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Abstract

Knowledge-Based Visual Question Answering (KB-VQA) integrates information from external
sources by retrieving relevant documents to generate answers to questions about images. The
accuracy of KB-VQA heavily relies on retrieving documents relevant to the context of the
question. This thesis investigates reranking as a technique to improve retrieval recall by refining
an initial list of retrieved documents. While reranking has been extensively researched in
information and text retrieval, its application to KB-VQA remains unexplored.

Our primary contribution is introducing multimodal rerankers in a multi-stage retrieval
pipeline for KB-VQA, demonstrating statistically significant improvements in recall over
state-of-the-art PreFLMR retrievers on both OKVQA and EVQA. Our most powerful reranker,
monoBLIP-2, improves the Recall@5 of PreFLMR for EVQA from 32.7% to 39.9% and for
OKVQA from 27.5% to 47.5%.

We also develop a modularized reranker, ModPreFLMR, that leverages late-interaction
embeddings from retrieval for efficiency. We introduce this as a concept of mid-interaction,
striking a balance in the performance-efficiency trade-off between the late-interaction mecha-
nisms of PreFLMR and the early-interaction mechanisms of monoBLIP-2. It is 97x faster than
monoBLIP-2 and boosts the Recall@5 of the smallest PreFLMR-B to surpass PreFLMR-G
with minimal computational overhead.

We provide a comprehensive analysis of the mechanics behind training rerankers, including
various model configurations, sampling methods, and loss functions. Our findings show that
rerankers benefit significantly from strong pre-training but are susceptible to overfitting. We
also find significant performance gains by training on retrieved documents that represent the
distribution of top retrieval candidates, although sampling a balanced ratio of positive and
negative documents becomes necessary to prevent class imbalance. Additionally, we describe
the theoretical and practical advantages of using a listwise loss function to rank small datasets
with homogeneous documents like OKVQA and a pointwise loss function to rank larger datasets
with more diverse batches like EVQA. We conclude that the best rerankers leverage strong
pre-trained models, initially aligned to the reranking task with a pointwise loss on a wide range
of datasets, and then fine-tuned on specific retrievers with a listwise loss.
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Chapter 1

Introduction

Visual Question Answering (VQA) aims to build models that can answer questions about the
content of images (Antol et al., 2015). Despite significant advancements in Visual Language
Models (VLMs) like PaLI (Chen et al., 2022) and BLIP-2 (Li et al., 2023), datasets containing
questions with niche content unlikely to be in the training data, such as OKVQA (Marino
et al., 2019) and EVQA (Mensink et al., 2023), remain challenging. Knowledge-Based Visual
Question Answering (KB-VQA) emerges as an extension of VQA to address this problem,
borrowing from Retrieval Augmented Generation (RAG) by retrieving relevant information
from external sources as support for generating accurate responses (Gui et al., 2021; Hu et al.,
2023b; Lin et al., 2024a, 2022). Retrieval is a key aspect of RAG and has been well-studied to
be fast and efficient using bi-encoder structures. These structures employ two separate encoders:
one for documents, which can be pre-processed in advance, and another for queries, which
are processed in real-time (Karpukhin et al., 2020). Relevance is computed using Maximum
Inner Product Search (MIPS) (Shrivastava and Li, 2014) with Approximate Nearest Neighbor
(ANN) algorithms, enabling quick and scalable retrieval from large knowledge bases (Johnson
et al., 2019; Malkov and Yashunin, 2018). However, this efficiency may come at the expense
of performance, which is critical, as VLMs are highly sensitive to prompts, and retrieving
irrelevant information can decrease the quality of generated answers (Liu et al., 2024b).

This thesis explores reranking as a technique to improve retrieval by refining the initial
list of retrieved documents. Compared to retrieval with bi-encoders, reranking is typically
performed using slower, but more powerful cross-encoders that jointly encode queries and
documents. While there has been substantial research on reranking information retrieval and
text retrieval, there is a notable gap in applying these methods to KB-VQA. In information
retrieval, multi-stage retrieval pipelines are common practice, where initial stages filter down
information for more powerful rerankers to refine results (Matveeva et al., 2006). Text retrieval
has recently seen significant developments with the adoption of multi-stage retrieval through



2 Introduction

reranking, driven by advancements in pre-trained large language models like BERT (Nogueira
and Cho, 2019) and T5 (Nogueira et al., 2020), that can be readily fine-tuned for assessing the
relevance of retrieved documents. However, these advancements have not yet been explored
for KB-VQA, where both visual and textual information need to be processed when reranking.
This thesis takes advantage of recent advancements in large pre-trained VLMs to introduce
reranking techniques for KB-VQA.

1.1 Contributions

Apart from the concurrent (non-peer reviewed) work of Wen et al. (2024), released in the same
month as this thesis, we are the first to propose multimodal rerankers for use in a multi-
stage retrieval pipeline for KB-VQA. Our rerankers demonstrate statistically significant
improvements in recall over state-of-the-art PreFLMR retrievers (Lin et al., 2024b) on
both OKVQA and EVQA. These improvements are consistent across the range of retrievers,
from the smallest (PreFLMR-B) to the largest (PreFLMR-G). Our most powerful reranker,
monoBLIP-2, uses BLIP-2 as the backbone and:

• Improves PreFLMR-G Recall@5 for EVQA from 32.7% to 39.9%. (Section 5.4)

• Improves PreFLMR-G Recall@5 for OKVQA from 27.5% to 47.5%. (Section 5.4)

We are also the first to propose a reranker with a modularized approach, ModPre-
FLMR, that leverages computations from late-interaction retrieval. This enables the use
of a significantly smaller cross-encoder, serving as a starting point for what we introduce as
a mid-interaction mechanism that strikes a middle ground in the performance-efficiency
trade-off between late-interaction models like PreFLMR and early-interaction models like
monoBLIP-2. Compared to monoBLIP-2, ModPreFLMR is 97x faster and still:

• Improves PreFLMR-B Recall@5 for OKVQA from 23.5% to 29.1%, surpassing PreFLMR-
G with little computational overhead. (Section 5.3)

We also conduct extensive analysis on various mechanisms of training rerankers, including
model configurations, sampling methods, and loss functions:

• We find that a common trend among the best reranker configurations is that they rely
on strong pre-trained information and require fewer trainable parameters to prevent
overfitting. (Section 5.1.3)
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• We demonstrate that fine-tuning on the distribution of top retrieval candidates (Gao et al.,
2021) significantly improves performance, however, it is important to sample a balanced
ratio of positive to negative documents to address class imbalance. (Section 5.3)

• We elaborate on the theoretical advantages of training with a listwise loss that operates
across a batch of documents (Gao et al., 2021; Zhuang et al., 2023) and demonstrate
that, in practice, it leads to better results on small datasets with confounding documents,
such as OKVQA. Conversely, a pointwise loss function that operates on individual
query-document pairs proves more effective on larger datasets with diverse documents,
such as EVQA. (Section 5.2)

In summary, we show that the best strategy for reranking is to leverage strong pre-trained
models and then align them to the reranking task through a two-step process: first, training
on diverse reranking datasets with a pointwise loss on individual query-document pairs; then,
fine-tuning on specific downstream retrievers with a listwise loss on lists of documents.

1.2 Thesis Overview

Chapter 2 begins by diving into developments of KB-VQA and reranking in the literature.
Chapter 3 details the three reranker architectures explored: monoPreFLMR, monoBLIP-2, and
ModPreFLMR, and describes various training strategies. Chapter 4 describes the experiments
conducted on OKVQA and EVQA, including training configurations and evaluation metrics.
Chapter 5 presents results from the experiments, providing a comprehensive analysis of reranker
performance. Finally, Chapter 6 our findings, discusses their limitations, and suggests avenues
for future work.





Chapter 2

Background

This chapter provides background on the development of Knowledge-Based Visual Question
Answering (KB-VQA), with an emphasis on retrieval. The chapter concludes by introduc-
ing reranking methods, including encoder-based, sequence-to-sequence, and modularized
approaches, which form the foundation for this thesis.

2.1 Visual Question Answering

The objective of Visual Question Answering (VQA) is to interpret an image and provide
accurate responses to questions related to its content. VQA can be traced back to the VQAv1
dataset (Antol et al., 2015), which includes images from MS-COCO (Lin et al., 2014) with open-
ended questions and ground truth answers. Since then, many datasets of varying difficulties and
contexts have been introduced, such as GQA (Hudson and Manning, 2019), Clevr-x (Salewski
et al., 2020), and VQA-CP (Agrawal et al., 2018). Some datasets focus on specific domains,
such as the medical domain in Med-VQA (Zhan et al., 2020).

Fig. 2.1 Visual Question Answering (VQA): Involves answering questions about images,
such as identifying details (e.g., eye color, objects), counting items (e.g., slices of pizza), and
inferring context (e.g., actions and surroundings). (Antol et al., 2015)
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Models used for VQA are Visual Language Models (VLMs), capable of processing images
and text. Recent large-scale models, such as PaLI (Chen et al., 2022), leverage established
unimodal pre-trained models like T5 and ViT as backbones. Similarly, Frozen (Tsimpoukelli
et al., 2021) connects vision encoders to frozen language models via a lightweight mapping
network, enabling rapid adaptation to new tasks. BLIP-2 (Li et al., 2023) introduces a Q-Former
module to map frozen visual representations to frozen large language models.

There has also been considerable success in pre-training with masked modeling to take
advantage of larger volumes of data. LXMERT (Tan and Bansal, 2019) integrates vision and
language pre-training for better cross-modal reasoning. VisualBERT (Li et al., 2019) and VL-
BERT (Su et al., 2019) adapt BERT-like architectures for joint vision-language representation
learning. ViLBERT (Lu et al., 2019) separates visual and textual streams, interacting via
co-attentional transformers. UNITER (Chen et al., 2020) unifies vision-language tasks through
a single pretraining framework.

2.2 Retrieval Augmented Generation

A common source of error in VQA is when questions require detailed knowledge of specific
categories or instances (Mensink et al., 2023). VLMs struggle to encode this long-tail in-
formation - rare details about niche topics - as it is seldom found in training data. This is
also a significant issue with large language models (LLMs) in the text-only domain (Lewis
et al., 2020). To address this, there has been substantial research into Retrieval-Augmented
Generation (RAG), which retrieves relevant information from external knowledge corpora to
support answer generation.

Fig. 2.2 Retrieval Augmented Generation (RAG): A query retrieves relevant context from a
database, which is then used by a generator to produce an accurate and contextually enriched
answer.
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2.2.1 Retrieval

The retrieval process begins with indexing, where a knowledge base is created from documents
that can be used to support generation. Most knowledge bases for RAG are indexed in
unstructured forms, consisting of raw text without storing any relationships between the
different documents. Raw Wikipedia passages are commonly used in RAG research (Karpukhin
et al., 2020; Lee et al., 2019; Lewis et al., 2020).

Given a query, q, retrieval calculates the probability that a document, d, is relevant (Equa-
tion 2.1) and selects those from the index with the highest probability.

sq,d = P(Relevant = 1 | q,d) (2.1)

Early work in retrieval, such as DrQA (Chen et al., 2017), used sparse retrieval techniques
like TF-IDF and BM25 (Robertson et al., 1995; Sparck Jones, 1972), which utilize a lexicon to
describe bag-of-words representations. These techniques focused on finding the most relevant
documents by analyzing the structure of the documents and the distribution of words. As they
are based on exact matches, they can use inverted list data structures for low-latency retrieval.

Later work advanced to dense retrieval techniques based on lower-dimensional vector
spaces, which have been found to be more effective than sparse retrieval with high-dimensional
word vectors. Dense retrieval techniques emphasize semantic similarity rather than exact
words, with elements representing latent variables instead of words. Dense retrievers are
bi-encoder architectures that generate two representations: one for the query, η(q), and one for
the document, η(d), that can be compared with a similarity function, φ (Equation 2.2). This
formulation is highly efficient because documents only need to be embedded into an index
once, and during inference, only the queries need to be embedded for comparison.

sq,d = φ(η(q),η(d)) (2.2)

BERT (Devlin et al., 2018) has driven the field of dense retrieval as the preferred encoder,
η , due to its strong self-supervised pre-training. Systems like OrQA (Lee et al., 2019) and
DPR (Karpukhin et al., 2020) leverage BERT and have been shown to outperform BM25 when
trained on multiple documents. sq,d is maximized for relevant pairs using a cross-entropy loss
on batches with negative sampling.

The choice of φ is often the dot product (Equation 2.3) and retrieval becomes a problem of
Maximum Inner Product Search (MIPS) (Shrivastava and Li, 2014). MIPS can be performed
very efficiently, particularly on GPUs, with Approximate Nearest Neighbor Search (ANN)
algorithms. Methods based on hierarchical navigable small world (HNSW) graphs (Malkov
and Yashunin, 2018) represent the current state of the art in ANN search. A popular open-
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source library for ANN search is FAISS by Facebook (Johnson et al., 2019), which provides
widespread accessibility to implementations of these techniques.

sq,d = η(q)T
η(d) (2.3)

Fig. 2.3 Dense Passage Retrieval (DPR): A question and a document are represented as dense
vectors, and their relevance is determined using the dot product of these vectors.

Indeed, a trade-off with the computational efficiency of dense retrieval is that it condenses
text into only a single embedding for comparison. An extension is ColBERT (Khattab and
Zaharia, 2020), which preserves token-level embeddings and computes the dot product between
all pairs of query and document tokens, summing across the maximum similarities of each query
token. This method is more fine-grained than DPR with a single dot product, although it is still
late-interaction, as similarities are only measured in the final layer. Typically, implementation
is performed in a multi-stage process through a system like PLAID (Santhanam et al., 2022),
where initial stages involve efficient candidate retrieval using centroid interaction and pruning
techniques. This filters the results down before performing the full ColBERT search on the
smaller set of filtered documents.
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Fig. 2.4 ColBERT: A question and a document are represented as dense vectors, with relevance
determined by computing the maximum dot product across token interactions.

2.2.2 Knowledge-Based Visual Question Answering

Knowledge-Based Retrieval-Augmented Generation (KB-VQA) is an extension of RAG to
VQA, adapted to include visual information during retrieval. Several datasets have emerged
recently for KB-VQA. OKVQA (Marino et al., 2019) is a dataset with human-annotated
questions designed to require additional reasoning beyond what is directly in the image.
However, performance on OKVQA has improved significantly even without retrieval, as
modern large language models possess a considerable amount of internal information (Yang
et al., 2022). A newer EVQA dataset (Mensink et al., 2023) has been deliberately constructed to
contain questions with information that a model is unlikely to have internally. Existing VLMs
that perform well on OKVQA struggle significantly with EVQA. However, an oracle model
with access to relevant external documents has been shown to perform well, demonstrating that
effective external knowledge retrieval is essential for success.
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Most retrievers for KB-VQA are based on DPR, although they differ in the methodology
for converting images and text into representations suitable for retrieval. The idea of CLIP
(Radford et al., 2021b) forms the basis for bringing image and text embeddings into the same
domain through training on large-scale text-image pairs using contrastive learning. REVIVE
(Lin et al., 2022) and KAT (Gui et al., 2021) detect regions of the query image and use a
CLIP model to search for the most relevant text in a knowledge base. REVEAL (Hu et al.,
2023b) incorporates the query text as well as the query image for retrieval, using a VLM with
a T5 and ViT backbone to jointly encode the query image and text, with a pooling layer to
create a single dense representation for retrieval. Another approach is to utilize image-to-text
transformations, such as captioning, to convert images into textual descriptions for purely text
retrieval. RA-VQA (Lin and Byrne, 2022) and TRiG (Gao et al., 2022) convert images into
multiple text formats to minimize information loss, including captions, object and attribute
labels, and OCR text for DPR using text embeddings. Beyond DPR, FLMR (Lin et al., 2024a)
and its extension PreFLMR (Lin et al., 2024b) are retrieval systems that measure similarities
based on the ColBERT late interaction mechanism using token-level embeddings of images
and text. Similar to REVEAL, FLMR employs a VLM with a BERT and ViT backbone to
jointly encode the query image and text for retrieval.

2.2.3 Generation

Generation typically revolves around synthesizing the query and selected documents into a
prompt as input into either a LLM for RAG (Guu et al., 2020; Lewis et al., 2020) or a VLM
for KB-VQA (Lin et al., 2024a,b). However, a primary concern is that redundant information
can interfere with generation, and overly long contexts can lead to the "Lost in the Middle"
problem (Liu et al., 2024b). LLMs have been observed to focus only on the beginning and end
of long texts, often forgetting the middle portion. Indeed, the quality of retrieved documents
becomes particularly crucial when context sizes are limited, and only a few top documents can
be utilized during generation. Many methods have been developed to address this. One such
method is context selection or compression, such as RECOMP (Xu et al., 2023), which trains
an information condenser, or LLMLingua (Jiang et al., 2023), which utilizes smaller language
models like GPT-2 Small or LLAMA-7B to detect and remove unimportant tokens. Another
approach is RAFT (Zhang et al., 2024) which fine-tunes LLMs using irrelevant documents. This
process enables the model to learn when to disregard retrieved information during inference
and instead generate responses based on its implicit knowledge.
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2.3 Reranking

To improve retrieval, a more optimal method for computing the similarity between a query and
a document goes beyond the late interactions of ColBERT and instead incorporates interactions
throughout the entire network in what can be described as early interaction. In contrast to
bi-encoders in DPR, which separately encode queries and documents, this class of models,
known as cross-encoders, is designed to jointly process the query and document within a unified
encoder (Equation 2.4).

sq,d = φ(q,d) (2.4)

Fig. 2.5 Cross Encoders: A query and document are jointly encoded within a unified network,
allowing for interactions throughout the entire network to compute similarity.

However, the major drawback of cross-encoders is their inability to leverage fast ANN
computations as the similarity is no longer based on a simple dot product, making them
unsuitable for scaling. Typically, cross-encoders are used after the initial retrieval results have
been filtered down.

The idea of having multiple stages of reranking is common practice in information retrieval
research due to its effectiveness in balancing efficiency and accuracy (Matveeva et al., 2006).
Multi-stage ranking architectures are particularly prevalent in industry applications, including
Alibaba’s e-commerce search (Chen et al., 2023a), Baidu’s web search (Zou et al., 2021), and
YouTube’s recommendation algorithm (Covington et al., 2016). Earlier stages use cheaper,
less informative features like dense representations to discard irrelevant candidates. More
expensive, informative features like cross-encoders are subsequently applied in later stages to
refine rankings.
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Fig. 2.6 Multi-Stage Reranking: Initial retrieval uses cheaper features to filter irrelevant
candidates, followed by reranking stages that employ more informative features to balance
efficiency and accuracy for refined results.

Indeed, this concept has been well-explored in the text domain. Already, the PLAID
implementation of ColBERT itself can be considered a multi-stage reranking process. In initial
stages, results are filtered using a computationally efficient nearest neighbor search. The final
stage then applies the more sophisticated and resource-intensive ColBERT mechanism to a
refined set of high-quality candidates.

More generally, there are three main types of text reranking architectures. The earliest
form of reranking relies on leveraging pre-trained encoders such as BERT. However, more
recently, practitioners have shifted towards using pre-trained sequence-to-sequence models
like T5, which have demonstrated better performance. Additionally, some research has been
conducted into modularized models that utilize pre-computed calculations to save computation
by reusing calculations during ranking.

Apart from the concurrent (non-peer reviewed) work of Wen et al. (2024), released in the
same month as this thesis, we are the first to extend reranking from the text domain to the
multimodal domain of KB-VQA.

2.3.1 Encoder Reranker

The power of BERT’s unsupervised pre-training has significantly influenced both retrieval and
reranking domains. A notable application involves using the BERT architecture directly as a
reranker following initial retrieval using BM25, an approach known as monoBERT (Nogueira
and Cho, 2019). In this method, the query and document are concatenated and input into
BERT, followed by a classification layer to determine document relevance. This approach’s
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effectiveness stems from its similarity to the Next Sentence Prediction (NSP) task used in
BERT’s original pre-training (Devlin et al., 2018).

The binary classification for relevance connects to the ranking task through the Probability
Ranking Principle (Robertson and Belkin, 1978), which posits that documents should be ranked
in decreasing order of their estimated relevance probability. All documents passing the retrieval
stage are processed through the reranker and ranked in descending order of their logits. Training
a reranker to predict this probability one query-document pair at a time is known as a pointwise
approach, as each document is evaluated independently in the loss function. This method
has the limitation that a document’s score is independent of others in the query’s result list.
Indeed, optimizing a pointwise training loss does not theoretically guarantee optimal ranking
performance, as the objectives of minimizing individual classification errors and achieving
the best possible ordering of items are not aligned. However, empirical evidence shows that
pointwise approaches often succeed in practice (Yates et al., 2021).

Nogueira et al. (2019) addresses this by introducing DuoBERT, which takes as input a
query and two documents, outputting a prediction of which document is more relevant. This
pairwise approach aims to minimize ranking inversions where document pairs are incorrectly
ordered. The underlying rationale is that assessing documents in relation to each other, rather
than in isolation, aligns more closely with the nature of ranking than predicting individual
relevance scores. During inference, pairwise comparisons are made between all candidate
documents, and scores are aggregated to produce the final ranking. There is a significant
scalability difference between monoBERT and DuoBERT. MonoBERT can efficiently process
thousands of input documents, as it scores each document independently. In contrast, DuoBERT
requires comparing all possible document pairs, which scales quadratically with the number of
documents, limiting it to an even later stage, typically handling only tens of documents. Hence,
DuoBERT is typically employed following monoBERT in an additional reranking stage.

Listwise ranking losses have also been explored, which consider the entire document list
during training, aligning even closer with the nature of ranking (Gao et al., 2021; Han et al.,
2020; Ren et al., 2021). This approach learns to rank batches containing a single positive
document and multiple negative documents. The model utilizes a listwise softmax function
across the batch to maximize the positive document’s score while reducing the scores of
negative documents. Training is optimized using a cross-entropy loss function. Notably, this
approach shares similarities with dense retrieval training, with both methods aiming to teach the
model to assign higher ranks to positive examples and lower ranks to negative ones, effectively
capturing the relative importance of documents within a given context.
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2.3.2 Sequence-to-Sequence Reranker

Recent work in text reranking has found success in moving beyond using pre-trained encoders
to pre-trained sequence-to-sequence models such as T5. T5 has been shown to adapt to a variety
of natural language processing tasks beyond generation, including traditional classification
tasks like sentiment analysis and topic classification, as well as regression tasks (Roberts and
Raffel, 2020).

Nogueira et al. (2020) explored the application of the T5 model to text ranking, introducing
a model called monoT5. Similar to monoBERT, monoT5 encodes the concatenation of the query
and document but formats it as a prompt. This approach leverages internal model representations
just before the generation of an output token for relevance classification. MonoT5 employs a
pointwise approach to ranking with the decoder fine-tuned with a text generation loss to predict
"true" if the document is relevant and "false" if it is not. During inference, post-processing is
applied using a softmax function between the "true" and "false" token probabilities with the
"true" token probability used to rerank the documents (Equation 3.20). Notably, experimental
results indicate that monoT5 outperforms monoBERT with less training data, suggesting
improved generalization capabilities.

A pairwise approach to ranking has also been extended to monoT5 through an implementa-
tion called duoT5 (Pradeep et al., 2021). In this model, the input consists of a concatenation
of the query and two documents, formatted as a prompt. The model is fine-tuned to predict
"true" if the first document is more relevant than the second, and "false" otherwise. Listwise
ranking with the T5 model has also been explored by RankT5 (Zhuang et al., 2023), which
employs a listwise softmax function. This method can no longer directly use T5 generation
probabilities and requires modifications to produce numerical scores directly. Token probabili-
ties were suitable for monoT5 and duoT5, as the pointwise loss and pairwise loss both train to
predict probabilities. However, the listwise loss trains to predict raw scores, making the direct
adaptation of token probabilities inappropriate.

We note that the reranker concurrently developed by (Wen et al., 2024) for VQA fits in the
category of sequence-to-sequence rerankers. They use a pre-trained PaLI VLM as the backbone
and train with a pairwise loss.

2.3.3 Modularized Reranker

The Modularized Reranking System (MORES) (Gao et al., 2020) is an extension of monoBERT
that decouples the reranker into separate modules. Document embeddings in an intermediate
layer are pre-computed and stored in an index, and during inference, query embeddings are
calculated and then cross-encoded with the pre-computed document embeddings. Decoupling
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the modules reduces expressiveness, as cross-encoding only begins after the query and docu-
ment are first encoded separately. However, the efficiency benefits become apparent when we
consider that the attention mechanism’s complexity is quadratic with respect to the length of
the input sequence. Consequently, cross-encoding has a complexity dependent on the lengths
of both the query and document, represented as NInt · (q+ d)2, where NInt is the number of
cross-encoder layers, q is the query length, and d is the document length. By effectively
separating the encoding of the query and document, where document embeddings are pre-
computed and not modified, the complexity during inference becomes NQ ·q2 +N Înt · (q+d)2

where NQ is the number of query encoding layers, and N Înt is the number of interaction layers,
which can be less than NInt due to the pre-computed information. This separation allows for
more efficient computation, especially when dealing with large document collections, as the
document embeddings can be pre-computed and reused.

2.4 Conclusion

This chapter traced the development of VQA and highlighted the importance of KB-VQA
to address questions that require niche information. We have explored how modern retrieval
leverages MIPS with ANN to efficiently access relevant information from knowledge bases.
The chapter then introduces the concept of reranking first-stage retrieval results with more
computationally expensive but powerful cross-encoders. We trace the development of reranking
from encoder-based methods to sequence-to-sequence models to modularized techniques with
various training methodologies, including pointwise, pairwise, and listwise approaches. In
the next chapter, we describe reranking in more technical detail and propose how they can be
extended to incorporate images.





Chapter 3

Methodology

This chapter outlines our methodology for reranking KB-VQA retrieval results. We begin by
describing the PreFLMR retriever (Lin et al., 2024b), which serves as the base for reranking. It
retrieves text documents using a query composed of both image and text. Next, we describe
our reranker architectures, drawing on established research in text-based reranking to inform
our approach. We then look at specific strategies for improving the training process, including
the use of listwise loss functions and training on retrieved document lists.

3.1 Benchmark Retriever

The baseline for retrieval is PreFLMR, designed for retrieving relevant documents for KB-VQA.

Fig. 3.1 PreFLMR Retrieval: The query consists of text, q, and an image, I, which is used to
search for the most relevant text document, d. PreFLMR utilizes various network architectures
to embed queries and documents and then leverages the ColBERT late-interaction mechanism
to calculate similarity using token-level embeddings. (Lin et al., 2024b)
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On the query side, a BERT text encoder, FLQ processes the text query, q. As BERT has
a fixed number of positional embeddings, the length of the text, Nq is first truncated to a
maximum of 512 tokens. The matrix of query embeddings Q̂q is calculated with Equation 3.1
with dimensions, dL, of 768. Subsequently, Equation 3.2 utilizes a one-layer Multi-Layer
Perceptron (MLP), FMLP

LQ
, to convert the embedding dimension to a lower dimension matrix Qq

with embedding size dh, chosen to be 128.

Q̂q = FLQ(q) ∈ RNq×dL (3.1)

Qq = FMLP
LQ

(Q̂q) ∈ RNq×dh (3.2)

The image query, I, is processed by a ViT encoder, FV . The dimension size, dV , of
ViT is 768. From the final layer, we utilize the single embedding of the CLS token as a
holistic representation, capturing the overall features and characteristics of the entire image
(Equation 3.3). We pass it through a 2-layer MLP mapping network, FMLP

M which converts it
into Nvt embeddings in the same embedding space, dh, as the text embeddings (Equation 3.4).
Nvt is chosen to be 32.

QI,[CLS] = FV (I) ∈ R1×dV (3.3)

QMLP
I = FMLP

M (QI,[CLS]) ∈ RNvt×dh (3.4)

Moreover, more fine-grained information about the image can be obtained from the Nv

patch embeddings from the penultimate layer (Equation 3.5). Nv for ViT-B is 49 while for
ViT-L and ViT-G, it is 256. These tokens are passed through an additional transformer module,
FT R

M which consists of NT R
M transformer layers that cross-attend with the text query Qq to obtain

embeddings more relevant to the query text. The module ends with a single MLP Layer to map
embeddings from dv to dh (Equation 3.6).

QI,PATCH = FV,−2(I) ∈ RNV×dV (3.5)

QT R
I = FT R

M (QI,PATCH , Q̂q) ∈ RNV×dh (3.6)

Equation 3.7 describes the aggregate token-level embeddings for the image and text query,
Q, which is a concatenation of all the calculated text and image embeddings.
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Q =
[
Qq | QMLP

I | QT R
I

]
∈ R(Nq+NV+Nvt)×dh = RlQ×dh (3.7)

On the document side, another BERT text encoder, FLD is used along with a single-layer
MLP, FMLP

LD
to embed documents into a dimension size of dh for the knowledge base (Equa-

tion 3.8). Similar to queries, the maximum context size of documents, Nd is set to 512.

D = FMLP
LD

(FLD(d)) ∈ RNd×dh (3.8)

Ranking scores, rq,d , between queries and documents are computed based on ColBERT’s
late-interaction mechanism (Santhanam et al., 2021), allowing each query token to interact
with all document token embeddings as part of the calculation with the sum of the relevance of
all queries token against the document token with the maximum relevance.

rq,d =ColBERT (Q,D) =
lQ

∑
i=1

max
1≤ j≤lD

(Q⊤
i D j) ∈ R1×1 (3.9)

The model is trained with a contrastive loss function (Equation 3.10) using in-batch negative
sampling (Karpukhin et al., 2020), where with a batch size of N documents and N queries, there
is a collection of 1 positive document, d+, and N −1 negative documents, N(q), per query.

L =− ∑
(q,d+)∈D

log
exp(rq,d+)

exp(rq,d+)+∑z∈N (q) exp(rq,z)
(3.10)

Due to the nature of training with a contrastive loss, ranking scores, rq,d do not have the
same probabilistic interpretation as sq,d (Equation 2.1). However, they are representative of
the degree of relevance between different documents and, hence, they should follow the same
order, i.e., rq,d1 < rq,d2 ⇐⇒ sq,d1 < sq,d2

For inference, token-level document embeddings are indexed using the PLAID implementa-
tion (Santhanam et al., 2022). In this approach, each document is represented as a compact set
of centroids obtained through k-means clustering. During retrieval, PLAID computes relevance
scores between query vectors and these centroids. In the initial stages, low-relevance centroids
are pruned early, significantly reducing the number of candidate documents for the final stage
where the most promising candidates are fully decompressed and scored with the full ColBERT
mechanism.

The text and image encoders of PreFLMR are initialized from pre-trained checkpoints of
BERT and ViT. The authors experiment with models of various sizes, using text models from
BERT-Small (28.8M), BERT-Medium (41.1M), BERT-Base (110M), to BERT-Large (340M),
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and vision models from ViT-B (88M), ViT-L (303M) (Radford et al., 2021a), ViT-H (631M),
and ViT-G (1.84B) (Cherti et al., 2023).

PreFLMR is trained on various datasets, starting with the MSMARCO (Bajaj et al., 2016)
dataset using either the ColBERTv1 (Khattab and Zaharia, 2020) or ColBERTv2 (Santhanam
et al., 2021) training scheme to properly initialize the parameters of the text encoder. This is
followed by further training on various KB-VQA datasets including OKVQA (Marino et al.,
2019), EVQA (Mensink et al., 2023), LLaVA (Liu et al., 2024a), OVEN (Hu et al., 2023a),
WIT (Srinivasan et al., 2021), CC3M (Sharma et al., 2018), KVQA (Shah et al., 2019) and
Infoseek (Chen et al., 2023b). Throughout this process, the vision encoder is kept frozen.

The authors find that varying the size of the BERT encoder does not significantly impact
performance beyond BERT-Base. Similarly, scaling the size of the ViT encoder does not
significantly improve performance beyond ViT-L. They release three checkpoints for the
trained models on HuggingFace, all based on BERT-Base, but varying in ViT size: ViT-B5,
ViT-L6, and ViT-G7. These models are hence classified as PreFLMR-B, PreFLMR-L, and
PreFLMR-G, respectively, and serve as the retrieval results for reranking.

3.2 Encoder Reranker

The first method of reranking involves using a pre-trained encoder model architecture to jointly
cross-encode a query and document with an additional classification head to represent their
similarity.

3.2.1 monoBERT

Our model is inspired by monoBERT Nogueira et al. (2019), which is used for text-only
reranking using a pointwise ranking objective on individual query-document pairs. The
backbone is initialized from a pre-trained BERT model, serving as the cross-encoder, FR, to
jointly encode query, q, and document, d, as inputs. The format of the text input to the model,
T (q,d), begins with a CLS token, used as the final representation for relevance classification.
This is followed by a concatenation of the query and document, separated and terminated by
SEP tokens (Equation 3.11).

T (q,d) = [[CLS],q, [SEP],d, [SEP]] (3.11)

5https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B
6https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L
7https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G

https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-B
https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-L
https://huggingface.co/LinWeizheDragon/PreFLMR_ViT-G
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For BERT, the prompt is tokenized with the WordPiece tokenizer (Devlin et al., 2018), and
learned token embeddings are used as inputs into the cross-encoder layers. Learned positional
embeddings are added to distinguish the sequential positions of the tokens, up to a maximum
context length of 512 tokens for BERT. This means that tokens beyond this limit are truncated,
which may be a concern for some queries and documents that exceed this length. Finally,
learned segment embeddings are added to differentiate between tokens representing the query
and those representing the document.

The output of the cross-encoder is token embeddings, Hq,d , with a dimension size, dL, of
768. The embedding of the CLS token is then passed through a single-layer MLP, FMLP

R , to
classify the probability that the document is relevant to the query. Two logits are produced, zq,d ,
one representing the probability of being relevant and the other representing the probability of
being not relevant. A softmax activation function is applied to ensure that the two probabilities
sum to 1 (Equation 3.12).

Qq,d = FR(T (q,d)) ∈ RNq×dL

zq,d = FMLP
R (Qq,d,CLS) ∈ R1×2

sq,d = Softmax(zq,d)0 ∈ R1×1

(3.12)

The model is trained in a pointwise approach across each query-document pair using a
pointwise binary cross-entropy loss (Equation 3.13), where Dpos is the set of relevant documents
and Dneg is the set of non-relevant documents.

L =− ∑
d∈Dpos

log(sq,d)− ∑
d∈Dneg

log(1− sq,d) (3.13)

Fig. 3.2 monoBERT: A BERT encoder cross-encodes a query and document, with the CLS
token’s embedding passed through an MLP to classify document relevance.
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3.2.2 monoPreFLMR

To extend the encoder approach to the multimodal domain, we require an encoder that can
jointly embed images and texts. A natural choice is the PreFLMR query encoder (Equation 3.7),
which can be repurposed from retrieval to reranking as it has already been pre-trained to embed
images and texts in the context of computing relevance. A reranker using PreFLMR as a
backbone can similarly be named monoPreFLMR.

A necessary modification is that the BERT text embeddings, Qq, can no longer just contain
the query but now must also contain the target document, Qq,d . This is naturally addressed
by modifying the input to contain the concatenation of the document as well (Equation 3.14).
As the text embeddings are also based on a BERT model, we can use the same input format,
truncation length, and segment embeddings as monoBERT (Equation 3.11).

Q̂q,d = FLQ(T (q,d)) ∈ RNq×dL

Qq,d = FMLP
LQ

(Q̂q,d) ∈ RNq×dh
(3.14)

However, further modifications need to be made as PreFLMR text embeddings do not have
any mechanism to attend to image embeddings. Hence, it is necessary to introduce additional
cross-encoder layers that incorporate all the output embeddings of the PreFLMR query encoder,
both text and image, for further processing to consolidate information. Particularly, we use
a stack of NR transformer layers, FR, so that information from image embeddings can be
incorporated in the resulting CLS embedding of Hq,d (Equation 3.15).

Hq,d = FR(
[
Qq,d | QMLP

I | QT R
I

]
) ∈ RlQ×dh (3.15)

This CLS embedding is then similarly passed through a single-layer MLP, FMLP
R , for

pointwise relevance classification. However, we modify monoBERT to predict a single output
using a sigmoid activation function (Equation 3.16), instead of the traditional two outputs
with a softmax activation. Empirical results in Section 5.5.1 demonstrates that this adjustment
enhances performance.

sq,d = σ(FMLP
R (Hq,d,CLS)) ∈ R1×1 (3.16)

Similar to monoBERT, the monoPreFLMR is also trained in a pointwise manner with a
binary cross-entropy loss (Equation 3.13).
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Fig. 3.3 monoPreFLMR: Extends the PreFLMR query encoder to cross-encode a multimodal
query and document, with the CLS embedding passed through an MLP for relevance classifica-
tion

3.3 Sequence-to-Sequence Reranker

The second method of reranking involves using a pre-trained sequence-to-sequence model
architecture. In this approach, the model is prompted with the query and document, and
relevance is assessed based on the probability of generating a target token.

3.3.1 monoT5

Our model is inspired by monoT5 (Nogueira et al., 2020), the successor of monoBERT. The
backbone is initialized from a pre-trained T5 model, similarly serving as the cross-encoder, FR

that jointly encodes the query, q and document, d. The format of the input to the model, T (q,d)
is modified to align more with the prompt of a sequence-to-sequence task (Equation 3.17). It
features verbatim text that labels the query, q and document, d, followed by the text "relevant"
which prompts the model to assess the relevancy of the generated output.

T (q,d) = Query: q Document: d Relevant: (3.17)

For the T5 model, joint encoding is performed by the encoder, FEnc
R , and predictions are

made by the decoder, FDec
R , in the form of token logits, zq,d , where V represents the size of

the vocabulary (Equation 3.18). The model is trained to generate the token immediately after
the prompt, w, as either "true" or "false," indicating whether the document is relevant to the
query. The choice of target text is not critical, provided it is represented by single tokens in the
tokenizer.
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zq,d = FDec
R (FEnc

R (T (q,d))) ∈ R1×V (3.18)

Training is pointwise and performed on individual query-document pairs using a text-
generation cross-entropy loss to maximize the probability of "true" for positive documents and
the probability of "false" for negative documents (Equation 3.19).

L =− ∑
d∈Dpos

log(sq,d)− ∑
d∈Dneg

log(1− sq,d)

=− ∑
d∈Dpos

log(p(w = true))− ∑
d∈Dneg

log(p(w = false))

=− ∑
d∈Dpos

log

 exp(z(true)
q,d )

∑i exp(z(i)q,d)

− ∑
d∈Dneg

log

 exp(z(false)
q,d )

∑i exp(z(i)q,d)


(3.19)

During inference, the probability of relevance is assessed by comparing the normalized
probabilities of only the "true" and "false" tokens. A softmax function is applied to their
logits, and the resulting probability of the "true" token is taken as the relevance probability
(Equation 3.20).

sq,d =
exp(z(true)

q,d )

exp(z(true)
q,d )+ exp(z(false)

q,d )
∈ R1×1 (3.20)

Fig. 3.4 monoT5: Uses a pre-trained T5 as a cross-encoder to jointly encode the query and
document with "true" or "false" tokens generated to predict document relevance.

3.3.2 monoBLIP-2

To extend the sequence-to-sequence approach to the multimodal domain, we require a sequence-
to-sequence model that can jointly embed images and texts. A natural choice is a VLM that can
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process both images and texts to generate output, such as BLIP-2, which has been employed
by Lin et al. (2024b) for generation after PreFLMR retrieval. A reranker using BLIP-2 as a
backbone can similarly be named monoBLIP-2.

The BLIP-2 model uses a frozen image encoder to process the input image, which is then
passed through a trainable Q-Former module to extract a fixed number of output embeddings.
These image embeddings are subsequently concatenated with accompanying text embeddings
and fed into a frozen language model for generation. The placement of image embeddings as
tokens at the beginning of the input sequence is independent of the rest of the inputs meaning
that we can precisely follow the monoT5 prompt format (Equation 3.17) as well as use a
pointwise loss with "true" or "false" text generation targets, Equation 3.19.

The BLIP-2 image encoder is always a pre-trained ViT model, which remains frozen during
training. For the BLIP-2 language model, we explore two alternatives: the decoder-only OPT
model (Zhang et al., 2022) and the encoder-decoder Flan-T5 model (Chung et al., 2024). When
using Flan-T5, predictions follow the method described in Equation 3.18, however, predictions
using OPT follow Equation 3.21 where the decoder, FDec

R , handles both cross-encoding and
prediction.

zq,d = FDec
R (T (q,d)) ∈ R1×V (3.21)

While only the Q-Former is trained during BLIP-2 pre-training, when adapting to a specific
downstream task such as predicting text relevance, we can follow the methodology of Lin et al.
(2024a) by fine-tuning all the parameters of the model, including those of the language and
image models. This approach allows for flexibility in adapting to the task. However, Low-Rank
Adaptation (LoRA) is necessary, a method that reduces the number of modified parameters and
regularizes the fine-tuning process to prevent catastrophic forgetting Hu et al. (2021). LoRA
achieves this by decomposing the weight update, ∆W ∈ Rd×k, into low-rank matrices, BA,
where A ∈ Rr×k and B ∈ Rd×r, and r ≪ min(d,k). This decomposition significantly reduces
the complexity and enhances the efficiency of the adaptation. The weight update of parameters
is then scaled by α so that the new weights are W ′ =W + α

r BA. This decomposition allows
the model to retain essential features from the pre-trained state while efficiently learning the
task-specific parameters.
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Fig. 3.5 monoBLIP-2: The query and document are concatenated as a prompt into BLIP-2
with "true" and "false" tokens generated to indicate document relevance. Either a Flan-T5
encoder-decoder structure (left) or OPT decoder-only (right) can be used.

3.4 Modularized Reranker

The third method of reranking uses PreFLMR late-interaction embeddings from retrieval as
inputs to a small cross-encoder in the reranker. We treat retrieval and reranking as separate
modules which share computations for efficiency. We introduce this as a concept of mid-
interaction where the interaction stage is earlier than late-interaction models like ColBERT but
later than early-interaction cross-encoder rerankers.

3.4.1 MORES

Our model is inspired by MORES (Gao et al., 2020), which speeds up ranking by first mod-
ularizing the process into two BERT-based Representation Modules, FLQ and FLD , which
independently encode query and document tokens into dense embeddings (Equation 3.22).

Q = FLQ(q) ∈ RNq×dL

D = FLD(d) ∈ RNd×dL
(3.22)

Subsequently, a cross-encoder Interaction Module, denoted as FR, utilizes these embeddings
as inputs to generate a relevance score. The Interaction Module comprises Interaction Blocks
(IBs), FIB, which are modified versions of the standard BERT layer architecture. IBs perform
a query-to-document cross-attention operation, FX−Attn

IB , followed by query self-attention,
FSel f−Attn

IB (Equation 3.23). Similar to BERT, the output culminates in a single-layer MLP,
FMLP

IB , but applied only to query token embeddings. Operations within a block include layer
normalization (LN) and residual connections.
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Qx = LN(FX−Attn
IB (Q,D)+Q) ∈ RNq×dL

Qself = LN(FSel f−Attn
IB (Qx,Qx)+Qx) ∈ RNq×dL

FIB(Q,D) = LN(FMLP
IB (Qself)+Qself) ∈ RNq×dL

(3.23)

Employing a stack of IB layers refines the hidden query token representations, Q, through
multiple rounds of interactions while keeping the document representation, D, unchanged
(Equation 3.24). This approach offers an advantage over monoBERT’s heavy full-attention
mechanism applied to the concatenated query-document sequence, which has a complexity of
(d +q)2. Instead, the IB layers reduce the complexity to q2 for query self-attention followed
by qd for query-document cross-attention. In essence, attention is being performed on just the
query.

FR(Q,D) = FIBN

(
FIBN−1 (. . .FIB2 (FIB1(Q,D)) . . .)

)
∈ RNq×dL (3.24)

Similar to monoBERT, to measure relevance, the CLS token’s embedding from the final IB
layer is passed through a single-layer MLP, FMLP

R , to classify the probability that the document
is relevant to the query (Equation 3.25).

sq,d = Softmax(FMLP
R (FR(Q,D)CLS)) ∈ R1×1 (3.25)

MORES trains all three transformer modules jointly with a pointwise ranking loss on query-
document pairs (Equation 3.13). When training is complete, the three modules are decoupled,
stored separately, and applied at the desired time. The benefit of this approach is that document
embeddings can be pre-computed and stored in an index ahead of inference. During inference,
the query embedding is computed and cross-encoded with document embeddings using the
interaction module to determine the ranking.

Fig. 3.6 MORES: Modularizes monoBERT into Representation Modules for independently
encoding queries and documents and an Interaction Module for cross-encoding.
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3.4.2 ModPreFLMR

Drawing inspiration from MORES, a modularized approach to multimodal reranking can be
developed using PreFLMR retrieval encoders as the representation module. These encoders,
already trained to measure relevance, provide query embeddings (Equation 3.7) and document
embeddings (Equation 3.8) from the retrieval stage. A small cross-encoder, FR, can then be
used as the interaction module during reranking, taking these embeddings as inputs. To output
the necessary probability of relevance, a single-layer MLP, FMLP

R , with a sigmoid activation
function is used (Equation 3.26). A modularized approach using PreFLMR can be named
ModPreFLMR.

sq,d = σ(FMLP
R (FR(

[
Qq | QMLP

I | QT R
I | D

]
)CLS)) ∈ R1×1 (3.26)

Effectively, this approach replaces the ColBERT late-interaction of PreFLMR (Equation 3.9)
with a more sophisticated yet relatively small cross-encoder interaction module, FR. This change
theoretically enhances expressiveness by shifting the interaction stage earlier to a midway point,
though not as early as early-interaction rerankers like monoPreFLMR and monoBLIP-2.

Fig. 3.7 Mid-Interaction - Incorporates interaction earlier than late-interaction models like
ColBERT but later than early-interaction models like monoPreFLMR and monoBLIP-2

For FR, we experiment with two approaches: a stack of IB modules with self-attention
across query embeddings and cross-attention across document embeddings (Equation 3.248),
and a stack of vanilla BERT modules (Devlin et al., 2018) with self-attention across both query
and document embeddings. Notably, the trade-off in computational complexity is evident in
the size of their output dimensions (Equation 3.27).

8Implementation based on https://github.com/luyug/MORES/blob/dev/bert_mores.py

https://github.com/luyug/MORES/blob/dev/bert_mores.py
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BERT
([

Qq | QMLP
I | QT R

I | D
])

∈ R(lQ+Nd)×dh

IB
([

Qq | QMLP
I | QT R

I | D
])

∈ RlQ×dh
(3.27)

Unlike MORES, we only train the cross-encoder interaction module, FR, and the MLP,
FMLP

R , essentially freezing the representation modules. This is necessary for ModPreFLMR
as the representation modules are shared with PreFLMR retrieval, and we do not want to
impact the retrieval performance. During inference, it becomes apparent that ModPreFLMR
is more efficient than MORES, as we take advantage of embeddings pre-computed from the
PreFLMR retrieval stage. This means we neither need to store document embeddings in an
index beforehand nor compute query embeddings.

Fig. 3.8 ModPreFLMR: PreFLMR late-interaction embeddings from retrieval are passed into
a small cross-encoder reranker containing either IB blocks (left) or BERT blocks (right).

3.5 Listwise Ranking Loss

Currently, our approaches are trained with a pointwise ranking loss on individual query-
document pairs where a relevance score, sq,d , is learned to represent the probability that a
document is relevant. An alternative approach explores listwise ranking losses (Gao et al.,
2021; Zhuang et al., 2023), which instead trains on a batch of retrieved documents and learns
to predict relevance scores, rq,d , that are higher for positive documents and lower for negative
documents in the result list.

The listwise softmax function (Equation 3.28) is trained on batches containing one positive
document, d+, and N negative documents, N (q), per query:

L =− ∑
(q,d+)∈D

log
exp(rq,d+)

exp(rq,d+)+∑z∈N (q) exp(rq,z)
(3.28)
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3.5.1 Pointwise vs Listwise

By analyzing gradients, we demonstrate why a listwise loss is more aligned with the ranking
task. We assume there is a single query in the batch, B, with one positive document d+ and N
negative documents, totalling 1+N samples.

For the pointwise loss with a sigmoid activation, the gradient with respect to a network
weight W is derived in Equation 3.29.

L =− log
(
σ(zq,d+)

)
− ∑

d∈B\d+

log
(
1−σ(zq,d)

)
∂L
∂W

=
∂ zq,d+

∂W

(
σ(zq,d+)−1

)
+ ∑

d∈B\d+

∂ zq,d

∂W
σ(zq,d)

=
∂ zq,d+

∂W

(
sq,d+ −1

)
+ ∑

d∈B\d+

∂ zq,d

∂W
sq,d

(3.29)

where sq,d = σ(zq,d).
For the listwise softmax loss, the gradient with respect to a network weight W is derived in

Equation 3.30.

L =− log
(

exp(zq,d+)

∑d∈B exp(zq,d)

)
∂L
∂W

=
∑d∈B

∂ zq,d
∂W exp(zq,d)

∑d∈B exp(zq,d)
−

∂ zq,d+

∂W

=
∂ zq,d+

∂W

(
sq,d+ −1

)
+ ∑

d∈B\d+

∂ zq,d

∂W
sq,d

(3.30)

where sq,d =
exp(zq,d)

∑d+∈B exp(zq,d+)
.

Indeed, the form of the gradient with respect to the scores sq,d is the same for both pointwise
and listwise losses. In both cases, weights are updated based on the direction of documents
with poorly predicted scores. However, the key difference lies in the calculation of the scores.
In the pointwise case, the score is calculated independently of other documents in the batch,
and so the gradient represents how well it aligns with ground truth labels. In contrast for a
listwise loss, the score is dependent on the batch, and so the gradient represents how much
the positive document surpasses the negative documents. In this sense, the listwise loss aligns
more with ranking as the gradient considers the relative ranking between positive and negative
documents in contrast to the pointwise loss which considers only the score of the individual
document.
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3.5.2 Listwise for Sequence-to-Sequence Rerankers

The outputs of monoPreFLMR and ModPreFLMR are singular numeric scores, R1×1, and
can be immediately repurposed for the softmax function of the listwise loss. However, the
output of monoBLIP-2 is a logit over the entire vocabulary, R1×V , and this output requires a
softmax over the "true" and "false" tokens that cannot be readily repurposed for the listwise
loss. Indeed, it is possible to just use the logit of the "true" token; however, this would require
constraining the "false" token to always be 0 and excluding all other tokens during training
(Zhuang et al., 2023). A more suitable approach is to use the unnormalized logits of an unused
token, <extra_id_10> and taking it as the ranking score (Equation 3.31). This logit is directly
used to train the listwise loss.

rq,d = z(<extra_id_10>)q,d ∈ R1×1 (3.31)

By configuring monoBLIP-2 to generate a single output, we can also experiment training
with a pointwise loss using a sigmoid activation (Equation 3.32) rather than relying on a text
generation loss function.

sq,d = σ(z(<extra_id_10>)q,d ) ∈ R1×1 (3.32)

3.5.3 Training on Retrieved Documents

If we train on documents from the full corpus, the reranker may not generalize as well during
inference, since retrieval results are filtered and do not follow the same distribution as the rest
of the corpus. Gao et al. (2021) demonstrates that sampling negative documents from retrieval
results is less noisy than sampling from the full corpus, and helps improve recall performance.

However, the challenge with training on the top portion of retriever results is that they are
more homogeneous, having passed through the same retrieval filter, so they are more likely to
share confounding characteristics. Gao et al. (2021) suggests that a listwise loss is especially
advantageous in this case. Particularly on a dataset with multiple confounding features, it may
be easier for a pointwise loss to predict similar scores, as this could result in a good average
cross-entropy loss against ground truth labels. However, a listwise loss would be punished for
predicting similar scores and would be more motivated to identify features that can distinguish
positive documents from negative ones.
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3.6 Conclusion

This chapter presented our methodology reranking in the multimodal domain, specifically
aimed at improving retrieval results for VQA. We began by describing the PreFLMR retriever
as our baseline for reranking before describing three reranking approaches:

• Encoder Reranker (monoPreFLMR) - We fine-tune a pre-trained PreFLMR query
encoder as a cross-encoder, taking in both the query and the document and using their
joint encoding to predict relevance.

• Sequence-to-Sequence Reranker (monoBLIP-2) - We fine-tune a pre-trained BLIP-2
model as a cross-encoder, taking in a prompt containing the query and document and
using the generated token probabilities to predict relevance.

• Modularized Reranker (ModPreFLMR) - We reuse PreFLMR late-interaction em-
beddings from the retrieval stage in a mid-interaction mechanism where a lightweight
cross-encoder is sufficient for predicting relevance.

We then suggest two strategies for improving reranker training:

• Listwise Loss - Trains the model to rank documents relative to one other as opposed to a
pointwise loss which learns individual scores.

• Training on Retrieved Documents - Teaches the model about the distribution of top
retrieval results which is very different from rest of the corpus.

The next chapter will detail experiments to evaluate these methodologies, including dataset
descriptions, training configurations, and evaluation metrics.
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Experiments

This chapter details the experiments conducted on two KB-VQA datasets: OKVQA (Marino
et al., 2019) and EVQA (Mensink et al., 2023). We start by comparing and highlighting their
differences. We then discuss the training configurations for rerankers, including optimizer
parameters and batch strategies. Finally, we describe the recall metric used for evaluation and
discuss its implications on VQA Accuracy.

4.1 Datasets

Our experiments focus on two common KB-VQA datasets: OKVQA and EVQA. We utilize
the implementation based on the M2KR benchmark by Lin et al. (2024b), which allows for
direct comparison with the original PreFLMR retriever.

4.1.1 OKVQA

The OKVQA dataset comprises 9.01K questions for training and 5.05K questions for testing.
The document corpus for OKVQA is derived from Wikipedia (Lin et al., 2024a), containing
over 115K documents on common objects and concepts that include any of the potential
answers in the OKVQA dataset. As this corpus is not officially provided with OKVQA, there
are no ground truth labels for document relevance to a given query. Following Lin et al. (2024b),
we use pseudo labels for training, where a document is considered a positive match with a
given query if it contains any of the ground truth answers. The same document corpus is used
for both training and testing.
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4.1.2 EVQA

The EVQA dataset consists of 167K questions for training, 9.85K questions for validation,
and 3.75K questions for testing. The M2KR implementation of EVQA is a reduced version of
the original EVQA dataset. The original dataset, containing over 1 million training questions,
has been condensed to remove duplicated questions that refer to the same Wikipedia entity, as
well as questions requiring multiple knowledge bases. The document corpus used for EVQA
is derived from WikiWeb2M (Burns et al., 2023). Unlike OKVQA, EVQA provides ground
truth annotations that determine whether a document is considered a positive match for a query,
serving as labels for training.

4.1.3 Difficulty of OKVQA vs EVQA

Figure 4.1 displays a few examples of OKVQA and EVQA to highlight their differences.
Following Lin et al. (2024b), we take examples from their original papers to ensure an unbiased
representation. In general, OKVQA is easier as questions are based on everyday concepts, such
as understanding that people attend church on Sundays (first row, first image) or recognizing
that fire trucks use fire hydrants (first row, second image). In contrast, EVQA requires a
more specialized understanding of niche subjects, such as answering a question about "Acacia
paradoxa" (second row, first image). The difficulty in VQA translates to retrieval as the model
similarly needs to understand the context of the query when assessing document relevance.

However, an important consideration is also the quality of ground truth labels. OKVQA
uses pseudo-labels based on whether the candidate document contains the answer to the query.
This approach can lead to noisy labels that may not always be contextually relevant to the
query.

In some cases, pseudo-labels are adequate. For instance, for the question about the fire
hydrant (first row, second image), the pseudo-matched document with the term "fire truck" is
contextually relevant:

Stanford Fire Truck House: The Fire Truck House, built by Charles Hodges in
1904, served as Stanford University’s firehouse until the early 1970s, when the
current firehouse was ...

However, this can be problematic in other cases. For the question about 1950s style (first
row, third image), the pseudo-matched document contains the term "50s", but in the context of
electrical sockets:
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23-50 S 10, CEI 23-50 S 11, CEI 23-50 S 16, CEI 23-50 S 17 and also NEMA 1-15
(US/Japan) plugs (older versions also had extra holes to accept UK shaver plugs).
This Soviet plug, ...

In contrast, EVQA ground truth labels are manually annotated, meaning that relevant
documents are always contextually relevant to the query. For instance, the relevant document
for "Acacia paradoxa" (second row, first image) is a Wikipedia article about it:

The large shrub or tree up to 2 to 4 meters (7 to 13 ft) tall and has a similar width,
it has ribbed branchlets that are often arched downward. It is dense with foliage;
the leaves are ...

Hence, while EVQA may inherently be more challenging than OKVQA, noisy pseudo-
labels can make OKVQA a more difficult dataset for experimentation. However, in practice,
increasing model size and extending training steps result in improved performance metrics on
OKVQA (Lin et al., 2024a,b), demonstrating that OKVQA remains suitable for evaluating
model performance.

Fig. 4.1 Comparison of OKVQA and EVQA: OKVQA examples feature more general and
everyday concepts, while EVQA examples involve more specialized and niche topics (Lin et al.,
2024b)
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4.2 Training Configuration

We train rerankers across all queries in the training split with a single A100 GPU. For each
query, we randomly sample 1 positive document and 4 negative documents.

monoPreFLMR | ModPreFLMR monoBLIP-2

Learning Rate 10−5 10−4

Batch Size (Queries) 8 2
Gradient Accumulation Every 8 Steps Every 16 Steps
Effective Step Size (Queries) 320 160

Table 4.1 Training Configurations: We employ the AdamW optimizer for all models with an
epsilon value of 10−8, but with varying batch sizes, learning rates, and gradient accumulation
strategies. Notably, monoBLIP-2 has a smaller batch size because it exceeds GPU memory
capacity.

The number of cross-encoder layers, FR is a consideration for monoPreFLMR and ModPre-
FLMR. For monoPreFLMR, we use a single cross-encoder layer. For ModPreFLMR, we use
either 3 BERT layers or 5 IB layers ensuring that both variants have comparable parameters.
For monoPreFLMR, we follow Lin et al. (2024b) and freeze the vision models during training.
For monoBLIP-2, we train with LoRA (Hu et al., 2021) using an r of 8, an α of 32, and a
dropout of 0.1, which substantially reduces the number of trainable parameters to only 0.1%.
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Fig. 4.2 Reranker Parameter Sizes: monoBLIP-2 has the most parameters, followed by
monoPreFLMR and then ModPreFLMR. Despite its size, monoBLIP-2 has the fewest trainable
parameters as it is fine-tuned with LoRA.

4.3 Evaluation Metrics

4.3.1 Recall

We use recall at various positions, K to evaluate performance. For an individual query, i,
Recall@Ki is defined as whether the correct document d∗

i exists in the top K documents of the
reranked list, RK

i (Equation 4.1).

Recall@Ki =

1, if for query i, the correct document d∗
i ∈ RK

i

0, otherwise
(4.1)

Recall@K is the proportion of queries for which the correct document is found within the
top K of the reranked list (Equation 4.2).

Recall@K =
1
N

N

∑
i=1

Recall@Ki (4.2)
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We evaluate Recall@5 as the primary metric using the test split.9 PreFLMR is used to
perform the first-stage retrieval and the top D documents are reranked. By default, we use
PreFLMR-B retrieval results and set the Retrieval List Size, D, to be 100.

It is important to note that evaluation is limited to Recall@K where K ≤ D, as we only
have access to the top D documents. The performance of a reranker at Recall@D is always
equal to the Recall@D of the original retriever, as reordering cannot change a binary metric
of whether a document exists. Furthermore, the upper bound of reranking performance at any
Recall@K is capped at the Recall@D of the original retriever as reranking cannot introduce
new documents that were not already present in the retrieved list.

We use a single A100 GPU for evaluation. However, due to limited time and computation,
we evaluate the first 1,040 questions in the test split. Consequently, our raw retrieval results
differ from those reported by Lin et al. (2024b).

Fig. 4.3 PreFLMR-B Recall: The first 1,040 questions in the test split are the most challenging
to retrieve, as their recall is significantly lower than the overall recall, particularly for EVQA.

4.3.2 McNemar Test

To statistically quantify the impact of a reranker, we treat the recall of each query on the test set
(Equation 4.1) as a trial. Dietterich (1998) finds that the McNemar Test is the most suitable
hypothesis test for comparing two models with shared trials, focusing on discordant pairs of
predictions, where one model succeeds and the other fails. Under the null hypothesis, the
number of discordant pairs b and c are expected to be equal, as the two models should have the

9We evaluate Recall@K for K ∈ {10,20,50} in Appendix A.
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same error rates. The test statistic follows a chi-square distribution with 1 degree of freedom
(Equation 4.3). Unless otherwise specified in Chapter 5, rerankers that have a better recall than
raw retrieval are statistically significant.

Raw Retrieval Correct Raw Retrieval Incorrect
Reranker Correct a b

Reranker Incorrect c d

χ
2 =

(|b− c|−1)2

b+ c
(4.3)

4.3.3 Limitations of VQA Accuracy

Although the ultimate goal of retrieval is to improve VQA Accuracy by generating answers that
match ground truth responses (Goyal et al., 2017), we do not directly assess this metric. Such
an assessment would require fine-tuning a text generation model, which is not feasible due to
limited time and computational resources. Moreover, reporting VQA Accuracy in our work
could potentially introduce misleading results. If we were to observe improvements in recall
but deterioration in VQA Accuracy, this discrepancy would likely indicate one of two issues:

1. The quality of the ground truth labels may be poor, failing to accurately represent correct
answers.

2. The text generator may not be well-aligned with the retrieval process, unable to effectively
utilize the improved recall.

Both of these potential issues lie beyond the scope of this thesis, which focuses specifically
on improving retrieval performance.

Nonetheless, it is already well established in the literature that improvements in OKVQA
and EVQA retrieval recall lead to enhancements in VQA Accuracy. For OKVQA, Lin et al.
(2024b) have demonstrated that an improvement in pseudo recall has a strong correlation with
an improvement in VQA Accuracy. Similarly, for EVQA, Mensink et al. (2023) have shown
through an oracle experiment that achieving perfect recall on the ground truth labels leads to
significantly better VQA performance. Since generation models have a limited context window
and only use the top retrieved documents for answer generation, Recall@5 serves as a suitable
proxy metric for VQA accuracy.
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4.4 Conclusion

This chapter outlines our experimental framework for investigating the effectiveness of rerank-
ing on improving document retrieval for VQA. We work with OKVQA and EVQA, both of
which have ground truth labels for training. EVQA is more challenging, focused on long-tail
knowledge, but includes cleaner, manually annotated labels. In contrast, OKVQA lacks ground
truth labels and relies on pseudo-answer matching. We evaluate three types of rerankers: mono-
PreFLMR, monoBLIP-2, and ModPreFLMR using Recall@K, which measures how often the
correct document appears in the top K reranked results. While we do not train a text-generation
model for measuring VQA Accuracy, our approach is grounded in empirical evidence that
shows that improved recall of ground truth labels correlates with better VQA Accuracy. The
next chapter details experiment results.
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Results

In this chapter, we present the results of reranking PreFLMR retrieval on OKVQA and EVQA10.
We begin by discussing the performance of rerankers trained with a pointwise loss function
(Equation 3.13). Following this, we examine the results of using a listwise loss function
(Equation 3.28) and fine-tuning on retrieved documents. We conclude with an analysis of
performance across different retrievers and provide an ablation study of various reranker
configurations.

5.1 Pointwise Results

We begin by training rerankers using a pointwise loss function on OKVQA and EVQA. We
train each reranker for a fixed number of steps and select the best validation recall performance.
Specifically, we train monoPreFLMR for 6,000 steps, monoBLIP-2 for 3,000 steps, and
ModPreFLMR for 19,000 steps. We evaluate after 1,000 steps, and then every 1,000 steps
afterwards for monoPreFLMR and monoBLIP-2 and every 2,000 steps for ModPreFLMR.

5.1.1 OKVQA Results

Figure 5.1 shows that monoBLIP-2 Opt consistently outperforms all other rerankers. It achieves
the highest Recall@5 of 39.80% in only 2,000 steps, significantly surpassing the retrieval
baseline of 23.46%. monoPreFLMR-B also shows statistically significant improvement over
the retrieval baseline with a Recall@5 of 28.37% after 3,000 steps. monoPreFLMR-B performs

10For brevity, we present only Recall@5 as graphs in this section. It is worth noting that as we set D to 100, the
upper bound of any Recall@K score is equal to and converges to the Recall@100 score of PreFLMR-B retrieval.
For OKVQA, it is 63.6%, and for EVQA, it is 74.3%. For more detailed results in tabular form, please refer to
Appendix A.
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marginally better than monoPreFLMR-L, indicating that a larger vision encoder is not necessary.
Although not statistically significant, ModPreFLMR IB also shows improvement over the
retrieval baseline with a Recall@5 of 25.19% after 11,000 steps, the same as ModPreFLMR
BERT. The superior recall of monoBLIP-2 Opt comes at the computational cost of having the
slowest inference time of 12.64 seconds per question.11 However, in practice, this can be faster
as reranking is parallelizable; the scores for query-document pairs are independent and can be
allocated to multiple GPUs. While there is a trade-off in performance, ModPreFLMR IB has
only 47M parameters and the fastest inference time of 0.13 seconds per query, which is 97x
faster than monoBLIP-2 Opt. Despite achieving the same recall, the ModPreFLMR IB is twice
as fast as ModPreFLMR BERT, as attention is performed only on the query (Section 3.4.1).

Fig. 5.1 OKVQA Recall@5 vs Efficiency (Pointwise Loss): There is a clear trade-off between
performance and efficiency. monoBLIP-2 Opt achieves the highest recall but has the longest
processing time. In contrast, monoPreFLMR-B and ModPreFLMR offer quicker responses but
with more modest recall.

5.1.2 EVQA Results

Figure 5.2 shows similar trends when reranking EVQA, although less relative improvement
over retrieval as it is more challenging. monoBLIP-2 Flan-T5 outperforms other rerankers,
achieving the highest Recall@5 of 30.48% in only 1,000 steps, compared to the retrieval
baseline of 20.48%. However, monoPreFLMR demonstrates much lower performance than

11Measured on average, with near identical times across different evaluations.
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the retrieval baseline. After 6,000 steps, monoPreFLMR-B only achieves a Recall@5 of 7.5%,
which is much lower than the retrieval baseline. Again, monoPreFLMR-B trains much faster
than monoPreFLMR-L. As a bonus experiment, we continued training monoPreFLMR-B using
a pointwise loss function up to 15,000 steps, improving Recall@5 to 9.9% and showing that
there is room for improvement with more training steps. For EVQA, ModPreFLMR BERT is
not only faster, but also offers substantially better performance than monoPreFLMR-B, with a
Recall@5 of 17.59% after 15,000 steps, however, it still falls short of raw retrieval, let alone
monoBLIP-2 Flan-T5.

Fig. 5.2 EVQA Recall@5 vs Efficiency (Pointwise Loss): With the more challenging EVQA,
monoBLIP-2 is the only reranker that improves performance over raw retrieval. Additionally,
ModPreFLMR demonstrates both superior efficiency and performance compared to monoPre-
FLMR.

5.1.3 Impact of Pre-Training

The performance of monoBLIP-2 is supported by Brown et al. (2020) who demonstrate that
sequence-to-sequence models are excellent zero-shot learners. Scaling laws have shown
that larger models are significantly more sample-efficient, and the best method of training
is on a modest amount of data and stopping before convergence (Kaplan et al., 2020). In
our case, monoBLIP-2 has 10x more parameters than monoPreFLMR and achieves the best
performance in just 1,000 steps before overfitting on EVQA (Figure 5.3). This is in contrast
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to monoPreFLMR, which continues to learn even after 15,000 steps without yet beating raw
retrieval. The success of sequence-to-sequence models over encoder models in text reranking
is corroborated by findings from Nogueira et al. (2020), which show that monoBERT performs
poorly without many training examples, sometimes worse than BM25 raw retrieval, whereas
monoT5 performs significantly better with fewer training examples.

While the larger parameter size likely plays a role, it is possible that the source of per-
formance stems from the sequence-to-sequence models having more extensive pre-training
tasks. Nogueira et al. (2020) has shown that even a monoT5 model with fewer parameters
than monoBERT yields better results with less training data. However, as the smallest check-
point for BLIP-2 is over 3B parameters compared to the largest monoPreFLMR-L with 465M
parameters, a like-for-like comparison was not explored in this thesis. The advantage of
sequence-to-sequence models in low-resource settings may instead be attributed to their ability
to generate rather than classify, allowing them to learn from more complex generation tasks.
Nogueira et al. (2020) suggests that the decoder contains pre-trained information on the mean-
ing of tokens. They observed that choosing more contextually relevant options like "yes/no"
versus "apple/orange" significantly impacts performance when there is little training data.

The importance of leveraging pre-training information is further demonstrated in the
effectiveness of ModPreFLMR compared to monoPreFLMR. Figure 5.3 shows that while this
is not evident in OKVQA, a more basic task, it becomes more apparent in EVQA, where
ModPreFLMR demonstrates a significant advantage in training speed over the monoPreFLMR.
This is because using the embeddings from the PreFLMR retrieval stage as inputs essentially
leverages the knowledge of the PreFLMR retrieval model in measuring relevance between
the query and document. While it could be argued that monoPreFLMR is also based on the
pre-trained PreFLMR, it only uses the query encoder and applies it out of context to both
the query and document. Consequently, it does not match the pre-trained task as well as the
ModPreFLMR where the document is passed separately through the document encoder. This
would explain the slow training speed, as it is possible that we are training the query encoder of
monoPreFLMR more or less from scratch.

Indeed, the performance disparities in Figure 5.3 across different reranker types are quite
exaggerated when compared to results from Nogueira et al. (2020), where at convergence,
the differences between monoBERT and monoT5 are much smaller. It is possible that more
training steps are required before actual convergence, whereas we may have stopped ours too
early at a local plateau with limited steps. Another possible reason for this discrepancy is that
our training dataset may be too small, as we are only using OKVQA and EVQA in isolation.
We could follow the example of Lin et al. (2024b) and pre-train across more datasets such as
LLaVA, OVEN, WIT, CC3M, KVQA, and Infoseek.
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Fig. 5.3 Recall@5 vs Training Step (Pointwise Loss): monoBLIP-2 reaches the highest
performance at a much faster pace than monoPreFLMR and ModPreFLMR, highlighting the
impact of extensive pre-training on model performance.

5.1.4 Pointwise Loss Versus Recall

The pointwise loss operates on individual query-document scores and does not fully align with
ranking multiple documents together. As an illustrative example, we examine the validation
pointwise loss of the ModPreFLMR IB model on OKVQA. We average the cross-entropy
loss for all 100 query-document pairs across the 1,040 queries in the test set, totaling 104,000
individual losses. We then compare this to Recall@5 when ranking with these scores. Figure 5.4
shows that the validation loss does not correspond to recall with the relationship appearing
somewhat arbitrary.
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Fig. 5.4 Pointwise Loss vs Recall (OKVQA ModPreFLMR IB): There is no clear relationship
between pointwise loss and recall during validation.

Figure 5.5 shows that the reason for this is because the average loss of a correctly ranked
query (whether a correct document is in the top 5) is the same as the average loss of an
incorrectly ranked query, and hence the loss does not provide any information about recall.

Fig. 5.5 Pointwise Loss vs Training Step (OKVQA ModPreFLMR IB): The average loss of
correctly ranked queries and incorrectly ranked queries are nearly identical.

Figure 5.6 shows that the root cause of this issue comes from the magnitude of the predicted
logit, zq,d . When the model predicts larger logits, the loss is almost always higher, regardless of
whether the query is ranked correctly (the slope of the red and green trend lines are similar).
This is because the validation set is imbalanced, with 2,456 positive and 101,544 negative
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samples. A model that predicts lower logits is considerably more likely to have a lower cross-
entropy loss and the average magnitude of the scores becomes the key driver of the loss rather
than their relative rankings.

Fig. 5.6 Pointwise Loss vs Logit (OKVQA ModPreFLMR IB): Due to class imbalance,
higher logits correspond to higher losses, regardless of the correctness of the ranking.

An imbalanced dataset is inherently characteristic of ranking. This problem parallels classi-
fication where a good cross-entropy loss is not always correlated with accuracy, particularly
with imbalanced datasets on minority classes where their accuracy is overshadowed by the
majority class (He and Garcia, 2009). In classification, we consider an instance to be positive if
its probability exceeds a defined threshold and similarly in ranking for Recall@K, we define
this threshold to be the document with the Kth highest probability. Consequently, the idea of
validating using cross-entropy loss becomes problematic, and it is more important to analyze
the performance on recall directly, rather than focusing on the pointwise loss.

5.2 Listwise Loss Function

We showcase the results of using a listwise loss function, implemented through the listwise
softmax, on training performance. These models are trained from the pointwise checkpoint of
the best-performing model type (bolded in Figure 5.1 and Figure 5.2), as the only difference
between listwise and pointwise training is the loss function. Both methods perform training
and inference using the output of a single logit. We train an additional 4,000 steps for mono-
PreFLMR, 2,000 steps for monoBLIP-2, and 8,000 steps for ModPreFLMR, evaluating every
2,000 steps. Unlike other models which have more or less stabilised (Figure 5.3), evaluating
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monoPreFLMR for EVQA further is not productive at this stage, as the model trained with a
pointwise loss function is no where near convergence yet, making a fair comparison impractical.

Figure 5.7 demonstrates that training with a listwise loss yields performance comparable to,
if not slightly worse than, the pointwise loss across all rerankers. As discussed in Section 3.5.3,
the listwise gradient (Equation 3.30) is effective at differentiating between highly similar and
confounding samples within a batch. However, when sampling noisy negatives from the entire
corpus, it is not difficult to differentiate between positive and negative samples. A model trained
with listwise loss may not generalize effectively to inference time, where retrieved documents
representing the top candidates would be more difficult to differentiate. On the other hand, the
pointwise gradient (Equation 3.29) continues to push scores towards the ground truth during
training, regardless of whether it is easily outperforming the noisy negatives, which translates
to better performance at inference time when faced with more challenging distinctions between
documents.

Fig. 5.7 Recall@5 vs Training Step (Listwise Loss): When sampling noisy negatives from
the full corpus, the listwise loss yields slightly worse performance than the pointwise loss.

5.2.1 Listwise Loss Versus Recall

The listwise loss operates across multiple document scores and aligns more closely with the
ranking task than the pointwise loss. We examine the average validation loss of the listwise
ModPreFLMR IB model on OKVQA. To calculate the listwise loss for a given query, we
randomly sample one positive document and four negative documents from the retrieved list
500 times and take the average. We skip queries where the retrieved list does not contain any
positive documents, resulting in an evaluation on 662 of the 1040 queries. We then compare
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this to Recall@5 when ranking with these scores. Figure 5.8 shows that, while the validation
loss still does not correspond perfectly to recall, it is much less noisy than the pointwise loss.

Fig. 5.8 Listwise Loss vs Recall (OKVQA ModPreFLMR IB): The listwise loss does not
perfectly correlate with recall performance, though it fluctuates much less than the pointwise
loss.

The source of improvement is evident in Figure 5.9, which shows that the listwise loss for
an incorrect query is now clearly higher than for a correct query, whereas previously there is no
noticeable difference for the pointwise loss.

Fig. 5.9 Listwise Loss vs Training Step (OKVQA ModPreFLMR IB): There is now a clear
difference between the average loss of correctly ranked queries and incorrectly ranked queries.
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Figure 5.10 shows that the magnitude of the score, rq,d has a much smaller impact on
loss. However, it remains imperfect for incorrect queries where larger scores can result in
larger losses when the listwise loss measures the difference in magnitude between the positive
document’s score and the negative documents’ scores (Equation 3.28). Although the listwise
loss is much closer to recall than the pointwise loss, validating remains noisy, making it crucial
to analyze performance based on recall directly.

Fig. 5.10 Listwise Loss vs Logit (OKVQA ModPreFLMR IB): The value of the scores has a
smaller impact on listwise loss than on pointwise loss, although significant enough to make it
an unreliable indicator of recall.

5.2.2 Direct Prediction for Sequence-to-Sequence Rerankers

We experiment with training monoBLIP-2 using a pointwise loss on the output of a single
logit (Equation 3.32) instead of a text generation loss. Losing text generation is akin to losing
pre-trained information on the meaning of tokens (Section 5.1.3). However, Nogueira et al.
(2020) found that when rerankers have been trained with sufficient steps, as in our case, this is
no longer important. In fact, Figure 5.11 shows that training with a single logit leads to even
better performance than text generation, suggesting that predicting with a single score is more
effective than consolidating the outputs of two different scores.12 These findings corroborate
with Section 5.5.1, which also shows that a sigmoid function outperforms a softmax function
for monoPreFLMR.

12It is possible to begin training from the checkpoint of the best text generation model. However, we find
that training with a single logit already outperforms text generation performance in just a few steps, making this
unnecessary.
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Fig. 5.11 Recall@5 vs Loss Functions (the highlighted bar represents the best loss for the
respective model): The listwise loss performs slightly worse than the pointwise loss when
training on noisy negatives sampled from the full corpus. Furthermore, for monoBLIP-2,
training the pointwise loss with a single output consistently leads to better performance than
using a text generation output.

5.3 Fine-Tuning on Retrieved Documents

We investigate fine-tuning on documents to understand the distribution of first-stage PreFLMR-
B retrieval. We experiment with various sampling methods, and for each method, we begin
from the previous best checkpoint and continue training: 4,000 steps for monoPreFLMR, 2,000
steps for monoBLIP-2, and 8,000 steps for ModPreFLMR, evaluating performance every 2,000
steps.
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5.3.1 Fine-Tuning on Raw Retrieval

We explore random sampling from retrieval results to allow rerankers to learn the imbalance
towards negatives (Section 5.1.4). As there are no architectural changes, we initialize from the
best-performing pointwise model checkpoints (bolded in Figure 5.1 and Figure 5.2).

As intended, Figure 5.12 shows that the validation loss decreases significantly across all
datasets and rerankers, however, there is varied improvements in recall. In general, fine-tuning
on retrieved documents leads to significantly improved recall, the most substantial being
ModPreFLMR on OKVQA which achieves a Recall@5 of 27.8% and now achieves statistically
significant performance over raw retrieval. Moreover, monoPreFLMR on OKVQA improves to
a recall of 32.6%, and monoBLIP-2 on EVQA improves to a Recall@5 of 36.4%. Trends in
Figure 5.13 suggest that these models could achieve even better performance with more steps.

Fig. 5.12 Fine-tuning on Full Corpus vs Raw Retrieval (the highlighted bar represents the
best sampling method for the respective model): Despite a significant decrease in validation
loss when fine-tuning on retrieved documents, improvements in recall vary among models.

However, we observe a significant drop in performance for ModPreFLMR on EVQA.
This can be attributed to its substantial post-retrieval class imbalance, where only 0.74% of
documents are positive, compared to OKVQA where 2.3% of documents are positive. Extensive
research has shown that imbalanced datasets lead to suboptimal accuracy on the minority class,
with the model learning to predict consistently low logits to minimize the loss function (He and
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Garcia, 2009). In this case, with an overwhelming number of negative documents, the model
learns to predict negatives and loses the information from the positives, as it is an easier task
to learn to predict negative than to learn the relative difference between positive and negative.
Consequently, while the ModPreFLMR works well for OKVQA, its performance on EVQA
is not as strong. monoBLIP-2 for EVQA may not suffer as severely from imbalance as it has
much fewer trainable parameters, benefiting from learning the distribution of retrieval without
being as susceptible to overfitting.

Fig. 5.13 Recall@5 vs Training Step (Fine-Tuning on Raw Retrieval): In general, there are
performance improvements when fine-tuning on retrieved documents. However, for ModPre-
FLMR on EVQA, performance drops dramatically due to class imbalance.

5.3.2 Fine-Tuning on Upsampled Retrieval

To address imbalance in retrieval results, we upsample positive samples, similar to when
training on the full corpus. In this case, we sample from first-stage PreFLMR-B retrieval,
similarly selecting 1 positive document and 4 negative documents. As there is no guarantee
a positive document exists in the retrieved results, if one does not exist, we sample a random
document from the full corpus. This modification effectively addresses class imbalance while
ensuring the model continues to learn from documents representative of the retrieval results.

We initialize from the checkpoint of the best-performing pointwise models (bolded in
Figure 5.1 and Figure 5.2). Figure 5.14 shows improved performance for ModPreFLMR on
EVQA, which achieves a 21.1% recall, above raw retrieval, although, it is not statistically
significant. Moreover, monoBLIP-2 on EVQA demonstrates the best performance yet, with a
recall of 38.3%.
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However, this approach introduces a new challenge with OKVQA as the fine-tuning process
becomes significantly less stable across all rerankers. In some instances, we find that the
training algorithm collapses and begins to overfit with training losses approaching zero and
leading to a substantial drop in recall during validation. This instability can be attributed to both
the significantly smaller size of OKVQA (which is approximately 95% smaller than EVQA)
and the lack of diversity in top retrieval results, given that it is an easier task and based on
pseudo-labelling (Section 4.1.3). This means that OKVQA has a high probability of a similar,
if not the same, positive document sampled in successive batches. A pointwise loss means that
the same update is likely to be performed repeatedly in a similar direction as sq,d is calculated
in isolation (Equation 3.29). This can potentially lead to unstable training as the model overfits
and reinforces noise from the same documents rather than learn the true decision boundary.
Indeed, this is not as much of an issue with a larger dataset like EVQA, which offers more
diversity in samples. Consequently, the probability that confounding documents are sampled
successively is lower, and the reranker does not overfit on it.

Fig. 5.14 Recall@5 vs Training Step (Fine-Tuning on Upsampled Retrieval): Sampling a
fixed ratio of positive and negative samples when fine-tuning on retrieved documents addresses
class imbalance and improves recall for EVQA. However, this significantly reduces the diversity
of training samples, causing instability in OKVQA, which is a smaller dataset.

5.3.3 Fine-Tuning on Upsampled Retrieval with Listwise Loss

To address training instability when using a pointwise loss, we revisit the listwise loss. We find
that another benefit of the listwise approach is its robustness to overfitting from oversampling,
which is a significant issue with pointwise loss on small datasets. Instead, with a listwise loss,
sq,d is not a constant between batches as the score is influenced by the negatives in the batch
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(Equation 3.30). Even if the same positive document is sampled again, the negatives in the
batch will not be the same, so its score, sq,d , and hence the associated gradient, will not be
similar. This ensures that the gradient does not flow excessively in a similar direction, thereby
avoiding overfitting on the same sample. In effect, the other documents in the batch act as a
regularizer by adding diversity to the sample despite sampling the same positive document.

With a listwise loss, we initialize from the checkpoint of the best-performing listwise
models (shown in Figure 5.11). Figure 5.15 shows that training is more stable for OKVQA,
leading to significant improvements in recall across all rerankers, including monoBLIP-2. The
listwise approach has addressed both imbalance issues and challenges in upsampling small
datasets. However, it is worth noting that for EVQA, the listwise loss does not offer a substantial
advantage over the pointwise loss, and upsampling is sufficient. This is possibly because EVQA
is a more difficult task with more niche documents, and even at the top of the retrieval list, there
is diversity between documents. Similar to sampling noisy negatives across the full corpus, the
listwise loss is not needed to differentiate scores between documents and instead, it is better for
a pointwise loss to focus on pushing scores towards ground truth labels.

Fig. 5.15 Recall@5 vs Training Step (Fine-Tuning on Upsampled Retrieval with Listwise
Loss): Listwise loss is beneficial when there are highly confounding documents among the
retrieved documents in small datasets like OKVQA, as it stabilizes training and improves
performance.
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Fig. 5.16 Recall@5 vs Sampling Method (the highlighted bar represents the best sampling
method for the respective model): For all rerankers, fine-tuning on retrieved documents leads to
improvements in performance. However, it is important to ensure a balanced ratio of positive
to negative documents when sampling. For OKVQA, it is better to use the listwise loss as there
are highly confounding documents, whereas for EVQA with more diverse samples, it is better
to use the pointwise loss as ground truth labels provide more direction.

5.4 Overall Results

We conclude by consolidating results for the best rerankers for PreFLMR-B retrieval (bolded in
Figure 5.1613) across all recall positions and also test on PreFLMR-L and PreFLMR-G retrieval
results.14 Table 5.1 demonstrates that rerankers not only improve Recall@5, but also Recall at
other positions. Similarly, they can also improve the performance of the better PreFLMR-L and
PreFLMR-G retrieval results. However, it is interesting to note that the post-reranking recall
appears to be constant across all the retrieval results and hence, the most significant impact is

13For monoPreFLMR-B for EVQA which was not trained on retrieved documents, we use the pointwise
version from Figure 5.2

14We do not test ModPreFLMR on PreFLMR-L and PreFLMR-G retrieval due to limited time and computation
as they require training a new model on respective retrieval embeddings.
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on the weakest PreFLMR-B retrieval result. It is possible that this is because the reranker was
fine-tuned on PreFLMR-B retrieval results and is most effective when inference is under that
distribution Gao et al. (2021).

Data Retriever Reranker Recall@5 Recall@10 Recall@20 Recall@50

OKVQA

PreFLMR-B

Raw Retrieval 0.2346 0.3231 0.4125 0.5394
monoPreFLMR 0.3432 0.4326 0.5000 0.5875
monoBLIP-2 0.4461 0.5067 0.5653 0.6201
ModPreFLMR 0.2913 0.3855 0.4615 0.5711

PreFLMR-L
Raw Retrieval 0.2740 0.3721 0.4529 0.5904
monoPreFLMR 0.3269 0.4250 0.5105 0.6096
monoBLIP-2 0.4596 0.5355 0.5836 0.6451

PreFLMR-G
Raw Retrieval 0.2750 0.3683 0.4654 0.6038
monoPreFLMR 0.3451 0.4480 0.5355 0.6370
monoBLIP-2 0.4750 0.5423 0.6000 0.6673

EVQA

PreFLMR-B

Raw Retrieval 0.2048 0.3105 0.4355 0.5932
monoPreFLMR 0.0990 0.1548 0.2615 0.5442
monoBLIP-2 0.3826 0.4936 0.5865 0.7057
ModPreFLMR 0.2105 0.2961 0.4336 0.5769

PreFLMR-L
Raw Retrieval 0.3528 0.4394 0.5682 0.7307
monoPreFLMR 0.1134 0.1932 0.3557 0.6413
monoBLIP-2 0.3961 0.5086 0.6163 0.7605

PreFLMR-G
Raw Retrieval 0.3269 0.4326 0.5548 0.7240
monoPreFLMR 0.1230 0.2019 0.3442 0.6538
monoBLIP-2 0.3990 0.5134 0.6336 0.7740

Table 5.1 Overall Results: Rerankers that improve Recall@5 for PreFLMR-B retrieval can
also consistently improve results across other recall positions and retrieval results.

5.5 Ablation Studies

We present ablation studies on various reranking configurations and compare them against the
default settings (Chapter 4) used in the main results.
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5.5.1 Sigmoid Activation

We compare measuring probabilities with two scores and softmax activation versus a single
score and sigmoid activation. The original monoBERT model uses a softmax and the theoretical
benefit is that two scores adds stability by addressing the saturation of the sigmoid at tails.
However, using a sigmoid removes half the redundant classification layer parameters with a
single output, while retaining the constraint that the output must be less than 1. We conducted
an early experiment to determine the appropriate activation function, training monoPreFLMR-B
on OKVQA for 1,000 steps. Figure 5.17 shows that the model performs faster when predicting
a single score with a sigmoid activation. This aligns with Section 5.2, where training on a
single logit is superior to training on all logits for monoBLIP-2.

Fig. 5.17 Sigmoid Activation Ablation: Predicting using a single score with sigmoid activation
improves training speed by reducing redundant parameters, compared to using two scores with
softmax activation.

5.5.2 Encoder Vision Model

We conduct ablation studies on completely removing the vision model, motivated by monoPreFLMR-
B’s superior performance over monoPreFLMR-L on both OKVQA and EVQA, despite having
a smaller vision model. Removing the vision model makes monoPreFLMR equivalent to
monoBERT. Figure 5.18 shows that for OKVQA, no vision model yields results better than
monoPreFLMR-L but marginally worse than monoPreFLMR-B, reaffirming that image infor-
mation is not as important when reranking. However, for EVQA, removing the vision model
worsens results compared to monoPreFLMR-L, indicating visual features are important for this
challenging task, reaffirming findings in Lin et al. (2024b) that a better vision model matters
more for EVQA than OKVQA.
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Fig. 5.18 Encoder Vision Model Ablation: Removing the vision model worsens performance,
although it is much worse on EVQA than OKVQA, highlighting the differing importance of
visual features between these tasks.

5.5.3 Cross-Encoder Layers

We conduct ablation studies on the number of cross-encoder layers, FR, for monoPreFLMR
and ModPreFLMR. Additional layers theoretically allow better information processing through
deeper token interactions. This is particularly relevant for monoPreFLMR, where text em-
beddings Qq,d only attend to image embeddings

[
QMLP

I | QT R
I

]
in the cross-encoder (Equa-

tion 3.15). Thus, a deeper cross-encoder might better incorporate image information and im-
prove performance. However, Figure 5.19 shows that for monoPreFLMR, a single transformer
block suffices to summarize information and adding cross-encoder layers yield diminishing
returns, suggesting they may require longer training or lead to overfitting. Similarly, 5 IB layers
are sufficient for ModPreFLMR IB, aligning with Gao et al. (2020), who demonstrate that
excessive IB blocks increase computational cost without improving performance.
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Fig. 5.19 Cross-Encoder Layers Ablation: A single cross-encoder layer for monoPreFLMR
and 5 IB layers for ModPreFLMR are sufficient, with additional layers providing diminishing
returns.

5.5.4 Freezing Vision Model

By default, we follow PreFLMR retrieval by freezing vision encoders. As an ablation study,
Figure 5.20 confirms that training the vision model of monoPreFLMR decreases performance.
This suggests that pre-trained vision encoders contain sufficient information, aligning with
general insights that overfitting is a concern when training rerankers. The most successful
models are those that are well pre-trained with fewer trainable parameters during fine-tuning,
such as monoBLIP-2 with LoRA and ModPreFLMR, which uses retrieval embeddings followed
by a small cross-encoder.

Fig. 5.20 Freezing Vision Model Ablation: Freezing the vision model in monoPreFLMR
improves performance, confirming that it is important to avoid overfitting.
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5.5.5 Retrieval List Size

We investigate the effect of varying the number of documents from PreFLMR-B retrieval, D,
on Recall@5. When D = 5, the result is equivalent to the raw retrieval outcome, as reranking
the top 5 documents does not affect Recall@5.

Figure 5.21 reveals that the more powerful the reranker, the better it is to have a larger
set of documents for reranking. Notably, for monoBLIP-2, setting D = 100 yields the best
performance on both OKVQA and EVQA datasets, with performance continuously decreasing
with fewer documents. Theoretically, a larger D allows the more powerful reranker to process
more documents, potentially improving accuracy but at the cost of decreased efficiency.

However, this trend does not hold for less powerful rerankers where setting D too high
can inadvertently introduce lower quality documents into the top rankings. For instance, with
monoPreFLMR and ModPreFLMR on OKVQA, the optimal is D = 75 and D = 50 while for
ModPreFLMR on EVQA, the optimal is D = 10. Any value below these thresholds provides
insufficient documents for effective ranking, while higher values introduce excessive noise.
However, in extreme cases, such as monoPreFLMR on the EVQA dataset, the reranker fails to
outperform raw retrieval at all values of D and there is a continuous decrease in recall as we
allow it to rank more documents.

Fig. 5.21 Recall@5 vs Retrieval List Size: The performance of rerankers improves with
more documents for powerful models like monoBLIP-2, while less powerful models perform
optimally with less document due to introduced noise.
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5.6 Conclusion

In general:

• For OKVQA, all rerankers achieve statistically significant improvements over
PreFLMR-B retrieval. For EVQA, monoBLIP-2 shows statistically significant
improvements, while monoPreFLMR and ModPreFLMR do not.

• monoBLIP-2 achieves the best performance with the fewest training steps, aligning
with Nogueira et al. (2020) who suggest sequence-to-sequence models excel at few-shot
learning.

• ModPreFLMR is 97x faster than monoBLIP-2 while still significantly improving
recall over PreFLMR. This introduces the feasibility of mid-interaction mechanisms
as a middle ground in the performance-efficiency trade-off between late-interaction
PreFLMR and early-interaction monoBLIP-2.

• Rerankers also improve recall for more powerful PreFLMR-L and PreFLMR-G
retrievers, though the impact is more pronounced on PreFLMR-B. Gao et al. (2021)
suggest that performance could be further improved by fine-tuning on respective retrievers
to better align document distributions.

In terms of training:

• Training on retrieved documents significantly improves recall compared to training
on the entire corpus, as it better reflects the distribution encountered during inference.
However, it is important to sample a balanced ratio of positive to negative documents to
address class imbalance.

• A listwise loss is better in smaller datasets like OKVQA, where top-end documents
are more homogeneous, as it helps distinguish between documents and stabilizes
training. Conversely, a pointwise loss is better for larger datasets like EVQA, where
top-end documents are still diverse, as ground truth labels can provide more information
than the other documents in the batch.

In terms of reranker configurations:

• Reranking benefits significantly from pre-trained knowledge but is prone to overfit-
ting. The best-performing models, monoBLIP-2 and ModPreFLMR, have few trainable
parameters but extensive pre-training. Ablation studies show that using a single out-
put with sigmoid activation is sufficient. A small vision encoder that is frozen is also
sufficient, as is a small cross-encoder to consolidate pre-trained information.
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• While reranking typically balances speed and accuracy, this trade-off holds primar-
ily for well-trained powerful rerankers like monoBLIP-2, where more documents
lead to better recall. For weaker rerankers, there is an optimal number of documents
to provide; exceeding this can introduce noise and degrade performance.

In summary, our results suggest that an effective approach to training rerankers is to start
with well-pretrained models, align them on the reranking task using a pointwise loss across
diverse datasets, and then fine-tune them with a listwise loss on specific retrievers.





Chapter 6

Conclusion

This thesis has presented a comprehensive exploration of reranking techniques to improve
document retrieval for KB-VQA. Despite significant advancements in VLMs, the challenge
of answering questions that require external knowledge remains substantial. Our work ad-
dresses this gap by extending reranking methods from text retrieval to the multimodal domain,
specifically targeting the enhancement of retrieval systems for VQA tasks.

We proposed three novel reranking architectures: monoPreFLMR, monoBLIP-2, and
ModPreFLMR. Our rerankers demonstrate statistically significant improvements over the
state-of-the-art PreFLMR retriever across OKVQA and EVQA. The monoBLIP-2 model
shows the best performance in few-shot learning scenarios, aligning with literature suggesting
that sequence-to-sequence models train faster due to better pre-training. We also implement
a modularized approach with ModPreFLMR, which initializes with embeddings from the
PreFLMR retrieval stage in what we introduce as a mid-interaction mechanism. This mechanism
employs a smaller cross-encoder that achieves effective performance over late-interaction
mechanisms like PreFLMR while maintaining significantly lower computational overhead
compared to early-interaction mechanisms like monoBLIP-2.

Our experiments confirmed that training on samples of retrieved documents, rather than the
entire corpus, leads to better generalization and performance across all rerankers and datasets.
We also validate the benefits of training with a listwise loss, which is particularly effective for
stabilizing training and improving recall for datasets like OKVQA where retrieved documents
are more homogeneous. However, we found that when documents are more diverse, as in the
case of the more complex EVQA, the pointwise loss performs better by separating individual
losses. We then conducted various ablation studies with results that reinforce the importance of
preventing overfitting and leveraging information from pre-training. From these results, we
draw the conclusion that training the optimal reranker involves leveraging strong pre-trained
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models, training them on diverse reranking datasets with a pointwise loss, and then fine-tuning
on specific downstream retrievers with a listwise loss.

6.1 Limitations

We acknowledge some limitations of this work from imposed time constraints of 4 months and
computational resources of 1000 GPU hours. As reported, we only train rerankers for a limited
number of steps as the purpose of this thesis is to explore the dynamics of training rather than
to completion. We spend our GPU hours training multiple configurations to understand what
works best. Each configuration takes a significant amount of time to train and evaluate. Indeed,
trends in recall show that some rerankers could benefit from additional training steps or more
diverse data to further improve performance meaning means that some of our results are likely
to be understated.

In regards to evaluation, we only report performance on the first 1,040 queries of the test
set due to computational limitations. For reference, monoBLIP-2 requires 12.4 seconds to
rerank per query. Including overhead, it takes around 8 GPU hours to evaluate 1,040 queries
for a single checkpoint. The OKVQA test set, with over 5,000 queries, would require 40 GPU
hours for full evaluation, while the EVQA test set, with over 3,000 queries, would require 24
GPU hours. Furthermore, we have chosen not to report VQA Accuracy as it is contingent on
valid ground truth labels and a strong text generation model, factors that are beyond the control
of this thesis. While we have ensured that this is a like-for-like comparison against reported
benchmarks, a more comprehensive study could evaluate on the full test set and include VQA
Accuracy.

6.2 Future Work

Beyond training rerankers to completion and evaluating further, we suggest two other avenues
for future work that could be explored.

6.2.1 Pre-Training Diversity

• The slow training speed of our encoder reranker, monoPreFLMR, could stem from
an insufficient pre-training task which does not align well with reranking. We could
experiment with other encoders pre-trained on different tasks, such as VisualBERT (Li
et al., 2019), UNITER (Chen et al., 2020), and LXMERT (Tan and Bansal, 2019).
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• Training encoder rerankers is data-intensive (Nogueira et al., 2020) and our training set
may be too small, particularly OKVQA which has shown evidence of overfitting. To
address this, we could follow Lin et al. (2024b) and pre-train our rerankers across more
diverse datasets, such as LLaVA, OVEN, WIT, CC3M, KVQA, and Infoseek, before
fine-tuning and evaluating on OKVQA and EVQA.

• The benefit of sequence-to-sequence models is their extensive pre-training. However,
efficiency with monoBLIP-2 may be a concern, and we could experiment with smaller
models which Nogueira et al. (2020) suggest can perform just as well. This is challenging
because monoBLIP-2 is already relatively small at 3B parameters, and the smallest
VLMs are around 1.5-2B parameters in size, like Gemini Nano (Team et al., 2023) and
MobileVLM (Chu et al., 2024). Nevertheless, this might be unnecessary, as Nogueira
et al. (2020) suggests that encoder rerankers should offer comparable performance with
sufficient training.

6.2.2 Knowledge Distillation

• As our rerankers improve recall on the retriever, their scores could be used for knowledge
distillation. The retriever can be trained on these softer labels to learn more nuanced
decision boundaries, which can be particularly helpful for harder cases (Hofstätter et al.,
2020).

• Knowledge could also be distilled from the retriever to the reranker as a form of reg-
ularization, particularly when overfitting is a concern with smaller datasets. We can
experiment with injecting retrieval scores as token inputs into rerankers (Askari et al.,
2023). Moreover, for ModPreFLMR, which initializes with PreFLMR retrieval embed-
dings whose dot products represent token-level similarities, these similarities can be used
as a prior in cross-encoder layers as a form of attention fusion.
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Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering.
arXiv preprint arXiv:2004.04906, 2020.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contex-
tualized late interaction over bert. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, pages 39–48, 2020.



72 References

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint arXiv:1906.00300, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information
Processing Systems, 33:9459–9474, 2020.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. In International
conference on machine learning, pages 19730–19742. PMLR, 2023.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A
simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557,
2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.

Weizhe Lin and Bill Byrne. Retrieval augmented visual question answering with outside
knowledge. arXiv preprint arXiv:2210.03809, 2022.

Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. Fine-grained
late-interaction multi-modal retrieval for retrieval augmented visual question answering.
Advances in Neural Information Processing Systems, 36, 2024a.

Weizhe Lin, Jingbiao Mei, Jinghong Chen, and Bill Byrne. Preflmr: Scaling up fine-grained
late-interaction multi-modal retrievers. arXiv preprint arXiv:2402.08327, 2024b.

Yuanze Lin, Yujia Xie, Dongdong Chen, Yichong Xu, Chenguang Zhu, and Lu Yuan. Re-
vive: Regional visual representation matters in knowledge-based visual question answering.
Advances in Neural Information Processing Systems, 35:10560–10571, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.
Advances in neural information processing systems, 36, 2024a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions
of the Association for Computational Linguistics, 12:157–173, 2024b.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic
visiolinguistic representations for vision-and-language tasks. Advances in neural information
processing systems, 32, 2019.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.



References 73

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A
visual question answering benchmark requiring external knowledge. In Proceedings of the
IEEE/cvf conference on computer vision and pattern recognition, pages 3195–3204, 2019.

Irina Matveeva, Chris Burges, Timo Burkard, Andy Laucius, and Leon Wong. High accuracy
retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, pages 437–444,
2006.

Thomas Mensink, Jasper Uijlings, Lluis Castrejon, Arushi Goel, Felipe Cadar, Howard Zhou,
Fei Sha, André Araujo, and Vittorio Ferrari. Encyclopedic vqa: Visual questions about
detailed properties of fine-grained categories. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3113–3124, 2023.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert. arXiv preprint
arXiv:1901.04085, 2019.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424, 2019.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Document ranking with a pretrained
sequence-to-sequence model. arXiv preprint arXiv:2003.06713, 2020.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. The expando-mono-duo design pattern for
text ranking with pretrained sequence-to-sequence models. arXiv preprint arXiv:2101.05667,
2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 18–24 Jul 2021a. URL https://proceedings.mlr.press/v139/radford21a.html.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable
visual models from natural language supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021b.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng Wang,
and Ji-Rong Wen. Rocketqav2: A joint training method for dense passage retrieval and
passage re-ranking. arXiv preprint arXiv:2110.07367, 2021.

Adam Roberts and Colin Raffel. Exploring transfer learning with t5: the text-to-text transfer
transformer. Google AI Blog, 2020.

Stephen E Robertson and Nicholas J Belkin. Ranking in principle. Journal of Documentation,
34(2):93–100, 1978.

Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike
Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

https://proceedings.mlr.press/v139/radford21a.html


74 References

Leonard Salewski, A Sophia Koepke, Hendrik PA Lensch, and Zeynep Akata. Clevr-x: A visual
reasoning dataset for natural language explanations. In International Workshop on Extending
Explainable AI Beyond Deep Models and Classifiers, pages 69–88. Springer, 2020.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia.
Colbertv2: Effective and efficient retrieval via lightweight late interaction. arXiv preprint
arXiv:2112.01488, 2021.

Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. Plaid: an efficient
engine for late interaction retrieval. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 1747–1756, 2022.

Sanket Shah, Anand Mishra, Naganand Yadati, and Partha Pratim Talukdar. Kvqa: Knowledge-
aware visual question answering. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 8876–8884, 2019.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2556–2565, 2018.

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). Advances in neural information processing systems, 27, 2014.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21, 1972.

Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork.
Wit: Wikipedia-based image text dataset for multimodal multilingual machine learning. In
Proceedings of the 44th international ACM SIGIR conference on research and development
in information retrieval, pages 2443–2449, 2021.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert:
Pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530,
2019.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from
transformers. arXiv preprint arXiv:1908.07490, 2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of
highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212, 2021.

Haoyang Wen, Honglei Zhuang, Hamed Zamani, Alexander Hauptmann, and Michael Ben-
dersky. Multimodal reranking for knowledge-intensive visual question answering. arXiv
preprint arXiv:2407.12277, 2024.



References 75

Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
compression and selective augmentation. arXiv preprint arXiv:2310.04408, 2023.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan
Wang. An empirical study of gpt-3 for few-shot knowledge-based vqa. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 3081–3089, 2022.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. Pretrained transformers for text ranking:
Bert and beyond. In Proceedings of the 14th ACM International Conference on web search
and data mining, pages 1154–1156, 2021.

Li-Ming Zhan, Bo Liu, Lu Fan, Jiaxin Chen, and Xiao-Ming Wu. Medical visual question an-
swering via conditional reasoning. In Proceedings of the 28th ACM International Conference
on Multimedia, pages 2345–2354, 2020.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and
Joseph E Gonzalez. Raft: Adapting language model to domain specific rag. arXiv preprint
arXiv:2403.10131, 2024.

Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni, Xuanhui Wang,
and Michael Bendersky. Rankt5: Fine-tuning t5 for text ranking with ranking losses. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 2308–2313, 2023.

L. Zou, S. Zhang, H. Cai, D. Ma, S. Cheng, S. Wang, D. Shi, Z. Cheng, and D. Yin. Pre-trained
language model based ranking in baidu search. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 4014–4022, August 2021.





Appendix A

Tabular Results

A.1 Pointwise Results

Category Reranker Recall@5 Recall@10 Recall@20 Recall@50 Time per
Query (s)

Parameters

Raw Retrieval Raw Retrieval 0.2346 0.3231 0.4125 0.5394 - -

monoPreFLMR
monoPreFLMR-B 0.2836 0.3778 0.4644 0.5749 1.40 248M

monoPreFLMR-L 0.2711 0.3576 0.4653 0.5701 2.58 465M

monoBLIP-2
monoBLIP-2 Flan-T5 0.3605 0.4528 0.5442 0.6173 9.52 3.9B

monoBLIP-2 Opt 0.3980 0.4798 0.5528 0.6192 12.64 3.7B

ModPreFLMR
ModPreFLMR BERT 0.2519 0.3462 0.4375 0.5740 0.24 46M

ModPreFLMR IB 0.2519 0.3480 0.4480 0.5548 0.13 47M

Table A.1 Appendix: OKVQA Reranker Recall
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Category Reranker Recall@5 Recall@10 Recall@20 Recall@50 Time per
Query (s)

Parameters

Raw Retrieval Raw Retrieval 0.2048 0.3105 0.4355 0.5932 - -

monoPreFLMR
monoPreFLMR-B
(15000 steps)

0.0990 0.1548 0.2615 0.5442 1.40 248M

monoPreFLMR-B
(6000 steps)

0.0750 0.1317 0.2307 0.4749 2.58 465M

monoPreFLMR-L
(6000 steps)

0.0548 0.1048 0.2076 0.4682 2.58 465M

monoBLIP-2
monoBLIP-2 Flan-T5 0.3086 0.4134 0.5124 0.6663 9.52 3.9B

monoBLIP-2 Opt 0.2663 0.3567 0.4798 0.6634 12.64 3.7B

ModPreFLMR ModPreFLMR BERT 0.1759 0.2788 0.4019 0.5990 0.24 46M

ModPreFLMR IB 0.1403 0.2365 0.3413 0.5759 0.13 47M

Table A.2 Appendix: EVQA Reranker Recall

A.2 Listwise Results

Dataset Reranker Loss Recall@5 Recall@10 Recall@20 Recall@50

OKVQA

monoPreFLMR-B
Pointwise 0.2836 0.3778 0.4644 0.5749
Listwise 0.2826 0.3778 0.4663 0.5711

monoBLIP-2 Opt
Text Gen Pointwise 0.3980 0.4798 0.5528 0.6192
Pointwise 0.4307 0.5038 0.5730 0.6182
Listwise 0.3942 0.4807 0.5548 0.6153

ModPreFLMR IB
Pointwise 0.2519 0.3480 0.4480 0.5548
Listwise 0.2346 0.3115 0.4182 0.5480

EVQA
monoBLIP-2 Flan-T5

Text Gen Pointwise 0.3086 0.4134 0.5124 0.6663
Pointwise 0.3394 0.4519 0.5721 0.6961
Listwise 0.3336 0.4365 0.5528 0.6942

ModPreFLMR BERT
Pointwise 0.1759 0.2788 0.4019 0.5990
Listwise 0.1721 0.2653 0.3884 0.5961

Table A.3 Appendix: Reranker Recall by Loss Function
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A.3 Fine-Tuning on Retrieved Documents Results

Full Corpus Raw Retrieval

Dataset Reranker Train Loss Val Loss Recall@5 Train Loss Val Loss Recall@5

OKVQA
monoPreFLMR-B 0.0226 3.062 0.2836 0.1266 0.1018 0.3259

monoBLIP-2 OPT 0.1133 1.780 0.4307 0.1009 0.08 0.4134

ModPreFLMR IB 0.0442 3.458 0.2519 0.1072 0.1148 0.2769

EVQA
monoBLIP-2 Flan-T5 0.0304 2.244 0.3394 0.0278 0.0476 0.3634

ModPreFLMR BERT 0.0171 4.686 0.1759 0.0348 0.0479 0.1192

Table A.4 Appendix: Fine-Tuning on Full Corpus vs Raw Retrieval

Dataset Reranker Training Samples Recall@5 Recall@10 Recall@20 Recall@50

OKVQA

monoPreFLMR-B

Full Corpus 0.2836 0.3778 0.4644 0.5749
Raw Retrieval 0.3259 0.4009 0.4903 0.5826
Upsampled Retrieval 0.1394 0.2125 0.3355 0.5163
Listwise Retrieval 0.3432 0.4326 0.5000 0.5875

monoBLIP-2 OPT

Full Corpus 0.4307 0.5038 0.5730 0.6182
Raw Retrieval 0.4134 0.4932 0.5625 0.6163
Upsampled Retrieval 0.1375 0.4932 0.5625 0.6163
Listwise Retrieval 0.4461 0.5067 0.5653 0.6201

ModPreFLMR IB

Full Corpus 0.2519 0.3480 0.4480 0.5548
Raw Retrieval 0.2769 0.3538 0.4403 0.5634
Upsampled Retrieval 0.1125 0.1846 0.2923 0.5634
Listwise Retrieval 0.2913 0.3855 0.4615 0.5711

EVQA

monoBLIP-2 Flan-T5

Full Corpus 0.3394 0.4519 0.5721 0.6961
Raw Retrieval 0.3634 0.4759 0.5903 0.6903
Upsampled Retrieval 0.3826 0.4932 0.5865 0.7057
Listwise Retrieval 0.3653 0.4625 0.5778 0.6942

ModPreFLMR BERT

Full Corpus 0.1759 0.2788 0.4019 0.5990
Raw Retrieval 0.1192 0.2221 0.3653 0.5682
Upsampled Retrieval 0.2105 0.2961 0.4336 0.6201
Listwise Retrieval 0.1990 0.2971 0.4086 0.5769

Table A.5 Appendix: Reranker Recall by Training Samples
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A.4 Ablation Results

Dataset Model Activation Recall@5 Recall@10 Recall@20 Recall@50

OKVQA monoPreFLMR-B
Sigmoid 0.2635 0.3500 0.4354 0.5625
Softmax 0.2427 0.3240 0.4271 0.5583

Table A.6 Appendix: Reranker Recall by Activation Function

Dataset Model Recall@5 Recall@10 Recall@20 Recall@50

OKVQA

monoPreFLMR-B 0.2836 0.3778 0.4644 0.5749

monoPreFLMR-L 0.2711 0.3576 0.4653 0.5701

monoBERT 0.2798 0.3557 0.4384 0.5692

EVQA

monoPreFLMR-B 0.0750 0.1317 0.2307 0.4749

monoPreFLMR-L 0.0548 0.1048 0.2076 0.4682

monoBERT 0.0480 0.1038 0.2096 0.4807

Table A.7 Appendix: Reranker Recall by Vision Model

Data Model Cross-Encoder Layers Recall@5 Recall@10 Recall@20 Recall@50

OKVQA
monoPreFLMR-B

1 Layer 0.2836 0.3778 0.4644 0.5749
3 Layer 0.2548 0.3451 0.4596 0.5903

ModPreFLMR IB
5 Layer 0.2519 0.3480 0.4480 0.5548
8 Layer 0.2173 0.3173 0.4096 0.5432

Table A.8 Appendix: Reranker Recall by Cross-Encoder Layers

Data Model Vision Model Recall@5 Recall@10 Recall@20 Recall@50

OKVQA monoPreFLMR-B
Frozen 0.2836 0.3778 0.4644 0.5749
Trainable 0.2653 0.3701 0.4567 0.5701

Table A.9 Appendix: Reranker Recall by Freezing Vision Model
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Dataset Reranker Retrieval List Size (D)

5 10 25 50 75 100

OKVQA
monoPreFLMR-B 0.2346 0.2798 0.3433 0.3433 0.3442 0.3433
monoBLIP-2 Opt 0.2346 0.2981 0.3712 0.4000 0.4327 0.4462
ModPreFLMR IB 0.2346 0.2798 0.3029 0.3077 0.2962 0.2913

EVQA
monoPreFLMR-B 0.2048 0.1721 0.1317 0.1106 0.1019 0.0990
monoBLIP-2 Flan-T5 0.2048 0.2875 0.3471 0.3663 0.3817 0.3827
ModPreFLMR BERT 0.2048 0.2240 0.2163 0.2173 0.2115 0.2106

Table A.10 Appendix: Recall@5 vs Retrieval List Size
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