), where the diffusion SDE is given by Eq. (2.25) and the corresponding PF ODE
by Eq. (2.26).

3.1 Importance Sampling with Diffusion Models

In this section, we formalize the application of IS within the context of diffusion models. To
establish a valid IS framework, we must define both the target and proposal distributions.
Broadly speaking, the target distribution we aim to sample from corresponds to the entire
diffusion process governed by molecular energy functions, which can be evaluated but not
directly sampled. The proposal distribution, conversely, corresponds to the denoising process
of diffusion models, as defined by either DDPM or DDIM. Figure 3.1 provides an intuitive
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Target Distribution

Proposal Distribution

SDE SDE SDE

DenoisingDenoisingDenoising

Fig. 3.1 Illustration of the target and proposal distributions for the baseline method. The
target distribution is defined by the diffusion SDE for each time interval, while the proposal
distribution is defined by the DDPM denoising distribution.

representation of this concept. We will elaborate on these distributions in the following
subsections.

3.1.1 Importance Sampling Formulation

Consider the task of estimating an integral as described in Section 2.1. The target distribution
from which we want to sample is denoted by π (e.g., molecular energy functions). In practice,
we can only evaluate the unnormalized molecular energy functions, which we denote as π̄ .
Our goal is to estimate Ex∼π [φ(x)] for some function φ .

Assume we have access to a well-trained diffusion model that allows us to draw samples
and evaluate the log-likelihood, which serves as the proposal distribution. By employing
Self-Normalized Importance Sampling (SNIS), we can effectively combine these elements
to correct the bias (asymptotically, as the number of samples increases) in the sample
distribution generated by the diffusion model.

To be specific, consider discretizing the time interval [ε,T ] as ε = t0 < t1 < · · · < tN = T .
Here, t0 = ε is chosen so that the difference between the distribution π(xt0) and the true
distribution π(x) is negligible. Assume the proposal distribution of the diffusion model is
pθ (xtn−1|xtn), and the noise distribution is q(xtn|xtn−1) for n = 1, . . . ,N. The expectation can
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then be written as:

Ex∼π [φ(x)]≈ Ext0∼π [φ(xt0)] (3.1)

=
∫

φ(xt0)π(xt0)dxt0 (3.2)

=
∫

φ(xt0)π(xt0)

(
N

∏
n=1

q(xtn|xtn−1)

)
dxt0:N (3.3)

=
∫

φ(xt0)

(
π(xt0)∏

N
n=1 q(xtn|xtn−1)

pθ (xN)∏
N
n=1 pθ (xtn−1|xtn)

)
pθ (xt0:N )dxt0:N (3.4)

≈ 1
K

K

∑
k=1

(
π(x(k)t0 )∏

N
n=1 q(x(k)tn |x

(k)
tn−1

)

pθ (x
(k)
N )∏

N
n=1 pθ (x

(k)
tn−1
|x(k)tn )

)
φ(xt0) (3.5)

=
1
K

K

∑
k=1

wkφ(xt0) (3.6)

where x(k)t0:N
for k = 1, . . . ,K are samples from the diffusion model pθ . The importance weights

{wk}K
k=1 are defined as:

wk =
π(x(k)t0 )∏

N
n=1 q(x(k)tn |x

(k)
tn−1

)

p(x(k)N )∏
N
n=1 pθ (x

(k)
tn−1
|x(k)tn )

(3.7)

If we only have access to the unnormalized target distribution π̄ , according to Section 2.1,
the estimation can be obtained using SNIS:

Ex∼π̄ [φ(x)]≈
K

∑
k=1

w̄kφ(xt0) (3.8)

where w̄k = wk/∑
K
k=1 wk for k = 1, . . . ,K, and each wk is computed using π̄ . So far, we have

established a general framework for applying IS using diffusion models. However, we still
need to specify the proposal distribution pθ and target distribution q.

3.1.2 Noise and Denoising Distributions

Next, we define the noise and denoising distributions. According to the diffusion SDE
defined in Eq. (2.25), the noise distribution is modeled as a Gaussian distribution:

q(xtn|xtn−1) = N (xtn;xtn−1,(t
2
n − t2

n−1)I) (3.9)
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For the denoising distribution, we can define it in a manner similar to DDIM (Song et al.,
2020a):

qσ (xtn−1|xtn−1,x0) = N

xtn−1;xtn

√
t2
n−1−σ2

n−1

t2
n

+ x0

1−

√
t2
n−1−σ2

n−1

t2
n

 ,σ2
n−1I


(3.10)

We define σn−1 as follows:

σn−1 = η

√
(t2

n − t2
n−1)t

2
n−1

t2
n

(3.11)

where η ∈ [0,1]. When η = 1, this corresponds to the denoising distribution of DDPM (Ho
et al., 2020), and when η = 0, the sampling becomes deterministic, corresponding to Euler’s
first method for solving the PF ODE in Eq. (2.26). Our empirical results indicate that η = 1
consistently yields the highest ESS and lowest IS variance. Therefore, we use the denoising
distribution same to that in DDPM.

In practice, since x0 is unknown, we replace it with the model prediction x̂0. Therefore, the
denoising distribution is defined as:

pθ (xtn−1|xtn) = qσ (xtn−1|xtn−1, x̂0) = N

(
xtn−1;

t2
n−1

t2
n

xtn +

(
1−

t2
n−1

t2
n

)
x̂0,

(t2
n − t2

n−1)t
2
n−1

t2
n

I

)
(3.12)

where x̂0 = Dφ (xtn, tn) is computed by the trained denoiser model. With the definitions for
the proposal and target distributions established, we can compute the importance weights
according to Eq. (3.5) and use these weights for integral estimation tasks. However, one
remaining aspect that we have not yet specified is the selection of the time steps {tn}.

3.1.3 Setting Time Steps

In our experiments, we adopt the same parameterization, preconditioning, and training
methods as introduced by Karras et al. (2022). Consequently, it is natural to consider the time
schedule specified by them, as stated in Eq. (2.29) with ρ = 7. However, during subsequent
experiments, we observed that increasing the value of ρ results in a higher ESS. When
ρ → ∞, the time schedule approaches:

ti = ε

(
T
ε

) i−1
N−1

(3.13)
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This configuration is equivalent to arranging the time steps evenly in logarithmic space. We
found that this approach yields the highest ESS across various target distributions when using
the baseline method. Therefore, we employ this time schedule in all subsequent experiments
related to the baseline method.

3.1.4 Strengths and Limitations

The baseline approach combining importance sampling with score-based diffusion models
exhibits both strengths and limitations.

Strengths: The method is grounded in sound theoretical foundations and is straightforward
to implement, requiring no modifications to a trained diffusion model. With a sufficient
number of steps, it can achieve a high ESS, indicating excellent alignment between the
proposal and target distributions. This results in low-variance importance sampling estimates,
even in high-dimensional spaces.

Limitations: The primary weakness of the baseline approach lies in the number of steps
required to achieve low-variance estimates. Our experiments reveal that even in one-
dimensional space, approximately 100 steps may be necessary to obtain reasonable integral
estimates. For higher-dimensional spaces, the required number of time steps increases
exponentially, quickly becoming computationally infeasible.

This efficiency bottleneck severely limits the practical applicability of the baseline approach.
Consequently, it motivates our search for an improved method that can apply importance
sampling more efficiently, with significantly fewer steps.

3.2 Importance Sampling with Consistency Models

In this section, we introduce our improved importance sampling method. We summarize
our motivation in Figure 3.2. The baseline method discussed previously is constrained by
the necessity of a large number of time steps to achieve low variance in the IS estimate.
Consistency models, which can efficiently traverse along the PF ODE, offer the potential
to reduce the number of steps required for accurate sampling. However, one significant
challenge is that once the initial point is fixed, ODEs are deterministic and, therefore, do
not define a valid proposal distribution in the same way as the DDPM denoising distribution
does.

To overcome this, we propose reintroducing stochasticity through an SDE component. For
sampling from the proposal distribution, our method alternates between two steps: (1) moving
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Fig. 3.2 Motivation for our proposed algorithm. We aim to carefully combine Importance
Sampling and Consistency Models to efficiently obtain unbiased samples.

from a larger time to a smaller time via the ODE trajectory, and (2) moving forward in time
following the diffusion SDE, adding Gaussian noise. This process continues until reaching
the minimum time point1.

A similar alternating ODE-SDE process is applied to the target distribution, enhancing its
flexibility to better match the proposal distribution. Crucially, BCMs or BCTMs enable both
forward and backward movement along the ODE trajectory. This bidirectional capability
allows mapping between ODE trajectories using only one function evaluation (1 NFE),
significantly improving computational efficiency.

This section is organized into several subsections. The first two subsections provide detailed
and rigorous formulations regarding the design of the proposal and target distributions. In the
subsequent subsection, we introduce the parameters involved in our method and discuss how
to tune these parameters to achieve the lowest IS variance. Finally, we present the complete
algorithm, with its effectiveness demonstrated in the next chapter.
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Fig. 3.3 Defining the proposal distribution. Starting with xt3 at time t3, we: (1) Map to
x

t(prop)
2

at time t(prop)
2 via a deterministic ODE trajectory using Bidirectional Consistency

(Trajectory) Models: x
t(prop)
2

= f θ (xt3, t3, t
(prop)
2 ). (2) Add Gaussian noise to obtain xt2 ∼

N

(
x

t(prop)
2

,

(
t2
2 −
(

t(prop)
2

)2
)

I
)

. This process is repeated for other time steps.

3.2.1 Designing the Proposal Distribution Using ODEs and SDEs

We begin by using the same notation for time steps as in the previous section: ε = t0 <

t1 < · · · < tN = T . Note that the base distribution remains unchanged, with pθ (xtN ) =

N (xtN ;0, t2
NI). Our task is to design the proposal distribution pθ (xtn−1|xtn) for n = 1, . . . ,N.

Our key goal is to leverage the ODE to minimize time steps in IS while forming a valid
proposal distribution. Therefore, we define the proposal distribution as:

pθ (xtn−1 |xtn) = N

(
xtn−1; fθ

(
xtn, tn, t

(prop)
n−1

)
,

(
t2
n−1−

(
t(prop)
n−1

)2
)

I
)

(3.14)

where ε ≤ t(prop)
n−1 < tn−1 for n = 2, . . . ,N, and fθ represents the model that moves xtn at time

tn to time t(prop)
n−1 following the ODE trajectory. Then we follow the diffusion SDE to move

forward in time to tn−1 by adding noise to form the proposal distribution as defined above.

It is important to carefully define the proposal distribution pθ (xt0|xt1). Since t0 = ε is the
minimum time step, we cannot move further back in time and then add noise. In this case,
we first move back to time t0 and then add some noise to a time point t(prop)

0 > t0. If this
noise is small, then x

t(prop)
0

should still lie in the high-probability region of π , and thus it will

1This process is similar to the γ-sampling method introduced in Section 2.3.2.
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not significantly affect the IS process. The algorithm will then return x
t(prop)
0

. Therefore, the
proposal distribution at t0 is given as:

pθ

(
x

t(prop)
0
|xt1

)
= N

(
x

t(prop)
0

; fθ (xt1, t1, t0),
((

t(prop)
0

)2
− t2

0

)
I
)

(3.15)

With this, we have defined all the proposal distributions. The visualization for the proposal
distributions is shown in Figure 3.3. The function fθ can be parameterized by BCMs or
BCTMs, enabling mapping between different times on the same ODE trajectory using only 1
NFE, which is the key reason why our proposed method is efficient.

3.2.2 Designing the Target Distribution Using ODEs and SDEs

ODE

SDE

ODE

SDE

ODE SDE ODE SDE
Target Distribution

Proposal Distribution

ODE

SDE

ODE SDE

Fig. 3.4 Defining the target distribution using ODE-SDE combination. For example, starting
with xt2 at time t2: (1) Map to x

t(tar)
2

at time t(tar)
2 via PF ODE: x

t(tar)
2

= f θ (xt2, t2, t
(tar)
2 ). (2) Add

Gaussian noise: xt3 ∼N

(
x

t(tar)
2

,

(
t2
3 −
(

t(tar)
2

)2
)

I
)

. This ODE-SDE approach, applied

similarly at other time steps, offers greater flexibility in matching the proposal distribution.

Up to this point, we have assumed that the target distributions are defined by the diffusion
SDE, given by:

q(xtn|xtn−1) = N (xtn;xtn−1 ,(t
2
n − t2

n−1)I) (3.16)

However, the target distribution offers some flexibility that we can leverage. Similar to the
design of the proposal distribution, the target distribution can also be defined using ODEs
and SDEs. Intuitively, given a sample at time tn, we can map this sample forward in time
along the ODE trajectory to some point t(tar)

n , and this target time point can be chosen such
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that the target distribution aligns better with the proposal distribution. In this case, the target
distribution is defined as:

qθ (xtn|xtn−1) = N

(
xtn; fθ

(
xtn−1, tn−1, t

(tar)
n−1

)
,

(
t2
n −
(

t(tar)
n−1

)2
)

I
)

(3.17)

for n = 1, . . . ,N, where tn−1 ≤ t(tar)
n−1 < tn and fθ is a function that maps the sample xtn−1

forward in time along the PF ODE from time tn−1 to time t(tar)
n−1 . Then, noise is added to x

t(tar)
n−1

according to the diffusion SDE, defining the distribution qθ . Similar to the design of the
proposal distribution, we must carefully handle the case for n = 1. The target distribution is
defined as:

qθ

(
xt1 |xt(prop)

0

)
= N

(
xt1; fθ

(
x

t(prop)
0

, t(prop)
0 , t(tar)

0

)
,

(
t2
1 −
(

t(tar)
0

)2
)

I
)

(3.18)

Notably, BCMs or BCTMs can naturally serve as fθ in this context, as they have the capability
to map points on the same ODE trajectory to any other points both forward and backward in
time using only one NFE. This ability significantly enhances the efficiency of the IS process
by reducing the computational overhead.

So far, we have formalized a novel approach to performing IS using BCMs or BCTMs.
However, there remain several important considerations. Specifically, how should we choose
the time points tn, t(tar)

n , and t(prop)
n for each n?

3.2.3 Tuning the Time Steps

Recall that the goal in setting the time steps is to minimize the variance of the IS estimator.
Therefore, the key to optimizing our algorithm lies in setting the time steps by minimizing
certain objective functions (which we will introduce later) designed to reduce IS variance.
To achieve this, we need to introduce a suitable parameterization for the time steps, and we
will define three sets of parameters that determine these time steps. For a time interval [ε,T ],
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we reparameterize the three sets of time points as follows:

tn =


T, n = N

µn(tn+1− ε)+ ε, n = 2, . . . ,N−1

ε, n = 1

(3.19)

t(tar)
n = (tn+1− tn)ηn + tn, n = 1, . . . ,N−1 (3.20)

t(prop)
n =

γn(tn− ε)+ ε, n = 2, . . . ,N−1

γn(t
(tar)
n − ε)+ ε, n = 1

(3.21)

Note that in Eq. (3.19), the time steps are defined sequentially, with each time step at n falling
between the minimum time point ε and the previous time point tn+1. A similar approach is
used in Eq. (3.20) to define the target time steps, where each target time point is positioned
between the time points tn and tn+1. For the proposal time points in Eq. (3.21), each proposal
time point is positioned between tn and the minimal time point ε , except for the last proposal
time point n = 1, which lies between t(tar)

1 and ε .

However, in later experiments, we found that the optimal proposal time points are best
defined to ensure that the proposal variance equals the target variance whenever possible:

t(prop)
n =


√

max{t2
n +
(

t(tar)
n

)2
− t2

n+1,ε
2}, n = 2, . . . ,N−1

min{
√

max{t2
n+1−

(
t(tar)
n

)2
+ t2

n ,ε
2}, t(tar)

n }, n = 1
(3.22)

To ensure that the variance matches, we aim to define the proposal time points such that

t2
n −
(

t(tar)
n−1

)2
= t2

n−1−
(

t(prop)
n−1

)2
. Additionally, we enforce the constraint that the proposal

time points must be greater than the minimal time point ε . The case for n = 1 differs slightly
because of the way that proposal distribution defined for n = 1 (see Eq. (3.14)). Here, we
apply the constraints that the last proposal time point lies between the minimal time ε and
t(tar)
n . Notice that {µn} and {ηn} are parameters within the range [0,1]. During optimization,

we can apply a sigmoid function to enforce this constraint and optimize the parameters to
find the optimal values.

Now we introduce three possible objective functions that can be used to tune the time steps:

• ESS estimated using samples from the proposal (ÊSS
prop

): Setting the parameters
to maximize the ÊSS

prop
seems like an obvious choice since ÊSS

prop
is widely used

as a metric to measure the variance of the IS estimator. The formula for computing
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is reviewed in Eq. (2.3). However, as we discussed before in Section 2.1, ÊSS
prop

is
not a perfect metric for measuring variance. It is possible to have large error in the IS
estimator even with a large ÊSS

prop
, particularly when the proposal distribution only

partially covers the target distribution. In later experiments, we found that optimizing
parameters with respect to ÊSS

prop
only works well for very simple target distributions.

For more complex target distributions in high-dimensional space, optimizing ESS can
lead to integral estimations with large error.

• ESS estimated using samples from the target (ÊSS
tar

): One reason for the limita-
tions of optimizing ESS using samples from the proposal is that the ESS estimate itself
may be biased. This bias can result in a high ESS but still lead to large variance in the
integral estimation. This motivates the search for a better ESS estimation. Recall that
we reviewed an alternative method for estimating ESS using samples from the target
distribution, as shown in Eq. (2.4). The advantage of this method is that it can provide
a more accurate ESS estimate when the proposal distribution does not fully cover the
target distribution. In later experiments, it was demonstrated be a better metric than
ÊSS

prop
and gradient-based approachs can be applied to optimize parameters.

• Forward KL divergence: Another potential method for tuning the parameters is to
optimize the forward Kullback-Leibler (KL) divergence between the target distribution
and the proposal distribution. It is known that by minimizing the forward KL diver-
gence, the proposal distribution tends to be mean-seeking, meaning it is encouraged to
cover the entire target distribution. In contrast, minimizing the reverse KL divergence
encourages the proposal distribution to be mode-seeking, focusing on certain modes
of the target distribution. For IS problems, we propose minimizing the forward KL
divergence between the target and proposal distributions. Given the proposal pθ and
target qθ , the forward KL is defined as:

DKL(qθ ||pθ ) =
∫

qθ (xt0:N ) log
(

qθ (xt0:N )

pθ (xt0:N )

)
dxt0:N ≈

1
K

K

∑
k=1

log

(
qθ (x

(k)
t0:N

)

pθ (x
(k)
t0:N

)

)
(3.23)

where x(k)t0:N
∼ qθ are samples from the target distribution. We propose using Eq. (3.23)

as the objective function, with the time points {t(prop)
n }N−1

n=1 , {t(tar)
n }N−1

n=1 , and {tn}N
n=1 as

the parameters to tune. In later experiments, it was demonstrated that a gradient-based
approach can also be effectively applied using the forward KL metric.
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3.2.4 Putting Them Together

After tuning the time points according to the above algorithm, we can now perform IS with
the designed proposal and target distributions. We summarize our proposed IS algorithm in
Algorithm 1.

Algorithm 1 Importance Sampling with Bidirectional Consistency Models

Require: Time steps {tn}N
n=1, proposal time steps {t(prop)

n }N−1
n=1 , target time steps {t(tar)

n }N−1
n=1 ,

Bidirectional Consistency Model f θ , target distribution π̄ , number of samples K
Ensure: Samples {x(k)0 }K

k=1

1: for each k from 1 to K do
2: Sample x(k)tN ∼N

(
0, t2

NI
)

3: for each n from N to 2 do
4: Compute x(k)

t(prop)
n−1

← f θ

(
x(k)tn , tn, t

(prop)
n−1

)
5: Sample x(k)tn−1

∼N

(
x(k)

t(prop)
n−1

,

(
t2
n−1−

(
t(prop)
n−1

)2
)

I
)

6: Compute x(k)
t(tar)
n−1

← f θ

(
x(k)tn−1

, tn−1, t
(tar)
n−1

)
7: end for
8: Compute x(k)t1 ← f θ

(
x(k)t2 , t2, t1

)
9: Sample x(k)

t(prop)
1

∼N

(
x(k)t1 ,

((
t(prop)
1

)2
− t2

1

)
I
)

10: Compute x(k)
t(tar)
1

← f θ

(
x(k)t1 , t(prop)

1 , t(tar)
1

)
11: Set x(k)0 ← x(k)

t(prop)
1

{Return samples at time tprop
1 }

12: end for
13: return {x(k)0 }K

k=1

Notice that the importance weights wk for k = 1, . . . ,K can be computed as:

wk =

π̄(x(k)0 )∏
N
n=1 N

(
x(k)tn ;x(k)

t(tar)
n

,

(
t2
n −
(

t(tar)
n

)2
)

I
)

N

(
x(k)

t(prop)
1

;x(k)t1 ,

((
t(prop)
1

)2
− t2

1

)
I
)

∏
N
n=2 N

(
x(k)tn ;x(k)

t(prop)
n

,

(
t2
n −
(

t(prop)
n

)2
)

I
)

(3.24)
Similar as before, the normalized importance weights can be computed using w̄k =wk/∑

K
k=1 wk.

The samples {x(k)}K
k=1, along with the normalized importance weights {w̄k}K

k=1, can be used
to apply IS for integral estimation tasks.
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3.3 Chapter Summary

In this chapter, we introduced the mathematical formulation for the baseline method, which
combines IS with DDPM, as well as the formulation for our proposed method, which
combines IS with BCMs or BCTMs. Our approach involves redesigning the proposal
and target distributions to offer better flexibility in matching each other, enabled by the
introduction of additional parameters. We also discussed optimization metrics that can be
used to tune these parameters effectively. With the theoretical foundations established in this
chapter, we will proceed to the experimental validation in the next chapter, where we will
test both the baseline method and our proposed method and compare their performances.



Chapter 4

Experiments and Results

In the previous chapter, we introduced the baseline method—importance sampling with
DDPM—and our novel approach, which employs importance sampling with BCM or BCTM.
In this chapter, we present experiments designed to evaluate and compare both methods. The
primary objective is to assess the performance of our proposed method against the baseline
in both controlled and practical settings. This chapter is organized into two sections:

1. In the first section, we experiment with a dataset generated by Gaussian Mixture
Models (GMMs). A significant advantage of GMMs is that the score function can
be derived analytically. Consequently, we first employ the analytical score to solve
the ODE trajectory. This scenario is equivalent to having a perfect BCM or BCTM.
The primary aim of using the analytical score in these experiments is to verify the
plausibility of our method without considering model errors. Subsequently, we train
the score model, BCM, and BCTM, and then evaluate and compare the performance of
importance sampling with DDPM using the score model against our method utilizing
BCM or BCTM.

2. In the second section, we transition to a more practical setting, employing a real-world
dataset that simulates the dynamics of supercooled water molecules. This dataset
comprises samples representing atomic configurations constrained within a simulation
box. We will rigorously compare the performance of both our baseline and proposed
algorithms on this challenging task.
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4.1 Synthetic Dataset Using Gaussian Mixture Models

In this section, we explore the use of Gaussian Mixture Models (GMMs) to test our proposed
method. A significant advantage of GMMs is that the score function can be derived analyti-
cally (shown in Appendix A.2). In subsequent subsections, we will utilize samples generated
by GMMs to train score-based diffusion models and the family of consistency models. The
goal of this section is to compare our method with the baseline in a relatively simple setting
before applying it to more complex, practical problems involving molecular datasets.

4.1.1 Experiments with Analytical Score

In this experiment, we use the analytical score function to address the following key questions:

• Without considering errors in the score model or the BCM model, can our method
reduce the number of steps required to achieve the same percentage of ESS as the
baseline DDPM model? Additionally, how many steps can our method reduce in
comparison?

The primary goal of this subsection is to answer these questions and demonstrate the effec-
tiveness of our method in settings where visualization is possible. In the next subsection, we
will apply our approach to trained models and scale up the method to higher-dimensional
spaces, continuing to work within the context of data generated by GMMs.

Simple GMM with Two Components

We evaluate our method using the following GMM as the target distribution:

π(x) =
M

∑
m=1

ωmN (x; µm,σ
2
mI), (4.1)

where M = 2, ω1 = 2/3, ω2 = 1/3, and σ1 = σ2 = 0.15. The mean vectors are µ1 = 1
and µ2 = −21, where 1 is a vector of ones with d dimensions. We explore dimensions
d ∈ {1,2,3,5}.

Comparing ESS

As described earlier, our method uses ESS estimates or the forward KL divergence as
the loss function to optimize the time points. However, when using the analytical score,
the ODE trajectory must be solved using an ODE solver (e.g., Euler’s method). During
backpropagation, the gradient cannot propagate properly in this scenario. Therefore, we
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employ a greedy-based grid search to find the optimal values for the parameters {ηn}, {γn},
and {µn} that were specified earlier. The procedure involves fixing two of the parameter sets
while performing a grid search for the third parameter over values in the range [0,1]. This
process is repeated for all parameters, and the optimal set is selected based on the lowest
loss.

It should be noted that this greedy grid-search algorithm may not perform as effectively
as gradient-based optimization, particularly in higher dimensions, where parameter tuning
becomes more challenging. Consequently, we limit our experiments to lower-dimensional
spaces for now. In later sections, where trained BCMs or BCTMs are used, we will demon-
strate that a gradient-based approach to optimizing the time steps is also feasible.

During our experiments, we found that the optimal {γn} are always the values such that
the proposal variance matches the target variance for each time interval. Therefore, we
adopt the parameterization for the proposal time points as previously shown in Eq. (3.22).
Consequently, during optimization, we only have two sets of parameters {ηn} and {µn} to
tune. We optimize the parameters of our algorithms using three metrics specified earlier, i.e.,
ÊSS

prop
, ÊSS

tar
, and forward KL divergence. We then use the optimal parameters found to

estimate ESS using samples from the proposal distribution, which serves as a preliminary
assessment of the IS algorithm’s effectiveness. Further integral estimation tasks will be
conducted to evaluate the method’s performance more thoroughly.

For our experiments, we use 1 million samples to estimate the metric. For each tuning metric,
we tune the parameters five times and evaluate the ESS for each set of parameters across
a number of steps ranging from 3 to 10. We then visualize the mean ESS along with the
25% and 75% quantiles for the ESS across the five experiments. For the baseline method,
since there are no parameters to tune, we evaluate the ESS five times and plot the mean along
with the 25% and 75% quantiles for 20 different numbers of steps, ranging from 3 to 200,
arranged evenly in log space. We summarize and visualize the results for d ∈ {1,2,3,5} in
Figure 4.1.

Integral Estimation Tasks

As we discussed previously, high ESS does not necessarily indicate low IS variance. There-
fore, we need to perform integral estimation tasks to validate the reliability of the estimated
ESS and to identify cases where the proposal distribution fails to effectively cover the target
distribution. We consider three different test functions φ for the integral estimation task. To
obtain the true value for Eπ [φ(x)], we sample a large number of samples (1 million) x∼ π

from the true target distribution and estimate the integral using standard MC methods.
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Fig. 4.1 Comparing ESS proportion between the proposed algorithm and the baseline algo-
rithm. The ESS proportion is plotted against the number of time steps for our method with
optimal parameters tuned via forward KL (blue curve), ÊSS

prop
(purple curve), and ÊSS

tar

(green curve), as well as for the baseline algorithm (red curve). All ESS proportions are
estimated using 1 million samples from the proposal distribution.
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We then proceed to estimate the integral using IS with both our method and the baseline
method, comparing the results with the true value. This comparison serves as an additional
metric, complementing the ESS, to provide a more comprehensive evaluation of IS perfor-
mance. Before performing the integral estimation task, we need to fix the number of time
steps for our method and for the baseline method. For the baseline DDPM method, as shown
in Figure 4.1, 100 steps yield a comparable proportion of ESS to our method. Therefore, we
will fix the number of steps for the baseline method at 100. For our proposed method, we
choose the number of steps that correspond to the largest mean ESS. The number of samples
we use in both our method and the baseline method will also be 1 million. We summarize the
results in Table 4.1.

Visualizing Marginal Distributions

In addition to the integral estimation task for evaluating the effectiveness of our algorithm,
we also provide visualizations to examine the coverage of the proposal distribution relative to
the target distribution. Using the notations from Chapter 2, and given that we have access to
the true target distribution π for this toy dataset, we draw samples x(tar)

t0:N
∼ qθ from the target

distribution, as well as samples x(prop)
t0:N

∼ pθ from the proposal distribution. We choose d = 1
and N = 6 to visualize the samples using three sets of optimal parameters identified by three
different metrics.

However, even in a one-dimensional space, visualizing samples from t0 to t5 together is still
challenging. One possible approach to visualization is to plot samples for pairs of time points.
We selected three pairs of time steps—specifically, (t0, t2), (t1, t2), and (t1, t5)—to visualize
and support our subsequent discussion. The visualization is presented in Figure 4.2. In
these visualizations, the blue points represent the sample distribution of the target, while the
orange points represent the sample distribution of the proposal. Ideally, for a well-behaved
IS algorithm, we would expect the proposal sample distribution to effectively cover the target
sample distribution.

Result Discussion

We now discuss the results for the baseline method and our method tuned using three different
metrics:

• Baseline DDPM: From Figure 4.1, we can observe that as the number of steps
increases, the ESS proportion increases as well. Eventually, the ESS proportion will
saturate at a certain number of steps, and further increasing the number of steps will
not yield any significant improvement in ESS proportion (although this saturation
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Table 4.1 Summary of integral estimation results for experiments using an analytical score.
The task is performed with four different test functions: ∥x∥2

2, log∥x∥1, and cos(∥x∥2). We
evaluate five methods, including one using true samples from the target distribution, which is
equivalent to performing IS with the proposal being the target distribution, ensuring an ESS
of 100%. The estimation results using true samples serve as a reference (true value), against
which other results are compared. We also present results for the baseline method and our
proposed method, with optimal parameters tuned via three different metrics. The task is
conducted in four different dimensional spaces using 1 million samples. Each experiment is
repeated 5 times, with the mean and standard deviation reported. The number in parentheses
indicates the number of time steps used to obtain the result.

Task Eπ [φ(x)] ∥x∥2
2 log∥x∥1 cos(∥x∥2) ESS (%)

1D
True Sample 2.150±0.002 0.156±0.000 0.206±0.000 100
DDPM (100) 2.150±0.003 0.156±0.001 0.206±0.001 22.9±0.1

Ours
(

ÊSS
prop

, 6
)

2.189±0.011 0.175±0.008 0.194±0.004 21.6±21.0

Ours
(

ÊSS
tar
, 3
)

2.152±0.004 0.156±0.001 0.205±0.001 32.2±0.0
Ours (Forward KL, 3) 2.151±0.003 0.156±0.001 0.205±0.001 29.2±0.0

2D
True Value 4.297±0.004 0.894±0.000 −0.233±0.000 100
DDPM (100) 4.300±0.010 0.894±0.001 −0.234±0.001 6.9±0.3

Ours
(

ÊSS
prop

, 6
)

4.299±0.014 0.905±0.005 −0.237±0.007 29.2±18.1

Ours
(

ÊSS
tar
, 4
)

4.297±0.009 0.894±0.001 −0.233±0.002 5.2±0.0
Ours (Forward KL, 6) 4.271±0.061 0.892±0.007 −0.230±0.010 0.4±0.3

3D
True Value 6.451±0.002 1.310±0.000 −0.442±0.000 100
DDPM (100) 6.455±0.027 1.311±0.004 −0.441±0.005 1.5±0.6

Ours
(

ÊSS
prop

, 10
)

6.396±0.003 1.311±0.000 −0.438±0.001 35.8±2.5

Ours
(

ÊSS
tar
, 3
)

6.479±0.058 1.313±0.005 −0.444±0.005 0.8±0.0
Ours (Forward KL, 5) 6.468±0.324 1.311±0.023 −0.439±0.017 0.9±1.0

5D
True Value 10.750±0.006 1.830±0.000 −0.498±0.000 100
DDPM (100) 10.735±0.053 1.829±0.003 −0.498±0.003 0.3±0.2

Ours
(

ÊSS
prop

, 6
)

9.825±0.01 1.789±0.001 −0.538±0.001 54.7±11.5

Ours
(

ÊSS
tar
, 3
)

10.906±0.279 1.836±0.013 −0.489±0.018 0.0±0.0
Ours (Forward KL, 3) 10.752±0.198 1.830±0.008 −0.507±0.012 0.9±0.7
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Fig. 4.2 Visualization of samples from the target distribution (blue points) and the proposal
distribution (orange points) using optimal parameters tuned by three different metrics. Sam-
ples are visualized at three pairs of time points: (t0, t2), (t1, t2), and (t1, t5). Each column
represents the visualization of the proposal and target distributions using optimal parameters
tuned by each respective metric.
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is not shown in our plot). For this particular problem, DDPM typically requires a
large number of steps (at least 100) to achieve a reasonable ESS proportion. From
Table 4.1, we can see that with a large number of steps, the DDPM method performs
well, showing no noticeable error compared to the true value. This result validates
the integration of IS with score-based diffusion models and suggests that enhancing
efficiency remains crucial for applying this algorithm in practical scenarios.

• Ours (ÊSS
prop

): For our algorithm, tuning based on ÊSS
prop

consistently results in
high ESS across all dimensions, which is expected since this metric directly measures
the performance of our IS algorithm. However, as shown in the integral estimation
results in Table 4.1, the parameters found by tuning this metric consistently lead to
large errors compared with the true values, even when a large number of samples are
used to estimate the integral and the ESS proportion is high. The underlying reason
is that the proposal distribution only partially covers the target distribution. This can
be observed in the first column of Figure 4.2, which shows the visualization of the
target and proposal sample distributions for parameters tuned using ÊSS

prop
. The

proposal sample distribution clearly fails to fully cover the target sample distribution,
explaining why we observe a high ESS proportion but significant error in the integral
estimation tasks. This confirms that tuning based on ÊSS

prop
is not a valid approach

for our algorithm.

• Ours (ÊSS
tar

): From Figure 4.1, we can observe impressive results for the parameters
tuned using this metric: the highest ESS proportion is achieved with only three time
steps, and adding more time steps does not further improve the ESS. From the integral
estimation results in Table 4.1, the parameters found using this method perform
equally well compared to the baseline DDPM method. However, a limitation of this
metric becomes apparent as the dimension d increases—the ESS proportion drops
significantly.

The reason for this can be seen in the visualization of proposal and target sample
distributions shown in the middle column of Figure 4.2. In the first plot for xt2

against xt0 , although the proposal distribution fully covers the target distribution, it
is excessively wide compared to the target sample distribution, leading to a rapid
decline in ESS as the dimension increases. The proposal distribution becomes too
wide because, in our algorithm, the samples xt1 are mapped to xt0 according to the
deterministic ODE, and then noise is added to form the final proposal distribution. For
the optimal parameters found using ÊSS

tar
, the suggestion is to add a large amount of

noise at this step to form the proposal distribution.
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We hypothesize that this occurs because, when using Gaussian distributions, the pro-
posal and target distributions can match well if the ODE trajectories used to transform
variables (see Figure 3.4) are linear. If the trajectories are nonlinear, aligning the
proposal and target distributions becomes more challenging. Additionally, ODE tra-
jectories are approximately linear when t is large, with most nonlinearity occurring at
small t. To ensure that the proposal covers the target distribution, tuning ÊSS

tar
may

result in the addition of large noise at the last step to bypass the nonlinear trajectories
and form the proposal distribution. While this approach might be the simplest, it may
not be the most effective, as it only works in low dimensional space.

We leave the verification of this hypothesis and potential improvements to this metric
as future work.

• Ours (Forward KL): Finally, we discuss the performance of the algorithm using
parameters tuned with forward KL. From Figure 4.1, we observe that the optimal
parameters found by forward KL lead to a relatively low ESS proportion in low-
dimensional spaces compared to the parameters found by ÊSS

prop
, but it shows higher

ESS proportions in higher-dimensional spaces. From Table 4.1, the integral estimation
results of parameters found using forward KL show no significant discrepancies
compared to the true values.

In the visualization of proposal and target sample distributions in Figure 4.2, forward
KL produces the best alignment between the proposal and target distributions compared
to the other two methods. Ideally, this alignment should result in a high ESS proportion,
which contradicts the experimental results. The reason tuning this metric leads to
lower ESS is that the tails of the proposal and target distributions do not match well.
Since we do not have access to the analytical form of the forward KL divergence, we
must estimate it using samples from the target distribution. This estimation does not
approximate the tails accurately, which leads to lower ESS when we use a large number
of samples for IS. Samples from the tail of the proposal may have a disproportionately
large influence on the variance of IS because the tails of the proposal and target do not
match well.

We now summarize the properties of the three metrics we investigated in Table 4.2.

4.1.2 Experiments with a Family of Consistency Models

We have demonstrated that our method requires significantly fewer time steps than DDPM
to achieve the same level of IS variance, given the availability of an analytical score. In
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Table 4.2 Comparison of the properties of three metrics used for tuning the algorithm:
ÊSS

prop
, ÊSS

tar
, and Forward KL. The asterisk (*) indicates that the Forward KL metric may

have limitations in proposal coverage, particularly in the distribution tails.

ÊSS
prop

ÊSS
tar

Forward KL

High ESS Proportion ✓ p ✓

Proposal Coverage p ✓ p∗

Gradient-based Optimization p ✓ ✓

Any Initialization ✓ p ✓

Improvement with More Steps ✓ p ✓

this subsection, we transition to a more practical setting. We begin by training a score-
based diffusion model, followed by distilling the pre-trained score model into a BCTM.
Additionally, we will train a BCM in isolation without using the pre-trained score. Our initial
goal is to compare the performance of the BCTM and BCM. Subsequently, we will apply the
better-performing model to our method and compare the results with the baseline DDPM
model. In this experiment, we aim to address the following questions:

1. Can our method effectively utilize a trained BCTM or BCM? How many steps can it
reduce compared to the baseline DDPM method?

2. How scalable is our method when using trained models? Up to how many dimensions
can our method effectively scale?

The primary goal of this subsection is to answer these questions and demonstrate the ef-
fectiveness of our method in a more practical setting compared to previous experiments.
We will first verify the performance of the BCTMs and BCMs, and then assess the overall
effectiveness of our method.

Evaluation of BCM and BCTM

Experiment Setup and Results: In Section 2.3.2, we extended the training of CTM to
BCTM. Before applying these models to our method, we first evaluate and compare the
performances of BCM and BCTM. Note that BCM is trained in isolation, meaning it does
not utilize the pre-trained score model during training. In contrast, BCTM is trained via
distillation using the pre-trained score model.
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After training both models, we first examine their denoising abilities. To do this, we sample
z ∼ N (0,T 2I) with T = 80, and then use BCM and BCTM to denoise the same z to
t = ε = 0.002 using only one NFE. We visualize the samples produced by both models
separately and compare them with the true samples from the target distribution. The results
are shown in Figure 4.3a.

Next, we test the noising abilities of both models. We begin by drawing samples x0 ∼ π from
the true target distribution. Then, we use the analytical score to solve the PF ODE, finding
the marginal distribution at t = 1 using x0. This represents the true marginal samples at t = 1.
We then use the same x0 to noise the samples using BCM and BCTM from t = 0.002 to
t = 1 using only one NFE, and compare the results with the true marginal distribution. The
comparison is visualized in Figure 4.3b.

Results Discussion: From Figure 4.3, we observe that both models are capable of solving
the PF ODE in both forward and backward directions. Notably, even though the training
times for BCM and BCTM are approximately the same, BCTM demonstrates superior
performance compared to BCM in terms of denoising. With just one NFE, BCTM produces a
sample distribution that is nearly identical to the true sample distribution, whereas the sample
distribution generated by BCM with one NFE still exhibits noticeable differences from the
true distribution (although this can be improved through multi-step sampling).

Beyond this evaluation, we will further assess the performance of these two models when
they are incorporated into our proposed IS algorithm.

Evaluation of Our Method

Comparing ESS: The experimental setup will be similar to that of the previous section,
except that we will now use gradient-based optimization to tune the parameters instead of a
greedy-based grid search.

As discussed earlier, there are three possible metrics that can be used to tune the parameters
of our algorithm. However, ÊSS

prop
has been empirically shown to lead to results with

large errors, and during experiments, we found that gradient-based optimization with this
metric is unstable, so we will not use it here. Another metric is ÊSS

tar
, which is compatible

with gradient-based optimization. However, we found that optimizing with respect to this
metric is highly sensitive to the initialization of the parameters. The parameters must be
carefully initialized to ensure that the proposal fully covers the target distribution (even if it is
allowed to be wider than the target) to stabilize the optimization process. This initialization
depends on the target distribution, and one way to obtain such initialization is to first run a
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(a) Start time t = 80, target time s = 0.002

(b) Start time t = 0.002, target time s = 1

Fig. 4.3 Visualization of denoising and noising performances of BCM and BCTMs. The first
pair of plots visualizes the sample distributions produced by BCM and BCTM using 1 step,
given the same starting noise, to examine the denoising ability of both models. The second
plot shows the marginal distributions at t = 1 produced by BCM and BCTM using 1 step,
given the same sample from the target distribution, to examine the noising ability of both
models.
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greedy-based grid search (for one loop through all parameters) and then use the results as
the initialization for gradient-based optimization. Despite this, we found that the optimal
parameters still struggle to scale up to high-dimensional spaces. Due to the complexity of
obtaining suitable initialization and the scalability issues, we will not use this metric either.
We leave the improvement of this metric for future work. Therefore, the metric we will use
is the forward KL divergence, estimated using samples from the target distribution.

Similar to before, we will visualize the proportion of ESS against the number of time steps
for our algorithm and for the baseline DDPM in d ∈ {1,3,5,10,20,50}. We will tune the
parameters five times, evaluate the ESS for each set of optimal parameters found, and plot
them against the number of steps for BCM and BCTM. We will also plot the ESS against the
number of steps for the baseline DDPM model using the trained score model. We will use
100,0001 samples to test our algorithm as well as the baseline DDPM method. We visualize
the ESS comparison results in Figure 4.4.

Integral Estimation Tasks: Additionally, we will perform the integral estimation task for
our algorithm here. Previously, we used integral estimation to check whether the tuning
metric led to results with large errors compared to the true value. Here, the goal of the
integral estimation task is to determine whether IS can correct the bias present in the original
model without IS and to confirm our proposed algorithm with BCTM or BCM does not result
in large errors.

Since BCTM performed better than BCM in the previous section, we will perform the integral
estimation task using BCTM. For our proposed method, we choose the number of steps that
correspond to the largest mean ESS according to Figure 4.4. We will estimate the integral
using two sets of samples: the first set of samples will be directly sampled from BCTM,
with the integral estimated using MC; the second set of samples will be obtained using our
algorithm, with the integral estimated using IS.

For the baseline DDPM model, we will fix the number of steps to 150. The integral will be
estimated using one set of samples obtained from DDPM. The integral will be estimated
using MC and IS in two ways. This approach will test whether IS can correct the bias in the
sample distribution and whether our proposed algorithm is more efficient than the baseline.
We summarize the results in Table 4.3.

1We reduced the sample size from the previously used 1 million due to a limitation in our method when
optimizing the forward KL divergence. This optimization results in a mismatch between the proposal and target
distributions in the tail regions. With a large number of samples, the tail samples significantly degrade the IS
estimation. We acknowledge this limitation and plan to address it in future work.
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Fig. 4.4 Comparison of ESS proportion between the proposed algorithm and the baseline
algorithm. For our proposed algorithm, we use BCM (blue curve) and BCTM (green curve),
applying a gradient-based approach to minimize the forward KL divergence between the
target and proposal distributions. The ESS proportion is estimated using 100,000 samples
from the proposal distribution. Our proposed algorithm consistently shows a significant
reduction in the number of time steps required to achieve the same ESS proportion as the
baseline method (red curve).
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Table 4.3 Summary of the integral estimation task using trained score models, BCM, and
BCTM. We first estimate the integral’s value using samples from the target distribution via
MC as a reference. Then, we test the baseline DDPM method and our proposed method
using MC and IS, comparing the results with the true values. The experiments are conducted
in four different dimensional spaces, with each integral estimated using 100,000 samples.
Each experiment is repeated 5 times, with the mean and standard deviation reported. The
number in parentheses indicates the number of time steps used to obtain the result.

Task Eπ [φ(x)] ∥x∥2
2 log∥x∥1 cos(∥x∥2) ESS (%)

1D
True Samples + MC 2.151±0.001 0.156±0.000 0.205±0.001 100
DDPM (150) + MC 2.096±0.001 0.145±0.000 0.220±0.000 N/A
DDPM (150) + IS 2.151±0.003 0.156±0.001 0.205±0.001 40.5±0.3
BCTM (1) + MC 2.013±0.002 0.094±0.001 0.247±0.001 N/A
BCTM (8) + IS 2.151±0.004 0.156±0.001 0.205±0.001 34.1±8.3

3D
True Samples + MC 6.448±0.002 1.311±0.000 −0.441±0.000 100
DDPM (150) + MC 6.344±0.003 1.305±0.000 −0.435±0.000 N/A
DDPM (150) + IS 6.448±0.012 1.310±0.001 −0.441±0.001 8.8±1.0
BCTM (1) + MC 6.146±0.003 1.273±0.000 −0.401±0.000 N/A
BCTM (9) + IS 6.467±0.020 1.313±0.002 −0.444±0.002 1.5±0.9

5D
True Samples + MC 10.751±0.005 1.830±0.000 −0.498±0.000 100
DDPM (150) + MC 10.589±0.008 1.825±0.000 −0.500±0.000 N/A
DDPM (150) + IS 10.804±0.042 1.833±0.002 −0.497±0.002 1.9±0.5
BCTM (1) + MC 10.258±0.005 1.803±0.000 −0.497±0.000 N/A
BCTM (7) + IS 10.652±0.061 1.826±0.003 −0.503±0.002 0.8±0.3

10D
True Samples + MC 21.494±0.012 2.529±0.000 −0.299±0.000 100
DDPM (150) + MC 21.222±0.015 2.525±0.000 −0.310±0.001 N/A
DDPM (150) + IS 21.618±0.196 2.532±0.005 −0.295±0.009 0.2±0.1
BCTM (1) + MC 20.171±0.008 2.496±0.000 −0.321±0.001 N/A
BCTM (9) + IS 21.261±0.427 2.521±0.011 −0.317±0.024 0.3±0.2

20D
True Samples + MC 42.986±0.024 3.225±0.000 −0.251±0.000 100
DDPM (300) + MC 42.768±0.078 3.223±0.001 −0.257±0.002 N/A
DDPM (300) + IS 42.982±2.063 3.226±0.023 −0.246±0.029 0.4±0.1
BCTM (1) + MC 39.414±0.101 3.182±0.001 −0.253±0.003 N/A
BCTM (6) + IS 38.737±1.584 3.175±0.019 −0.193±0.015 0.6±0.3
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Results Discussion: From Figure 4.4, we observe that across all dimensional spaces, our
proposed algorithm consistently outperforms the baseline DDPM method in terms of the
number of time steps required to achieve the same ESS proportion. Our method consistently
reduces the number of time steps by at least 90% compared to the baseline method, indicating
a significant improvement in efficiency. Notably, our method maintains an ESS proportion of
nearly 1% in 20-dimensional space using only 6 time steps, significantly outperforming the
baseline method. This result demonstrates the potential scalability of our proposed approach
to higher-dimensional problems. Within our algorithm, BCTM slightly outperforms BCM in
terms of ESS proportion, which aligns with our previous observation that BCTM has better
denoising ability than BCM.

Regarding the integral estimation task, both directly sample from DDPM and BCTM lead
to biased integral estimates compared to the true value. However, after applying IS with
either DDPM or BCTM, the integral estimation results are clearly corrected to be closer to
the true value, demonstrating the effectiveness of IS. It is important to note that our proposed
algorithm with IS exhibits large error compared to the true value in 20-dimensional space.
As the dimensionality increases, the mismatch between the tails of the proposal and target
distributions becomes increasingly problematic, severely impacting model performance. We
have observed similar results in 50-dimensional space.

4.1.3 Summary

To summarize, we have conducted two experiments with the toy dataset, one using an
analytical score and the other with a trained score. The key takeaway is that our proposed
IS algorithm consistently outperforms the DDPM model in terms of efficiency, reducing
the required time steps by at least 90% to achieve unbiased integral estimation results. The
parameters of our proposed algorithm can be tuned by minimizing the forward KL divergence
between the target and proposal distributions, though thisleads to mismatches in the tails,
especially in high-dimensional spaces, which we aim to address in future work.

4.2 Simulation of Supercooled Water Molecules

We have demonstrated the effectiveness of our method using the toy dataset generated by
GMMs. In this section, we shift our focus to a real-world problem involving the simulation of
water molecules at extremely low temperatures, specifically supercooled water. The dataset
comprises the 3D coordinates of each atom in a water molecule, which includes one oxygen
atom and two hydrogen atoms.
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We initially use MCMC methods to draw samples and construct the dataset. This dataset will
then be used to train diffusion models and consistency models. Additionally, we have access
to the true unnormalized energy function, which allows us to compute the unnormalized log
probability of the target distribution.

The primary goal of this experiment is to evaluate the performance of our method in this
real-world scenario and to assess its applicability to the complex dynamics of supercooled
water molecules.

4.2.1 Modification of Model Parameterization and Sampling Process

Equivariant Diffusion Models and Consistency Models

As introduced in Section 2.2.4, we modified the parameterization of the original Equivariant
Diffusion Model (EDM) based on DDPM, incorporating the parameterization introduced
by Karras et al. (2022) based on score-based diffusion models. We applied preconditioning
and adjusted the training method accordingly. This allows us to obtain a score model that
preserves the desirable equivariance property, making it suitable for learning from molecular
datasets.

For the family of consistency models, recall that all types are based on the parameterization:

Dθ (x; t) = cskip(t)x+ cout(t)Fθ (cin(t)x, t), (4.2)

where cskip(t), cout(t) and cin(t) are defined as in Karras et al. (2022). To achieve the desired
symmetry property, we use an Equivariant Graph Neural Network (EGNN) to parameterize
Fθ . This ensures that all types of consistency models preserve the equivariance necessary for
molecular datasets.

The EGNN model, as used by Hoogeboom et al. (2022); Satorras et al. (2021), accepts two
inputs: the 3D coordinates of atoms, x, and the atom features, h. In our experiment, the
atom features include the types of atoms (oxygen and hydrogen). The EGNN produces two
outputs: the predicted 3D coordinates, x̂, and the predicted atom features, ĥ. However, in
our experiments, we only require the prediction of the 3D coordinates of the atoms, so the
output of the predicted features is disregarded for both score-based diffusion models and
consistency models.
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Sampling Process for Equivariant Models

As introduced previously in Section 2.2.4, to preserve the equivariance property, the noising
and denoising distributions of x must be defined in a subspace where the center of gravity
is zero. We denote such a normal distribution as Nx(x; µ,σ2I), where ∑i xi = 0. Sampling
from a normal distribution with zero center of gravity is straightforward. As shown by Xu
et al. (2022), one can sample from a conventional normal distribution to obtain x̃, and then
project x̃ onto the subspace where the center of gravity is zero, resulting in x∼Nx. Note that
this sampling process is only applicable to isotropic normal distributions. The log-likelihood
for such a normal distribution can be computed as:

Nx(x; µ,σ2I) = (
√

2πσ)−(M−1)n exp
(
− 1

2σ2∥x−µ∥2
)
. (4.3)

where both x and µ are in the subspace with zero gravity. To apply our algorithm to
this specific experiment, it is necessary to replace the standard normal distribution N in
Algorithm 1 with the distribution Nx, where the center of gravity is zero.

4.2.2 Experiments with a Family of Consistency Models

The main goal of this experiment is to evaluate how our method performs compared to the
baseline DDPM method, to determine how much it can outperform the baseline, and to
understand the dimensionality our method can effectively scale to. Given that this dataset
is invariant to rotation, translation, and permutation, it is advantageous to use an E(3)
equivariant diffusion model and extend the consistency models, BCTMs, and BCMs to be
E(3) equivariant. We will begin by setting up the equivariant score-based diffusion models, as
well as the E(3) equivariant BCTM and BCM. Following this, we will assess the performance
of the models and then compare our method with the baseline method, evaluating their
respective performances.

Evaluation of BCM and BCTM

Experiment Setup and Results: We aim to train both score-based diffusion models and
consistency models on the water molecule dataset. To generate the dataset2, the number of
water molecules must be specified, after which the dynamics of the water molecules will
be simulated, and samples of atomic configurations will be drawn via MCMC. Note that
the dataset generation process is time-consuming, so we generate only 10,000 samples and

2The code to generate the supercooled water molecule dataset is provided by Javier Antorán and Laurence
Midgley.
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use these samples to train both the score-based diffusion model and the consistency models.
During training, the parameter settings are the same as in previous experiments, except that ε

is adjusted to 0.0002 instead of 0.002. This adjustment is necessary because the positions of
atoms are extremely sensitive, and even slight mismatches can result in unrealistic energy
values. Therefore, we choose a smaller starting time to ensure that the denoising process
reaches a time step where the noise on atomic positions is negligible for energy computation.

We generate two datasets: one with 1 water molecule and another with 3 water molecules.
After training, to evaluate the performance of BCM and BCTM, we first draw samples from
both BCM and BCTM using only one NFE, given the same noise sampled from the base
distribution. We then compute the energy of each sample and plot the energy histogram
against the true energy histogram of the actual samples. Additionally, we plot the pairwise
distances between all atoms and compare them with the true pairwise distances. The results
are summarized in Figure 4.5.

Discussion: From Figure 4.5, we can clearly observe that BCTM outperforms BCM in both
energy distribution and pairwise distance distribution. Learning the distribution of the energy
function without access to a pre-trained score may be too challenging for BCM. Unlike the
toy dataset used previously, the ODE trajectories here are much more complex due to the
inter-dependencies between the positions of the atoms. In this scenario, having a pre-trained
score greatly stabilizes the learning process and yields better performance, as demonstrated
by BCTM. Therefore, in the evaluation of our method, we will use only BCTM, as it provides
significantly better performance than BCM.

Additionally, we observe that for the dataset with 3 water molecules, the sample energy
histogram produced by BCTM fails to fully cover the true energy histograms. The same
issue is also present in the pre-trained score-based diffusion model. This highlights the
challenge of accurately learning the true distribution using diffusion or consistency models.
The underlying reason is that energy computation is extremely sensitive to the positions of
the atoms. When dealing with 3 water molecules (i.e., 9 atoms), even a slight mismatch in
the positions of two atoms can result in unrealistic energy values (and consequently very low
log probability).

This raises concerns about applying IS to correct bias since our samples from the model
do not fully cover the high-density regions of the true target distribution, leading to high
variance in IS estimation. Therefore, for the evaluation of our method, we will focus only on
the dataset containing 1 water molecule.



60 | Experiments and Results

3 4 5 6 7
Log Energy

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Energy Distribution

0.5 1.0 1.5 2.0 2.5
Distance (Å)

0

2

4

6

8

10

12

De
ns

ity

Pairwise Distances Between All Atoms

True Samples BCTM Samples BCM Samples

(a) 1 water molecule

5 10 15 20 25 30
Log Energy

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Energy Distribution

0 1 2 3 4 5 6 7 8
Distance (Å)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity

Pairwise Distances Between All Atoms

True Samples BCTM Samples

(b) 3 water molecules

Fig. 4.5 Visualization of BCM and BCTM performance in terms of sampling quality. The two
plots correspond to simulations with 1 water molecule and 3 water molecules. We visualize
the energy histogram and pairwise distances between all atoms using 5,000 samples drawn
from BCM and BCTM in 1 step, comparing them with the true distributions. BCM failed to
converge during training on the dataset containing 3 water molecules; consequently, we omit
these results from our analysis.
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Evaluation of Our Method

Experiment Setup: To evaluate our proposed algorithm, the experiment setup will be similar
to the previous experiments. We perform experiments using the models trained on the
datasets with 1 water molecule corresponding to d = 9 dimensional space, respectively. To
tune the parameters of our proposed algorithm, we optimize by minimizing the forward KL
divergence between the target distribution and the proposal distribution.

We first visualize the ESS proportion of our proposed algorithm compared to the baseline
DDPM method. An additional caveat is that computing the exact energy (and thus the exact
log probability) is time-consuming, which may limit our scalability with a large number
of samples (improving energy computation is considered future work beyond the scope of
this project). Therefore, we use 10,000 samples to evaluate the ESS proportion. The ESS
proportion is visualized in Figure 4.6. As before, we also provide the results for integral
estimation tasks using 10,000 samples generated by the diffusion model or consistency
models, and compare them with the true samples. The results are summarized in Table 4.4.
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Fig. 4.6 Comparison of ESS proportion between the proposed algorithm (green curve) and
the baseline algorithm (red curve) for the water molecule experiments with 1 water molecule.
Even in this more challenging task, our proposed algorithm demonstrates a significant
reduction in the number of steps required.

Results Discussion: From Figure 4.6, we observe that both methods exhibit lower ESS
proportions compared to the toy dataset. Additionally, our proposed IS algorithm still requires
fewer time steps to achieve the same level of ESS proportion, although the margin is smaller
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Table 4.4 Summary of the integral estimation task for molecular experiments with 1 water
molecule. The number in parentheses indicates the number of time steps used to obtain the
result. Each integral and ESS proportion is estimated using 10,000 samples. Each experiment
is performed 5 times, with the mean and standard deviation reported.

Task Eπ [φ(x)] 100∥x∥2
2 log∥x∥1 cos(100∥x∥2) ESS (%)

True samples + MC 1.377±0.000 −1.229±0.001 0.652±0.000 100

DDPM (80) + MC 1.374±0.000 −1.230±0.001 0.646±0.001 N/A
DDPM (80) + IS 1.402±0.042 −1.201±0.021 0.717±0.100 0.3±0.3

DDPM (200) + MC 1.375±0.001 −1.23±0.000 0.648±0.002 N/A
DDPM (200) + IS 1.377±0.001 −1.227±0.003 0.654±0.004 6.1±1.1

BCTM (11) + MC 1.334±0.000 −1.250±0.001 0.513±0.001 N/A
BCTM (11) + IS 1.377±0.014 −1.233±0.016 0.650±0.038 0.3±0.1

compared to the toy dataset. This is understandable, given that the ODE trajectories for the
water molecule dataset are significantly more complex than those of the toy dataset.

Furthermore, from Table 4.4, we see that with a low computing budget (around 80 time
steps), our method performs roughly equal to the baseline method, using only 11 time steps
in terms of ESS proportion. Both models, when incorporated with IS, can correct the bias of
MC estimation that directly samples from the model. However, when a higher computing
budget is available (i.e., more than 200 time steps), DDPM performs much better than our
proposed algorithm. Notably, increasing the computing budget for our method, by increasing
the number of time steps, does not result in a corresponding increase in ESS proportion,
unlike what is observed for the baseline DDPM. This suggests a potential limitation of our
proposed algorithm.

4.2.3 Summary

To summarize, in the water molecule experiment, we trained both BCM and BCTM on the
molecular datasets. We observed that BCTM, trained via distillation using a pre-trained score
model, performs much better than BCM trained in isolation, consistent with our observations
from the toy dataset. During the evaluation of our proposed algorithm, we found that it
still reduces the number of steps required by the baseline DDPM and verified that both
the baseline and our algorithm can be used to correct the bias in the sample distribution.
However, this experiment also highlighted a potential limitation of our algorithm: the lack of
a satisfactory trade-off between compute budget and IS performance. We suggest possible
ways to overcome this limitation in Section 5.2.
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4.3 Chapter Summary

In this chapter, we presented the results of two experiments—one with a toy dataset and one
with a molecular dataset—and discussed the implications of the results, pointing out possible
limitations of our proposed algorithm. To summarize, our proposed algorithm consistently
shows efficiency improvements across all tasks, demonstrating significant potential for
practical applications. However, it is also limited by the tuning metric used to optimize
the parameters, which impacts the scalability of the algorithm. Additionally, our proposed
algorithm does not exhibit performance increases with a higher computing budget, indicating
a lack of an explicit trade-off between compute and performance. We leave the improvement
of our algorithm as future work.



Chapter 5

Conclusions and Future Work

In this work, we proposed a sampling algorithm that combines IS and Bidirectional Consis-
tency (Trajectory) Models, enabling the acquisition of unbiased samples with significantly
fewer time steps than when using IS and DDPM in isolation. Our algorithm also has the
potential to scale to high-dimensional spaces, overcoming the limitations of the baseline
method. We presented the mathematical formulation of both the baseline DDPM method
and our proposed algorithm, providing a solid theoretical foundation. Additionally, we
introduced the parameters of our algorithm, offering flexibility in deploying it to various
target distributions. While this flexibility is advantageous, it also presents the challenge of
parameter tuning. We proposed and tested three potential metrics for tuning, each with its
own advantages and disadvantages. Among them, minimizing the forward KL divergence
between the target distribution and the proposal distribution showed the most promising
results, especially in scaling to high-dimensional spaces.

We conducted extensive experiments to evaluate the performance of our proposed algorithm
against the baseline. In all cases, our algorithm consistently outperformed the baseline
in terms of the number of time steps required to achieve comparable performance. The
experiment involving supercooled water molecules was particularly challenging due to the
difficulties in training diffusion and consistency models. By extending BCTM and integrating
it with EGNN to incorporate appropriate equivariance properties, both the score model
and BCTM demonstrated promising results in sampling from molecular energy functions,
although there is room for further improvement.

Our proposed algorithm also outperformed the baseline in challenging experiment of water
molecules, albeit by a smaller margin than in the toy dataset experiments. However, both our
algorithm and the baseline struggled to generate unbiased samples for datasets containing
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two or more water molecules, likely due to the complex dependencies between atoms, which
complicate the learning of ODE trajectories.

In summary, our proposed algorithm is theoretically grounded and has shown promising
results in the experiments conducted. With further refinement, it has the potential for practical
application, offering significant benefits in terms of efficiency and accuracy in predictions.

5.1 Limitations

The limitations of our work are as follows:

• The tuning process is currently constrained by the chosen metric. Although the
forward KL divergence metric used for parameter tuning shows promise, it is not
flawless. Specifically, it does not ensure a good match between the proposal and target
distributions in the tails, which limits the scalability of our algorithm. Other potential
metrics, such as ÊSS

prop
and ÊSS

tar
, also have their own shortcomings and require

further refinement.

• We did not observe a consistent relationship between IS performance and the number
of time steps. Unlike the DDPM baseline method, our method does not exhibit a clear
benefit from increasing the number of steps. Ideally, we would like to establish an
explicit trade-off between computational budget and the algorithm’s performance.

• The supercooled molecule experiments we conducted may have been too challenging.
Training a score-based diffusion model or consistency models on this dataset is difficult,
which significantly affects the evaluation of our proposed algorithm’s performance.
This challenge prevents us from making accurate comparisons between our algorithm
and the baseline.

5.2 Future Work

We now outline potential future directions that could further enhance the performance of our
proposed algorithm.

• In practice, the baseline DDPM method performs well with a very large number of
steps (potentially thousands), achieving reasonable ESS proportions even in high-
dimensional spaces. However, as discussed in the limitations section, our method does
not exhibit clear performance improvements with an increased number of time steps.
To combine the strengths of both methods, we propose reparameterizing our algorithm
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within the BCTM framework, possibly by introducing additional parameters. This
modification could allow the new algorithm to automatically interpolate between the
baseline DDPM model and our current approach. Consequently, increasing the number
of time steps would yield clear benefits, while still requiring significantly fewer steps
than the DDPM baseline.

• It is important to note that our algorithm is not restricted to molecular datasets. In
fact, any application requiring unbiased samples could potentially benefit from our
proposed algorithm. Therefore, we suggest extending our experiments to more general
datasets, possibly in domains beyond molecular simulations.
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Appendix A

Extended Background

A.1 Training Consistency Models

Training Consistency Models via Distillation

Following Song et al. (2023), CMs are proposed based on the score-based diffusion model
used by Karras et al. (2022). Therefore, for both of the training methods, we will use the
exact same diffusion SDE as in Eq. (2.25) and the corresponding PF ODE as in Eq. (2.26).

Assume a pre-trained score model sφ (x, t) is available. Consider discretizing the time as
ε = t1 < t2 < · · ·< tN = T . The exact arrangement of the time steps will follow Karras et al.
(2022) as shown in Eq. (2.29). With N large enough, an accurate estimation of xtn can be
obtained from xtn+1 by running one discretization step of a numerical ODE solver. This
estimate, x̂φ

tn , according to the ODE in Eq. (2.26), is given by:

x̂φ

tn := xtn−1− (tn− tn+1)tn+1sφ (xtn+1, tn+1) (A.1)

Note that due to our specific choices for f and g for the diffusion SDE, given x0 ∼ pdata, xtn+1

can be obtained by sampling from N (xtn+1 ;x0, t2
n+1I). Therefore, to train the consistency

models, after sampling n∼U [1,N−1] (a uniform categorical distribution on 1, . . . ,N−1),
we can first diffuse a data sample x0 to xtn+1 and then run one step of Euler’s method to get
x̂φ

tn . The goal is to minimize the output differences on the pair (x̂φ

tn,xtn+1). The following
Consistency Distillation (CD) loss will be used as the optimization objective:

L N
CD(θ ,θ

−;φ) := En,x,xtn+1

[
λ (tn)d( f θ (xtn+1, tn+1), f

θ
−(x̂φ

tn, tn))
]

(A.2)
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where λ (·) ∈ R+ is a positive weighting function, θ
− denotes the running average of past

values during optimization, and d is the metric function..

Training Consistency Models in Isolation

If a pre-trained model is not available for training the consistency models, an alternative
approach is needed. Given xtn+1 = x+ tn+1z where x ∼ pdata and z ∼N (0, I), Song et al.
(2023) used the approximation x̂φ

tn ≈ x+ tnz, using the same x and z, to replace the previous
value. They also proved that the following Consistency Training (CT) loss can be used to
train the consistency models from scratch:

L N
CT(θ ,θ

−) := Ez,x,tn [λ (tn)d( f θ (x+ tn+1z, tn+1), f
θ
−(x+ tnz, tn))] (A.3)

According to Song and Dhariwal (2023), several improved techniques were proposed to
enhance the performance of CT.

A.2 Derivation of Analytical Score of GMM

Derivation of Analytical Score

For a given GMM, denoted as π , with M components in d-dimensional space, the log-
likelihood can be expressed as:

logπ(x) = log
M

∑
m=1

ωmN (x; µm,σ
2
mI), (A.4)

where ∑
M
m=1 ωm = 1 represents the weights for each component, and µm ∈ Rd and σ2

m ∈ R+

for m = 1, . . . ,M are the mean and variance of each component, respectively. In this context,
we are assuming a simplified variance that is isotropic across all components.

According to the diffusion SDE outlined in Eq. (2.25), the noise distribution at time t ∈ [ε,T ]
can be expressed as:

log pt(x) = log
M

∑
m=1

ωmN (x; µm,(σ
2
m + t2)I). (A.5)

The score, ∇x log pt(x), can be obtained by differentiating the above expression with respect
to x. In practice, this can be computed through backpropagation in any deep learning
framework. With the analytical score in hand, we can accurately trace the PF ODE trajectory



A.2 Derivation of Analytical Score of GMM | 71

with minimal error, provided the number of steps is sufficiently large. This setup allows us
to test whether our method is effective in scenarios analogous to having a perfectly trained
BCM or BCTM.

As previously described, the baseline method in our experiments will be the DDPM sampler.
Given the analytical score, the estimate x̂0 can be obtained using Tweedie’s formula:

x̂0 = xt + t2
∇x log pt(x). (A.6)

This estimated x̂0 will be used in the proposal distribution as shown in Eq. (3.12), while the
target distribution will remain consistent with that presented in Eq. (3.9).
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