
Reservoir Computing on Mobile Swarm
Dynamical Systems

Yanjun Zhou

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

St Edmund’s College August 2024

I would like to dedicate this dissertation to my loving parents, I would never have made it
this far without their relentless support.

Declaration

I, Yanjun Zhou of St Edmund’s College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

Word Count: 12850
Software Declaration: This work utilised standard Python packages including scipy,

scikit-learn, and matplotlib.
A range of software libraries and repositories were also employed:

• ’boids’ (https://github.com/cubeDhuang/boids) by Huang (2021) is used, with major
modifications. This is originally written in java. The modifications involves converting
java code to Python code, and changing the model to fit the descriptions in Section
2.4.1 and 3.1.1.

• ’PyNAnts’ (https://github.com/Nikorasu/PyNAnts) by Stromberg (2021) is used, with
moderate modifications to make it suitable for being utilised as the ants reservoir
in our reservoir computing framework. The modification involves configuring input
and output for reservoir computing, and changing the model to fit the descriptions in
Section 2.4.2 and 3.1.2.

• ’echo-state-network’ (https://github.com/stefanonardo/echo-state-network) by Nardo
(2017) is used, with major modifications. This is originally a reservoir computing
framework for ESN in MATLAB. The modifications involve converting MATLAB
code to Python code, adding the observation layers, adding our swarm reservoir and
adding evaluation on benchmark tasks.

The code for this project will be available upon request.

Yanjun Zhou
August 2024

Acknowledgements

I would like to express my deepest gratitude to my project supervisors, Dr. Kai-Fung Chu and
Prof. Fumyia Iida, for their invaluable guidance and support throughout this project. I would
also like to express my heartfelt thanks to the PhD student Mr. Fan Ye, who will become
Dr. Fan Ye very soon, for helping me conquering obstacles and exploring all possibilities.
The expertise and insightful feedback from all of them have been instrumental in shaping
both my work and my professional growth. I am deeply grateful for the time and effort they
devoted in helping me.

I am grateful to be a part of MLMI cohort, and I would like to thank all teaching and
management staffs for bringing me this wonderful course. I would like to say another thank
you to all the classmates in MLMI cohort, for accompanying and helping me through this
unforgettable year. As one of the youngest students in the cohort, I have been receiving a lot
of love and cares from you over the year.

I am thankful to every person I have encountered over the past 22 years, it is these
encounters that have shaped who I am today. I thank those who once bullied me, as each
setback has only made me stronger. I appreciate those who have supported me, helping me
to find my way through difficult times. I thank those who once looked down on me, for
teaching me to stay humble, while following my own path without being overly concerned
with others’ opinions. And to those who trusted me, I am grateful, as their belief gave me the
courage to come this far.

Lastly and most importantly, I would like to say a special thank you to my family, I could
never have come this far without your relentless support.

Abstract

Swarm intelligence, inspired by the collective behaviours of biological entities such as ant
colonies and bird flocks, harnesses distributed and simple rules to address complex problems
without central control. Reservoir computing enables the transformation of mobile swarm
systems in real life into valuable computational resources. However, there have been limited
studies in this field due to certain challenges, including permutation symmetry and instability
within swarm systems, which significantly hinder the computational performance of such
systems. In this work, we explore the use of highly mobile swarm systems, specifically birds
and ants, within reservoir computing frameworks to perform machine learning tasks. By
integrating an observation layer using Gaussian kernel density estimation into the reservoir
computing framework, our approach not only addresses permutation symmetry but also
stabilises swarm behaviours, resulting in a scalable swarm reservoir computer. Using
four benchmark computation tasks, we explore variations in computational capacity across
different swarm sizes and combinations. We have proven the effectiveness of our observation
layer in solving permutation symmetry and discovered that combining different swarm
reservoirs in parallel would lead to an improvement in performance. Our best reservoir model
is the one that combines ants and birds reservoir at a ratio of 8:2. With a swarm size of 20,
the performance achieves a covariance of approximately 0.20, comparable to that of ESN16.
As the number of swarms increases to above 60, the covariance value reaches around 0.21,
matching the performance of ESN18. This indicates that our swarm reservoir has a reasonable
amount of memory and nonlinearly capacity in performing computation tasks. Our findings
also delve into the impacts of altering system parameters on the networks’ computational
abilities, offering insights into mechanisms in swarm intelligence and application to AI.

Table of contents

List of figures xiii

List of tables xix

1 Introduction 1
1.1 Main Contributions . 3
1.2 Dissertation Outline . 3

2 Background 5
2.1 Classical Reservoir Computing Framework 5
2.2 Reservoir Computing with Single Robot Reservoirs 8

2.2.1 Octopus-inspired Soft Robotic Arm 8
2.2.2 Spine-Driven Quadruped Robot 10

2.3 Reservoir Computing with Swarm Reservoirs 12
2.3.1 Particle Swarm . 12
2.3.2 Predator-Driven Boids . 14

2.4 Swarm Systems . 16
2.4.1 Boids Model . 16
2.4.2 Ants Model . 18

2.5 Chapter Summary . 20

3 Methodology 21
3.1 Swarm Reservoir Models . 21

3.1.1 Boids as Reservoir . 22
3.1.2 Ants as Reservoir . 25
3.1.3 Combined Reservoir . 26

3.2 Observation Layer . 27
3.2.1 Permutation Symmetry in Our Swarm Reservoirs 27
3.2.2 Addressing Permutation Symmetry 28

xii Table of contents

3.3 Readout Layer . 30
3.3.1 Training readout weights . 30
3.3.2 Output Computation and Evaluation 31

3.4 Chapter Summary . 32

4 Experimental Setups and Results 33
4.1 Benchmark Tasks . 33

4.1.1 Short-Term Memory Task . 33
4.1.2 Parity Check Task . 35
4.1.3 Nonlinear Autoregressive Moving Average Task 36
4.1.4 Mackey-Glass Time Series Prediction Task 37

4.2 Experimental Methods and Settings . 38
4.3 Comparison with Echo State Networks . 40
4.4 Variation of Computation Capacity with Swarm Sizes 41
4.5 Computation Capacity with Different Combinations of Swarm Systems . . 43
4.6 Sensitivity Analysis . 44

4.6.1 Variation of Computation Capacity with Input Ratio (Boids Reservoir) 44
4.6.2 Variation of Computation Capacity with Separation Radius (Boids

Reservoir) . 45
4.6.3 Variation of Computation Capacity with Cohesion Radius (Boids

Reservoir) . 46
4.6.4 Variation of Computation Capacity with Food/Nest Factor Range

(Ants Reservoir) . 47
4.7 Chapter Summary . 48

5 Conclusion 49
5.1 Future Works . 50

References 51

Appendix A Other Sensitivity Analysis Performed 55
A.1 Variation of Computation Capacity with Alignment Radius (Boids Reservoir) 55
A.2 Variation of Computation Capacity with Alignment Factor (Boids Reservoir) 56
A.3 Variation of Computation Capacity with Separation Factor (Boids Reservoir) 57
A.4 Variation of Computation Capacity with Cohesion Factor (Boids Reservoir) 58

Appendix B Sensitivity Analysis in Delays 59

List of figures

2.1 Comparisons between recurrent neural network (RNN) and echo state net-
work (ESN) from TAKAGAKI et al. (2024) 6

2.2 Example of echo state property under a step input (blue). Different nodes
respond to input at different delays, and delay results in the memory of
previous states. The nodes with longer delays would have memories that last
longer. 7

2.3 Setup of a platform for a soft silicone arm, along with diagrams illustrating
the information processing framework employed by the arm, from Nakajima
et al. (2015). (a) Schematic of the physical reservoir computing framework,
with the silicon arm as a reservoir. The silicon arm is placed in water, with
10 bend sensors attached to it. The input is injected from the motor on the
top, inducing bends that propagate along the arm. (b) Picture of silicon
arm used in their study. (c) Comparison between conventional reservoir
computing framework and physical reservoir computing framework in this
study. The virtual reservoir is replaced by the silicon arm, which exhibits
complex dynamics that produce memory and nonlinearity capacity. 9

2.4 Schematic diagram of closed-loop control for silicon arm from Nakajima et al.
(2013). This self-driven system is able to emulate predefined movements
without external inputs. The output is now fed back to the input, and the
readout is trained to map the output to the target input. 10

2.5 Schematic diagram of reservoir computing with spine-driven quadruped
robot from Zhao et al. (2013). (a) The spine reservoir takes motor command
DG as input, with output SG collected from 32 force sensors. (b) Readout
weights wG trained in an open loop to fit the target output. (c) Schematic of
the closed loop system, with the pattern generator computing input of next
time step from output and readout weights. 11

xiv List of figures

2.6 Experimental realisation for reservoir computing with particle swarm from
Wang and Cichos (2024). (a) Experimental setup, with particles in the sample
heated by the laser (532 nm), illuminated with LED light and captured by the
camera for analysis on PC. (b) Mobile and Immobile particles in the sample.
(c) Heating particles by laser would induce force F̂(t), making the particle
to rotate around the immobile particle by an angle of θ(t). (d) Image of the
sample, with an additional calibrator is used adjust the particles’ movement. 13

2.7 Schematic of reservoir computing framework with predator-driven boids
reservoir, from Lymburn et al. (2021). The input is injected by the movement
of the predator (red dot), driving all the other birds to flee from it. The
observation layer records the overall shape of the swarm, making the output
invariant of internal permutations among individuals. This output is then
used for performing Lorenz prediction tasks. 14

2.8 (a) Separation rule makes the birds move away from the centre of mass
of neighbours within the separation radius. (b) The alignment rule makes
the velocity of birds match with its neighbours within the alignment radius.
(c) The cohesion rule makes the birds move towards the centre of mass of
neighbours within the cohesion radius. 16

2.9 (a) Different pheromones used by ants, with exploration pheromone (blue)
used when searching for food, and foraging pheromone (grey) used when
carrying food back to the nest. (b) The velocity of an ant at the exploration
phase is affected by both the foraging pheromone and the direction of food,
resulting the overall velocity of the ant being a combination of v f and v f p.
(c) The velocity of an ant at the foraging phase is affected by the foraging
pheromone, exploration pheromone and direction of food, resulting in the
overall velocity of the ant to be a combination of v f , vep and v f p. 18

3.1 The modified reservoir computing framework that we use, with the addition
of an observation layer to overcome permutation symmetry 21

3.2 Angle map of the birds. 22
3.3 (a) Birds initially at rest with steering angle at 0. (b) When Birds 1 and 2

change their steering angle. (c) Birds 3 and 4 steer to follow and align with
the birds in the front. (d) When birds get close to the boundary. (e) Handling
situations of birds reaching boundary, by making them reappear at the other
side. (f) Birds reappear at the other side of the screen, and are still flying in a
group . 23

List of figures xv

3.4 Illustration of echo state property in our boids reservoir under a step input,
with different birds exhibiting different amount of delays to input. 24

3.5 (a) Different ants respond to changes in food source differently, resulting
in differences in delays. (b) Illustration of echo state property in our ants
reservoir under a step input, with different ants exhibiting different amounts
of delays to input. 25

3.6 (a) Ants travelling in opposite directions in the exploring and foraging phase,
leading to inconsistency in steering angles. (b) Angle map of ants modified
to solve this inconsistency. 26

3.7 Permutation symmetry in both reservoirs. (a) A flock of 4 birds, with Birds 1
and 2 receiving input, changing direction of flight. (b) Variation in steering
angle of Birds 3 and 4. (c) Behaviour of different ants when food source
changes, with Ant 3 turning to food and Ant 4 remain travelling along
pheromone trail. (d) A flock of 4 birds with Birds 3 and 4 switched position.
(e) Variation in steering angle of Birds 3 and 4 when position is switched.
(f) When Ants 3 and 4 switched position compared to (c), resulting Ant 4
turning to food and Ant 3 remain travelling along pheromone trail. 27

3.8 Working principle of the observation layer. (a) Changes in distribution of
reservoir states when input is changed from 0 to 1, across 5 time steps. (b)
Probability density outputs from the 5 channels over 5 timesteps. (c) Plot of
observation channel output against time step, exhibiting echo state property. 29

4.1 Performance of our combined reservoir in STM tasks. Longer memories are
required for subtasks with larger indices. Our reservoir can fully perform
STM1 and partially perform STM2 and STM3, meaning that it only has
memories for the previous 3 inputs. 34

4.2 Performance of our combined reservoir in PC tasks. Longer memories are
required for subtasks with larger indices. Our reservoir can fully perform
PC1 and partially perform PC2 and PC3, validating that it only has memories
for the previous 3 inputs. 35

4.3 Performance of our combined reservoir in NARMA tasks. Larger subtask in-
dices represent larger order of nonlinearity. Our reservoir emulates nonlinear
systems of lower order (NARMA2 and NARMA5) well, while non-linear
systems of higher orders can only be partially emulated. 36

4.4 Performance of our combined reservoir in MG tasks. MG16 represents a
non-chaotic MG system and MG17 represents a chaotic MG system. The
predicted output mostly fits the pattern of the target output. 37

xvi List of figures

4.5 Comparison of ESN with the three reservoirs of ours. At swarm size of
20, the performance for boids, ants and combined reservoirs are at levels
of ESN6, ESN14 and ESN16, respectively. For larger swarm sizes, the
performance for boids and combined reservoir approaches ESN8 and ESN18,
while the capacity for ants reservoir remains at level of ESN14. 40

4.6 (a) Variation in computation capacity with size of boids reservoir. Covari-
ance of the one with no observation layer applied peaks at 0.11 when swarm
number is 22. The performance then drops with swarm number due to per-
mutation symmetry. The application of observation layer solves permutation
symmetry, with best covariance at around 0.16. (b) (a) Variation in com-
putation capacity with size of ants reservoir. Covariance of the one with
no observation layer applied peaks at 0.11 when swarm number is 24. The
performance then drops with swarm number due to permutation symmetry.
The application of observation layer solves permutation symmetry, with best
covariance at around 0.19. 42

4.7 Performance for combined reservoir with different combination ratios. The
computation capacity of combined reservoir is generally better than those
using a single type of swarm. The combination ratio of ants:boids=8:2
achieves best result among all, with covariance reaching 0.208. 43

4.8 Plot of covariance against input ratio for boids reservoir. Input ratio repre-
sents the ratio of birds that directly receive input in the flock. 45

4.9 Plot of covariance against separation radius for boids reservoir. The separa-
tion radius represents the minimum distance that the birds try to keep from
others. 46

4.10 Plot of covariance against cohesion radius for boids reservoir. Birds would
try to gather with others within the cohesion radius. 46

4.11 Plot of covariance against food/nest factor range for ants reservoir. This
factor influences the impact of food/nest direction to the velocities of ants. . 47

A.1 Plot of covariance against alignment radius for boids reservoir. Alignment
radius indicates the range of neighbours that the birds match their velocities
with. 55

A.2 Plot of covariance against alignment factor for boids reservoir. Alignment
factor indicates the strength of influence of alignment forces on birds’ velocities 56

A.3 Plot of covariance against separation factor for boids reservoir. Separation
factor indicates the strength of influence of Separation forces on birds’ velocities 57

List of figures xvii

A.4 Plot of covariance against cohesion factor for boids reservoir. Cohesion
factor indicates the strength of influence of cohesion forces to birds’ velocities 58

B.1 Plots of delay analysis for swarm reservoirs of size 40. (a) Plot of covariance
against delay length for boids reservoir in STM and PC tasks. (b) Plot of
covariance against delay length for boids reservoir in NARMA tasks. (c) Plot
of covariance against delay length for boids reservoir in MG tasks. (d) Plot
of covariance against delay length for ants reservoir in STM and PC tasks.
(e) Plot of covariance against delay length for ants reservoir in NARMA
tasks. (f) Plot of covariance against delay length for boids reservoir in MG
tasks. (g) Plot of covariance against sample time for ants reservoir in STM
and PC tasks. (h) Plot of covariance against sample time for ants reservoir in
NARMA tasks. (i) Plot of covariance against sample time for ants reservoir
in MG tasks. 60

List of tables

4.1 Parameters and Variation Ranges for Boids Simulation 38
4.2 Parameters and Variation Ranges for Ants Simulation 38

Chapter 1

Introduction

Swarm intelligence is a field of study that draws its principles from the collective behaviours
observed in natural systems such as ant colonies, bee hives, and bird flocks. These biological
systems exhibit a remarkable ability to solve complex problems through simple interactions
between individuals without central control (Deneubourg and Goss, 1989; Emlen, 1952;
Lissaman and Shollenberger, 1970; Mataric, 1992). This distributed decision-making process
allows swarms to adapt dynamically to environmental changes, optimise routes, and even
construct complex structures (Kvam and Kleiven, 1995; Sumpter, 2010).

In the context of computational neuroscience and artificial intelligence, swarm intelli-
gence has been used to inspire the development of robust, scalable networks capable of
solving real-world problems. This includes the SpikeAnts model proposed by Chevallier et
al. (Chevallier et al., 2010). These artificial neural networks often treat swarm agents as nodes
within the network, with the edges representing interactions between these nodes. Each node
in the network acts independently, following simple rules based on the local information it
perceives. This leads to the emergence of coordinated group behaviour as a global pattern.
The connections between nodes change as the swarm system progresses. Mobile networks of
swarms evolve their architecture autonomously based on inherent dynamics, without the need
for explicit programming or training. Therefore, the research of swarm intelligence contrasts
traditional evolutionary neural networks (ENNs), which use evolutionary computation to
optimise neural architectures (Stanley et al., 2019; Stanley and Miikkulainen, 2002; Wierstra
et al., 2014).

Utilising swarm intelligence for computation transforms mobile swarm systems in real
life into valuable computational resources. This encompasses mobile vehicles and artificial
robot swarms, which are highly mobile and consist of similar agents. These systems offer sig-
nificant scalability and flexibility, providing substantial computational power that contributes
to societal advancement.

2 Introduction

Reservoir computing (RC) offers a unique approach to computational intelligence, which
allows the inherent dynamism of swarm systems to be harnessed to perform computations
(Jaeger, 2001; Jaeger and Haas, 2004). In RC, the swarm networks act as "reservoirs" that
process input signals through their natural dynamic responses. The core of reservoir comput-
ing is its ability to capture these dynamic reactions, which are rich in time-based and spatial
information, and convert them into practical computational outputs. This approach leverages
the inherent capabilities of swarm systems to efficiently manage complex computing tasks.

There has been very limited research on harnessing the collective intelligence of highly
mobile swarm systems composed of similar agents. These systems are generally difficult to
control and are highly prone to permutation symmetry, which comes from the swarm agents
swapping positions with each other (Lymburn et al., 2021). These issues all lead to reductions
in computation capacity, bringing challenges for utilising swarm systems for computation.
The research conducted by Lymburn et al. (2021) utilises the modified Reynolds boids model
to explore swarm responses to predator-like signals in nonlinear time-series prediction tasks.
They tackle permutation symmetry using a radial basis-localised observation layer. However,
the interactions between predator and prey, and those among animals within the same species
differ significantly, indicating that the intelligence observed is not merely attributable to a
single animal swarm.

In this work, we leverage the self-organising and adaptive learning capabilities of biolog-
ical swarms with semi-homogeneous agents, and integrate them into reservoir computing
frameworks to perform machine learning tasks. Two types of swarm systems are utilised
in this study, namely boids (bird-oids) (Reynolds, 1987) and ants (Beckers et al., 1990;
Dussutour et al., 2009; Grüter et al., 2011). Similar to the work of Lymburn et al. (2021),
we address permutation symmetry by incorporating Gaussian kernel density estimation into
the readout of swarm reservoirs, which produce output based on the overall distribution of
reservoir states. Different from them, we examine how computation power evolves from
individual agents to collective swarm intelligence, and evaluate the variation in computation
capacity for swarm systems of different sizes. Then, different swarm systems are combined
to see if we can harness the advantages of different systems arising from different dynamics.
The impact of altering system parameters on the computational capacity of these networks
is also investigated. The benchmark datasets we use for performance evaluation include
short-term memory (STM), parity check (PC), nonlinear autoregressive moving average
(NARMA) and Markey-Glass (MG) time series prediction (Jaeger and Haas, 2004). Although
our study is based on simulations of swarm systems, it can provide valuable insights into
physical implementations of reservoir computing with swarms in future studies.

1.1 Main Contributions 3

1.1 Main Contributions

The main contributions of our work are summarised as below:

• We propose swarm reservoir designs based on simulation models of birds and ants,
which are highly mobile swarm systems composed of semi-homogeneous agents.
We select suitable input and output for both swarm systems, to make them function
reservoirs with computation capacity.

• We address the permutation symmetry issue in swarm reservoirs with Gaussian kernel
density estimation, to produce output based on the distribution of states.

• We investigate the effect of combining different swarm reservoirs in parallel and
witness improvements in computation capacity.

• We conduct extensive experiments to evaluate the computation capacity of our frame-
work on four benchmark datasets. We have also compared the performance of our
swarm reservoir with one of the most popular reservoirs, Echo State Networks (ESN).
Experiment results have shown that the computation capacity of our combined swarm
reservoir is equivalent to ESN16 at a swarm size of 20. As the swarm size becomes
greater than 60, the performance attains a covariance of around 0.21, similar to ESN18.

1.2 Dissertation Outline

The dissertation is organised as follows:

• Chapter 2 reviews the related works in reservoir computing, describing how the
reservoir computing framework enables physical objects or swarms to be utilised for
computation. The chapter also discusses the swarm models that we use in this work.

• Chapter 3 describes the reservoir computing framework we use, including the formu-
lation of using swarm systems for reservoir computing.

• Chapter 4 presents and discusses the experiments and results on benchmark computa-
tion tasks

• Chapter 5 concludes the paper and presents the future directions

Chapter 2

Background

This chapter outlines the theoretical foundations and related works that support our research.
Section 2.1 describes the classical reservoir computing (RC) framework using virtual reser-
voirs. Then Section 2.2 describes how the classical RC framework enables physical robots to
be utilised for computation, including some successful previous works. Section 2.3 discusses
the existing studies of utilising swarm intelligence in RC, highlighting the research gap that
our work addresses. Subsequently, Section 2.4 presents details of the swarm models that we
use in this work. Finally, Section 2.5 summarises the key points of this chapter, including the
problem that our work addresses.

2.1 Classical Reservoir Computing Framework

Reservoir Computing (RC) is an innovative computational approach within the broader field
of artificial neural networks, specifically designed for processing time series and dynamic
data. Echo state networks (ESNs) are one of the pioneering and classical reservoir computing
methods that was proposed, drawing inspiration from recurrent neural networks (RNNs)
(Jaeger, 2001; Jaeger and Haas, 2004). Figure 2.1 shows the comparison between typical
RNNs and ESNs. Both architectures consist of interconnected neurons that form directed
cycles, allowing them to maintain an internal state that acts as a memory of previous inputs.
However, the two networks differ in their training approach. RNNs require training across
all network weights, including the input layer, hidden layer and output layer. The training
involves iterative methods to optimise the weights that minimise the prediction error. By
comparison, ESNs use a random fixed set of internal weights for the input and hidden
(reservoir) layer, and only train the output (readout) weights. As weights of both the input
and reservoir layers are fixed, the input to the readout layer would always remain consistent

6 Background

under the same input. Therefore, single-epoch training using linear regression is adequate for
training the output layer weights, with no need for iterative adjustments.

Fig. 2.1 Comparisons between recurrent neural network (RNN) and echo state network (ESN)
from TAKAGAKI et al. (2024)
. Traditional RNN trains all network weights using iterative methods, while ESN only trains

the weights in output (readout) layer with single-epoch training.

The reservoir computing approach of ESNs provides a notable advantage over traditional
RNNs by significantly streamlining the training process while maintaining the capability to
model complex time series. This streamlined method not only speeds up training but also cuts
down on computational requirements, making ESNs exceptionally efficient. Unlike RNNs,
which use resource-intensive backpropagation through time (BPTT) to train all network
connections, ESNs concentrate training solely on the output layer. This approach not only
circumvents the vanishing gradient issue but also minimizes the amount of data required for
effective training. Consequently, ESNs are especially effective for managing large-scale or
intricate time series data, ensuring rapid and dependable model training.

In the domain of reservoir computing, the hidden layer of the reservoir computing
framework in Figure 2.1 is commonly referred to as the reservoir, the outputs derived from
the reservoir are termed reservoir states, and the output layer is denoted as the readout. These
terminologies will be consistently employed throughout this thesis.

As the reservoirs of ESNs use the recurrent architecture like RNNs, the reservoir states
are computed from input in a similar manner (Lukoševičius, 2012). At each time step n, the
reservoir state x(n) ∈ RNx is updated based on the input u(n) ∈ RNu and its previous state
x(n−1) ∈ RNx using the equation:

x̂(n) = tanh(Win[1;u(n)]+Wx(n−1)), (2.1)

2.1 Classical Reservoir Computing Framework 7

where x̂(n) ∈ RNx represents the update in state, and Win ∈ RNx×(1+Nu) and W ∈ RNx×Nx

are the input and reservoir weight matrices, respectively. The function tanh(·) is applied
element-wise, and [1;u(n)] denotes the vertical concatenation of 1 and the input vector u(n).
The state x(n) at any time step is a linear interpolation of the previous state x(n−1) and the
updated state x̂(n), calculated as:

x(n) = (1−α)x(n−1)+α x̂(n) (2.2)

where α ∈ [0,1] denotes the leaking rate, which controls the rate at which the reservoir
updates its state. The readout weights Wout ∈ RNy×(1+Nu+Nx) are trained through linear
regression or ridge regression, which will be explained in detail in Section 3.3 The network
output y(n) ∈ RNy from the readout layer is computed such that

y(n) = Wout[1;u(n);x(n)]. (2.3)

Fig. 2.2 Example of echo state property under a step input (blue). Different nodes respond to
input at different delays, and delay results in the memory of previous states. The nodes with
longer delays would have memories that last longer.

From Equation 2.2 and 2.1 above, it can be seen that the current state of ESNs is
dependent on both current input and previous states. For an ESN node x with large reservoir
weights Wx, small leaking rate α and input weights Wx

in, the current state would be highly
dependant on previous states. This means that the node is having a memory of previous states,
that gradually fades with time. Otherwise, if the reservoir weights Wx are small, while the
leaking rate α and input weights Wx

in are large, the node would follow the input more tightly
with memory fading faster. For a step input applied to an ESN reservoir, the nodes would
respond to input with different delays, some nodes have a fast response to input changes,
while others hold a longer memory of past states. This response is illustrated in Figure

8 Background

2.2, and is referred to as echo state property in previous studies (Jaeger and Haas, 2004).
The computation capacity of a reservoir computer generally includes memory capacity and
nonlinearity capacity. The ’echo states property’ produces memory capacity within ESNs,
while the nonlinearity capacity comes from the rich dynamics within the complex and random
connections of the reservoir.

Later studies have shown that the reservoir computing approach can be extended to using
physical objects as reservoirs, which involves replacing the reservoir of ESN with physical
objects (Baldini, 2022; Nakajima, 2020; Tanaka et al., 2019). A suitable set of input and
output are needed to be selected for the physical reservoir so that the output exhibits echo
state property and rich nonlinear dynamics.

2.2 Reservoir Computing with Single Robot Reservoirs

ESNs use virtual reservoirs of randomly generated RNNs, which still require the usage of
computational resources. The computation capacity of ESNs is also inconsistent for different
sets of random architectures. By comparison, physical reservoirs utilise the natural dynamics
of a physical medium, conducting computations through the inherent physical properties of
the system. The approach not only reduces the amount of computation resources required,
but also makes the computation capacity more consistent as physical reservoirs generally
have relatively fixed structures. Physical reservoirs can also be used in the development of
embodied intelligence, enabling the robot to be driven by itself.

2.2.1 Octopus-inspired Soft Robotic Arm

Several studies have investigated the application of a soft robotic arm inspired by octopus
morphology as a physical reservoir in reservoir computing (Nakajima et al., 2013, 2015,
2014). By using the nonlinear dynamics of the robotic arm’s soft structure, the research
showcases its capability to approximate complex systems and perform computation tasks.

2.2 Reservoir Computing with Single Robot Reservoirs 9

Fig. 2.3 Setup of a platform for a soft silicone arm, along with diagrams illustrating the
information processing framework employed by the arm, from Nakajima et al. (2015). (a)
Schematic of the physical reservoir computing framework, with the silicon arm as a reservoir.
The silicon arm is placed in water, with 10 bend sensors attached to it. The input is injected
from the motor on the top, inducing bends that propagate along the arm. (b) Picture of
silicon arm used in their study. (c) Comparison between conventional reservoir computing
framework and physical reservoir computing framework in this study. The virtual reservoir
is replaced by the silicon arm, which exhibits complex dynamics that produce memory and
nonlinearity capacity.

The structure of this reservoir is shown in Figure 2.3a and 2.3b. A motor is attached to the
soft robotic arm, to make it swing leftwards and rightwards. The soft robotic arm is placed
underwater, with 10 bend sensors attached to it, to measure the bending in different parts of
the arm. If the bend occurs on the ventral side, the sensor value falls below 1. Conversely,
if the bend is on the dorsal side, the value exceeds 1. For this reservoir, motor rotation is
selected as the input, and the bending measured by sensors is chosen as the output. When
the motor at the top rotates, it induces a bend that propagates along the soft robotic arm
and gradually diminishes as it approaches the end. This satisfies the echo state property
mentioned in Section 2.1, making this soft robot a suitable reservoir. Figure 2.3c shows the
comparison between this system and conventional reservoir computing systems like ESNs. It
can be seen that the virtual reservoir network is now replaced by this physical reservoir.

10 Background

Fig. 2.4 Schematic diagram of closed-loop control for silicon arm from Nakajima et al.
(2013). This self-driven system is able to emulate predefined movements without external
inputs. The output is now fed back to the input, and the readout is trained to map the output
to the target input.

This physical reservoir computing system demonstrates strong performance in short-
term memory (STM) tasks and nonlinear auto-regressive moving average (NARMA) tasks,
thereby validating its computational capabilities. The system is also extended into a reservoir
controller that drives the robotic arm itself, making it execute a predefined movement. This
is done by closing the loop of the system in Figure 2.3c, making the output to be the input of
the next time step. This is illustrated in Figure 2.4. The training phase is carried out in an
open loop, where the readout weights are trained to map the reservoir output to the target
input of the next time step. Then the evaluation phase is carried out in a closed loop, with
the system driven by itself without external input. The predefined movements have been
successfully replicated, demonstrating the effectiveness of this control approach.

2.2.2 Spine-Driven Quadruped Robot

The study by Zhao et al. (2013) explores the utilisation of spinal dynamics as a computational
resource in a spine-driven quadruped robot. It applies reservoir computing to develop a
self-driven robot, showing the ability of the spine to adapt and execute various locomotive
behaviours like bounding, trotting, and turning.

2.2 Reservoir Computing with Single Robot Reservoirs 11

Fig. 2.5 Schematic diagram of reservoir computing with spine-driven quadruped robot from
Zhao et al. (2013). (a) The spine reservoir takes motor command DG as input, with output
SG collected from 32 force sensors. (b) Readout weights wG trained in an open loop to fit the
target output. (c) Schematic of the closed loop system, with the pattern generator computing
input of next time step from output and readout weights.

Figure 2.5a shows the robot reservoir that they used. The spine of the robot is controlled
by 4 motors attached to it, and the movement of the robot is driven by the movement of
the spine. The input to the reservoir DG is the motor command, and the reservoir output
SG is the readings from 32 force sensors along the robot spine. An input to the reservoir
would create a force that propagates along the spine. This means that the sensors would
respond to the input with different delays, making the reservoir exhibit echo state property
and memory capacity. The nonlinearity capacity comes from the complex dynamics of the
spine, enabling it to manage complex control tasks effectively. Figure 2.5b shows how the
readout is trained for the robot to perform a predefined task, with the target motor command
of performing the task provided. The training stage is carried out in an open loop, to train the
readout weights wG that maps sensor output SG with the target motor command DG. Figure
2.5 shows the evaluating phase after training, The control loop is now closed, with a pattern
generator computing motor command based on the reservoir output SG and readout weights
wG. The control command is then sent back to the input of the reservoir (spine). The study
has demonstrated that the spine reservoir are able to drive the robot to emulate different types
of gaits, proving the effectiveness of this control approach.

12 Background

2.3 Reservoir Computing with Swarm Reservoirs

Utilising swarm intelligence for computation has been successful in developing optimisation
algorithms. Particle Swarm Optimisation (PSO) (Kennedy and Eberhart, 1995) mimics the
social dynamics observed in birds and fish. It utilises a swarm of particles that adjust their
positions based on personal and collective achievements, efficiently balancing exploration and
exploitation in the solution space. This simplicity and minimal parameter tuning make PSO
ideal for continuous optimisation problems where rapid convergence is desired. Ant Colony
Optimisation (ACO) (Dorigo et al., 2006) draws inspiration from the foraging behaviour of
ants, using artificial ants that traverse a problem graph while depositing pheromones to guide
others towards promising solutions. This method excels in discrete optimisation challenges
like routing and scheduling, benefiting from a robust mechanism that adjusts to dynamic
environments and helps avoid local optima through pheromone evaporation. Both algorithms
provide rapid convergence to optimal solutions, especially in complex optimisation problems.
This performance is attributed to the flexibility and scalability inherent in swarms.

Looking at the application of swarm intelligence in reservoir computing, swarm reservoirs
are typically more flexible when comes to scalability, as the size of network can be easily
changed by having individuals joining into or leaving out of the swarm. On the contrary, the
single robot reservoirs in Section 2.2 might suffer from scalability issues, as an increasing
number of nodes might involve physical modifications to the robot itself. Another difference
between swarm reservoirs and other reservoirs is that the interconnections between reservoir
nodes change with time, as the amount of interactions between swarm agents varies as
the swarm travels. This evolving architecture could potentially lead to high flexibility and
adaptability to different inputs. Additionally, reservoir computing with swarms may also
be used for the development of embodied intelligence for artificial swarm systems. By
integrating reservoir computing, artificial swarms can process environmental inputs in real
time. This capability not only enhances their decision-making processes but also improves
their ability to handle complex tasks in dynamic environments.

2.3.1 Particle Swarm

Research from Wang and Cichos (2024) have shown the effectiveness of harnessing particle
swarms for reservoir computing, where these particles dynamically respond to external
stimuli through delayed propulsion mechanisms. Similar to Section 2.2, they used particle
swarm reservoir to emulate a self-driven system performing Markey-Glass tasks (Wang and
Cichos, 2024).

2.3 Reservoir Computing with Swarm Reservoirs 13

Fig. 2.6 Experimental realisation for reservoir computing with particle swarm from Wang
and Cichos (2024). (a) Experimental setup, with particles in the sample heated by the laser
(532 nm), illuminated with LED light and captured by the camera for analysis on PC. (b)
Mobile and Immobile particles in the sample. (c) Heating particles by laser would induce
force F̂(t), making the particle to rotate around the immobile particle by an angle of θ(t).
(d) Image of the sample, with an additional calibrator is used adjust the particles’ movement.

As shown in Figure 2.6b and 2.6d, the particle swarms are consisted of immobile PS
particles and mobile MF-Au particles. Figure 2.6c shows that heating the particles with a
laser would induce a force F̂(t) onto the active particle, making it rotate around the immobile
particle by an angle of θ(t). The orientation angle θ of the particle responds to laser input
with a delay, hence satisfies the echo state property. Therefore, it is chosen as the output for
the swarm reservoir. Figure 2.6a shows the layout of their setup, where the sample of MF–Au
microparticles are heated by a beam from 532nm laser. The input from the laser to the swarm
reservoir is adjusted by the spatial light modulator, to produce an input that varies with time.
The sample is illuminated with LED light, and a camera captures the states of the swarm
reservoir for analysis on a PC. The readout trained from the PC converts the reservoir states
to the commands to a spatial light modulator, which adjusts the input to the reservoir. The
training and evaluation methods are in similar manners to the self-driven physical reservoirs
in Section 2.2, with readout training being carried out in open loop, matching reservoir states
to target reservoir input.

The reservoir obtained precise predictions in Markey-Glass prediction tasks. However,
the particle swarms that they use are in relatively fixed positions in space, and the variation
in interconnections between reservoir nodes is not that significant. By comparison, our study

14 Background

will explore the use of highly mobile swarm agents, with network interconnections changing
significantly over time.

2.3.2 Predator-Driven Boids

The study by Lymburn et al. (2021) leverages the modified Reynolds boids model as a
reservoir to investigate how swarms respond to a predator-like signal for nonlinear time-
series prediction tasks. The boids model simulates the behaviour of birds in nature, including
separation, alignment, and cohesion. These behaviours will be discussed in detail in Section
2.4.

Fig. 2.7 Schematic of reservoir computing framework with predator-driven boids reservoir,
from Lymburn et al. (2021). The input is injected by the movement of the predator (red dot),
driving all the other birds to flee from it. The observation layer records the overall shape of
the swarm, making the output invariant of internal permutations among individuals. This
output is then used for performing Lorenz prediction tasks.

The reservoir computing framework utilised in this study is shown in Figure 2.7. In
addition to the basic boids model, a predator is added in this study, and its trajectory of
movement acts as an input to swarm reservoir. In the reservoir layer part within the figure, the
predator is shown as a red dot and the prey are shown in blue. When the predator forages, the
prey would flee from the predator at different delays, making the positions of prey exhibiting
echo state property suitable for reservoir output.

The issue of permutation symmetry in highly mobile swarm systems is discussed in this
study. When swarm trajectories approach a previously encountered state, the same input
drive patterns can lead to diverse responses if the positions of individual agents are altered or
swapped. The behaviour of an individual bird is significantly influenced by interaction with
its neighbours. If the bird is in a different position under the same input, it would respond
differently as it is interacting with a set of different neighbours. This causes the swarm

2.3 Reservoir Computing with Swarm Reservoirs 15

behaviour to differ under the same input applied, and this inconsistency makes it difficult to
train the readout weights. This issue is resolved by observing the overall shape of the swarm,
shown by the observation layer part in Figure 2.7. By producing output based on the overall
shape, the result would become invariant of internal permutations.

The solution draws inspiration from the radial basis function modelling technique (Lowe
and Broomhead, 1988) by positioning Gaussian observation kernels on a random set of M
agents across the swarm’s spatial domain. These kernel functions are defined as follows:

ψm(x) = e−
(x−cm)2

2wm (2.4)

where m = 1,2, . . . ,M enumerates the agents. The centre of kernel cm is defined by the
agent’s position, and kernel width wm is set as the distance to the fifth nearest neighbour of
the central agent. Observations are computed by applying the kernels to the velocities and
positions of the birds:

r1,m(t) =
N

∑
i=1

ψm(xi(t)) (2.5)

r2,m(t) =
N

∑
i=1

ψm(xi(t))vxi(t) (2.6)

r3,m(t) =
N

∑
i=1

ψm(xi(t))vyi(t) (2.7)

Equation 2.5 quantifies the number of agents within the field of the kernel, and then Equations
2.6 and 2.7 compute the average velocity of birds near the centre of the kernel. Together,
these metrics capture the motion of the swarm across different spatial locations, forming the
circles in the observation layer part of Figure 2.7. Then different circles would superpose
with each other to form the overall shape of the swarm. This is achieved by concatenating
the data from all 3M kernels to create the output of the observation layer (shape of swarm),
which is then fed to the linear readout.

This framework performs reasonably well in Lorenz prediction tasks. However, this
system needs to be driven by a predator, and the performance is also highly dependent on the
predator’s performance. In this study, we will utilise a self-organised swarm system with all
the agents having the same interactions, therefore they are equivalent to each other, being
a practical swarm. We will also conduct a more thorough investigation of the computation
capacities in using more benchmark tasks, in both open-loop and closed-loop (self-driven)
frameworks. Although our study is based on simulations of swarm systems, it can provide

16 Background

valuable insights into physical implementations of reservoir computing with swarms in future
studies.

2.4 Swarm Systems

This section describes two types of swarm models, namely Boids model and Ants model.
Both models are multi-agent systems mimicking the behaviours of swarms. We will dive
into the internal dynamics of the models, including how interactions between swarm agents
take place.

2.4.1 Boids Model

The Boids model developed by Reynolds (1987) operates on a combination of simple
behavioural rules applied uniformly to each agent within a simulated environment. Each
single agent in the model is driven by three types of force factors: alignment, cohesion and
separation. The total force on a single bird would be the weighted sum of these three forces.

Ftotal = ksepFsep + kaliFali + kcohFcoh (2.8)

where ksep, kali and kcoh are factors that weights the three forces. Assuming all the birds in
the system have the same mass m, the acceleration can be updated such that

atotal = ksepasep + kaliaali + kcohacoh (2.9)

(a) (b) (c)

Fig. 2.8 (a) Separation rule makes the birds move away from the centre of mass of neighbours
within the separation radius. (b) The alignment rule makes the velocity of birds match with
its neighbours within the alignment radius. (c) The cohesion rule makes the birds move
towards the centre of mass of neighbours within the cohesion radius.

2.4 Swarm Systems 17

Figure 2.8a illustrates the rule of separation among the birds, with the bird in orange
moving away from the centre cs of its neighbours. Assuming that for a single agent j, there
are Ns number of other agents in its visual range Rs for separation, then the position for the
centre of mass cs of these agents can be calculated as

(xcs,ycs) =
1
Ns

Ns

∑
i
(xi,yi) (2.10)

Here, (xi,yi) represents the position of the i-th bird in the separation range, which satisfies∥∥(xi,yi)− (x j,y j)
∥∥ < Rs. Then the sum is calculated over all birds within the range. The

principle of separation within a flock serves to prevent crowding, by maintaining a minimum
distance between each bird and its nearby flockmates. This is achieved by adjusting the
acceleration of each bird so that it moves away from the centre of mass of its neighbours.
The acceleration for bird j, therefore, is updated according to the following formula:

asep = (ax j ,ay j) = (x j,y j)− (xcs,ycs) (2.11)

The sum is calculated over all birds i that are different from bird j, effectively pushing bird j
away from areas of high density and helping to maintain an optimal spacing within the flock.

Alignment ensures that birds within a flock head in the same general direction, where
each bird adjusts its steering towards the average direction of its nearby flockmates. This
rule facilitates synchronised movement across the flock and is illustrated in Figure 2.8b.
For each agent in the system, the adjustment in acceleration is calculated as the sum of the
differences in velocities between itself and each nearby bird. Assume that there are Na birds
in the alignment range Ra of bird j, the calculation for the acceleration component can be
mathematically represented as:

aali = (ax j ,ay j) =
Na

∑
i

[
(vx j ,vy j)− (vxi,vyi)

]
(2.12)

Here (vx j ,vy j) represents the velocity of bird j and (vxi,vyi) represents the velocity of bird i
in the alignment radius.

Cohesion, as a behavioural rule, directs each agent (or boid) to move towards the average
position of its nearby flockmates. Figure 2.8c shows the mechanism of cohesion, with the
bird in orange moving towards the centre cc of its neighbours. This rule is crucial for the
flock to stay together as a cohesive unit, especially during movement across expansive spaces
or around obstacles. It helps to prevent the group from splintering and maintains the overall
structural formation of the flock. Assume that there are Nc birds in the cohesion radius Rc of

18 Background

bird j, the centre of mass within this radius can be found as

(xcc,ycc) =
1

Nc

Nc

∑
i
(xi,yi) , (2.13)

where (xi,yi) represents the position of the i-th bird in the cohesion radius. The mathematical
formula for cohesion update can then be described as follows:

acoh = (ax j ,ay j) = (xc,yc)− (x j,y j). (2.14)

The update formula for cohesion seems the opposite of the one with separation, but they will
not cancel each other out as they have different effective ranges (Ns ̸= Nc). The velocity at
time t can then be updated such that

vt = vt−1 +atotal. (2.15)

If the amount of velocity is greater than the maximum amount allowed, its magnitude will be
rescaled to vmax:

(vx j ,vy j) =
(vx j ,vy j)∥∥(vx j ,vy j)

∥∥ × vmax. (2.16)

2.4.2 Ants Model

(a) (b) (c)

Fig. 2.9 (a) Different pheromones used by ants, with exploration pheromone (blue) used when
searching for food, and foraging pheromone (grey) used when carrying food back to the nest.
(b) The velocity of an ant at the exploration phase is affected by both the foraging pheromone
and the direction of food, resulting the overall velocity of the ant being a combination of
v f and v f p. (c) The velocity of an ant at the foraging phase is affected by the foraging
pheromone, exploration pheromone and direction of food, resulting in the overall velocity of
the ant to be a combination of v f , vep and v f p.

2.4 Swarm Systems 19

Studies on ant behaviours have shown that ants utilise multiple types of pheromones (Dussu-
tour et al., 2009). Each ant releases exploration pheromones when travelling towards food,
while releasing forage pheromones when carrying food back to the nest. This is illustrated in
Figure 2.9a. The exploration pheromones last longer but only have significant effects on the
ant that released them, while foraging pheromones last shorter but have influences on the
behaviour of all the ants.

When reaching food, the food is assumed to be visible to all ants. In the meantime, ants
are also able to sense forage pheromones. Researches on ants behaviours have shown that
both food position and pheromone trails would influence the route of ants, especially when
food changes position (Beckers et al., 1990; Grüter et al., 2011). The direction the ants travel
is determined based on the direction of food and pheromone trails, both acting as a velocity
component for velocity update. For each individual ant, the velocity component vf for the
direction of food is calculated by the difference between the food position (x f ,y f) and ant
position (x,y):

v f = (v fx ,v fy) =
(x f ,y f)− (x,y)∥∥(x f ,y f)− (x,y)

∥∥ (2.17)

The ants can sense pheromones in 3 directions: front, left and right. Sensing forage
pheromones in each direction would result in a different velocity component:

v f p =

(1,0) for front

(0.33,−0.67) for left

(0.33,0.67) for right

(2.18)

Therefore the total update in velocity would be the weighted sum of the velocity components,
with normalisation applied to limit the speed:

vtotal =
k f v f + k f pv f p∥∥k f v f + k f pv f p

∥∥ (2.19)

where k f and k f p are weighting factors for velocity components of foods and foraging
pheromones. The effect of combining velocity components is shown in Figure 2.9b. Each
individual ant has different responses when encountering pheromones (Isaeva, 2012). Some
may more more likely to follow the pheromone trails and some may be more likely to head
in the general direction of their destination. Therefore, every ant in the system would have
differences in values of weights k f and k f p.

After the ants have collected the food, the travel direction will be decided based on the
direction of the nest, the pheromone trail of itself while foraging or the pheromone trails of

20 Background

other ants on their way back. The velocity component for nest vn is related by the difference
between the position of the nest (xn,yn) and food, calculated by:

vn = (vnx ,vny) =
(x,y)− (xn,yn)

∥(x,y)− (xn,yn)∥
. (2.20)

The velocity components vfp and vep for both types of pheromones (foraging and exploration)
are the same as in equation (2.18). Similar to the exploration phase, the total update in
velocity is also the weighted sum of the velocity components, with normalisation applied to
limit the speed:

vtotal =
knvn + k f pv f p + kepvep∥∥knvn + k f pv f p + kepvep

∥∥ (2.21)

where kn, kep and k f p are weighting factors for velocity components of foods and different
pheromones. The effect of combining velocity components is shown in Figure 2.9c. As
before, each individual ant has different responses when encountering pheromones, so every
ant in the system would have differences in values of weights kn, k f p and kep.

2.5 Chapter Summary

Conclusively, this chapter examines the relevant literature in the field of reservoir computing
(RC), specifically focusing on the use of physical robots and swarms for computational
purposes. Swarm reservoirs offer scalability and flexibility advantages over single robot
reservoirs. However, we discovered that existing research on using swarm reservoirs for
reservoir computing (RC) is scarce, and there has been no exploration into the application of
highly mobile, self-organising swarm systems as reservoirs. Thus, the subsequent chapter
will detail our approach to filling this research gap.

Chapter 3

Methodology

This chapter will describe our reservoir computing framework, shown in Figure 3.1. In
Section 3.1, we will first look at how the swarm models can be modified as reservoirs that
exhibit echo state property described previously in Section2.1. Subsequently, Section 3.2
describes the permutation symmetry issue in our swarm reservoirs and we approach to handle
it. Then we will illustrate how the readout layer is trained to map the reservoir states to the
desired output in Section 3.3. Lastly, Section 3.4 summarises this whole chapter describing
our framework.

Fig. 3.1 The modified reservoir computing framework that we use, with the addition of an
observation layer to overcome permutation symmetry

3.1 Swarm Reservoir Models

This section describes how swarm models mentioned in Section 2.4 are modified and applied
in reservoir computers to perform machine learning tasks. Both models exhibit complex
nonlinear dynamics which provides nonlinearity capacity for computation. With the modi-

22 Methodology

fications applied, their outputs will also exhibit echo state properties, which offer memory
capacities in computation.

3.1.1 Boids as Reservoir

If we consider each bird as a reservoir node, the edges would then be the interaction among
them. Since all the birds only interact with their nearby flockmates, together they form a
sparsely connected reservoir network. As birds in this system bird are all highly mobile, the
connection of the reservoir also changes as the swarm proceeds.

Fig. 3.2 Angle map of the birds.

The angle map of the birds is shown in Figure 3.2. In the boids model, all the birds are
initially set at rest, randomly distributed within a certain range with all steering angles equal
to 0. A bird would change its steering angle when the nearby birds turn, as it needs to align
with others. As shown in Figure 3.3a, if Birds 1 and 2 make a clockwise turn, their nearby
flockmates will then follow, aligning with them as shown in Figure 3.3b and 3.3c. Studies
have suggested that for a flock with a larger amount of birds, this progress would propagate
among the group of birds, creating a variety of delays with input (Potts, 1984; Reynolds,
1987). When some of the birds in the flock change the direction of flight, a ’manoeuvre wave’
would propagate among the flock, with birds at the back gradually turning to the direction of
birds in the front. In other words, the birds closer to the front would turn with a shorter delay,
while the birds further to the front would turn at a longer delay.

3.1 Swarm Reservoir Models 23

(a) (b) (c)

(d) (e) (f)

Fig. 3.3 (a) Birds initially at rest with steering angle at 0. (b) When Birds 1 and 2 change
their steering angle. (c) Birds 3 and 4 steer to follow and align with the birds in the front. (d)
When birds get close to the boundary. (e) Handling situations of birds reaching boundary, by
making them reappear at the other side. (f) Birds reappear at the other side of the screen, and
are still flying in a group

If some of the leading birds are compelled to steer based on input, the steering angles
of the birds would demonstrate echo state properties, since the remaining birds would align
and react to the input with varying delays. This makes the steering angle a suitable choice as
both input and output for the reservoir.

Input is applied to some of the birds, and those birds with the input applied still follow
the rules of separation, alignment and cohesion. The input acts as an additional element of
force, and the total force acting on an input bird becomes:

Ftotal = ksepFsep + kaliFali + kcohFcoh +2Fin (3.1)

The update formula for acceleration is also changed accordingly:

atotal = ksepasep + kaliaali + kcohacoh +2ain (3.2)

24 Methodology

The states Sboids of the boids system are computed by concatenating angles θbn of each
individual bird:

Sboids = [θb1,θb2, . . . ,θbN] (3.3)

The sky in reality is an unlimited space for birds to travel freely. However, in most
simulations, there will be a boundary for the simulated ’sky’, where the birds would turn
around after reaching that. This brings unexpected distortions to the model dynamics. To
solve this issue, the boundary handling mechanism was changed such that when a bird passed
the boundary, it would appear at the other end of the screen. Denoting screen width as
wscreen and screen height as hscreen. In Figure 3.3d, when Bird 1 reaches the right boundary
with coordinate (wscreen,y1), it would reappear at the left side of the screen with coordinate
(0,hscreen − y1), shown in Figure 3.3e. In this way, all 4 birds will still stick together after
passing the boundary, as shown in Figure 3.3f. The positions of birds 1 and 3 are flipped
with birds 2 and 4, but this flip would not affect their steering angles. With the merge of
boundaries, the way that distance between birds is calculated also needs to be changed. In
Figure 3.3e, the distance d13 between birds 1 and 3 can be calculated as

d13 = ∥(x1,y1)− (x3,y3)∥ (3.4)

Then when bird 1 crosses the boundary and reaches the other side, the way to calculate
distance changes to

d13 = ∥(x1,−y1)+(wscreen,hscreen)− (x3,y3)∥ (3.5)

Fig. 3.4 Illustration of echo state property in our boids reservoir under a step input, with
different birds exhibiting different amount of delays to input.

3.1 Swarm Reservoir Models 25

Figure 3.4 illustrates the states of birds when a step input is applied at time step 80. It
can be seen that the birds respond to the input at different delays, verifying the echo state
property of the reservoir. Note that the fluctuation is because the birds are highly mobile
across space. The echo state property makes the boids reservoir exhibit memory capacity,
while the nonlinearity capacity comes from the complex nonlinear dynamics within the
system.

3.1.2 Ants as Reservoir

(a) (b)

Fig. 3.5 (a) Different ants respond to changes in food source differently, resulting in differ-
ences in delays. (b) Illustration of echo state property in our ants reservoir under a step input,
with different ants exhibiting different amounts of delays to input.

In the ant reservoir, the input is chosen as the angle of food relative to the nest, and the output
is chosen as the steering angle of ants. In every time step, a new pile of food will be placed
at an angle that corresponds to the input, and the food at the last time step will be removed.
The food at different time steps is kept at the same distance relative to the nest, therefore they
only vary in direction relative to the nest. When the position of food changes, ants may still
follow the pheromone trails in the previous directions. This creates a delay between input
and reservoir states. The delays between different ants within the reservoir come from the
different factors k f and k f p for velocity components for different ants in Equation 2.19 and
2.21. The effect is illustrated in Figure 3.5a. This forms echo state property, which is shown
in Figure 3.5b. The echo state property makes the ants reservoir exhibit memory capacity,
while the nonlinearity capacity comes from the complex dynamics within the system.

26 Methodology

(a) (b)

Fig. 3.6 (a) Ants travelling in opposite directions in the exploring and foraging phase, leading
to inconsistency in steering angles. (b) Angle map of ants modified to solve this inconsistency.

However, the ants may travel back and forth between the nest and the food. For example,
in Figure 3.6a, ant 1 is travelling towards the food with a steering angle measured as π

2 rad.
Meanwhile, ant 2 is travelling in the opposite direction towards the nest, with the steering
angle measured as 3π

2 rad. To solve this inconsistency, all angle values above π rad are
mapped to their opposite directions by subtracting π . The resultant angle map for ants is
shown in Figure 3.6b. The states Sants of the ants system are computed by concatenating the
angles of each individual ant:

Sants = [θa1,θa2, . . . ,θaN]. (3.6)

3.1.3 Combined Reservoir

Studies have proven that when the reservoir contains more dynamics, the reservoir computer
can harness the advantages from different dynamics and perform computation tasks in a
better way. The study from Holzmann and Hauser (2010) shows the effectiveness of adding
artificial delays to ESN. Their modification brings improvements to the memory capacities
of ESN, resulting in a better performance in the Markey-Glass time series prediction task.
Inspired by their work, we combine the boids and ants reservoirs to investigate if harnessing
the dynamics of different swarm systems can bring benefits for computation. We assume
that there is no interaction between the two swarm reservoirs. Therefore, the combination is
achieved by running the two swarm reservoirs separately in parallel, and then merging their

3.2 Observation Layer 27

states through concatenation. The states Sc of the combined reservoir are computed by

Sc = [Sants,Sboids]. (3.7)

3.2 Observation Layer

This section first introduces the issue of permutation symmetry in our swarm reservoirs, then
explains details of the observation layer that we apply to address permutation symmetry. This
observation layer is applied to process the output of the reservoir before readout. This layer
computes outputs based on the distribution of reservoir states, ensuring the resulting output
remains invariant to internal permutations within the reservoir.

3.2.1 Permutation Symmetry in Our Swarm Reservoirs

(a) (b) (c)

(d) (e) (f)

Fig. 3.7 Permutation symmetry in both reservoirs. (a) A flock of 4 birds, with Birds 1 and 2
receiving input, changing direction of flight. (b) Variation in steering angle of Birds 3 and 4.
(c) Behaviour of different ants when food source changes, with Ant 3 turning to food and Ant
4 remain travelling along pheromone trail. (d) A flock of 4 birds with Birds 3 and 4 switched
position. (e) Variation in steering angle of Birds 3 and 4 when position is switched. (f) When
Ants 3 and 4 switched position compared to (c), resulting Ant 4 turning to food and Ant 3
remain travelling along pheromone trail.

28 Methodology

The paper by Lymburn et al. (2021) discussed that swarm reservoirs generally exhibit
permutation symmetry, which degrades the performance of the reservoir. The issue is
generally caused by the agents exchanging positions with each other as they proceed. The
boids and ants model in our case also exhibits permutation symmetry. As shown in Figure
3.7a, considering a swarm group of four boid agents, with Birds 1 and 2 receiving inputs.
When both birds receive an input of π/2, they will perform a clockwise rotation of this angle.
Then birds 3 and 4 will also respond accordingly. It can be seen that both Bird 1 and 2 are in
the alignment range of Bird 4, while Bird 3 only has Bird 2 in its alignment range. From
equation (2.12), it can be seen that having a larger amount of birds in the alignment range
would have a larger acceleration component. This means that Bird 4 will respond faster to
the changes in angles of the nearby birds, compared to Bird 3. The variation in angles with
time for the two birds is shown in Figure 3.7b. When Birds 3 and 4 swap position during
flight, as shown in Figure 3.7d , Bird 3 now has two other birds in its alignment range and the
number of birds in the alignment range of Bird 4 becomes one. Bird 3 now responds faster to
the input than Bird 4. This inconsistency in delay amount for the same node would make it
very hard to train the readout layer.

The ants model exhibits a similar situation as well. The pheromone trail left by a group
of ants will accumulate to form a thicker trail. Then ants might appear at different positions
within this trail. As shown in Figure 3.7c, when the angle of food relative to the nest changes
from 0 to π/2, Ant 3 is travelling on the side of the pheromone trail that was closer to the
food compared to Ant 4. Equation (2.19) suggests that the direction of food would act as a
velocity component, making the steering angle of ants deviate to the new food position. Due
to the difference in position, Ant 3 will leave the pheromone trail sooner than Ant 4. When
Ant 3 leaves the pheromone trail, the velocity component for pheromones disappears. Then
Ant 3 will head directly to the direction of food giving a state output close to π/2, while the
state of Ant 4 remains at approximately 0. When Ant 3 and 4 switch positions, as shown in
Figure 3.7f, Ant 4 now leaves the pheromone trail before Ant 3. Then the state of Ant 3 and
4 will be the opposite of the one in Figure 3.7c, under the same input condition.

3.2.2 Addressing Permutation Symmetry

To solve permutation symmetry, an additional observation layer is applied. This symme-
try originates from agents switching positions with one another, which means the overall
distribution of the states would remain the same. Therefore, we apply an observation layer
between the reservoir and outputs to consider the overall distribution only. This distribution
is obtained by computing the probability density function for all states. The probability
density function (PDF) is calculated by applying Gaussian kernel functions to fit all data

3.2 Observation Layer 29

points. This approach involves using each data point as the centre of a Gaussian kernel, with
the sum of these kernels providing a smooth estimate of the density distribution. The kernels
have a predefined bandwidth, which determines their width and influences the smoothness
of the resulting density function. This bandwidth parameter is crucial as it balances the
trade-off between the bias and variance of the density estimate, affecting the accuracy and
generalisability of the model. In our case, the ’Silverman’s rule of thumb’ (Silverman, 2018)
is first applied to automatically determine the bandwidth.

h =

(
4σ̂5

3n

) 1
5

, (3.8)

where h is the bandwidth, σ̂ is the estimated standard deviation of the data, and n is the
number of data points. Then the resulting bandwidth is divided by a factor of 2 to make
the kernel density estimate more sensitive to the data. By employing Gaussian kernels, this
method effectively captures the underlying trends within the data, providing a continuous,
smooth approximation of distribution. We then observe the range of state values that this
PDF generally covers, and uniformly take 40 points within this range. For the benchmark
tasks that we implemented, the range is generally between -0.5 rad and 1.5 rad. Consequently,
the output of the observation layer is obtained by taking the probability density values
corresponding to the 40 channels we choose.

Fig. 3.8 Working principle of the observation layer. (a) Changes in distribution of reservoir
states when input is changed from 0 to 1, across 5 time steps. (b) Probability density outputs
from the 5 channels over 5 timesteps. (c) Plot of observation channel output against time
step, exhibiting echo state property.

30 Methodology

The resulting output would be a transformation of the state values, with variable amount of
delays that ensure computation capacity. Figure 3.8 shows an example of how an observation
layer with 5 channels operates. When the angles (states) of the swarm system gradually
change from 0 rad to 1 rad, the original left-skewed PDF will skew towards 1, shown in
Figure 3.8a. Then Figure 3.8b shows the process of taking the probability density values of
each channel at different time steps. It can be seen that the resulting output in Figure 3.8c
exhibits the delay pattern that Section 2.1 describes, as the output peaks at different time
steps.

3.3 Readout Layer

This section first introduces the readout layer, which maps output from our observation layer
to the target output. Then output evaluation method through covariance is discussed. How-
ever, note that reservoir computing employs a one-time training process without iterations.
Therefore, the output evaluation is only for performance analysis by us, not for training. The
training and evaluation approach is similar to the one of ESNs (Jaeger, 2001; Jaeger and
Haas, 2004).

3.3.1 Training readout weights

After obtaining the reservoir states, the readout weights Wout are needed to be trained to
map the reservoir states to the desired output. For a reservoir of N nodes with an input
sequence of length n applied, the output matrix X for a given time step is constructed
by concatenating the bias vector b, the input vector x, and the reservoir states, resulting
X ∈ Rn×N+2. Mathematically, it can be expressed as:

X = [b,x,S] (3.9)

where b ∈ Rn×1 is the bias term that adds a constant offset to the transformation, ensuring
non-linearity and helping to avoid nodes being stuck in undesirable states (like zero states).
x∈Rn×1 is the input applied to the reservoir, S∈Rn×N contains the memory of the past states
of all reservoir nodes in the past n time steps. The initial outputs of the reservoir are often not
representative of the steady-state behaviour the network will exhibit once fully driven by the
input. The washout period allows the reservoir to overcome these initial transient conditions,
ensuring that the states are fully reflective of the input signal dynamics. The washout of m
time steps is applied to the output matrix such that the first m rows are removed and not
included in readout training, resulting Xwashed ∈ R(n−m)×N+2. Ridge regression is used to

3.3 Readout Layer 31

compute the readout weights by finding a linear combination of reservoir states that best
approximate the desired output:

Wout = Y⊤Xwashed

(
Xwashed

⊤Xwashed +λ I
)−1

(3.10)

where Xwashed ∈ R(n−m)×N+2 is the output matrix mentioned previously, Y ∈ Rn×1 is target
output matrix corresponding to the training inputs, λ is the regularisation parameter that
controls the trade-off between fitting the training data well and keeping the weights small to
avoid overfitting. We choose the value of λ as 1×10−4 to balance this trade-off.

3.3.2 Output Computation and Evaluation

The training output Ot ∈ Rn×1 is computed using:

Ot = (WoutXT)T . (3.11)

The performance is evaluated by comparison with target training output Tt ∈ Rn×1, through
covariance which measures the similarity between Ot and Tt . The covariance matrix is
formed by:

Cov(Ot ,Tt) =

[
σOtOt σOtTt

σTtOt σTtTt

]
(3.12)

where σOtOt is the variance of Ot , σTtTt is the variance of Tt , σOtTt = σTtOt is the
covariance between Ot and Tt . Each element is calculated as:

σOtOt =
1

n−1

n

∑
i=1

(Oti − Ōt)(Oti − Ōt) (3.13)

σTtTt =
1

n−1

n

∑
i=1

(Tti − T̄t)(Tti − T̄t) (3.14)

σOtTt = σTtOt =
1

n−1

n

∑
i=1

(Oti − Ōt)(Tti − T̄t) (3.15)

where Ōt and T̄t are the mean of Ot and Tt , and i enumerates all elements in the output.
The training covariance can then be calculated as

covt =
σOtTt ×σTtOt

σOtOt ×σTtTt

(3.16)

32 Methodology

In the prediction phase, this process is repeated, with the predicted output Op computed
using the trained readout weights Wout. The predicted output is then evaluated by computing
covariance with target output Tp, using the same approach specified from Equation 3.12 to
Equation 3.16

3.4 Chapter Summary

To summarise, this chapter describes our reservoir computing framework. We modified the
swarm models described in Section 2.4 into reservoirs that exhibit echo state property. The
issue of permutation symmetry is also described and addressed through Gaussian kernel
density estimation. The method for readout weights training is also discussed. In the next
chapter, we will examine the computation capacity of our approach on the benchmark
datasets, and compare the performance with the classical RC framework.

Chapter 4

Experimental Setups and Results

In this chapter, the performance of our reservoir computing system on the benchmark tasks
will be shown. Section 4.1 introduces the benchmark tasks, then Section 4.2 shows the
experiment settings including how the parameters are tuned and set. Section 4.3 shows our
most significant result, with the performance of our swarm reservoirs compared to classical
echo state networks (ESNs) described in Section 2.1. The following few sections will include
a detailed analysis of variations in computation performance with model settings. Section
4.4 shows changes in computation capacities as we increase the size of the swarm used in the
reservoir. The effectiveness of our solution for permutation symmetry will also be illustrated.
Following this, Section 4.5 demonstrates the changes in computation capacity when the two
types of swarm reservoirs are combined in parallel at different ratios. Furthermore, Section
4.6 looks into the impact of modifying some of the model parameters on performance. Finally,
Section 4.7 briefly concludes about our results and findings.

4.1 Benchmark Tasks

This section introduces the four benchmark tasks for reservoir computing that we use to
evaluate computation capacity, which come from the paper by Jaeger and Haas (2004). The
predicted outputs and target outputs are also visually compared.

4.1.1 Short-Term Memory Task

The short-term memory (STM) task measures the reservoir’s ability to recall a sequence of
bits or continuous values over short periods. This task is designed to simulate a function
that produces a version of the input stream delayed by a specified number of time steps.
Therefore, performing this task only requires memory capacity.

34 Experimental Setups and Results

This task contains 10 subtasks, from STM1 to STM10. Here STMx means that the
reservoir computing framework needs to reproduce the input stream delayed by x steps.
Performance on this task is typically evaluated by how accurately the system can reproduce a
sequence of inputs after varying delay intervals.

Fig. 4.1 Performance of our combined reservoir in STM tasks. Longer memories are required
for subtasks with larger indices. Our reservoir can fully perform STM1 and partially perform
STM2 and STM3, meaning that it only has memories for the previous 3 inputs.

The performance of our combined reservoir in STM tasks is shown in Fig. 4.1. As the
required delay between the input and output increases, it can be seen that the performance
gradually degrades. The desired target for STM1 subtask can be produced with a high
accuracy, while the target for STM2 and STM3 can only be partially produced. Then after
STM4, only a very small portion of the target output can be correctly generated. The result
shows that our reservoir has having memory of the past three inputs.

4.1 Benchmark Tasks 35

4.1.2 Parity Check Task

The Parity Check (PC) task involves determining the parity (odd or even nature) of a sequence
of bits. It involves emulating a nonlinear function that checks the parity of a sequence of
binary inputs. Within a certain delay period, if the sum of input is even, the parity checker
outputs 0, indicating even parity. Otherwise, it outputs 1, indicating odd parity. Performing
this task requires both memory and nonlinearity capacity.

This task contains 10 subtasks, from PC1 to PC10. The subtask’s index indicates the
amount of delay that the parity check operates on.

Fig. 4.2 Performance of our combined reservoir in PC tasks. Longer memories are required
for subtasks with larger indices. Our reservoir can fully perform PC1 and partially perform
PC2 and PC3, validating that it only has memories for the previous 3 inputs.

The performance of our combined reservoir in PC tasks is shown in Fig. 4.2. As the
required delay between the input and output increases, it can be seen that the performance
gradually degrades. The target output for the PC1 subtask can be generated with high

36 Experimental Setups and Results

accuracy, whereas the targets for PC2 and PC3 are only partially achievable. Following PC4,
only a minimal fraction of the target output can be accurately produced. The result shows
that our reservoir can only perform parity checks for the past three inputs, which agrees with
the performance of STM tasks that reservoir is having memory of the past three inputs.

4.1.3 Nonlinear Autoregressive Moving Average Task

The Nonlinear Autoregressive Moving Average (NARMA) task is designed to assess both the
memory and the nonlinearity handling capabilities of a reservoir. This task involves predicting
the next value in a nonlinear and time-dependent series, where each next step depends heavily
on both the current input and a series of past inputs. This task is a representation of a reservoir
computer emulating a dynamical system driven by inputs.

The NARMA task contains 5 subtasks, including NARMA2, NARMA5, NARMA10,
NARMA15, NARMA20. The index of subtasks represents the order of nonlinear dynamical
systems that the reservoir computer needs to emulate.

Fig. 4.3 Performance of our combined reservoir in NARMA tasks. Larger subtask indices
represent larger order of nonlinearity. Our reservoir emulates nonlinear systems of lower
order (NARMA2 and NARMA5) well, while non-linear systems of higher orders can only
be partially emulated.

4.2 Experimental Methods and Settings 37

Fig. 4.3 shows the performance of our reservoir computer for NARMA tasks. The
performance degrades as the order increases. Our reservoir computer performs a good
emulation of the nonlinear dynamical system of order 2 and 5, with target output produced in
a relatively accurate manner. Meanwhile, it can only partially achieve the target output of the
nonlinear systems with higher orders.

4.1.4 Mackey-Glass Time Series Prediction Task

Similar to the NARMA task, the Mackey-Glass (MG) task is a time series prediction problem
based on a delay differential equation that is known for its chaotic behaviour. However,
this task requires the reservoir computer to emulate a dynamical system driven by itself.
Instead of using a predefined input series, this task requires using past outputs as inputs to
predict future values in a series, emphasising the system’s memory and nonlinear dynamics
processing capabilities.

The MG task contains 2 subtasks: MG16 and MG17. The 16 and 17 represent the delay
that the MG system incorporates. The system displays a chaotic attractor when the delay
exceeds 16.8. Therefore, the two subtasks represent both non-chaotic and chaotic scenarios.

Fig. 4.4 Performance of our combined reservoir in MG tasks. MG16 represents a non-chaotic
MG system and MG17 represents a chaotic MG system. The predicted output mostly fits the
pattern of the target output.

This is a challenging task that most reservoirs do not perform well. Fig. 4.4 shows
the performance of our reservoir computer for MG tasks. For both subtasks, the reservoir
computer gives predictions that mostly fit the general pattern of the target.

38 Experimental Setups and Results

Table 4.1 Parameters and Variation Ranges for Boids Simulation

Parameters Standard Values Variation Ranges
Separation factor ksep 0.05 0–0.25
Separation range (unit length) 20 0–100
Alignment factor kali 0.05 0-0.25
Alignment range (unit length) 60 0–200
Cohesion factor kcoh 0.015 0-0.05
Cohesion range (unit length) 300 0–400
Input ratio 0.5 0–1
Delay for STM (time step) 16 10–20
Delay for PC (time step) 16 10–20
Delay for NARMA (time step) 4 1-10
Delay for MG (time step) 2 1-10

Table 4.2 Parameters and Variation Ranges for Ants Simulation

Parameters Standard Values Variation Ranges
Food factor k f U(0.05,7) U [0.05,u]foru∈ [0.1,10]
Nest factor kn U(0.05,7) U [0.05,u]foru∈ [0.1,10]
Exploration pheromone factor kep 1 -
Forage pheromone factor k f p 1 -
Delay for STM (time step) 300 100–1000
Delay for PC (time step) 300 100–1000
Delay for NARMA (time step) 300 100–1000
Delay for MG (time step) 300 100–1000

4.2 Experimental Methods and Settings

The standard setting of parameters for the boids and ants reservoir are shown in Table 4.1
and Table 4.2 respectively.

Birds in nature exhibit a large cohesion radius, enabling widely separated flocks to
reassemble (Reynolds, 1987). Therefore, our cohesion radius is set at a large value of 300.
Separation mainly ensures birds do not collide with one another, therefore our separation
radius is set at a small value of 20. As mentioned in Section 3.1.1, when the birds at the front
change direction, birds align with their nearby flockmates, forming a ’manoeuvre wave ’
among the flock. Studies have also suggested that birds can observe the incoming manoeuvre
wave and begin synchronising their alignment before the wave arrives (Potts, 1984). In order
to ensure the flock exhibits maneuver wave, while making the birds respond to it before its
arrival, the alignment range is set as 60. The alignment, separation and cohesion factors are
also set such that the bird’s flock operates in a relatively stable manner, with the presence of

4.2 Experimental Methods and Settings 39

manoeuvre wave. The input ratio is set to 0.5, which is obtained from sensitivity analysis
that will be discussed in Section 4.6. This is the minimum ratio for the boids reservoir to
have desirable performance, where all birds follow the input.

For the ants model, the ratio between food/nest factor and pheromone factors varies a lot
for different types of ants. Therefore, it is hard to get a numerical value from the existing
studies. To ensure the diversity in behaviour for ant groups of larger sizes, we assume that
the food and nest factor lies within a uniform distribution that ranges from 0.05 to 7. This
choice is also validated by the sensitivity analysis later from Section 4.6.

The evaluation method for the study involves a systematic variation of parameters and
testing across multiple benchmarks. We adjust one parameter at each time following Table 4.1
and 4.2, while keeping others at the standard values. Note that for the ant reservoir, Equation
2.19 and 2.21 suggest that total velocity is the sum of velocity components weighted by
factors, with normalisation applied. Therefore, increasing the food/nest factor is equivalent
to reducing pheromone factors and vice versa. Hence, only food/nest factors are varied in
our sensitivity analysis.

The four benchmark tasks mentioned in the previous section, namely STM, PC, NARMA,
and Mackey-Glass, are utilised to measure the system’s capabilities. Our reservoirs need a
certain amount of delay to respond to changes in input for each task. We choose the suitable
amount delay for each task by testing reservoirs of different sizes, under a range of different
delays. Appendix B shows an example of delay analysis for swarm reservoirs of size 40.
The delay amount that achieves desirable performances for a variety size of swarms is then
chosen, shown in Table 1. In most of the reservoir computing tasks, the state output of the
reservoir is taken at the end of the delayed time, before the input changes. However, it is
interesting to note that our ants reservoir would produce a better performance when state
output is taken near the beginning of the delayed time. Therefore, for the ants model, we
choose a delay amount of 300 time steps but take the reservoir states at an earlier time step.
Section 3.3 mentions that washout is needed to be applied so that the readout training process
only uses the results produced after the reservoir is stabilised. We observe the response of the
reservoir and choose a washout period of 50 time steps for NARMA task. Then for STM and
PC tasks, a washout period is chosen as 20 time steps, whereas for the MG task, no washout
period is implemented.

The system’s performance is assessed using different random seeds to ensure robustness
and generalisability. For the boids reservoir, the random seed controls the initial position of
the birds, while for the ants reservoir, the random seed determines how the food nest factors
are sampled from the uniform distribution.

40 Experimental Setups and Results

The capacity of the system is quantified through the covariance between the predicted
output and the target output, providing a statistical measure of prediction accuracy. For
each specific setup (swarm size, parameters, random seed, etc.), we compute the average
covariance across all tasks, forming a data point for the plot. For example, in the study
examining the effects of different swarm sizes in boids, we utilise 20 unique random seeds
for each swarm size. This approach generates 20 covariance data points for each size. We
then fit a polynomial to all data points, offering a comprehensive evaluation of the system’s
overall performance.

We also compare the performance of our reservoir computer with Echo State Netweorks
(ESNs). For different network sizes, we test the performance of 500 random ESNs on our
benchmark tasks, using identical settings to Lukoševičius (2012). We then take the average
covariance as result for comparison.

4.3 Comparison with Echo State Networks

Fig. 4.5 Comparison of ESN with the three reservoirs of ours. At swarm size of 20, the
performance for boids, ants and combined reservoirs are at levels of ESN6, ESN14 and
ESN16, respectively. For larger swarm sizes, the performance for boids and combined
reservoir approaches ESN8 and ESN18, while the capacity for ants reservoir remains at level
of ESN14.

4.4 Variation of Computation Capacity with Swarm Sizes 41

From Figure 4.5, it can be seen that when the swarm size reaches 20, the performance of our
boids reservoir has reached a comparable level with ESN6. As for the ants and combined
reservoir, the performance is equivalent to ESN14 and ESN16 respectively.

Nevertheless, our model still has a large gap with ESN of larger sizes, as the improvement
in computation capacity becomes less significant when sizes get larger. When the size of the
swarm gets above 60, the performance for boids and combined reservoir improved slightly
to the level of ESN8 and ESN18, while the performance for ant reservoir remains at the
level of ESN14. This undesirable performance is related to swarm dynamics, which exhibit
limited memory capacity. Section 4.1.1 discussed that our swarm reservoirs can only partially
perform the first 3 STM tasks, which means that our reservoirs only have memory for the
past few states.

The limited memory capacity for the boids reservoir of larger sizes is caused by the
previous states dying away too fast within the reservoir. Theoretically, the manoeuvre wave
would travel longer within a larger swarm group, resulting in a greater variety of delays and
better memory capacity. However, as the total number of swarms increases, the interactions
between the swarm agents become more complicated, and the amount of interactions also
varies more significantly with time. These interactions create forces that disturb the memory
of past input states. The alignment force makes the input steering angle propagate among
the flock, creating memories within the reservoir. Nevertheless, birds’ steering angle is also
affected by forces of separation and cohesion. Therefore, previous steering angle inputs
applied to the birds are gradually disturbed and die away, and the effect becomes more
severe for larger swarm sizes. In addition, the study from Potts et al. also suggests that the
manoeuvre wave travels at an increasing speed within the flock (Potts, 1984). This means the
memory stored by the birds close to the end of the flock would die away faster, which could
also be a factor that limits the memory capacity.

For the ants model, the memory capacity is restricted by the need to adapt to new food
sources. The ants might stick around at the path to the previous few food source but would
not stick around for too long. This is because the pheromone trail will eventually evaporate
and the velocity component for food will gradually drive them to new food sources.

4.4 Variation of Computation Capacity with Swarm Sizes

Figure 4.6 shows the variation of computation capacity with swarm number for both types of
reservoirs, before and after applying the PDF observation layer.

42 Experimental Setups and Results

(a) (b)

Fig. 4.6 (a) Variation in computation capacity with size of boids reservoir. Covariance of
the one with no observation layer applied peaks at 0.11 when swarm number is 22. The
performance then drops with swarm number due to permutation symmetry. The application
of observation layer solves permutation symmetry, with best covariance at around 0.16. (b)
(a) Variation in computation capacity with size of ants reservoir. Covariance of the one with
no observation layer applied peaks at 0.11 when swarm number is 24. The performance then
drops with swarm number due to permutation symmetry. The application of observation
layer solves permutation symmetry, with best covariance at around 0.19.

Looking at the performance before the application of the observation layer, both models
are showing similar trends for all the tasks implemented. The performance initially improves
with an increase in the number of nodes, reaching an optimal level at a specific threshold.
Beyond this point, further additions of nodes result in a decrease in performance. The
optimal number for boids and ants are found at 22 and 24, both reaching covariance of around
0.11. This contradicts with ESN, whose performance increases with the number of nodes
consistently without dropping.

With the application of the observation layer that solves permutation symmetry, it can
be seen that the dropping trend has disappeared for both reservoirs. The covariance now
increases with the number and gradually converges to around 0.16 and 0.19 respectively.
The results suggest that the main reason for the dropping trend is related to perturbation
symmetry. As the swarm number increases, each agent will have more agents to switch
their position with. This makes the permutation symmetry issue more severe. The PDF
observation layer observes the states of the entire swarm system as a whole, by examining the
overall distribution. Therefore, individual swarm agents switching positions during the flight
would not affect the output of the observation layer. With the application of this observation
layer, we observe that the dropping trend has disappeared.

4.5 Computation Capacity with Different Combinations of Swarm Systems 43

4.5 Computation Capacity with Different Combinations of
Swarm Systems

The heatmap in Figure 4.7 shows the performance of the combined model. The x-axis
represents the total number of swarm agents utilised in the reservoir, and the y-axis shows
the ratio of combination. The covariance value is represented by the colour of the heatmap,
where a brighter colour would indicate a higher covariance value.

Fig. 4.7 Performance for combined reservoir with different combination ratios. The com-
putation capacity of combined reservoir is generally better than those using a single type
of swarm. The combination ratio of ants:boids=8:2 achieves best result among all, with
covariance reaching 0.208.

It can be seen that all combinations are showing a similar trend, with the covariance
increasing with the total swarm number and gradually converging to a certain level. The
result suggests that the performance is at a relatively higher level when the combination ratio

44 Experimental Setups and Results

of ants:boids is between 6:4 to 9:1. The ratio of 8:2 would produce a slightly better result
among all, with covariance reaching 0.208 when the total swarm number is 70.

Generally speaking, the combined reservoirs show better computation capacities than
single swarm reservoirs (when ratio is at 10:0 and 0:10). This improvement comes from the
two swarm reservoirs specialising in different tasks. The result verifies our assumption, that
combining two different swarm reservoirs would harness the strengths from both of them.

However, we argue that the improvement is still not significant enough compared to
using a single type of swarm as reservoir. This is because the two swarm reservoir still
exhibits some similarities in computation capacity, such as the weakness in memory capacity
suggested in Section 5.3. Potentially, if we can find a swarm reservoir that has a strong
memory capacity, combining it with our reservoirs would bring more significant benefits.

4.6 Sensitivity Analysis

A range of sensitivity analyses are conducted according to Table 4.1 and 4.2. Here, the
significant ones among them are presented. Other sensitivity analyses of model parameters
can be found in Appendix A, and an example of sensitivity analysis on task delays can be
found in Appendix B.

4.6.1 Variation of Computation Capacity with Input Ratio (Boids Reser-
voir)

The input ratio indicates the proportion of birds that directly receive the input. From the plot
of input ratio against covariance in Figure 4.8. It can be seen that the covariance improves
from 0.04 to 0.15 as the input ratio increases from 0 to 0.5. The performance then stays at
a similar level from the input ratio of 0.5 to 0.9, before slightly dropping to 0.14 when the
input ratio gets to 1.

4.6 Sensitivity Analysis 45

Fig. 4.8 Plot of covariance against input ratio for boids reservoir. Input ratio represents the
ratio of birds that directly receive input in the flock.

The result indicates that the performance would degrade when less amount of birds are
receiving the input. From Section 2.4.1, the acceleration of each individual bird is affected
by its nearby flockmates. If only a small portion of its flockmates are receiving the input, the
influence from input might not be strong enough for it to follow, reducing the computation
capacity.

On the other hand, when the input ratio is high, a large portion of flockmates are receiving
the input. Although the bird can now respond to input correctly, the influence from input
might be too strong. This makes each bird follow the input tightly such that the amount
of delay among each individual birds is reduced. This reduces the memory capacity of the
reservoir.

The input ratio between 0.5 and 0.9 is where these trade-offs are balanced. For the input
ratio of 0.5, although the system is having a significant amount of delay, the birds may
not follow the input in a precise manner. By comparison, changing the input ratio to 0.9
would reduce the amount of delay but improve the response to input, leading to a similar
performance to the case where the ratio is 0.5.

4.6.2 Variation of Computation Capacity with Separation Radius (Boids
Reservoir)

Figure 4.9 shows the effect of varying separation radius on computation capacity. It can
be seen that the performance is generally well for a separation radius below 40, but drops
significantly as the radius gets large.

46 Experimental Setups and Results

Fig. 4.9 Plot of covariance against separation radius for boids reservoir. The separation radius
represents the minimum distance that the birds try to keep from others.

As discussed in Section 3.1.1 , the boids reservoir is a sparsely connected network where
all birds only have connections with their nearby flockmates. A larger separation range
would reduce the number of birds nearby, making the swarm reservoir network more sparsely
connected. This makes the bird less capable of following the input precisely, therefore
leading to a reduction in computation capacity. Theoretically, a smaller separation range
would make the reservoir network more densely connected, reducing the amount of delay
and memory capacity. However, this effect is not significant, as a smaller separation also
leads to a better response to input.

4.6.3 Variation of Computation Capacity with Cohesion Radius (Boids
Reservoir)

The effect of varying cohesion radius is shown in Figure 4.10. It is interesting to note that
when the cohesion range is 0, the boid reservoir actually has a performance that is better than
all other values.

Fig. 4.10 Plot of covariance against cohesion radius for boids reservoir. Birds would try to
gather with others within the cohesion radius.

4.6 Sensitivity Analysis 47

As Section 4.3 mentioned, cohesion force may act as disturbances to the memory of past
input states. Therefore, the removal of reduces this kind of disturbance, leading to a better
memory capacity. Even without cohesion force, the birds are still flying in one single flock,
as the alignment force makes them fly in similar directions. When the cohesion radius gets
around 100, we observe the occurrence of local flocking behaviour, where birds are flying in
two or more separate flocks. Some of the flocks may not respond well to input, as they do not
contain enough birds receiving input. This makes the performance degrade and covariance
drop below 0.1. When the cohesion radius gets above 160, we observe that the birds start
to fly in one single flock, responding to input. This leads to improvements in computation
capacity.

Potentially, we could build a well-performing boids reservoir by ignoring the natural
rules and manually setting cohesion force as 0. However, this is out of the scope of our study
as our primary goal is to harness swarm intelligence from nature.

4.6.4 Variation of Computation Capacity with Food/Nest Factor Range
(Ants Reservoir)

Fig. 4.11 Plot of covariance against food/nest factor range for ants reservoir. This factor
influences the impact of food/nest direction to the velocities of ants.

Figure 4.11 shows the computation capacity of ants model at different ranges of food/nest
factors. It can be seen that the performance increases as the upper bound of the range varies
from 0.1 to 2. This is because a boarder range of food/nest factors increases the diversity in
ants’ behaviour, giving them a variety of delays that favour reservoir computing. When the
upper bound of the range gets above 2, the performance remains at a relatively steady level.
This means that the diversity in behaviour also remains at a similar level.

48 Experimental Setups and Results

4.7 Chapter Summary

In brief, this chapter illustrates the performance of our RC approach. The effectiveness
of our observation layer in solving permutation symmetry is proven. We have also shown
that combining different swarm reservoirs would yield better performance than using single
swarm reservoirs. The swarm reservoir that yields the best performance is the one that
combines ants and boids at the ratio of 8:2. At a swarm size of 20, the computation capacity
of our RC framework with this reservoir reaches the level of ESN16. When the swarm size
gets above 60, the performance gets to the level of ESN18. This section also shows some
sensitivity analysis that helps us gain a deeper understanding of how the system parameters
of the swarm systems impact computation capacity.

Chapter 5

Conclusion

In this work, we develop a reservoir computing framework using scalable mobile swarm
networks, where swarm models of boids and ants are utilised as our reservoir. The architecture
of our swarm network evolves automatically with time. This differs from the traditional
reservoirs in reservoir computing which uses a fixed network, but is a more natural way to
evaluate how intelligence evolves within the flocks in nature. We found that due to the high
permutation symmetry of this mobile network, its performance degrades as network size
increases. Therefore, to address the permutation symmetry issue, we develop an observation
layer based on Gaussian kernel density estimation, which observes the overall distribution of
states and makes the reservoir states permutation invariant.

Our models are tested on four benchmark tasks including short-term memory, parity
check, NARMA and Markey-Glass. We illustrate the scalability of our reservoir model, with
the performance increases with the size of the reservoir network. In addition, we look into
the effect of combining the two types of reservoirs in parallel and proved that harnessing
dynamics from two different swarm reservoirs can bring improvements to computation
capacity. Our best model is the one that combines ants and boids reservoir at a ratio of
8:2. For a swarm size of 20, the performance reaches a covariance around 0.2 which is
equivalent to ESN16. Then when the swarm number gets above 60, a covariance value of
0.208 is reached, which is equivalent to ESN18. This means that our swarm reservoir is able
to perform simple computation tasks. Sensitivity analyses are also conducted to investigate
the effect of varying parameters in the swarm reservoirs. Interestingly, we discover that
setting the cohesion force of the boids reservoir to zero yields a better result, as it reduces the
disturbance of memories of past inputs.

50 Conclusion

5.1 Future Works

The performance of our model still has a large gap with ESNs of larger sizes, which remains
to be improved for future work. This is because the dynamics of the Boids and Ants model
we use only allow memory for the past few states, which limits the computation capacity of
the reservoir. Therefore, a more suitable swarm reservoir that exhibits a stronger memory
capacity is needed to be found. This new reservoir could potentially be established based on
our model, with some modifications to certain dynamics and parameters, which remains an
interesting aspect for investigation.

Another potential future work for this project is to apply our reservoir computing frame-
work to swarm systems in real life. There might be moral concerns about applying it to living
swarm systems in nature, but it can still be applied to artificial swarm systems such as drones.
Our framework allows the collective intelligence within these mobile swarm systems to be
transformed into significant computational resources, offering considerable computational
power that benefits society.

References

Baldini, P. (2022). Reservoir computing in robotics: a review. arXiv preprint
arXiv:2206.11222.

Beckers, R., Deneubourg, J.-L., Goss, S., and Pasteels, J. M. (1990). Collective decision
making through food recruitment.

Chevallier, S., Paugam-moisy, H., Sebag, M., et al. (2010). Spikeants, a spiking neuron
network modelling the emergence of organization in a complex system. Advances in
Neural Information Processing Systems, 23.

Deneubourg, J.-L. and Goss, S. (1989). Collective patterns and decision-making. Ethology
Ecology & Evolution, 1(4):295–311.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE computa-
tional intelligence magazine, 1(4):28–39.

Dussutour, A., Nicolis, S. C., Shephard, G., Beekman, M., and Sumpter, D. J. (2009). The
role of multiple pheromones in food recruitment by ants. Journal of Experimental Biology,
212(15):2337–2348.

Emlen, J. T. (1952). Flocking behavior in birds. The Auk, 69(2):160–170.

Grüter, C., Czaczkes, T. J., and Ratnieks, F. L. (2011). Decision making in ant foragers
(lasius niger) facing conflicting private and social information. Behavioral Ecology and
Sociobiology, 65:141–148.

Holzmann, G. and Hauser, H. (2010). Echo state networks with filter neurons and a de-
lay&sum readout. Neural Networks, 23(2):244–256.

Isaeva, V. (2012). Self-organization in biological systems. Biology Bulletin, 39:110–118.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center for
Information Technology GMD Technical Report, 148(34):13.

Jaeger, H. and Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. science, 304(5667):78–80.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
ICNN’95-international conference on neural networks, volume 4, pages 1942–1948. ieee.

52 References

Kvam, O. V. and Kleiven, O. T. (1995). Diel horizontal migration and swarm formation
in daphnia in response to chaoborus. In Cladocera as Model Organisms in Biology:
Proceedings of the Third International Symposium on Cladocera, held in Bergen, Norway,
9–16 August 1993, pages 177–184. Springer.

Lissaman, P. B. and Shollenberger, C. A. (1970). Formation flight of birds. Science,
168(3934):1003–1005.

Lowe, D. and Broomhead, D. (1988). Multivariable functional interpolation and adaptive
networks. Complex systems, 2(3):321–355.

Lukoševičius, M. (2012). A practical guide to applying echo state networks. In Neural
Networks: Tricks of the Trade: Second Edition, pages 659–686. Springer.

Lymburn, T., Algar, S. D., Small, M., and Jüngling, T. (2021). Reservoir computing with
swarms. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(3).

Mataric, M. J. (1992). Designing emergent behaviors: From local interactions to collective
intelligence. In Proceedings of the Second International Conference on Simulation of
Adaptive Behavior, pages 432–441.

Nakajima, K. (2020). Physical reservoir computing—an introductory perspective. Japanese
Journal of Applied Physics, 59(6):060501.

Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D. G., and Pfeifer, R. (2013).
A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic
arm. Frontiers in computational neuroscience, 7:91.

Nakajima, K., Hauser, H., Li, T., and Pfeifer, R. (2015). Information processing via physical
soft body. Scientific reports, 5(1):10487.

Nakajima, K., Li, T., Hauser, H., and Pfeifer, R. (2014). Exploiting short-term memory in
soft body dynamics as a computational resource. Journal of The Royal Society Interface,
11(100):20140437.

Potts, W. K. (1984). The chorus-line hypothesis of manoeuvre coordination in avian flocks.
Nature, 309(5966):344–345.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In Pro-
ceedings of the 14th annual conference on Computer graphics and interactive techniques,
pages 25–34.

Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge.

Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing neural
networks through neuroevolution. Nature Machine Intelligence, 1(1):24–35.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127.

Sumpter, D. J. (2010). Collective animal behavior. Princeton University Press.

References 53

TAKAGAKI, S., TATEISHI, K., and ANDO, H. (2024). " reservoir computing"–time-series
prediction method for fast and accurate soft sensor modeling. Mitsubishi Heavy Industries
Technical Review, 61(1):1.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., Numata, H.,
Nakano, D., and Hirose, A. (2019). Recent advances in physical reservoir computing: A
review. Neural Networks, 115:100–123.

Wang, X. and Cichos, F. (2024). Harnessing synthetic active particles for physical reservoir
computing. Nature Communications, 15(1):774.

Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., and Schmidhuber, J. (2014).
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980.

Zhao, Q., Nakajima, K., Sumioka, H., Hauser, H., and Pfeifer, R. (2013). Spine dynamics
as a computational resource in spine-driven quadruped locomotion. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1445–1451. IEEE.

Appendix A

Other Sensitivity Analysis Performed

A.1 Variation of Computation Capacity with Alignment
Radius (Boids Reservoir)

Fig. A.1 Plot of covariance against alignment radius for boids reservoir. Alignment radius
indicates the range of neighbours that the birds match their velocities with.

The relationship between alignment radius and performance is also evaluated and shown in
Figure A.1, where the computation capacity increases with alignment radius. This behaviour
is related to the trade-off that Section 5.6.1 mentions. When the alignment radius is small,
each individual birds only aligns with its neighbours. This makes the system have significant
amounts of delay, but also causes some of the birds not to follow the input tightly. When the
alignment radius is large, each individual bird would align with more flockmates, including
those directly receiving inputs. As a result, the system would become more stable as birds
follow input more tightly, despite the reduction in the amount of delay. The result shows the
effect of following input more precisely outweighs the reduction in delay, as the computation
capacity increases with alignment radius.

56 Other Sensitivity Analysis Performed

However, this does not suggest that having a larger alignment range would produce
a better boids reservoir. As discussed in Section 5.3, the past input states of the boids
reservoir are significantly disturbed and die away very fast, due to the complex dynamics and
interactions among the swarm system. For a small alignment radius, although the system
exhibits a significant amount of delay, retaining memory of many past input states, these
memories are significantly disturbed. For a large alignment radius, although the system only
has memories of the past few input states, the disturbance to the states is smaller as the forces
of alignment become stronger. Potentially, if we can find a way to reduce the disturbance to
states, a smaller alignment radius could yield a better result.

A.2 Variation of Computation Capacity with Alignment
Factor (Boids Reservoir)

Fig. A.2 Plot of covariance against alignment factor for boids reservoir. Alignment factor
indicates the strength of influence of alignment forces on birds’ velocities

Figure A.2 shows the variation of computation capacity for different values of alignment
factor. It can be seen that the covariance is at a lower level when the factor is below 0.05. This
is because the alignment force is not strong enough for the birds to follow the input angle
precisely. When the factor is above 0.05, the performance seems to be fluctuating around a
comparable level. The alignment factor is directly related to the amount of alignment force
on the birds. A larger alignment factor would result in a better response to input with a
reduction in the amount of delay, while a smaller alignment factor would have the opposite
effect. In this scenario, it seems that the two effects have similar influences on computation
capacities, as the covariance is at a comparable level for all alignment factors above 0.05.

A.3 Variation of Computation Capacity with Separation Factor (Boids Reservoir) 57

A.3 Variation of Computation Capacity with Separation
Factor (Boids Reservoir)

Fig. A.3 Plot of covariance against separation factor for boids reservoir. Separation factor
indicates the strength of influence of Separation forces on birds’ velocities

Figure A.3 shows the effect of varying separation factors to computation capacity. It can
be seen that the performance is generally well for a separation factor below 0.05, but drops
significantly as the value gets large. The separation factor is directly related to the amount of
separation force on the birds. When the separation force is large, the birds would immediately
make a significant change in the direction of flight when any other bird enters their separation
radius. This makes the state of the bird very unstable and fails to follow input in a precise
manner. Theoretically, a smaller separation force would make the birds get closer to each
other, reducing the amount of delay and memory capacity. However, this effect is not
significant, as a smaller separation also ensures a better response to input.

58 Other Sensitivity Analysis Performed

A.4 Variation of Computation Capacity with Cohesion Fac-
tor (Boids Reservoir)

Fig. A.4 Plot of covariance against cohesion factor for boids reservoir. Cohesion factor
indicates the strength of influence of cohesion forces to birds’ velocities

The effect of varying cohesion factors is shown in Figure A.4. When the cohesion factor
is 0, the cohesion force on birds also becomes 0. As previously discussed in the analysis
of cohesion radius in Section 5.6.3, the absence of cohesion force reduces the disturbance
on the memory of past input states within the flock, leading to a better memory capacity.
The performance significantly degrades as the cohesion factor becomes non-zero. The
performances for the cohesion factor within the range of 0.015 to 0.04 are slightly better
than others. This indicates that within this range, the birds would fly in one single group
following the input properly, with suitable amount of delays among them.

60 Sensitivity Analysis in Delays

Appendix B

Sensitivity Analysis in Delays

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. B.1 Plots of delay analysis for swarm reservoirs of size 40. (a) Plot of covariance against
delay length for boids reservoir in STM and PC tasks. (b) Plot of covariance against delay
length for boids reservoir in NARMA tasks. (c) Plot of covariance against delay length for
boids reservoir in MG tasks. (d) Plot of covariance against delay length for ants reservoir in
STM and PC tasks. (e) Plot of covariance against delay length for ants reservoir in NARMA
tasks. (f) Plot of covariance against delay length for boids reservoir in MG tasks. (g) Plot of
covariance against sample time for ants reservoir in STM and PC tasks. (h) Plot of covariance
against sample time for ants reservoir in NARMA tasks. (i) Plot of covariance against sample
time for ants reservoir in MG tasks.

61

Figure B.1 shows an example of how performance in different amounts of delays are evaluated
and selected. We conduct this kind of delay analysis for several sizes of swarms, and select
the set of delay that is most suitable for all sizes of swarms.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Main Contributions
	1.2 Dissertation Outline

	2 Background
	2.1 Classical Reservoir Computing Framework
	2.2 Reservoir Computing with Single Robot Reservoirs
	2.2.1 Octopus-inspired Soft Robotic Arm
	2.2.2 Spine-Driven Quadruped Robot

	2.3 Reservoir Computing with Swarm Reservoirs
	2.3.1 Particle Swarm
	2.3.2 Predator-Driven Boids

	2.4 Swarm Systems
	2.4.1 Boids Model
	2.4.2 Ants Model

	2.5 Chapter Summary

	3 Methodology
	3.1 Swarm Reservoir Models
	3.1.1 Boids as Reservoir
	3.1.2 Ants as Reservoir
	3.1.3 Combined Reservoir

	3.2 Observation Layer
	3.2.1 Permutation Symmetry in Our Swarm Reservoirs
	3.2.2 Addressing Permutation Symmetry

	3.3 Readout Layer
	3.3.1 Training readout weights
	3.3.2 Output Computation and Evaluation

	3.4 Chapter Summary

	4 Experimental Setups and Results
	4.1 Benchmark Tasks
	4.1.1 Short-Term Memory Task
	4.1.2 Parity Check Task
	4.1.3 Nonlinear Autoregressive Moving Average Task
	4.1.4 Mackey-Glass Time Series Prediction Task

	4.2 Experimental Methods and Settings
	4.3 Comparison with Echo State Networks
	4.4 Variation of Computation Capacity with Swarm Sizes
	4.5 Computation Capacity with Different Combinations of Swarm Systems
	4.6 Sensitivity Analysis
	4.6.1 Variation of Computation Capacity with Input Ratio (Boids Reservoir)
	4.6.2 Variation of Computation Capacity with Separation Radius (Boids Reservoir)
	4.6.3 Variation of Computation Capacity with Cohesion Radius (Boids Reservoir)
	4.6.4 Variation of Computation Capacity with Food/Nest Factor Range (Ants Reservoir)

	4.7 Chapter Summary

	5 Conclusion
	5.1 Future Works

	References
	Appendix A Other Sensitivity Analysis Performed
	A.1 Variation of Computation Capacity with Alignment Radius (Boids Reservoir)
	A.2 Variation of Computation Capacity with Alignment Factor (Boids Reservoir)
	A.3 Variation of Computation Capacity with Separation Factor (Boids Reservoir)
	A.4 Variation of Computation Capacity with Cohesion Factor (Boids Reservoir)

	Appendix B Sensitivity Analysis in Delays

