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Problem Setting

We have an i.i.d. dataset with latent variables per datapoint and
would like to perform maximum likelihood (ML) or maximum a
posteriori (MAP) inference on the parameters, and variational in-
ference on the latent variables z given observations x. We wish to
find an algorithm, using a recognition model qφ(z|x) to approxi-
mate the intractable true posterior pθ(z|x), that works efficiently
for a large dataset even when the marginal likelihood is intractable.

The Variational Bound

The log-likelihood can be expressed in terms of a regularization
term plus a reconstruction term. The regularization term (KL di-
vergence) depends on how good qφ(z|x) can approximate pφ(z|x).
We will tune φ and θ in order to maximize the log-likelihood.

log pθ(x) =
∫
qφ(z|x) log pθ(x)dz

=
∫
qφ(z|x) log pθ(x)pθ(z|x)qφ(x|z)

pθ(z|x)qφ(x|z)
dz

=
∫
qφ(z|x) log qφ(x|z)

pθ(z|x)
dz +

∫
qφ(z|x) log pθ(x, z)

qφ(x|z)
dz

= DKL(qφ(z|x)||pθ(z|x)) + L

L = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)(logθ(x|z))

The Reparameterization Trick

An alternative method for generating samples from qθ(z|x):

z = gφ(ε, x), ε ∼ p(ε)

In the case of a Gaussian distribution, z can be constructed in the
following way:

z = µ + σε

SGVB Estimator

Two practical estimators of the lower bound:

L̃A(θ, φ;x) = 1
L

L∑
l=1

(log pθ(x, zl)− log qφ(zl|x))

L̃B(θ, φ;x) = −DKL(qφ(z|x)||pθ(z)) + 1
L

L∑
l=1

(logθ(x|zL))

When the KL-divergence can be integrated analytically, we use LB which typically
generates less variance than LA

Example: Variational Autoencoder
A neural network is used for the probabilistic encoder and the prior over the latent
variables is Gaussian.
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Visualization of Learned Manifolds

Project high dimensional data to a 2 dimensional manifold.

MNIST Manifold

Figure 1: MNIST: 28× 28→ 2

FreyFaces Manifold

Figure 2: Frey Face: 20× 28→ 2

Reconstruction of Images

Reconstruction of MNIST with 2 and 20 dimensional latent space.

Data MNIST, Nz = 2 MNIST, Nz = 20 Data MNIST, Nz = 2 MNIST, Nz = 20

Regularization Effect

The KL-divergence term can be interpreted as regularizing
φ,encouraging the approximate posterior to be close to the prior
pθ(z).
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Future Work

Extensions will feature both application-based [3] and theoretical
[4] research along the following broad avenues:

•Variational autoencoders for automatic chemical design [3].
•The composition of robust features using denoising (variational)
autoencoders [4].
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