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Abstract

Messenger RNA (mRNA) has emerged as a crucial tool in biomedicine, making significant
advancements in the treatment and prevention of diverse diseases. The inherent instability
of mRNA necessitates a robust delivery mechanism, primarily provided by ionizable lipid
nanoparticles (LNPs) (Kularatne et al., 2022; Mitchell et al., 2021). These LNPs consist
of four distinct lipid types, among which the ionizable amine-containing lipids are pivotal.
LNPs with unique ionizable lipid structures are tailored to deliver mRNA to specific target
cells and tissues, underscoring the critical need for ongoing innovation in the design of
ionizable lipids to optimize mRNA-based therapeutics.

Deep generative models have emerged as a powerful solution to the inverse molecular
design challenge, enabling the translation of desired molecular properties into specific
molecular structures (Kusner et al., 2017; Liu et al., 2019; Simonovsky and Komodakis,
2018). However, a practical challenge arises as the molecular structures generated can often
be difficult or infeasible to synthesize (Gao and Coley, 2020). Thus, integrating synthesis
planning into the design of generative models is crucial.

In this project, we explore Monte Carlo tree search (MCTS)-based generative models
for the generation of ionizable lipids. We begin by constructing a dataset of purchasable
lipid building blocks, and develop two lipid property predictors—a lipid classifier and an
ionizability predictor—to assess whether candidate molecules are lipid-like or ionizable.
These predictors guide the MCTS in navigating the vast combinatorial chemical space
comprised of the building block dataset and a template-based reaction prediction model. We
introduce a policy network guided MCTS generative model capable of producing high-quality
ionizable lipids with available synthesis paths. Our achievements indicate that this project
offers a promising direction for ionizable lipid generation, also contributing to the broader
field of drug delivery.
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Chapter 1

Introduction

1.1 Overview and Motivation

The development of messenger RNA (mRNA)-based therapeutics marks a transformative
advance in the treatment and prevention of a wide range of diseases, including genetic
disorders, infectious diseases, and cancer (Kong et al., 2023; Sahin et al., 2014). Given the
intrinsic instability of mRNA, a robust delivery mechanism is crucial, with ionizable lipid
nanoparticles (LNPs) emerging as the leading technology for this purpose (Kularatne et al.,
2022; Mitchell et al., 2021). These LNPs comprise four distinct lipid types, among which
the ionizable amine-containing lipids are pivotal. They primarily facilitate the encapsulation
of mRNA within LNPs and enhance its delivery into the cellular cytoplasm, where it can be
translated into therapeutic proteins (Degors et al., 2019; Kim et al., 2021; Wittrup et al., 2015;
Xu et al., 2021). Notably, different LNPs often feature unique ionizable lipid structures,
emphasizing the importance of developing a diverse array of ionizable lipids. This diversity
is crucial for effectively delivering mRNA to various target cells and tissues, highlighting
the need for continued innovation in the design of ionizable lipids to facilitate mRNA-based
therapeutics.

Designing novel ionizable lipids is traditionally time-consuming and labor-intensive.
However, recent advancements in the integration of deep learning with combinatorial chem-
istry have shown great promise in accelerating this development (Xu et al., 2024). One of
the primary challenges in ionizable lipid generation is the effective exploration of a vast
combinatorial chemical space. The SyntheMol approach has demonstrated considerable
success in this area, utilizing Monte Carlo tree search (MCTS) to efficiently navigate through
expansive search spaces and generate desired molecules, complete with synthesis pathways,
particularly in the field of antibiotic development (Swanson et al., 2024).
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In this dissertation, we extend the application of the MCTS-based generative model to the
domain of ionizable lipid generation. Building on the foundation established by SyntheMol,
we have enhanced the naive MCTS approach and introduced a policy network guided MCTS
method. This advanced approach leverages the strengths of MCTS and integrates it with the
strategic direction provided by the policy network, aiming to optimize the generation process
and yield high-quality ionizable lipids more efficiently.

1.2 Main Contributions

The main contributions of this work are as follows:

• Construction of a lipid building block dataset We compiled a comprehensive dataset
of purchasable molecules suitable for use as ionizable lipid heads or tails. This building
block dataset can facilitate future ionizable lipid generation tasks.

• Development of a lipid classifier and an ionizability predictor We develop lipid
property predictors to assess whether a candidate molecule possesses lipid-like charac-
teristics or ionizable properties. Both predictors demonstrate reliable performance.

• Development of a policy network guided MCTS-based generative model for lipid
generation We propose and implement a generative model that leverages a policy
network to guide the MCTS in exploring the chemical space. This model effectively
generates high-quality products, complete with available synthesis pathways.

1.3 Outline

The main body of this dissertation is organised as follows:

• Chapter 2 introduces the background of the project, including a chemical background
of the fundamentals of ionizable lipids and a literature review of current machine
learning research in molecular generation.

• Chapter 3 details the construction process of our lipid building block dataset.

• Chapter 4 covers all methodologies discussed in the dissertation, starting with the
development of lipid property predictors. It then explores two MCTS-based generative
approaches and includes the evaluation metrics used.
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• Chapter 5 presents key experimental results, discusses the effectiveness of our pro-
posed methods in generating high-quality products, and examines the synthesis path-
ways identified by our model and their retrosynthesis performance.

• Chapter 6 concludes the dissertation, discussing the limitations of the current project
and outlining future work.





Chapter 2

Background

In this chapter, we provide a foundational overview essential for understanding our project,
focusing on the fundamentals of ionizable lipids and the integration of machine learning
in molecular generation. We begin by exploring the significance of ionizable lipids in
pharmaceutical contexts, detailing their chemical and biological characteristics, as well as
the synthesis challenges they present. We then shift our focus to the application of machine
learning in molecular generation, starting with an introduction to molecular representations.
This is followed by an examination of previous generative models used for molecular
discovery and a discussion on the challenges associated with synthesizability in computer-
aided molecular generations.

2.1 Fundamentals of Ionizable Lipids

Ionizable lipids are significant components of lipid nanoparticle (LNP) delivery systems.
This section delves into the critical role and design of these lipids within LNPs. We begin
with an introduction to LNPs, outlining their structure and function as delivery vehicles
for nucleic acids. Subsequent discussions emphasize the importance of ionizable lipids,
highlighting how their unique properties facilitate drug delivery. What’s more, we also
explore the evolution of ionizable lipid design, reviewing past researches that have shaped
current strategies in generating ionizable lipids.

2.1.1 Introduction to Lipid Nanoparticles

Messenger RNA (mRNA) has become a pivotal tool in biomedicine, applied across a spectrum
of fields including vaccine development, protein therapy, cell engineering, and gene editing
(Hou et al., 2021; Qin et al., 2022). Its extensive applicability has generated substantial
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Fig. 2.1 LNP structure. (Figure sourced from (Kularatne et al., 2022) and adapted from
(Evers et al., 2018))

interest in deploying mRNA to address diverse diseases (Kim, 2022; Mendes et al., 2022).
However, the intrinsic instability of mRNA demands a robust delivery system, typically
fulfilled by ionizable LNPs (Mitchell et al., 2021). LNPs as a drug delivery vehicle were first
approved in 2018 for the siRNA drug Onpattro (Akinc et al., 2019; Rüger et al., 2020). LNPs
became more widely known in late 2020 during the COVID-19 pandemic. The effectiveness
of this delivery method was demonstrated by the success of Comirnaty and Spikevax, two
SARS-CoV-2 vaccines approved amidst the COVID-19 pandemic, both of which employ
LNP-mediated mRNA delivery. (Nasreen et al., 2022; Patrignani et al., 2021).

Currently, LNPs represent the cutting-edge technology for delivering therapeutic nucleic
acids (Kularatne et al., 2022). The structure of LNPs is illustrated in Figure 2.1. LNPs have
core-shell arrangement with distinct layers playing specific roles. A core central region is
given by the cargo, such as mRNA in COVID-19 vaccines. After this, an inner shell layer
surrounds the core and helps maintain its integrity. Finally, the outer shell layer directly
interacts with the environment and plays a crucial role in the nanoparticle’s behavior.

LNPs are composed of cholesterol, a helper lipid, a PEGylated lipid, and an ionizable
amine-containing lipid (Eygeris et al., 2022). The cholesterol and helper lipids enhance
the structural integrity and stability of the LNP, helping to maintain its shape and form
(Kularatne et al., 2022). The PEGylated lipid helps maintain the stability of the particles
and also gives them stealth qualities, which reduce their buildup in the body’s cleansing
system, known as the reticuloendothelial system (RES) (Kularatne et al., 2022). The ionizable
amine-containing lipid is the most important. It facilitates the encapsulation of mRNA by
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becoming positively charged in acidic conditions, and helps in releasing mRNA into the cell
cytoplasm by disrupting endosomal membranes when re-protonated. Crucially, the ionizable
lipid only gains a positive charge at a physiological pH, around 6–7 (Carrasco et al., 2021).
This means it remains uncharged in the bloodstream, which is essential because positively
charged nanoparticles can be highly toxic (Stern and McNeil, 2007).

2.1.2 Importance of Ionizable Lipids

As is mentioned before, the ionizable lipid is the most crucial component of the LNP
formulation. Notably, each of the three FDA-approved RNA LNPs we discussed before
features a unique ionizable lipid structure, emphasizing their crucial role in LNP technology.
These lipids primarily help pack mRNA into LNPs and aid its delivery into the cell cytoplasm
for protein production (Degors et al., 2019; Kim et al., 2021; Wittrup et al., 2015; Xu
et al., 2021). An ionizable lipid typically has an ionizable amine head and two lipid tails
(Xu et al., 2024). This design allows the lipid to become positively charged in acidic
environments, aiding in the encapsulation of negatively charged RNA molecules during the
LNP creation process. At physiological pH, these lipids are neutral, avoiding the toxicity
seen with permanently charged lipids. When LNPs are taken into cells and reach the acidic
environment inside endosomes, the ionizable lipids are protonated once more. This disrupts
the endosomal membrane and releases the mRNA into the cytoplasm for its intended function
(Han et al., 2021).

In the post COVID-19 era, the scope of mRNA applications continues to broaden beyond
vaccination. The importance of developing a diverse range of ionizable lipids, capable of
effectively delivering mRNA to a variety of target cells and tissues, thus becomes increasingly
critical.

2.1.3 Ionizable Lipid Design

Over the past decade, high-throughput experimentation has transformed the pharmaceutical
industry by enabling quick screening of compound libraries for therapeutic targets, it has
also expanded towards the realm of small-molecule process chemistry (Mennen et al.,
2019). Recently, combinatorial chemistry, with the aid of multi-component reactions, has
facilitated the high-throughput synthesis (HTS) of extensive and chemically diverse lipid
libraries (Xu et al., 2024). Using a three-dimensional multi-component reaction system,
a combinatorial lipid library was generated and was then screened to identify a STING-
activating ionizable lipid effective for mRNA vaccine delivery (Miao et al., 2019). Over
1 000 lipid formulations were synthesized and evaluated, revealing that the most effective ones
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not only induced a strong immune response but also suppressed tumor growth and extended
survival in melanoma and human papillomavirus E7 tumor models (Miao et al., 2019). More
recently, using a high-throughput platform, a combinatorial library of biodegradable ionizable
lipids was synthesized and screened to develop inhalable delivery vehicles for mRNA and
CRISPR–Cas9 gene editors (Li et al., 2023). The lead lipid nanoparticles, suitable for
repeated intratracheal dosing, achieved efficient gene editing in lung epithelium, offering
potential for gene therapy in congenital lung diseases (Li et al., 2023).

Although HTS has been showcased to facilitate the synthesis of ionizable lipids, con-
structing and testing a more extensive lipid library for other biomedical properties like mRNA
transfection in different cell targets remains a time-consuming and costly task (Han et al.,
2021; Xu et al., 2024). AI-Guided Ionizable Lipid Engineering (AGILE) platform pioneered
combining deep learning methodologies with combinatorial chemistry to accelerate the
development of ionizable lipids for mRNA delivery (Xu et al., 2024). Specifically, AGILE
first developed a graph encoder to differentiate and depict distinct lipids through pre-training
on a vast unlabeled lipid dataset. The model was further trained with mRNA transfection
potency data derived from a selection of ionizable lipids. The trained model was then used
for in silico screening to predict and screen for the most effective lipid-based carriers for
mRNA delivery (Xu et al., 2024). The success of AGILE demonstrates a promising future
for using deep learning to rapidly design, synthesize, and evaluate new ionizable lipids for
mRNA delivery.

2.2 Machine Learning in Molecular Generation

Machine learning has proven to be a powerful tool for molecular generation. In this sec-
tion, we first explain how molecules can be represented for computational processing. We
then delve into the latest generative models that are shaping the field of molecular genera-
tion. Following this, we address the critical challenge of synthesizability, discussing recent
advancements aimed at overcoming this hurdle.

2.2.1 Molecular Representation

In the realm of machine learning for molecular generation, the representation of molecules
plays a pivotal role in determining the effectiveness of predictive models and generative
systems. Molecular representation refers to the method of encoding molecular structures into
a format that can be processed by machine learning algorithms.



2.2 Machine Learning in Molecular Generation 9

Simplified Molecular Input Line Entry System (SMILES)

SMILES is a widely used notation that encodes the structure of a molecule as a line of text
(Weininger, 1988). This representation captures the arrangement of atoms and bonds within
a molecule in a compact form, making it suitable for input into various machine learning
models. However, while SMILES is efficient for data storage and transfer, it does not directly
capture 3D molecular geometry.

Molecular Graphs

Molecular graphs represent molecules as graphs where atoms are nodes and bonds are edges.
This representation naturally accommodates the relational information between atoms and
can be directly utilized in graph-based machine learning models such as Graph Neural
Networks (GNNs) (Bronstein et al., 2021). These models have shown significant success in
predicting molecular properties and activities by exploiting the inherent graph structure of
molecular data (Kipf and Welling, 2016; Veličković et al., 2018).

Fingerprint Vectors

Fingerprint vectors are binary vectors that offer a fixed-size representation of molecules,
facilitating the systematic exploration of molecular structures. These vectors are produced
through algorithms that identify the presence or absence of specific substructures or molecular
features within a molecule (Schneider et al., 2015). Additionally, developments in count-
based fingerprints have enhanced this model by quantifying the occurrences of certain
substructures within a molecule (Zhong and Guan, 2023). Fingerprint vectors are particularly
useful in similarity searches and classification tasks.

2.2.2 Generative Models for Molecular Discovery

Deep generative models have emerged as a powerful solution to the inverse molecular design
challenge, enabling the translation of desired molecular properties into specific molecular
structures. These models are designed to quickly produce a wide array of molecules tailored
for particular uses. In the last few years, there has been a surge in various generative
model architectures for molecular generation, like variational autoencoders (VAEs) (Gómez-
Bombarelli et al., 2018; Kusner et al., 2017; Liu et al., 2019; Simonovsky and Komodakis,
2018), generative adversarial networks (GANs) (Assouel et al., 2018; Bian et al., 2019),
normalizing flow models (Madhawa et al., 2019; Zang and Wang, 2020), diffusion models
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(Luo et al., 2021; Shi et al., 2021; Xu et al., 2022) and reinforcement learning methods (Simm
et al., 2020; You et al., 2018).

However, a practical problem that obstructs the usefulness of these generative algorithms
is that proposed molecular structures may be challenging or infeasible to synthesize (Gao
and Coley, 2020). Without feasible methods for the chemical synthesis of these in silico-
generated molecules, their experimental validation and functional testing become impractical.
Therefore, designing generative models that take synthesizability into consideration is of
great significance.

2.2.3 Synthesis Planning in Molecular Generation

Synthesis planning is the process of determining how to synthesize a chemical compound
from available starting materials through a series of chemically feasible reaction steps (Coley
et al., 2018). While post-hoc synthesis planning for generated molecules is feasible (Gao and
Coley, 2020; Segler et al., 2017, 2018), a more effective approach is to incorporate synthesis
instructions directly into the design phase (Bradshaw et al., 2020).

To effectively integrate synthesis planning into molecular generation, adopting a bottom-
up approach can be highly advantageous. This method begins with existing building blocks
and strategically determines pathways to synthesize product molecules possessing desired
properties. The DOG framework exemplifies this innovative approach by concurrently
developing synthetic pathways alongside new molecules (Bradshaw et al., 2020). It utilizes a
novel neural architecture that represents multi-step molecular synthesis routes as directed
acyclic graphs (DAGs). This allows DOG not only to generate novel molecules but also
to directly produce the corresponding synthesis DAGs, ensuring that the design process
is intimately linked with practical synthesizability. While DOG was initially designed to
generate small drug-like molecules, its direct applicability to lipids—which are typically
larger and possess more complex structures—may be limited.

Instead of relying on generative models to generate synthesis routes, another viable
approach involves direct exploration within the combinatorial chemical space. SyntheMol
provides a compelling example of this strategy, utilizing Monte Carlo Tree Search (MCTS)
to effectively navigate through a vast chemical space (Swanson et al., 2024). This approach
not only generates desired molecules but also concurrently develops their synthesis pathways,
particularly demonstrated in the context of antibiotic development.
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2.3 Monte Carlo Tree Search

In this section, we provide the theoretical background and review related literature concerning
our Monte Carlo tree search (MCTS)-based generative methods. We begin by introducing
SyntheMol, an MCTS-based generative model developed for antibiotic discovery. This model
sets the groundwork for understanding how MCTS can be effectively utilized in molecular
generation. Following this, we delve into the enhancements of MCTS made through the
integration of policy networks, detailing how these adaptations improve the model’s ability
to navigate the search space.

2.3.1 Monte Carlo Tree Search in Molecular Generation

MCTS is a robust algorithm that integrates the stochastic nature of Monte Carlo simulations
with the structured decision-making processes inherent in tree searches (Coulom, 2006;
Kocsis and Szepesvari, 2006). At the core of MCTS is the iterative construction of a decision
tree, where simulations evaluate potential moves based on their likelihood of leading to
a successful outcome. This method, merging the depth of tree search with the breadth of
random sampling, adeptly manages the exploration-exploitation tradeoff. Such capability is
crucial in fields requiring sophisticated strategy and foresight, particularly making it highly
effective for molecular generation in vast combinatorial chemical spaces.

Recent study has shown that MCTS based generative models can perform successfully
in small-molecule antibiotic development (Swanson et al., 2024). SyntheMol leverages a
MCTS strategy to design new, synthesizable compounds (Swanson et al., 2024). MCTS is a
decision-making algorithm that explores potential moves in a vast space by building a tree of
decisions. In the context of SyntheMol, this involves assembling novel compounds using
about 132,000 molecular building blocks with known reactivities. The algorithm iteratively
builds a tree structure, where each node represents one or more potential molecular structures,
and branches represent possible synthesis steps using 13 well-validated chemical reactions.

The MCTS process prioritizes the exploration of chemical spaces that have a higher
probability of yielding synthesizable and effective molecules. It balances between exploring
new areas of the chemical space and exploiting known areas to refine promising candidates.
This ensures that the molecules designed are not only structurally novel but also have
a practical synthesis pathway, addressing a common issue with generative models that
often propose molecules that are challenging to synthesize. While most generative AI
methods designed for synthesizable molecules have been proposed with promising in silico
results (Bradshaw et al., 2019, 2020; Gao et al., 2021; Gottipati et al., 2020; Pedawi et al.,
2022), researchers of the SyntheMol study synthesized and experimentally validate their
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generated molecules. With a synthesis success rate of over 80% within 3–4 weeks, SyntheMol
demonstrates the effective use of MCTS in generating viable and active antibiotic compounds.

2.3.2 Guided Monte Carlo Tree Search

The pioneering work that integrates neural networks with MCTS is AlphaGo (Silver et al.,
a), which marked a significant milestone in the application of AI to strategic games like Go.
AlphaGo utilized two neural networks: a policy network that guided the search by predicting
the next best move, and a value network that evaluated potential game outcomes from current
positions. This dual-network setup enabled a profound and effective exploration of possible
moves, substantially enhancing strategic positioning and predictive capabilities.

Building upon the foundation set by AlphaGo, AlphaZero further refined this approach
by merging the policy and value networks into a single, more efficient neural network (Silver
et al., b). Unlike AlphaGo, which initially trained its policy network using supervised
learning from human expert games, AlphaZero was trained exclusively through self-play.
This training method allowed AlphaZero to autonomously develop and refine strategies,
enabling the system to adapt and optimize its game play without relying on external data,
representing a leap forward in AI autonomy.

When considering the application to molecular generation, the AlphaZero algorithm
provides a highly relevant framework for our method. Although our approach diverges from
AlphaZero in that it does not integrate a value network within the MCTS framework—instead
relying on a separate property predictor—the role of the policy network remains pivotal in
both contexts. In Go, AlphaZero’s policy network determines the optimal position for stone
placement, thereby optimizing game strategies by predicting opponents’ responses and the
consequential long-term impacts. Similarly, in molecular generation, our policy network
is instrumental in selecting the next building block for synthesis pathways. This selection
directly influences the structure and properties of the resultant molecules, akin to how each
move in Go influences the progression and outcome of the game.

This analogy underscores how strategic decision-making, facilitated by AlphaZero’s
policy network, can be effectively adapted to the complex challenges of molecular gener-
ation. By directing the MCTS to explore the most promising synthetic routes, the policy
network efficiently navigates vast chemical spaces, focusing on pathways most likely to yield
successful synthesis and optimal molecular properties.



Chapter 3

Dataset Construction

This chapter presents the detailed lipid building block dataset construction process. Our
method applies a bottom-up strategy to generate ionizable lipids. We first show the whole
process of constructing ionizable lipid head dataset and lipid tail dataset, and then separately
display our constructed building block datasets in detail. Note that the dataset creation
process is a collaborative effort with Yuxuan Ou.

3.1 Method

An ionizable lipid consists of an ionizable lipid head and several lipid tails. In order to find
the synthesizable pathway to generate ionizable lipids, we adopt a bottom-up approach which
selects lipid heads and lipid tails from building block datasets. The building block datasets
contain purchasable, i.e., publicly accessible, molecules that can act as lipid heads or lipid
tails. We filter valid lipid building blocks from the ZINC20 database (Irwin et al., 2020), a
large-scale chemical database designed for drug discovery and known for providing publicly
accessible chemical compounds for virtual screening.

Figure 3.1 shows the flowcharts for constructing lipid head and lipid tail building block
datasets. For the ionizable lipid head dataset, we first filter ionizable molecules from the
ZINC20 molecule dataset based on the following three criteria:

1. Molecular weight < 500 g/mol.

2. Log P < 0 where the log P is the logarithm (base 10) of the partition coefficient P,
which is the ratio of the concentrations of a compound in a mixture of two immiscible
phases: typically a hydrophobic solvent and water.

3. Molecules with amine functional groups but not ammonium based molecules.
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Fig. 3.1 Roadmap of lipid building block datasets construction. The upper flowchart illustrates
the process of filtering ionizable lipid head building block dataset. The lower flowchart
illustrates the process of constructing lipid tail building block dataset. Both datasets come
from publicly accessible molecule dataset ZINC20.

Since the lipid head building blocks are expected to react with lipid tail building blocks to
generate product lipids, we further filter reactive molecules from our ionizable molecule
set. We identify reactive molecules by filtering whether or not the molecule contains certain
functional groups that participate in common reactions. Specifically, we check whether our
candidate molecule contains carboxyl group (i.e., -COOH), hydroxyl group (i.e., -OH), or
amine group (i.e., -N or -NH or -NH2). If the candidate molecule contains any one or more
of the target functional groups, we consider the molecule to be reactive. Our filtered reactive
ionizable molecule set becomes our ionizable lipid head dataset.

In terms of lipid tail building block dataset, we again filter from the ZINC20 molecule
dataset so that our lipid tail building blocks are purchasable. We identify a lipid tail building
block if the molecule is similar to an actual lipid tail (i.e., the tail component of an existing
lipid). We use a lipid dataset sourced from the LipidMaps database and the SwissLipid
database (Aimo et al., 2015; Sud et al., 2007). Taking advantage of the Lipid Analyzer1,
an implemented toolkit for lipid tail extraction, we extract lipid tails from this lipid dataset.
The Lipid Analyzer finds the lipid head for a given lipid, we then extract lipid tails by
removing the head substructure. For a given molecular structure, the algorithm first recognizes
ring structures. For all possible arrangements of the rings, the algorithm then removes
carbon atoms that are not near any hydrophilic atom and not forming any ring. If only one
substructure remains after the operation, and if the log P value of this substructure is low
enough, this substructure will be identified as the lipid head. It’s then easy to extract tail
substructures by removing the head substructure.

1The Lipid Analyzer toolkit is developed by Mohammad Shahab Sepehri from University of Southern
California, the source codes are not publicly available.
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We then conduct a similarity comparison to filter those molecules from the ZINC20
dataset that are similar to a real lipid tail. The similarity is measured by the Graph Edit
Distance (GED) between two molecular structures, quantifying the minimum number of
operations required to transform one graph into another. We only select molecules that has
GED value smaller or equal to 1 with a real lipid tail. Meanwhile, we also consider the
similarity between molecular fingerprint representations, Daylight fingerprint and Extended
Connectivity Fingerprint 4 (ECFP4) are considered. The resulting molecules make up our
lipid tail building block dataset.

3.2 Lipid Head Dataset

The ZINC20 dataset has more than 1 billion molecules in total. Following the lipid head
building block dataset construction process described above, we get more than 33 million
molecules after filtering via molecular weight and log P values. We further refine the
candidate molecule set to 16.4 million after filtering via amine functional groups. Note that
one molecule may contain several target functional groups (i.e., -COOH, -OH, or -N), we
then filter reactive molecules based on how many functional groups each molecule contains.

Table 3.1 Number of Lipid Head Molecules with Different Functional Groups

No. Carboxyl No. Hydroxyl No. Amine Number of Molecules
0 0 2 76784
0 1 1 1454956
0 1 2 204324
0 1 3 17039
0 2 1 164071
0 3 1 12105
1 0 1 73175
1 0 2 26322
1 0 3 4496
1 1 1 19870
1 1 2 4883
1 2 1 2758
2 0 1 516
2 1 1 105
3 0 1 16

Table 3.1 shows the number of molecules we get based on different combinations of
the number of target functional groups. Our ionizable lipid head building block dataset has
above 2.7 million molecules in total.
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Fig. 3.2 Selected examples of lipid head building blocks with different functional groups.

Selected examples of our lipid head building blocks with different functional groups are
shown in Figure 3.2. The first row presents examples with no carboxyl group, one hydroxyl
group, and two amine groups; the second row presents examples with one carboxyl group,
no hydroxyl group, and one amine group; the third row presents examples with two carboxyl
groups, no hydroxyl group, and one amine group. Note that we only consider independent
amine groups that are linked to only simple carbon atoms. For example, in the first example
of the first row, we find a secondary amine group (i.e., -NH) linked to a carbonyl group (i.e.,
C=O, a carbon atom double-bonded to an oxygen atom). The linkage with the carbonyl
group forms a more complicated substructure, which influences the reactive performance
of the amine group. We therefore exclude this secondary amine group when counting our
target functional groups. Similarly, the nitrogen-nitrogen bond (i.e., N-N) which appears in
a five-membered nitrogen-containing ring influences the reactive property of the nitrogen,
and we also exclude these nitrogen atoms when counting the occurrence of amine functional
groups.
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Fig. 3.3 Selected examples of lipid tail building blocks.

3.3 Lipid Tail Dataset

We apply Lipid Analyzer to around 60 000 lipid molecules from LipidMaps, resulting in 5423
lipid tails with heteroatoms (i.e., atoms other than carbon or hydrogen) and 2753 lipid tails
without heteroatoms. We only focus on lipid tails without heteroatoms in our experiment.
After the similarity comparison with ZINC20 molecules, we construct a lipid tail building
block dataset with 5310 unique purchasable molecules.

Figure 3.3 shows selected examples of lipid tail building blocks. As we can see, a lipid
tail usually consists of a carbon chain and a functional group. The functional group may be
hydroxyl group, amine group, or a halogen atom.





Chapter 4

Methodology

This chapter presents the Monte Carlo Tree Search (MCTS) based generative models for
generating ionizable lipids from lipid building block dataset. We first present the lipid
property predictors, lipid classifier and ionizability predictor, for evaluating whether the
generated product has desired properties. The property predictors play important roles
in guiding the MCTS. We then present two MCTS based approaches. The naive MCTS
approach adopts a simple Upper Confidence Bound (UCB) action selection criteria to explore
the combinatorial chemical space. This approach serves as our baseline model. The policy
network guided MCTS approach takes advantage of a neural network to decide the action
selection.

4.1 Lipid Property Prediction

Our generative approach relies on a molecular property prediction model to evaluate the
potential of generated molecules to be an ionizable lipid. We use a binary classification
model, lipid classifier, to determine whether or not the generated product is lipid-like. In
terms of ionizability, although we’ve filtered ionizable molecules when constructing lipid
head building block dataset, the ionizability may be broken after reactions with tail building
blocks. It’s therefore crucial to establish an ionizability predictor to determine whether or
not the generated product is ionizable.

4.1.1 Lipid Classifier

The lipid classifier is expected to give a binary output indicating whether or not the given
molecule is lipid-like. We build the lipid classifier using a graph neural network. The dataset
we use to train the lipid classifier contains 180 000 lipid samples and 180 thousand non-lipid
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Fig. 4.1 Simplified visual depiction of the Chemprop property prediction model.

samples. The non-lipid samples are small molecules from the PubChem database (Kim et al.,
2016). Part of the lipid samples come from publicly accessible lipid dataset LipidMaps and
SwissLipids (Aimo et al., 2015; Sud et al., 2007). The rest of the lipid samples are generated
using a hierarchical graph encoder-decoder that employs significantly large and flexible graph
motifs as basic building blocks (Jin et al., 2020).

We train a Chemprop model to be our lipid classifier (Yang et al., 2019), a simplified visual
depiction of the model is shown in Figure 4.1. Chemprop is a molecular property prediction
model that employs a graph neural network for processing molecules and predicting their
properties. It begins by extracting basic features from the molecular graph, including the
type of each atom and bond. These features are used to construct feature vectors for each
atom and bond. Chemprop then carries out three rounds of message passing, using a neural
network layer to progressively integrate information from adjacent atoms and bonds. After
these message passing steps, it aggregates the combined feature vectors into a single vector
that encapsulates the entire molecule. This comprehensive feature vector is subsequently
processed by a two-layer feed-forward neural network to predict the molecular property.

4.1.2 Ionizability Prediction

What we need from an ionizable molecule is to have near zero charge in physiological pH
(i.e., pH = 7-7.5) and become positively charged in acidic environments (i.e., pH < 5). The
process of calculating the net charge of a molecule under a given pH is described below. For
simpler filtering purpose, we only consider the net charge under pH = 7.4 (i.e., represents the
physiological pH) and pH = 5 (i.e., represents the acidic environment). The roadmap of our
ionizability filtering process is depicted is Figure 4.2.

For a given molecule, we first identify all the ionizable groups in the molecule and their
respective pKa values. We make use of the MolGpKa module to determine acidic and basic
groups within a molecule and to estimate their respective pKa values (Pan et al., 2021).
Extending the SMARTS representation list of 38 ionizable substructures provided by (Ropp
et al., 2019), MolGpKa proposed a SMARTS list containing 144 ionizable groups so that
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Fig. 4.2 Roadmap of ionizability filtering via charge-pH.

all ionizable oxygen, nitrogen, and sulfur centers are covered. Given the SMARTS list, all
ionization centers are identified by substructure matching with RDKit (RDKit, nd). MolGpKa
trains two separate models to predict pKa values for acidic and basic ionizable groups
using graph convolutional neural networks (Kipf and Welling, 2016). The neural network
learns important chemical features and physical principles that are related to the acidity (or
basicity) of the root atom and makes reliable pKa predictions. The model was trained using
computational pKa values of bioactive compounds in the ChEMBL database(Gaulton et al.,
2012).

We then calculate the fractional charge of each ionizable group under a given pH value
using the Henderson-Hasselbalch equation (Petrucci et al., 2002):

pH = pKa+ log
[Base]
[Acid]

(4.1)

where the [ ] notation means concentration. When applying to the weak acid scenario
HA
(acid)

⇋ A−
(base)

+H+, we get the following equation:

pH = pKa+ log
[A−]
[HA]

(4.2)

Similarly, when applying to the weak base scenario B
(base)

+H+ ⇋ BH+

(acid)
, we get the following

equation:

pH = pKa+ log
[B]

[BH+]
(4.3)
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The fractional charge for acids can be calculated as

fractional charge =
10pH−pKa

1+10pH−pKa (4.4)

And the fractional charge for bases can be calculated as

fractional charge =
10pKa−pH

1+10pKa−pH (4.5)

Note that the fractional charge values in the above equations are absolute values. In reality,
acids typically get negative charges while bases get positive charges.

Given the fractional charges of each acidic group and each basic group, we can calculate
the net charge of a molecule by summing the fractional charges of all ionizable groups within
the given molecule.

Recall that an ionizable molecule is expected to have neutral charge at physiological pH
and positive charge in acidic environments. We therefore set our first filtering criterion to
be net charge >= 0.1 under pH = 5. In terms of physiological pH, in practice, we relax the
neutral charge condition to neutral or positive charge. The reason is that our ionizable lipid
will ultimately participate in the formation of a LNP, which contains four types of lipids (i.e.,
our ionizable lipid will be one of the four types), and the LNP is expected to be neutrally
charged under physiological pH. It’s therefore possible for our ionizable lipid to be positively
charged under physiological pH while maintaining the whole LNP to be neutrally charged.
Our second filtering criterion is thus set to be net charge >= 0 under pH = 7.4. If the given
molecule passes the two filtering criteria, the molecule is predicted to be ionizable.

In summary, we take advantage of the MolGpKa module to identify ionizable groups of a
given molecule and predict pKa values for each ionizable group. The net charge can then be
calculated based on the pKa values of these ionizable groups when specifying a pH value.
We predict the molecule to be ionizable if the net charge >= 0.1 under pH = 5 and if the net
charge >= 0 under pH = 7.4.

4.2 Reaction Prediction

Recent advancements in chemical informatics have seen the development of machine learning
based forward reaction prediction models that predict the outcomes of chemical reactions
using historical data (Irwin et al., 2022; Schwaller et al., 2019). These models employ various
machine learning techniques to learn from vast datasets of chemical reactions, enabling them
to propose potential reaction products given specific reactants.
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In contrast to machine-learning models, our project employs a template-based reaction
prediction model, which offers several advantages particularly aligned with our objectives
of synthesizing ionizable lipids. Template-based models operate by applying predefined
reaction templates—derived from known chemical reaction mechanisms—to the reactants in
question. The primary benefits of using a template-based reaction prediction model include
faster computation, strict adherence to established chemical rules, and enhanced potential for
successful synthesis. Unlike machine learning models that require intensive processing for
on-the-fly predictions, template-based models utilize a fixed set of reaction rules, allowing for
rapid generation of potential products with reduced computational overhead. These models
strictly follow recognized chemical transformation rules, ensuring that the synthetic routes
proposed are feasible and effective in practical laboratory settings, which is essential for
synthesizing ionizable lipids. By focusing on reactions known to be successful, template-
based models enhance the likelihood that the predicted products can be reliably synthesized
under typical laboratory conditions.

We adopt the same reaction templates that are used by SyntheMol (Swanson et al., 2024),
which acts as our baseline model. The combinatorial chemical space used by SyntheMol
was the Enamine REadily AccessibLe (REAL) Space which consists of 31 billion molecules
producible via 169 chemical reactions from 138 thousand molecular building blocks (Gry-
gorenko et al., 2020). Specifically, SyntheMol employs 13 reactions that account for 93.9%
of the REAL Space (Swanson et al., 2024). While our lipid building block dataset differs
from the REAL space, the selected reactions are widely applicable across a broad range of
chemicals, making them suitable for our project as well. A detailed list of these reaction
templates is provided in Appendix B.

4.3 Naive Monte Carlo Tree Search for Lipid Generation

Our objective is to generate ionizable lipids that are synthesizable. Now that we have the
lipid building block dataset and a template-based reaction prediction model, generating the
synthesis path for a product molecule with desired properties essentially becomes a combina-
torial problem. We apply a Monte Carlo tree search (MCTS) guided by a property prediction
model to search through the vast combinatorial chemical space for promising ionizable lipid
candidates. Specifically, the state-action space is the chemical space constructed by the
provided lipid building block datasets and reaction templates.

Leveraging the success of the SyntheMol approach in the generation of small-molecule
antibiotics using MCTS, we can adapt this strategy for the generation of ionizable lipids. The
SyntheMol methodology, which effectively combines vast chemical space exploration with a
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guided synthesis approach (Swanson et al., 2024), provides a solid foundation for our lipid
generation project. Specifically, the adaptability of this method to incorporate a variety of
molecular building blocks makes it highly suitable for synthesizing ionizable lipids, where
the selection and combination of lipid head and tail molecules are critical. We therefore
adopt the SyntheMol method as our baseline model, which we refer to as the naive MCTS
approach. This serves as a point of comparison for the guided MCTS approach, discussed in
the subsequent section, which incorporates neural networks.

Building on the SyntheMol framework, our lipid generation process begins with the
curation of a large lipid building block dataset, as discussed in Chapter 3. To simulate
feasible synthetic pathways, we employ a template-based reaction prediction model, detailed
in Section 4.2. This model predicts forward reactions by mapping known reaction templates
to the available building blocks, effectively generating potential product molecules. The
combination of the building block dataset and the reaction templates defines the vast chemical
space to be explored. In parallel, as previously discussed in Section 4.1, a property prediction
model plays a crucial role in evaluating the potential of these synthesized products to function
as ionizable lipids.

With the chemical space and predictive models in place, we utilize an MCTS-based
algorithm to efficiently explore this space. Figure 4.3 illustrates a typical simulation of the
MCTS process in our lipid generation project. In the search tree, each node stores crucial
statistics: the molecules represented by the node, the node’s visit count N, and the Upper
Confidence Bound (UCB) score. The UCB score is critical for navigating the search tree as
it guides the node selection process using the UCB action selection criterion (Kocsis and
Szepesvari, 2006; Sutton and Barto, 2018). Specifically, nodes with the highest UCB scores
within their level are selected during the search process.

The UCB score combines an action value Q, which represents the average of the total
action values W (i.e., the sum of the values of the final products passing through the node),
with an upper confidence term U . This term is defined as U(node) ∝

P(node)
1+N(node) , where

P(node) indicates the property scores assigned to the node. The complete formula for the
UCB score is as follows:

UCB_score(node) = Q(node)+U(node) (4.6)

=
W (node)
N(node)

+ c ·P(node) ·
√

1+n
1+N(node)

(4.7)

where n is the total visit count of all nodes at the same level as the target node and c is a
constant exploration parameter controlling the level of exploration. This scoring mechanism
balances exploitation of known pathways with the exploration of less frequented paths,
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Fig. 4.3 Naive Monte Carlo Tree Search for lipid generation.

effectively guiding our search through the complex chemical space. Note that the P value is
the property score calculated by our property predictors. When a node represents multiple
molecules, the P value for that node is computed as the average of the property scores for
each constituent molecule. Notably, a major deviation from the standard MCTS workflow
in our approach is that we do not conduct rollouts for node value estimation. Instead, we
directly compute the UCB values as previously described.

It is important to note that the assignment of property scores to nodes at non-terminal
levels—representing either building block molecules or intermediates—may initially seem
illogical, as direct evaluation of these entities’ properties does not typically yield meaning-
ful insights. However, this approach does not compromise the long-term efficacy of the
algorithm. Over time, as more product molecules are synthesized and action values refined,
the utility of early-stage evaluations is validated. SyntheMol’s findings corroborate this ap-
proach, demonstrating that despite low scores of individual building blocks, the synthesized
molecules often exhibit significantly higher scores, which are effectively identified by MCTS,
highlighting its capability to uncover promising molecules overlooked by simpler scoring
methods (Swanson et al., 2024).
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The MCTS algorithm commences at a root node (level 0), an empty initial node, which
is then expanded with child nodes representing available lipid head building blocks defined
within our chemical space (level 1). Each child node receives an UCB score, with the node
exhibiting the highest UCB score selected for further expansion. This selected node is
expanded to include a lipid tail building block, generating second-level nodes where each
combination represents potential reactants (level 2).

Subsequently, the node with the highest UCB score from level 2 is selected and expanded.
This stage differs from prior expansions in that it now entails actual chemical reactions
between the two building blocks within the node. The resulting third-level nodes embody
all conceivable products predicted by forward reaction mechanisms (level 3). This iterative
expansion continues until either a valid final product (i.e., a two-tail lipid in our case) is
synthesized, or further reactions become untenable with the existing building blocks in our
dataset.

Upon terminating the simulation with a valid final product, the synthesized molecule is
assessed using our property predictors. The resultant property value is then backpropagated to
update the UCB scores along the simulated pathway. For analysis purpose, we meticulously
document all products, including intermediates, generated during each simulation.

4.4 Guided Monte Carlo Tree Search for Lipid Generation

Building on the foundation laid by the naive MCTS approach, which utilizes the tree search
with a simple UCB action selection criterion, we enhance the model’s capabilities by incorpo-
rating a policy network into the MCTS framework. This advancement, termed policy network
guided MCTS, integrates deep learning to refine the selection process within the tree search,
guiding it towards more promising molecular structures. Specifically, the major difference
with the naive MCTS is to replace the P values in the previous action selection equation (i.e.,
Equation 4.7) with a neural network output. This section delves into the nuances of how the
policy network guided MCTS can be applied to lipid generation,

4.4.1 Method Overview

Before delving into the specific steps of our policy network training procedure, it is essential
to establish a clear understanding of the framework within which this process operates. The
integration of a policy network with MCTS forms the cornerstone of our approach, enabling
a strategic exploration of chemical spaces through guided decision-making. The training of
the policy network is a cyclic process, aimed at incrementally enhancing the network’s ability
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Fig. 4.4 Workflow of policy network training.

to predict and prioritize effective synthetic pathways. This ongoing refinement is crucial for
optimizing the molecular generation process, ensuring that each iteration contributes to a
more sophisticated and capable system. The workflow for this training procedure, as detailed
in the following paragraph, outlines the iterative nature of the process, highlighting how the
network evolves through successive cycles of training and application.

Figure 4.4 illustrates the workflow of the policy network training procedure . We start
from a randomly initialized policy network which assigns equal probabilities to all the actions
in the provided action space. This policy network will be used to guide the MCTS. We
conduct the tree search for a number of simulations, and the search data (i.e., visit counts
of all state-action pairs involved) of the tree search will be used as the training data for the
policy network. The policy network will be trained for several epochs using these training
data. This process serves as one iteration of policy network training. In the next iteration, we
use the updated policy network to guide MCTS and repeat the process.

The search data we get from the MCTS give the search probabilities of choosing each
action at a given state. These search probabilities usually select much stronger actions
than the raw move probabilities of the policy network, and thus MCTS may be viewed
as a powerful policy improvement operator (Howard, 1960; Silver et al., b; Sutton and
Barto, 2018). The MCTS-based generation, using the improved policy network to select the
next building block molecule and evaluate using property predictors, may be viewed as a
powerful policy evaluation operator (Silver et al., b). The main idea of our reinforcement
learning algorithm can thus be viewed as a policy iteration procedure: the policy network’s
parameters are updated to make the move probabilities more closely match the improved
search probabilities; these updated parameters are used in the next iteration to make the
search even stronger.

A detailed depiction of steps involved in each simulation of the MCTS is shown in
Figure 4.5. Each simulation of the MCTS consists of four steps: select, expand, rollout, and
backpropagate. We define the policy network that guides the MCTS simulations to be fθ

with parameters θ . Each edge in the tree search represents a state-action pair (s,a) where
state s is the current molecule we have and action a is the next building block molecule to
choose. Each edge stores a set of statistics {N(s,a),W (s,a),P(s,a)} where N(s,a) is the
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Fig. 4.5 Policy network guided Monte Carlo Tree Search for lipid generation.

visit count, W (s,a) is the total action value (i.e., sum of values of final products reached after
taking a from state s), and P(s,a) is the prior probability of selecting that edge. Note that
P(s, ·) = fθ (s) is given by the current policy network.

In the selection step, each simulation traverses the tree by selecting the edge with the
maximum UCB score until a leaf node is reached. The UCB score is defined to be an
average action value Q(s,a) plus an upper confidence bound U(s,a) which depends on the
prior probability P(s,a) and the visit count N(s,a) of that edge. At each time step t of each
simulation, our action selection criterion at state st follows

at = argmax
a

UCB_score(st ,a) = argmax
a

(Q(st ,a)+U(st ,a)) (4.8)
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The UCB score is defined to be

UCB_score(s,a) = Q(s,a)+U(s,a) (4.9)

=
W (s,a)
N(s,a)

+ c ·P(s,a) ·
√

∑b N(s,b)
1+N(s,a)

(4.10)

where c is a constant parameter controlling the level of exploration. Note that the primary
distinction in our UCB score calculation compared to the naive approach (i.e., see Equation
4.7) is that the P values are generated by neural networks.

In the expansion step, the leaf node selected in the previous step will be expanded. First,
the state s of the leaf node will be calculated as the chemical product of the state and action
molecules represented by the edge which directs to this leaf node. We then find the action
space A(s) of the leaf node and calculate P(s,a) values for all a∈ A(s) via the policy network,
i.e., P(s, ·) = fθ (s). The P values will be stored in the newly-added outgoing edges from the
selected leaf node.

Meanwhile, the selected leaf node will be evaluated, which is done by the rollout step.
This step aims to get a value for the selected leaf node. If the selected leaf node already
represents a valid final product (i.e., a two-tail lipid in our case), then the value is simply the
property score calculated by the property predictors. If the selected leaf node is not a valid
product but an intermediate product, we conduct the rollout. The rollout means performing
random actions until we reach the end of the play (i.e., until we generate a two-tail lipid).
This randomly generated product will be evaluated by the property predictor and this property
score will be sent back to act as the value of the selected leaf node. Note that this random
generation path is only used for evaluating the leaf node during this simulation and won’t be
added to the search tree.

Once we have the value of the selected leaf node, we perform the last step of the
simulation, backpropagation. The value will be backpropagated along the chosen path to
update action values Q.

The detailed algorithm can be found in Appendix A.1.

4.4.2 Policy Network Training

As is mentioned before, the visit counts of all state-action pairs that appear in the tree search
are recorded to be the training data of the policy network. However, the search data we
collect are highly imbalanced in the sense that there will be a lot more state-action pairs in
later levels. The number of state-action pairs from the first level (i.e., when state is the empty
state and actions are the chosen head building blocks) is very limited, being the number of
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different head building blocks that are expanded by the root node. Meanwhile, search data
from later levels will be very sparse in the sense that the majority of the state-action pairs
will have zero visit count. In order to better utilize our limited data, we propose a customized
method for training the policy network.

Let f (s,a) denote the naive policy network output (before softmax) for the state-action
pair (s,a), p(s,a) denote the corresponding predicted prior (which will be used in the UCB
score calculation), and π(s,a) be the search probability. We here adopt the search probability
definition as proposed in the AlphaZero algorithm (Silver et al., b).

p(s,a1) =
e f (s,a1)

∑a e f (s,a)
(4.11)

π(s,a1) =
N(s,a1)

1
τ

∑a N(s,a)
1
τ

(4.12)

where τ is a temperature parameter controlling the level of exploration. When τ tends to
infinity, the search probability is the same as random selections. When τ is small, say, when
τ = 1, the search probability strictly follows the actual visit count distribution. The objective
of the policy network training is to maximize the similarity of p(s,a) and π(s,a).

Now, suppose we take two state-action pairs, (s,a1) and (s,a2), at a time. We apply the
log-ratio and get:

log
p(s,a1)

p(s,a2)
= f (s,a1)− f (s,a2) (4.13)

log
π(s,a1)

π(s,a2)
=

1
τ

logN(s,a1)−
1
τ

logN(s,a2) (4.14)

The previous objective is equivalent to maximize the similarity of f (s,a1)− f (s,a2) and
1
τ

logN(s,a1)− 1
τ

logN(s,a2).
We therefore customize the loss function to be the error between f (s,a1)− f (s,a2) and

their corresponding 1
τ

logN(s,a1)− 1
τ

logN(s,a2), for any two state-action pairs, (s,a1) and
(s,a2). This can be considered as a regression problem, MAE or MSE loss may be applied.

4.5 Evaluation Metrics

The primary goal of our MCTS-based generative model is to produce ionizable lipids that
are synthesizable. We first assess the model’s capacity to generate ionizable lipids, and then
examine the quality and synthesizability of the generated compounds.
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4.5.1 Quality Evaluation

The primary criterion for evaluating our generated products is the ionizable lipid rate. This is
determined by the proportion of unique generated products predicted to be both lipid-like
and ionizable according to our property predictors. Our goal is to maximize this ratio.
Additionally, we assess the validity of all generated ionizable lipids. Validity measures the
proportion of the generated products that can be parsed by the chemoinformatics software
RDKit (RDKit, nd).

4.5.2 Retrosynthesis Evaluation

While the ideal method to validate the synthesis pathway of our generated products would
be through experimental testing in a laboratory, practical constraints currently prevent us
from doing so. Consequently, we rely on in silico evaluations to estimate synthesizability.
We first calculate the synthetic accessibility score (SA score) to predict synthesizability in
an automated manner (Ertl and Schuffenhauer, 2009). Additionally, we seek to validate our
proposed synthesis pathways using Syntheseus (Maziarz et al., 2023), a python package for
retrosynthetic planning.

SA Score

The SA score is calculated through a combination of fragment contributions and a complexity
penalty, derived from the analysis of over a million synthesized chemicals (Ertl and Schuffen-
hauer, 2009). Fragment contributions refer to the ease or difficulty of synthesizing specific
molecular fragments based on their prevalence and synthetic history in known compounds.
Molecular complexity is evaluated by considering elements such as the presence of large
rings, non-standard ring fusions, stereochemical complexity, and overall molecule size. The
resulting SA score provides a metric for synthetic accessibility, ranging from 1 (indicating
easy synthesis) to 10 (indicating high difficulty). However, while the SA score differentiates
between feasible and infeasible molecules to some extent, it does not provide specific insights
into the actual synthesis pathways.

Retrosynthesis Planning via Syntheseus

Syntheseus operates by recursively decomposing a target molecule into increasingly simpler
molecules through a backward reaction prediction model, continuing until it identifies a set of
purchasable or commonly known building blocks (Maziarz et al., 2023). In our experiments,
we validate the proposed synthesis pathway for a generated two-tail lipid. Specifically, we
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assess whether this final product can be synthesized from an intermediary one-tail lipid and a
purchasable tail building block. Additionally, we verify if the intermediate product can be
constructed using provided head and tail building blocks. For these predictions, we employ
the Molecule Edit Graph Attention Network (MEGAN) backward reaction prediction model
(Sacha et al., 2020).



Chapter 5

Experiments and Results

In this chapter, we present a comprehensive analysis of the experiments conducted to evaluate
the efficacy of our MCTS-based generative models for ionizable lipid generation. We first
present the performance of our lipid property predictor, which set the foundation for our
MCTS-based generative models. We then compare the generation results of the naive MCTS
approach with our proposed policy network guided MCTS approach.

5.1 Lipid Property Predictor

Lipid property predictors are essential in our lipid generation process, evaluating the potential
of generated molecules to function as ionizable lipids. These predictors generate a property
score for each product, which is subsequently used to guide the MCTS in future simulations.
Our lipid property prediction framework comprises two key components: a lipid classifier
that provides a binary classification to determine if a product is lipid-like, and an ionizability
predictor that offers a binary score assessing the ionizability of the product. Together, these
tools ensure that the MCTS is strategically directed towards synthesizing molecules with
the desired lipid characteristics. Detailed information of the property predictors has been
discussed in Section 4.1.

As previously mentioned, our training dataset for the lipid classifier comprises approx-
imately 180 000 lipid samples and an equal number of non-lipid samples. Utilizing the
Chemprop graph neural network framework (Yang et al., 2019), our classifier features three
message passing layers that integrate molecular features, complemented by two feed-forward
layers dedicated to predicting molecular properties. After training for a single epoch, our
model demonstrates exceptional performance, achieving both Receiver Operating Charac-
teristic Area Under the Curve (ROC-AUC) and Precision-Recall Area Under the Curve
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Table 5.1 Test performance of MolGpKa on pKa prediction.

Acids Bases
R2 MAE RMSE R2 MAE RMSE

Organic Oxygen Acids
and Nitrogen Bases 0.97 0.29 0.45 0.94 0.5 0.81

Novartis 0.75 0.85 1.29 0.75 0.79 1.06

(PR-AUC) scores above 0.9999. Together, these metrics, along with a test accuracy of
99.89%, underscore the robustness and predictive accuracy of our lipid classifier.

As discussed in Section 4.1.2, our approach to ionizability prediction leverages the
MolGpKa module (Pan et al., 2021). This module identifies ionizable groups within a target
molecule and calculates their corresponding pKa values. Utilizing these pKa values, we
then determine the net charge of the target molecule at specific pH levels. Our ionizability
predictions are specifically tailored based on two filtering criteria, at pH levels of 5 and
7.4, respectively. According to (Pan et al., 2021), the MolGpKa predictor has undergone
rigorous testing with the Organic Oxygen Acids and Nitrogen Bases set (Yu et al., 2010)
and the Novartis set (Baltruschat and Czodrowski, 2020). Its performance is evaluated using
three metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the
coefficient of determination (R2). Detailed results of these evaluations are presented in Table
5.1, highlighting the robustness and accuracy of the MolGpKa module in predicting pKa
values and thus justifying the credibility of our ionizability predictions.

Combining the capabilities of our lipid classifier and ionizability predictor, our property
predictors provide reliable evaluations for our generated products. During the property
scoring phase in subsequent MCTS simulations, we use a binary indicator (0 or 1) to denote
the ionizability of a molecule. However, for the lipid classifier, we utilize the network’s
raw output scores, which range within (0,1), before applying binarization to assign property
scores. As a result, the combined property score from both the lipid classifier and ionizability
prediction ranges within (0,2), with most scores expected to be close to 0, 1, or 2. A property
score approaching 2 suggests the molecule is likely an ionizable lipid; a score near 1 indicates
the molecule may either be non-lipid-like or non-ionizable; and a score close to 0 implies
the molecule is neither lipid-like nor ionizable. This scoring system enhances our ability to
categorize and prioritize molecules efficiently in our search for valid ionizable lipids.
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5.2 Monte Carlo Tree Search for Lipid Generation

In this section, we delve into the practical application of MCTS-based generative models for
ionizable lipid generation, utilizing the robust framework developed in previous chapters.
Our experimental investigation focuses on comparing the performance of the naive MCTS
approach, derived from SyntheMol (Swanson et al., 2024) and served as the baseline, with our
proposed policy network guided MCTS approach. We demonstrate the enhanced efficiency
and effectiveness of the guided MCTS approach in identifying and synthesizing high-potential
ionizable lipids.

5.2.1 Experimental Setups

In this section, we detail the specific subset of the lipid building block dataset utilized in our
experiments, along with the configurations of both MCTS-based generative models. These
configurations establish the experimental settings for all subsequent experiments discussed
in this chapter. Additionally, we outline the computing resources employed to conduct these
experiments.

Lipid Building Block Dataset

As mentioned in Chapter 3, we have constructed a lipid building block dataset consisting
of over 2.7 million lipid head building blocks and 5310 lipid tail building blocks. Due to
the extensive size of the head building block dataset, directly incorporating all entries into
the MCTS would result in a predominantly exploratory behavior akin to random selections.
To mitigate this, we have curated a subset of approximately 12 000 head building blocks to
define our actual head search space for the MCTS, while the entire tail building block dataset
is utilized in subsequent levels of the search.

Both the naive MCTS approach and the policy network-guided MCTS approach utilize
these same datasets. However, for the evaluation of the policy network in the guided MCTS
approach, an additional set of 200 testing head building blocks is employed. Importantly,
this testing head search space does not overlap with the head search space used during the
training of the policy network, ensuring the integrity and validity of our testing protocols.

Naive MCTS Configuration

We have imposed a constraint on the maximum number of child node expansions to 2 000,
meaning that the MCTS explores a head search space of this size. The MCTS is executed
over 10 000 simulations to ensure comprehensive analysis of the generated lipid products.



36 Experiments and Results

Additionally, the exploration weight c used in the UCB score calculation, as detailed in
Equation 4.7, is set at 10. This parameter setting is designed to balance the exploration and
exploitation phases of the search process effectively.

Guided MCTS Configuration

We operate the guided MCTS across 10 iterations, with each iteration involving a dual phase
of running the MCTS to accumulate search data and subsequently using this data to train the
policy network. In the following iteration, the newly updated policy network is deployed.
For every iteration, the MCTS is executed 10 times, each exploring a head space of 200. This
setup allows the 10 runs of MCTS collectively to explore a total head search space size of
2 000, aligning with the head search space used in the naive MCTS approach.

Each MCTS runs 10 000 simulations to gather substantial search data for effective
training of the policy network. The data from these 10 MCTS runs are pooled to train the
policy network, and the accumulated generated products from these runs are analyzed as
the iteration’s output. The policy network undergoes 20 epochs of training in each iteration
to optimize its performance. Moreover, the exploration weight c used in the UCB score
calculation, as outlined in Equation 4.9, is set at 20.

Policy Network Configuration

The policy network in our study processes state-action pairs, where each state and action
corresponds to individual molecules—the state being the current molecule and the action
being the next building block molecule selected. Each molecule is represented using a
Morgan fingerprint with 1024-bit binary digit (Schneider et al., 2015), and the fingerprints
of both the state and action molecules are concatenated to form a 2048-bit feature vector,
serving as the input to the policy network.

Our policy network architecture consists of four linear layers, each followed by a ReLU
activation function (Fukushima, 1969) and dropout layers with a dropout rate of 0.5 (Wan
et al., 2013) to prevent overfitting. The custom loss function used in the training of this
network is elaborated upon in Section 4.4.2. We employ the Adam optimizer for network
training, utilizing a learning rate of 0.001 (Kingma and Ba, 2017).

Computing Resources

Our computational setup includes a GPU server equipped with 8 Tesla P-100 GPUs, each
featuring 16 GB of memory. It is important to note that within our experimental framework,
only the MolGpKa module is configured to utilize GPU resources (Pan et al., 2021). All
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Fig. 5.1 Property score distribution of the generated products of the naive MCTS.

other components of our algorithms, including the MCTS simulations and the neural network
training for the policy network, are designed to run efficiently on CPU.

5.2.2 Generation Results and Discussions

Our primary objective is to generate products that are potent candidates for ionizable lipids,
meaning we aim for our model to produce molecules with high property scores. To evaluate
the effectiveness of our approach, we begin by examining the products generated through the
naive MCTS approach. This analysis serves as a baseline for comparing the performance en-
hancements achieved with the guided MCTS approach, thereby providing a clear benchmark
for assessing improvements in generating high-potential ionizable lipid candidates.

Figure 5.1 displays the score distribution of all two-tail lipids generated through the naive
MCTS. The property score combines a lipid classifier score, which typically hovers near 0
or 1, and a binary ionizability score. A property score approaching 2 typically identifies the
molecule as a likely ionizable lipid; a score around 1 indicates that the molecule may either
be non-lipid-like or non-ionizable; and a score close to 0 suggests that the molecule is neither
lipid-like nor ionizable. From the figure, it is evident that the majority of the products are
classified as either non-lipid-like or non-ionizable, with only a small fraction identified as
potential ionizable lipids.

Derailed statistics of the generated products are presented in Table 5.2. After conducting
10 000 simulations, a total of 16 477 two-tail lipids were generated. We observe that only
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Table 5.2 Overview of generated products from naive MCTS simulations.

Generated Product Number Ratio
Lipid-like & Ionizable 4513 0.2739

Lipid-like & Not Ionizable 6198 0.3762
Not Lipid-like & Ionizable 2696 0.1636

Not Lipid-like & Not Ionizable 3070 0.1863
Total Product Number 16477 /

4513 of the 16 477 generated products are predicted to be ionizable lipids, providing an
ionizable lipid rate at 0.2739.

It is important to note that the number of generated products exceeds the number of
simulations, which results from the possibility of multiple products being formed during a
single simulation. This occurs particularly when two candidate molecules—specifically, a
state molecule and an action molecule—undergo reactions that yield distinct products. Such
multiplicity in product formation is plausible when candidate molecules feature functional
groups that recur within the same molecule. When these functional groups engage in
reactions with other molecules, the varied reactive possibilities lead to the generation of
different products. This phenomenon underscores the complexity and diversity of chemical
reactions explored during the simulations. For the purpose of generating more ionizable
lipid candidates, we include all the possible products in our results. However, due to the
specific mechanism of the guided MCTS approach, only one of the multiple products can
be considered. In practice, a random selection process is employed during guided MCTS
simulations to choose one of the possible products. This approach not only simplifies the
decision-making process within the simulation but also introduces an element of stochasticity
that reflects real-world screening and selection scenarios.

We now turn our attention to the outcomes of the guided MCTS approach. By comparing
these results with those from the naive approach, we seek to illustrate the enhanced effective-
ness of the guided MCTS in producing ionizable lipids. We begin by reviewing the training
results of the policy network and then analyze the products generated during both training
and testing simulations.

Figure 5.2 presents the training loss curve of the policy network plotted against the
number of training epochs. The data from each iteration of the training process is represented
on the same graph but distinguished by different colors for clarity. While the policy network
undergoes training for 20 epochs during each iteration, the figure selectively displays the
loss curve only up to the epoch at which the best-performing model state is achieved.
Consequently, the total number of epochs represented in the figure is fewer than the expected
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Fig. 5.2 Policy network training loss against training epochs.

200, illustrating the points at which optimal performance was reached rather than the entire
training span.

Recall that each iteration of the MCTS simulations explores a different segment of the
lipid head search space, each consisting of 2 000 entities, while the total lipid head search
space utilized for training encompasses approximately 12 000 entities. Consequently, while
the lipid head search spaces in the initial iterations are largely distinct, they begin to overlap
in the later iterations. This setup means that, particularly from the seventh iteration onward,
some search data may reappear, having been included in earlier iterations.

Each iteration of the policy network training starts with a relatively high loss, indicating
the model’s initial unfamiliarity with a new and largely distinct dataset, particularly notable
in the first few iterations (i.e., iterations 1-3). This initial high loss is anticipated as the model
encounters new lipid head entities previously unseen during training. The rapid decline in loss
during the early epochs across these initial iterations highlights the network’s capability to
quickly adapt to novel datasets. This swift reduction in loss signifies that the policy network
is effectively learning and accommodating the unique characteristics of each segment of the
search space. After the initial steep learning curve observed in the first three iterations, the
loss fluctuations during iterations 4 through 6 begin to show a trend towards stabilization,
suggesting that the network is refining its parameters and optimizing its performance relative
to the given datasets. In later iterations (e.g., iterations 7-10), these fluctuations become even
smaller, likely due to the overlap in data. This smaller variation also implies that the network
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Fig. 5.3 A t-SNE visualization of the training and testing lipid head building block molecules.

has successfully captured the underlying patterns common to the datasets it has been exposed
to.

The variability in final loss values across iterations points to differences in the network’s
ability to generalize across datasets, with some datasets yielding better performance as
evidenced by lower final loss values. However, the overall decreasing trend in training loss
underscores the reliability and effectiveness of our policy network.

Next, we will analyze the products generated by the MCTS simulations guided by the
policy network trained across various iterations. We aim to evaluate the efficiency of the
policy network in enhancing the generation process and improving the quality of the lipid
molecules produced.

We analyze the generated products from both training and testing simulations, where
training simulations provide search data for training the policy network and testing simula-
tions employ a separate test set of head building block molecules. The primary distinction
between these simulations lies in their respective head building block search spaces. To
assess the representativeness of both datasets, we conduct a t-Stochastic Neighbor Embedding
(t-SNE) visualization (van der Maaten and Hinton, 2008) of the 1024-bit binary digit Morgan
fingerprint representations of the head molecules, as shown in Figure 5.3. This visualization
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reveals that, despite its smaller size, the testing head dataset comprehensively covers most of
the molecular space encompassed by the training dataset.

However, it is important to note that the selection of head molecules significantly influ-
ences the quality of the generated products. Consequently, differences in the head search
space can lead to substantial variations in the overall quality of the products. Nonetheless,
observing the trend in quality changes within a specific head set, as guided by different
iterations of the policy network, can still effectively illustrate the efficiency and impact of
policy network training.

(a) Ionizable lipid rate of total products (b) Ionizable lipid rate of unique products

Fig. 5.4 Ionizable lipid rate of the generated products during training MCTS simulations

We begin by examining the generated products during training simulations. Figure 5.4a
illustrates the ionizable lipid rate across training iterations for all generated products, includ-
ing duplicates, while Figure 5.4b depicts the ionizable lipid rate for unique products only.
The initial results in iteration 1 are derived from MCTS simulations guided by a randomly
initialized policy network, whereas the results from iteration 2 onward are influenced by
successively trained instances of the policy network. Analysis of Figure 5.4a indicates that
the ionizable lipid rate surpasses that of the randomly initialized simulations beginning
with the fifth iteration, post four training sessions of the policy network. However, this
improvement is not markedly clear. In contrast, a distinct increase in the ionizable lipid
rate is observed from the very first training session when analyzing the unique generated
products, as shown in Figure 5.4b. Since our primary interest lies in the quality of unique
generated products, this data underscores a significant enhancement in quality attributable to
the training of the policy network, affirming its efficacy in refining the generation process.

Figure 5.5 showcases the products generated during testing simulations, each guided
by policy networks trained across different iterations. Figure 5.5a illustrates the ionizable
lipid rate for all generated products, inclusive of duplicates, while Figure 5.5b focuses
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(a) Ionizable lipid rate of total products (b) Ionizable lipid rate of unique products

Fig. 5.5 Ionizable lipid rate of the generated products during testing MCTS simulations

exclusively on the ionizable lipid rate for unique products only. The initial iteration (Iteration
0) features products generated by MCTS simulations directed by a randomly initialized
policy network, with subsequent iterations using progressively trained policy networks. Both
figures reveal a notable increase in the ionizable lipid rate following the first iteration of
policy network training. Subsequent iterations show the rate stabilizing, with only minor
fluctuations observed. Specifically, the ionizable lipid rate varies between 0.96 and 0.98 for
duplicated products, and oscillates between 0.73 and 0.8 for unique products. Comparatively,
these rates significantly surpass the ionizable lipid rate of below 0.3 achieved by the naive
MCTS approach, clearly demonstrating the superior performance of our model over the
baseline.

To better illustrate the improvement in product quality, Figure 5.6 shows the shift in
the distribution of property scores for unique generated products during testing simulations
across iterations. The shape of each violin plot reflects the distribution of property scores
within that iteration, with the width at any given point along the y-axis indicating the density
of data points at that score. In the initial iteration (iteration 0), the distribution is relatively
broad, with a significant spread from low to high property scores. This broad distribution
suggests that the initial exploration of the chemical space is varied, capturing a wide range
of property scores. We observe a notable shift in the score distribution during the first two
iterations, which aligns with the increase in the ionizable lipid rate shown in Figure 5.5b,
indicating that the model is actively learning and adapting to optimize its search strategy. In
the later iterations, the majority of the scores cluster near 2, with a smaller fraction close to 1,
and very few near 0. We do not detect any significant changes in the score distribution in
these later iterations, suggesting that the network is converging towards a relatively stable
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Fig. 5.6 Property score distribution of unique generated products during testing simulations.

product quality. This stability is consistent with the small fluctuations in the ionizable lipid
rate observed in Figure 5.5b.

A detailed overview of the products generated during testing simulations is provided in
Table 5.3. It lists the total number of generated products (including duplicates), the number of
unique products, the number of unique ionizable lipids, and the number of unique ionizable
lipids produced in the first 500 generations. Previous discussions have highlighted the high
ionizable lipid rates—calculated as the ratio of unique ionizable lipids to unique generated
products—after training the policy network.

Analysis of the data shows a relatively low uniqueness rate among the generated products,
which can be attributed to the search mechanism of MCTS. Particularly in later simulations,
MCTS tends to favor previously visited actions and paths known to yield high rewards, which
could lead to a reduction in uniqueness rate as more simulations are conducted. Consequently,
the uniqueness rate does not serve as a reliable metric for evaluating the sampling efficiency
of our MCTS-based generative models.

The last column of the table shows the number of unique ionizable lipids generated within
the first 500 generations. Given that we conducted 10 000 testing simulations in total, it is
noteworthy that over 70% of the final unique ionizable lipids were produced during these
early stages. This observation underscores the effectiveness of the policy network guided
MCTS in efficiently exploring new possibilities early in the simulation process.
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Table 5.3 Overview of generated products during testing simulations across iterations

Iteration
Total

Products
Unique

Products Unique Ionizable Lipids
Unique Ionizable Lipids

(first 500 generation)
0 9204 167 55 44
1 9079 117 88 78
2 9091 125 101 80
3 9082 130 100 81
4 9104 137 102 72
5 9114 127 98 77
6 9169 143 106 78
7 9123 136 103 80
8 9121 137 100 78
9 9109 140 108 75
10 9132 137 101 74

Table 5.4 Retrosynthesis evaluation of generated products and generated synthesis pathway.

Validity
Average

SA Score
Retrosynthesis Rate

by Syntheseus
No. Ionizable Lipids

Evaluated
Naive MCTS 1 4.77 0.0363 4513

Guided MCTS
Training 1 4.62 0.0777 5058

Guided MCTS
Testing 1 4.24 0.0294 545

5.3 Retrosynthesis Evaluation

Table 5.4 presents the evaluation results of our generated ionizable lipids and their corre-
sponding synthesis pathways. We consider the generated ionizable lipids during all the
simulations of both the naive MCTS approach and the guided MCTS approach. To ensure a
broader and more generalized evaluation, we consider all products generated during both
training and testing phases across all iterations of the guided MCTS approach. The number
of unique ionizable lipids to be evaluated is presented in the last column of the table. The first
column of the table shows that the validity rate for all generated molecules is 1, indicating
that all molecules can be successfully parsed by RDKit (RDKit, nd).

The SA score, which ranges from 1 to 10 with lower values indicating easier synthesis
(Ertl and Schuffenhauer, 2009), shows similar results for both the naive and guided MCTS
approaches, with the guided approach slightly outperforming the naive approach. While the
SA score justifies the synthesizability of the generate products to some extent, we are aware
that they provide no insights on our synthesis pathways.
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Using Syntheseus, we validate the synthesis pathways identified by the MCTS, as dis-
cussed in Section 4.5.2. We assess whether the generated two-tail lipids can be synthesized
from an intermediary one-tail lipid and a purchasable tail building block, and whether this
intermediate product can be constructed using the provided head and tail building blocks.
Syntheseus identifies valid synthesis routes based on the input product and building blocks.
We record the proportion of generated products and their corresponding synthesis pathways
that are validated by this retrosynthesis tool.

We observe that the retrosynthesis rate validated by Syntheseus is quite low, with none of
the cases exceeding 8%. This low rate may result from the unique characteristics of the lipid
building block dataset and the reaction templates we adopted from the SyntheMol project,
which are tailored for the Enamine REAL space (Grygorenko et al., 2020; Swanson et al.,
2024). For retrosynthesis planning, we utilize the MEGAN backward reaction prediction
model trained on the USPTO-50k dataset (Sacha et al., 2020), which was collected by (Lowe,
2012) and classified into 10 reaction types by (Schneider et al., 2016). Our lipid building
block molecules may differ significantly from the reactants in USPTO reactions, and our
reaction templates may not align well with those in the USPTO dataset. Additionally, a
lot of the reaction templates involve using linker molecules, while such reactions might
not be present in USPTO. These mismatches make retrosynthesis planning challenging and
contribute to the low retrosynthesis rate.

Selected examples of generated ionizable lipids, along with their synthesis pathways
validated by the retrosynthesis tool, are presented in Appendix C.





Chapter 6

Discussion

In this dissertation, we have explored the Monte Carlo tree search (MCTS) based generative
models for ionizable lipid generation. We constructed a lipid building block dataset, featuring
purchasable ionizable lipid heads and tails, which is well-suited for future lipid generation
projects. We developed two lipid property predictors: a lipid classifier and an ionizability
predictor, both designed to accurately assess whether a candidate molecule is lipid-like or
ionizable. Adapting the SyntheMol approach, originally utilized for antibiotic discovery, we
tailored this method for lipid generation to serve as our baseline model. We further innovated
by developing a policy network guided MCTS-based generative model which is capable
of producing high-quality ionizable lipids with available synthesis paths, outperforming
our baseline. Our achievements indicate that this project offers a promising direction for
ionizable lipid generation, also contributing to the broader field of drug delivery. However, it
is important to acknowledge that the project has its limitations, which are discussed alongside
future work in this chapter.

6.1 Limitations

In this section, we discuss several key limitations inherent in our current generative model
and retrosynthesis validation approaches for ionizable lipid generation.

6.1.1 Generative Model

Our generative model heavily depends on the reaction templates we use to conduct forward
reaction predictions. We have adopted the same 13 reactions utilized by SyntheMol, which
are responsible for producing 93.9% of the molecules within the Enamine REAL space
(Grygorenko et al., 2020; Swanson et al., 2024). These reactions were chosen because they
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are common and widely applicable, and the functional groups involved in these reactions
are also present in our lipid building blocks. However, it is crucial to recognize that our
search space, which consists of lipid building blocks, differs from the Enamine REAL space.
Consequently, some of the reactions we currently use may not have been empirically validated
with lipid building block molecules. Furthermore, it is possible that our existing templates
do not encompass reactions that are typically employed in practical lipid generation. This
discrepancy highlights a potential limitation in the direct applicability of our model to lipid
synthesis and underscores the need for further validation and potential adaptation of reaction
templates to better suit lipid generation.

Additionally, while the MCTS is designed to efficiently explore combinatorial chemical
spaces, the actual scope of exploration is significantly constrained by the number of child
nodes involved in each expansion. Specifically, in our model, the exploration potential at
the root node, which navigates the head search space, is directly limited by the number
of node expansion at this initial stage. Given that our lipid head building block dataset
comprises a vast pool of 2.7 million molecules, it is logistically infeasible to conduct a
thorough exploration of this entire head search space. This limitation inherently restricts our
ability to fully utilize the diversity available in the dataset, leading to a critical bottleneck in
the current configuration of our MCTS framework.

6.1.2 Retrosynthesis Validation

The most definitive method of validating any synthesized molecule is through empirical
laboratory experiments. However, such experiments are not feasible in our project due to
practical constraints such as high costs, time requirements, and lack of necessary equipment
and materials. This restricts our ability to fully confirm the efficacy and safety of the
synthesized compounds outside of a theoretical or simulated environment.

Secondly, there is a notable gap in our knowledge and access to sophisticated computer-
aided retrosynthesis tools that are specifically tailored to our research scenario. While there
are general tools available, they may not fully accommodate the unique requirements or
the specific complexities of ionizable lipid generation. This hampers our ability to perform
detailed and accurate retrosynthesis analysis, which is crucial for understanding how a
molecule can be synthesized in the most efficient and feasible manner.

Additionally, a significant limitation in our analysis is the absence of a baseline model
for retrosynthesis analysis. Currently, we do not employ a standard generative method
that disregards synthesis pathways during molecule generation as a comparative measure.
Including such a baseline could be beneficial, as it would allow us to compare the retrosyn-
thesis rate of molecules generated without considering their synthetic pathways against those
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produced by our MCTS-based methods that integrate synthesis considerations. Establishing
this baseline would enhance the robustness of our study and provide a clearer understanding
of the improvements our methods offer over traditional molecular generation techniques.

6.2 Future Work

Based on the limitations discussed previously, we outline future perspectives aimed at
enhancing our generative models and achieving effective retrosynthesis validation.

6.2.1 Generative Model

To address the limitations identified in our current generative model, particularly concerning
the reaction templates and the restricted search space of the MCTS, we propose the following
directions for future research. Additionally, while ionizable lipids are primarily utilized
in mRNA delivery, the transfection efficiency of these lipids is also critically important
and represents a key area of interest. Optimizing this aspect could significantly impact the
effectiveness of lipid-mediated drug delivery systems.

Reaction Template Validation and Expansion If condition allowed, we may conduct
experimental validations of the existing reaction templates with lipid building blocks to
ensure their applicability and efficiency in lipid synthesis. It will be helpful to develop and
integrate additional reaction templates that are specific to lipid chemistry. Collaborating with
chemists to identify and codify reactions commonly used in lipid generation could expand
the utility and accuracy of our model.

Enhancing MCTS Exploration Capabilities While it’s difficult to explore a search
space with a vast size of 2.7 million, preprocessing the lipid head building block dataset to
refine the search space can make exploration more manageable and targeted. One potential
strategy involves refining the head search space by leveraging sophisticated biochemical
characteristics of the head building blocks, identifying those most promising for ionizable
lipid generation. This process would require advanced chemical knowledge. Another
approach is to develop a hierarchical searching strategy. This would involve initially grouping
head building blocks based on shared structural features or similar biomedical properties.
MCTS could then be applied to explore these groups systematically, delving into detailed
exploration of individual molecules only within groups that demonstrate the most promise
based on preliminary results. Besides, if computing resource permits, conducting more
extensive tree searches across a broader array of head building block subsets would inherently
increase the likelihood of discovering high-potential candidates.
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Enhancing Transfection Efficiency in Ionizable Lipids A straightforward method
to integrate transfection efficiency into our research is to filter the final set of generated
ionizable lipids based on their transfection performance, retaining only those that exhibit
high performance. To further improve the transfection efficiency of our synthesized lipids,
we can incorporate a transfection efficiency prediction model into our existing suite of lipid
property predictors. This additional model would work alongside the current lipid classifier
and ionizability predictor to guide the MCTS process more effectively. Existing deep learning
models designed for evaluating transfection efficiency may be utilized (Xu et al., 2024).

6.2.2 Retrosynthesis Validation

To address the limitations regarding retrosynthesis validation identified in the current study,
the following future work directions are proposed.

Laboratory Synthesis Experiments To address the limitation of not having practi-
cal synthesis validations, future research should prioritize establishing collaborations with
chemical laboratories. This will enable empirical testing and validation of the synthesized
molecules, providing a direct assessment of their practical viability and safety. This step is
crucial for transitioning from theoretical designs to real-world applications, ensuring that the
molecules not only exist on paper but can also be effectively and safely synthesized in a lab
environment.

Development of Specialized Retrosynthesis Tools There is a pressing need to develop
or customize computer-aided retrosynthesis tools specifically for ionizable lipid generation.
Traditional retrosynthesis planning primarily utilizes backward reaction prediction models.
Enhancing traditional retrosynthesis with backward reaction algorithms specifically opti-
mized for the complex structures of ionizable lipids could improve their synthesis. These
algorithms should efficiently manage large molecules with multiple functional groups and
intricate stereochemistry. Optimizations could include advanced heuristics that prioritize
certain chemical bonds or functional groups based on their reactivity and synthetic feasibility
under standard laboratory conditions.

Incorporation of a Comparative Baseline Model To robustly evaluate the effectiveness
of our generative methods, future studies should include a baseline model that does not
consider synthesis pathways during molecule generation. This would enable a comparative
analysis of retrosynthesis rates, demonstrating the benefits of integrating synthesis considera-
tions into the generative process. By comparing our methods against a traditional generative
approach, we can quantitatively assess improvements in synthesizability.
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Appendix A

Algorithms

A.1 Algorithm of Guided Monte Carlo Tree Search for
Lipid Generation

We define a Node class to represent the nodes appeared in the tree search. The Node class
has the following attributes:

• state: Stores the SMILES representation of the molecule represented by this node.

• N: A visit count of the node, initialized to zero.

• P: The prior probability assigned based on predictions from a policy network.

• W: The cumulative value sum, representing the total assessed value of this node’s state.

• children: A dictionary to hold child nodes, with the keys of the dictionary to be
actions (i.e., the next building blcoks to select) and the values to be corresponding
child nodes.
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Algorithm 1 Policy Network Guided MCTS
Require: Product(): reaction predictor
Require: PropertyScore(): property score predictor
Require: SearchProbability(): search probability calculator

1: fθ ← randomly initialized neural network with parameter θ

2: λ ← regularization constant
3: α ← learning rate
4: c← exploration weight
5: D = /0

6: for each iteration do
7: for each play do
8: S0← empty root state
9: Dplay←MCTS(S0)

10: D = D∪Dplay
11: end for
12: for each epoch do
13: Train fθ using D
14: end for
15: Reset D = /0
16: end for

17: function MCTS(root_state)
18: Initialize root_node with root_state
19: EXPAND(root_node)
20: generation = /0
21: for each simulation do
22: lea f _node,search_path← SELECT(root_node)
23: if lea f _node is two-tail lipid then
24: v = PropertyScore(lea f _node)
25: Add search_path to generation
26: else
27: EXPAND(lea f _node)
28: v← ROLLOUT(lea f _node)
29: end if
30: BACKPROPAGATE(v, search_path)
31: end for
32: Write generation to log file
33: return visit counts of all state-action pairs
34: end function
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Algorithm 2 Select Function in MCTS
1: function SELECT(root_node)
2: search_path = [ ]
3: node← root_node
4: while node.children is not empty do
5: selected_action = argmaxa UCB_SCORE(node,node.children[a])
6: node← node.children[selected_action]
7: Add node to search_path
8: end while
9: Update node.state with Product(node.state,selected_action)

10: return node, search_path
11: end function

Algorithm 3 Expand Function in MCTS
1: function EXPAND(node)
2: A(node)← NEXT_BUILDING_BLOCKS(node)
3: P(node, ·) = fθ (node.state,A(node))
4: for a in A(node) do
5: Initialize child_node with P(node,a)
6: node.children[a] = child_node
7: end for
8: end function

Algorithm 4 Backpropagate Function in MCTS
1: function BACKPROPAGATE(v, search_path)
2: for node in search_path do
3: node.N← node.N +1
4: node.W ← node.W + v
5: root_node.N← root_node.N +1
6: end for
7: end function

Algorithm 5 Rollout Function in MCTS
1: function ROLLOUT(node)
2: while node.state is not two-tail lipid do
3: A(node)← NEXT_BUILDING_BLOCKS(node)
4: return 0 if A(node) is empty
5: a← a random choice from A(node)
6: node← new node with Product(node.state, a)
7: end while
8: return PropertyScore(node)
9: end function
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Algorithm 6 UCB Score Calculation Function in MCTS
1: function UCB_SCORE(parent_node, child_node)
2: if child_node.N = 0 then
3: Q = 0
4: else
5: Q = child_node.W

child_node.N
6: end if
7: U = c · child_node.P ·

√
parent_node.N

child_node.N+1
8: return Q+U
9: end function

Algorithm 7 Get Action Space Function in MCTS
Require: max_expand_num a pre-determined number

1: function NEXT_BUILDING_BLOCKS(node)
2: if node is empty node then
3: A(node)← max_expand_num random samples from head search space
4: else
5: reactive_tail_set← tails which can react with node.state
6: A(node)← max_expand_num random samples from reactive_tail_set
7: end if
8: return A(node)
9: end function



Appendix B

Template-based Reaction Prediction

B.1 Reaction Templates

We utilize 13 reaction templates sourced from (Grygorenko et al., 2020), as outlined below.
Within our generative model framework, we focus exclusively on reactions involving two
reactants, which leads us to exclude Reaction 1 from our simulations. Additionally, Reactions
6, 7, 9, and 12 all involve a linker molecule characterized by a trifluoroethyl substructure.
It is important to note that this linker molecule is not explicitly decoded into the reactions
in our in silico modeling; however, specific conditions are required for its use in laboratory
experiments. Furthermore, any catalysts present in these reactions are also not incorporated
into our in silico coding, reflecting a simplification to facilitate computational modeling
while acknowledging the complexities that arise during actual chemical synthesis.
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Appendix C

Example Synthesis Planning

C.1 Selected Examples of Synthesis Planning

Figures C.1 and C.2 give two examples of our generated ionizable lipids with their cor-
responding synthesis paths. Note that these synthesis paths have been validated by the
retrosynthesis tool Syntheseus (Maziarz et al., 2023). In the figures below, the blue nodes
represent product molecules (i.e., intermediate product or final product) and the green nodes
represent building block molecules (i.e., lipid head building block or lipid tail building block).
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Fig. C.1 Example 1 of generated ionizable lipid with synthesis path.
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Fig. C.2 Example 2 of generated ionizable lipid with synthesis path.
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