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Abstract

The main purpose of this work is to provide a thorough analysis of the most recent advances
in the quickly evolving field of Distributional Reinforcement Learning (DRL) along with
identifying potential fruitful research directions to pave the way to future investigations. The
idea of a distributional approach is not new and finds numerous references in the Reinforce-
ment Learning (RL) literature. However, previous attempts were often aimed at tackling
very specific problems, such as modelling parametric uncertainty or designing risk-sensitive
algorithms.

In contrast, the new approach described in this work is motivated by the ambitious objective
of making the RL theoretical framework more principled and general. The achievement of
this goal is expected to result in a deeper comprehension of existing RL techniques and in
the design of new algorithms capable of outperforming the “classical” ones.

The experimental results obtained by the first fully DRL algorithms have indeed demon-
strated that a distributional perspective yields surprising empirical improvements. However,
theoretical justifications of the experimental behaviour of these algorithms are still lacking or
incomplete. One of the main goals of the present work is to provide a consistent review of
the most recent achievements in this field both from the theoretical and algorithmic points
of view. A critical evaluation of these results is carried out with particular attention to
highlighting the most promising methods for future applications.

The distributional approach described in this project combines elements of “classical” RL
and Deep Learning (DL) with concepts of Measure Theory and Advanced Statistics, making
a full comprehension of its principles challenging and exciting at the same time. In fact, we
will see that part of the success of this approach is due to its multidisciplinary interactions, in
particular with DL.
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Chapter 1

Reinforcement Learning Background

Reinforcement Learning (RL) is one of the three paradigms that constitute Machine Learning
(ML), along with Supervised Learning (SL) and Unsupervised Learning (UL) (Murphy
[2012]). The central problem RL deals with consists of describing how an agent ought to
take actions in an environment in order to maximise a particular notion of cumulative reward
(Francois-Lavet et al. [2018]).

In this introductory chapter, we review some of the fundamental principles of RL and we
delineate some of the key ideas explored in this project.

In particular, we introduce the Bellman’s equation that is a crucial component of most RL
algorithms. Its extension represents the main motivation of a distributional approach to RL,
which is the focus of this work, and that is presented in details in Chapter 3.

Furthermore, we briefly review SARSA and Q-Learning, two popular Temporal Difference
(TD) learning methods that are then revisited under a Deep Learning (DL) perspective in
Chapter 2.

1.1 General Framework: Markov Decision Processes

The typical RL problem can be formalised as an agent that interacts with an environment
as illustrated in Fig. 1.1. At each time-step, the agent performs an action. This produces
two consequences: (i) the environment changes its internal state and (ii) the agent receives a
reward. This agent-environment interaction can be modelled as a Markov Decision Process
(MDP) (X ,A ,R,P,γ), where:
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Fig. 1.1 Agent-environment interaction under the MDP assumption, (Sutton and Barto
[1998]).

• X is the state space,

• A is the action space,

• R is a random variable describing the reward corresponding with a state action pair
(x,a), where x ∈X and a ∈A .

• P : X ×X ×A → [0,1] is the state-transition probability P(·|x,a),

• γ ∈ [0,1] is a discount factor.

The last ingredient needed to complete the RL basic theoretical formulation is given by the
concept of policy. A policy π : X ×A → [0,1] describes the probability of selecting a
particular action a ∈A starting from a state x ∈X 1.

RL algorithms aim to find a policy that allows the agent to maximise the rewards it accumu-
lates throughout its interactions with the environment. We clarify this point in the following
section.

1.1.1 Bellman’s Equations

By iterating the MDP described in Fig. 1.1, the agent accumulates a sequence of rewards
that depend on the states and actions it visited along its trajectory of interactions with the
environment.

The return Zπ is a random variable defined as the discounted sum of the rewards obtained by
taking action a ∈A from state x ∈X at time-step t = 0 and acting according to a policy π

1A deterministic policy is a particular type of policy that deterministically maps states into actions.
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thereafter:
Zπ(x,a) := ∑

∞
t=0 γ tR(xt ,at)

xt ∼ P(·|xt−1,at−1) ,at ∼ π (·|xt) ,x0 = x,a0 = a
(1.1)

A crucial quantity in RL is the value function Qπ of a policy π which is defined as the
expected value of the return:

Qπ(x,a) := EZπ(x,a) (1.2)

Simple algebraic manipulations on Eq. 1.2 lead to a fundamental result in RL and DP, the
Bellman’s equation (Bellman [1954]):

Qπ(x,a) = ER(x,a)+ γ E
P,π

Qπ
(
x′,a′

)
(1.3)

This equation describes how expected returns at each state-action pair (x,a) ∈X ×A are
related to the expected returns at possible next state-action pairs (x′,a′)∈X ×A in the MDP.

Typically, most RL algorithms are devised to find a policy π that maximises the expected
return, as defined in Eq. 1.2. In other words, the goal is to find a policy such that:

Q∗(x,a) := max
π

Qπ(x,a) (1.4)

The most common method to find this policy involves the so-called Bellman optimality
equation2:

Q∗(x,a) = ER(x,a)+ γEP max
a′∈A

Q∗
(
x′,a′

)
(1.5)

Eq. 1.3 and Eq. 1.5 are the fundamental starting points of many popular RL algorithms.
However, an interesting observation is that these equations are written in terms of the value
function and therefore they do not capture the complexity of the entire return distribution
associated with the random variable Zπ .

The aim of this project is to explore the emerging field of Distributional Reinforcement
Learning (DRL) that is based on the study of the return distribution. As discussed in Chapter
3, the goal of DRL is indeed to study the behaviour of extended versions of Eq. 1.3 and Eq.
1.5 that are written in terms of the return, Zπ , instead of its expected value, Qπ .

2The Bellman optimality equation can be viewed as a special version of the Bellman’s equation 1.3 written
in terms of the optimal expected return Q∗.
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1.2 Dynamic Programming

In this section, we discuss how Eq. 1.3 and Eq. 1.5 can be solved by using the methods of
Dynamic Programming (DP).

The fundamental idea of DP is to transform Eq. 1.3 and Eq. 1.5 into the following recursive
update rules:

Qk+1(x,a) = ER(x,a)+ γ E
P,π

Qk
(
x′,a′

)
Qk+1(x,a) = ER(x,a)+ γEP max

a′∈A
Qk
(
x′,a′

) (1.6)

The goal of these recursive relations is to provide increasingly accurate approximations of
the true value functions, Qπ and Q∗, as the number of iterations grows.

An alternative way of looking at Eq. 1.6 is to introduce the so-called Bellman operator T π

and Bellman optimality operator T :

T πQ(x,a) := ER(x,a)+ γ E
P,π

Q
(
x′,a′

)
T Q(x,a) := ER(x,a)+ γEP max

a′∈A
Q
(
x′,a′

) (1.7)

It can be shown (Bertsekas and Tsitsiklis [1996]), that these two operators are contraction
mappings. If an operator T possesses this special property, for any pair of bounded functions
K,K′ : X ×A → R, the following condition is fulfilled:∥∥T K−T K′

∥∥
∞
≤ γ

∥∥K−K′
∥∥

∞
(1.8)

where 0 ≤ γ < 1. This property is particularly important because the Banach fixed point
theorem ensures that a unique fixed point exists for both the Bellman operators defined in Eq.
1.7 and these fixed points will be Qπ and Q∗ respectively.

As discussed in the next section, the Bellman operators play a crucial role in RL since they
provide a description of the expected behaviour of popular algorithms such as SARSA and
Q-Learning (Bellemare et al. [2017], Bertsekas and Tsitsiklis [1996]). In Chapter 3, we
introduce the distributional versions of the operators defined in Eq. 1.7 and we study their
convergence properties.
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One last important observation is that DP methods, in and of themselves, are not particularly
useful for the design of RL algorithms. The reason is that they rely on a complete knowledge
of the environmental model which is not typically the case in any realistic scenario. The
next section introduces TD learning methods that transform the ideas of DP into practical
algorithms.

1.3 Temporal-Difference Methods

TD learning refers to a class of RL methods that enable DP ideas to be exploited without
making the strong assumption of a complete knowledge of the environmental model. In
particular, these methods rely on learning values from experience trajectories. Specifically,
our approximation of the value function is recursively adjusted by means of the following
update rule:

Qk+1 (x,a)← Qk (x,a)+α
[
R(x,a)+ γQk

(
x′,a′

)
−Qk (x,a)

]
(1.9)

where α is a constant step-size called learning rate. In other words, this update modifies the
Q-function evaluated at a particular state-action pair (x,a) so that it gets closer to the target
value, R(x,a)+ γQk (x′,a′).

TD methods can be thought of as a combination of Monte Carlo (MC) and DP ideas. In-
deed, the expectation of the Q-function w.r.t. the transition probability is replaced by a MC
sample (the agent learns from experience) and the current estimate of the Q-function is used
in the update rule instead of the true value, Qπ (bootstrapping (Bickel and Freedman [1981])).

Now, we introduce SARSA and Q-Learning, two popular algorithms that implement the
concepts of TD learning. The rationale underlying these algorithms, in particular Q-Learning,
is key for understanding some successful deep RL methods that are discussed in Chapter 2
and for the distributional algorithms that are the focus of Chapter 3.

SARSA. SARSA (Rummery and Niranjan [1994]) is an on-policy method meaning that
decisions are made by following the same policy as the one that is evaluated and improved.
It makes use of the update rule defined in Eq. 1.9 and takes its name from the fact that it



6 Reinforcement Learning Background

considers sample sequences of the form “State, Action, Reward, next State, next Action”.
The complete algorithm pseudocode is shown below3

Algorithm 1 SARSA

Initialise: Q(x,a),∀x ∈X ,∀a ∈A

repeat {for each episode}
Initialise x
Select action a from x using ε-greedy policy derived from Q
repeat {for each step of episode}

perform action a, observe R,x′

Select a′ from x′ using ε-greedy policy derived from Q
Q(x,a)← Q(x,a)+α [R(x,a)+ γQ(x′,a′)−Q(x,a)]
x← x′; a← a′

until x is terminal
until convergence

Q-Learning. Q-learning (Watkins and Dayan [1992]) is an off-policy TD algorithm which
is based on the following update rule:

Qk+1 (x,a)← Qk (x,a)+α

[
R(x,a)+ γ max

a′
Qk
(
x′,a′

)
−Qk (x,a)

]
(1.10)

Contrarily to on-policy algorithms, off-policy methods introduce two different policies: one
for exploring, the behaviour policy (used to generate behaviour), and one that is learned, the
target policy. The complete Q-Learning algorithm is shown below.

3With ε-greedy policy we mean that the agent chooses the optimal action with probability popt = 1− ε and
a random action with probability prand = ε to explore the environment.
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Algorithm 2 Q-Learning

Initialise: Q(x,a),∀x ∈X ,∀a ∈A

repeat {for each episode}
Initialise x
repeat {for each step of episode}

Select a from x using ε-greedy policy derived from Q
perform action a, observe R,x′

Q(x,a)← Q(x,a)+α [R(x,a)+ γ maxa′Q(x′,a′)−Q(x,a)]
x← x′; a← a′

until x is terminal
until convergence

The goal of the TD algorithms presented in this section is to produce an estimate of the value
function for each separate state-action pair, thus providing a “lookup-table” representation.
If the state and action spaces are large, this approach is practically unfeasible for two main
reasons. First, it would be impractical due to the large memory requirements necessary
to store all possible values. Second, a robust estimate of the Q-function associated with
a particular state-action pair would require multiple visits to the same pair which is not
necessarily guaranteed, especially in large state-action spaces.

These complications could be addressed if the Q-function evaluated at a particular state-action
pair could provide some information about the Q-function at some other state-action pairs. In
other words, we would need a representation of the value function that allowed generalisation
across state-action pairs. This idea can be realised by introducing a parametrised version of
the original Q-function, i.e. Q(x,a;θ)≈Q(x,a), and by iteratively estimating its parameters.

A popular choice in the RL community is a linear parametrisation4, even though nonlinear
function approximators such as neural networks have gained significant interest in the last
few years thanks to the success of DL in various diverse domains.
The combination of RL and DL gives rise to the field of deep RL that is the subject of Chapter
2.

4Indeed, using linear parametrisations makes it easier to obtain convergence proofs.





Chapter 2

Deep Reinforcement Learning

Over the last few years, DL techniques have been widely used in a large variety of fields
due to their ability to infer abstract representations of high-dimensional data and improve
learning performances.

DL methods have been also successfully applied in the context of RL, especially in problems
characterised by high-dimensional state spaces. The class of algorithms resulting from the
intersection of DL and RL methods is called Deep Reinforcement Learning.

The most popular deep RL technique is arguably the Deep Q-Network (DQN) agent (Mnih
et al. [2015]). The success of this algorithm derives from its capacity of mastering a diverse
range of Atari games (Bellemare et al. [2013]), receiving only visual frames and rewards as
input. The surprising performances of DQN motivate the development of deep RL algorithms
aimed at emulating some human decision-making capabilities.

This chapter provides an overview of some well-established deep RL techniques with partic-
ular attention to the algorithms that have been revisited under the DRL perspective and on
those that we believe could be extended to the distributional framework.

The chapter is divided into two parts: the first one introduces a number of deep RL techniques
in the context of model-free RL, i.e. when the agent does not have any knowledge about
the environment, whereas the second part describes some recent applications of deep RL
algorithms in the model-based framework, where the agent learns a dynamic model of the
environment.
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2.1 Model-Free Deep RL

Deep RL algorithms have been mainly incorporated into model-free frameworks where they
have proved on many occasions to be very powerful and versatile tools, reaching state-of-the-
art performances in a wide range of domains.

Model-free RL describes a category of algorithms that do not rely on any model of the
environment and that train their agents by repeatedly interacting with it.

In this section, we analyse two of the most popular model-free techniques in the context
of deep RL, namely the DQN agent and the Deep Deterministic Policy Gradient (DDPG)
algorithm.

2.1.1 Deep Q-Network

The application of RL techniques to real-world decision-making problems requires to design
algorithms capable of learning successful policies directly from high-dimensional natural
stimuli. DQN can be considered as one of the first steps in this direction.

In Mnih et al. [2015], the authors propose to approximate the optimal value function Q∗ with
a deep Convolutional Neural Network (CNN) whose parameters will be referred to as θ .
The choice of CNNs is motivated by their well-known capacity to efficiently process visual
imagery (Krizhevsky et al. [2012]; Lee et al. [2009]).

In the following, we first briefly present the model architecture of the DQN agent and sec-
ondly we report some details of the training algorithm used to find the approximation of the
optimal Q-function.

Model Architecture

The goal of DQN is to model Q∗(x,a) for each x ∈X and a ∈A . A computationally cheap
method to do this consists in considering the state x (instead of a state-action pair) as the
input of the network and as many nodes as the number of actions for the output layer. In this
way, the Q-function of each individual action for a given input state is obtained with a single
forward pass through the network. The final architecture consists of three convolutional
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layers followed by a non-linear fully-connected layer and a linear fully-connected output
layer with a node for each action.

Fig. 2.1 DQN architecture: the network receives a visual frame as input and has a single
output for each action available to the agent (Mnih et al. [2015]).

Training Details

Given the estimate of the optimal value function, Q(x,a;θ), provided by the neural net-
work architecture described above, the DQN algorithm is based on the minimisation of the
following sequence of loss functions, L(θi), one for each iteration i:

L(θi) = Ex,a,R,x′
[
(y−Q(x,a;θi))

2
]

(2.1)

where y = R(x,a)+ γ maxa′Q(x′,a′;θ
−
i ) is the approximate target value and θ

−
i is a separate

set of parameters from some previous iteration. The gradient of this loss function w.r.t. the
network weights is given by:

∇θiL(θi) = Ex,a,R,x′

[(
R(x,a)+ γ max

a′
Q
(
x′,a′;θ

−
i
)
−Q(x,a;θi)

)
∇θiQ(x,a;θi)

]
(2.2)

Since the computation of the full expectation in Eq. 2.2 can be computationally demanding,
SGD-based techniques are used to tackle the minimisation problem above. In particular, in
Mnih et al. [2015], the RMSProp optimisation technique (Tieleman and Hinton [2012]) is
used.
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However, using nonlinear models such as neural networks to approximate the Q-function is
known to be problematic and often results in unstable or diverging algorithms (Tsitsiklis and
Van Roy [1997]). DQN introduces three additional refinements to the above procedure in
order to prevent these issues.

1) Experience Replay. At each time-step t, the experience tuple et = (xt ,at ,Rt ,xt+1) is
stored into a set D with a maximum capacity of N experience tuples. For the optimisation
step, random mini-batches of transitions (x,a,R,x′) are uniformly sampled from D .
This approach is called experience replay and presents two advantages: (i) improved data-
efficiency is guaranteed by the fact that each step of experience is potentially used in many
weight updates and (ii) the variance of the updates is reduced by breaking the correlations
between consecutive samples.

2) Target Network. Every C updates, the network Q is cloned to obtain a target network,
Q̂, that is used for generating the Q-learning targets y for the following C TD backups.
By applying this method, an update to Q(x,a) does not introduce any change in Q̂(x′,a′)
for all a′, and hence in the target y. This method reduces the risk of oscillating or diverging
policies.

3) Huber Loss. The classical squared loss is modified as follows: if the value of the error
term R(x,a)+ γ maxa′Q

(
x′,a′;θ

−
i
)
−Q(x,a;θi) is not included into the interval (−1,1), an

absolute value loss is used, otherwise the squared loss is kept. This modification contributes
to improving the stability of the algorithm.

Discussion

The performances of DQN on the Atari games suite (Bellemare et al. [2013]) are comparable
or superior to those of professional human players. This algorithm effectively demonstrates
that a deep RL approach can tackle several challenging decision-making tasks only by pro-
cessing information extracted from visual inputs.

Furthermore, the DQN agent, as presented by Mnih et al. [2015], leaves room to a number
of improvements that have been gradually incorporated into the original algorithm over the
last few years. Some of these refinements, such as Double-DQN (Hasselt et al. [2016])
or Prioritised Experience Replay (Schaul et al. [2016]) to name a few, have led to further
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performance improvements on the Atari games.

However, DQN presents also a number of shortcomings that limit its applicability to real-
world tasks. Indeed, DNQ is designed for RL problems characterised by discrete action
spaces, whereas in most concrete applications it is necessary to deal with a continuous range
of possible actions. Furthermore, DQN is an entirely model-free algorithm and for this
reason, it is prone to sample-inefficiency.

The DDPG algorithm effectively addresses the first problem, while a discussion of how to
cope with sample-inefficiency is presented later in the chapter.

2.1.2 Deep Deterministic Policy Gradient

As mentioned in the last section, despite its great success, DQN can not handle problems
with continuous or high-dimensional action spaces. When the action space is discrete, the
policy can be iteratively updated in the usual way as follows:

πk+1(x) = argmax
a∈A

Qπk(x,a) (2.3)

However, in the continuous case, the greedy update in the equation above would require
a global maximisation at every time-step; this approach would be too slow and practically
inapplicable.

In Lillicrap et al. [2015], a combination between an actor-critic approach (Sutton and Barto
[1998]) and the usage of neural networks as function approximators is proposed to extend
the success of DQN to continuous action spaces.
Specifically, the actor function, µ(x|θ µ), represents the current deterministic policy, parametrised
by the weights θ µ of a neural network. The key idea is to define a performance measure J
whose gradient allows us to iteratively update the parameters θ µ of the policy µ:

θ
µ ← θ

µ +α∇θ µ J(θ µ) (2.4)

By choosing J as follows:
J(θ µ) = E[Qµ(x,µ(x|θ µ))] (2.5)

it can be shown (Silver et al. [2014]) that the gradient in Eq. 2.4 can be written as:

∇θ µ J(θ µ)≈ E
ρβ

[
∇θ µ (µ(x|θ µ))∇a (Qµ(x,a))|a=µ(x|θ µ )

]
(2.6)
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where ρβ = ∑
∞
t=0 γ t Pr{xt = x|x0,β} is the state-visitation distribution for a given behaviour

policy β . As shown in Eq. 2.6, the actor parameter update relies on the knowledge of the
gradient of the Q-function. This motivates the introduction of a critic function, Q(x,a|θ Q),
parametrised by the set of weights θ Q of an additional neural network, that provides an
approximation of the value function for the current policy. The critic is updated by minimising
the following loss function:

L(θ Q) = E
ρβ

[(
Q(x,a|θ Q)− y

)2
]

(2.7)

where y = R(x,a)+ γQ(x′,µ(x′|θ̂ µ)|θ̂ Q) and (θ̂ µ , θ̂ Q) are the parameters of the target net-
works associated with the policy and the critic respectively. These separate target networks,
along with experience replay, are used in order to stabilise learning as in Mnih et al. [2015].
Additionally, batch normalization (Ioffe and Szegedy [2015]) is used to scale the input
features so that their range of variation does not change significantly when different units or
environments are considered. The resulting algorithm is called Deep Deterministic Policy
Gradient (DDPG).

The performances of DDPG have been evaluated on a number of increasingly complex tasks
simulated using MuJoCo (Todorov et al. [2012]). The algorithm provides very good results
in most of these environments both in the case of low-dimensional state spaces (mechanical
features of the environment, e.g. angles, coordinates, etc...) and when raw image frames are
used.

DDPG effectively enlarges the range of application of deep RL techniques to continuous
action spaces, paving the way to potential real-world applications, such as robotics or finance.

2.1.3 Discussion

The methods described above represent two milestones in the rapidly growing field of deep
RL. Several refinements to these basic algorithms have been proposed over the last few years,
leading to improved performances both in continuous and discrete action spaces (Fortunato
et al. [2017]; Hasselt et al. [2016]; Schaul et al. [2016]; Wang et al. [2016]).

However, despite their excellent performances on relatively complex tasks, these algorithms
are still significantly far from replicating the way humans learn and take decisions. Indeed,
their main shortcoming is that the number of iterations they require to converge is typically
very high. For instance, they need, on average, around tens of millions of time-steps to
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learn how to play Atari games, corresponding to weeks of training in real time (Kaiser et al.
[2019]). On the other hand, humans can reach very high performances on the same tasks with
substantially fewer amounts of interactions with the environment (Tsividis et al. [2017]).

Thus, it is clear that a strong effort needs to be made in order to increase the sample-efficiency
of deep RL algorithms. The next section discusses how model-based techniques can be used
to cope with sample-inefficiency and introduces some of these approaches in the context of
deep RL.

2.2 Model-Based Deep RL

Model-based algorithms differ from model-free techniques since they learn a dynamic model
of the environment. This approach can drastically improve sample-efficiency, since the agent
updates its approximation of the policy or of the Q-function by means of experience samples
generated by the learned dynamic model, without directly interacting with the environment.

However, these approaches suffer from the so-called model-bias. The agent tends to be
overly confident about the learned dynamic model that may be inaccurate due to limited prior
knowledge about the environment (Deisenroth and Rasmussen [2011]). To address this issue,
model-based approaches are often combined with model-free techniques (Nagabandi et al.
[2018]).

In the context of deep RL, the combination of model-based and model-free techniques is a
very active research area. The final goal would be to design algorithms that can reproduce
the excellent performances of model-free techniques and be sample-efficient at the same time.

In the following, we introduce two of these hybrid approaches in the context of deep RL.
These methods are among the most recent attempts at combining deep RL with model-based
approaches. The first one is a straightforward extension of DQN that is further investigated
in Chapter 4. The second one is arguably one of the most promising works in model-based
RL and its application to the Atari games provides state-of-the-art results in terms of the
trade-off between sample-efficiency and learning performances.
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2.2.1 DQN with Model-Based Exploration

A possible strategy to improve sample-efficiency of model-free algorithms is to make use of
better exploration techniques. In principle, having access to a more informative picture of the
environment could allow the agent to design good policies more rapidly by better exploiting
the amount of experience gained so far.

The simple idea proposed by Gou and Liu [2019] is based on this rationale. The DQN-agent
discussed in Section 2.1.1 explores the environment by selecting a random action with proba-
bility ε . The method proposed in Gou and Liu [2019] consists of a slight modification to the
DQN-agent that preserves the basic structure of the algorithm but instead uses a model-based
exploration strategy.

Here again the agent acts greedily with respect to the current policy with probability 1− ε

and explores with probability ε . However, the exploration is carried out differently in this
case. The key step of the proposed approach is to extract the last M states visited by the
agent, xt−M+1, ...,xt , from the replay buffer and compute their mean µµµM and covariance ΣΣΣM.
Then, the action at time-step t is determined by the following equation:

at = argmin
a

N (D(xt ,a,θD)|µµµM,ΣΣΣM), (2.8)

where D is a deterministic transition function parametrised by a neural network with weights
θD. The model-based component of this algorithm consists in modelling this transition
function as accurately as possible. This additional neural network is trained in parallel to the
DQN network by using the same experience tuples sampled from the replay buffer.

Intuitively, Eq. 2.8 selects the action leading to the state that is most distant from the last M
visited states. This explicitly encourages the agent to explore new regions of the environment
that it did not consider before then.

The key assumption of this method is that the distribution of the states visited by the agent
is well approximated by a Gaussian distribution. The results of the application of this algo-
rithm to some simple environments in the OpenAI gym (Brockman et al. [2016]) platform
show that, when the Gaussian assumption is reasonably satisfied, exploration is effectively
enhanced with a consequent improvement in terms of sample-efficiency. On the other hand,
when the state distribution is more complicated the algorithm fails in its purpose.



2.2 Model-Based Deep RL 17

This method proposes a very intuitive idea to enhance exploration and to improve sample-
efficiency and is based on a little modification to the DQN agent. However, it relies on the
Gaussian assumption on the state distribution and on a high level of accuracy in modelling
the transition function D. In Chapter 4, we investigate a simple modification to this method
that replaces the aforementioned Gaussian assumption.

2.2.2 Simulated Policy Learning

In this section, we briefly describe Simulated Policy Learning (SimPLe) (Kaiser et al. [2019]),
one of the most recent and convincing model-based methods aimed at addressing the problem
of sample-efficiency.

The basic idea of SimPLe is intimately related to the Dyna algorithm (Sutton [1991]). As
shown in Fig. 2.2, SimPLe implements a three-step learning process: i) the agent first
interacts with the environment and collects real-world experience samples; ii) these are
then used to train its internal world-model of the environment; iii) this world-model is used
to simulate artificial experience samples that allow a model-free algorithm to improve the
current policy.

Fig. 2.2 The three-step procedure implemented by the SimPLe algorithm (Kaiser et al.
[2019]).

The trickiest part of model-based algorithms is to learn an accurate model of the environment
in order to generate consistent experience samples and make planning possible. SimPLe
is based on a quite complex neural network model aimed at providing reliable predictions
of future video frames of the Atari games. This model is constituted by two elements: a
convolutional encoder-decoder module and an inference network and is inspired by ideas
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from Babaeizadeh et al. [2017]; Łukasz Kaiser and Bengio [2018]1.

The model-free method responsible for the policy optimisation step of SimPLe is the Prox-
imal Policy Optimisation (PPO) algorithm (Schulman et al. [2017]). PPO is a successful
policy-gradient method that takes advantage of the implementation simplicity of vanilla
policy-gradient methods (Mnih et al. [2016]) and the reliability of trust region techniques
(Schulman et al. [2015]). As mentioned before, PPO is used to train the agent by means of
the experience samples drawn from the simulated environment.

The results of the experiments show that SimPLe is effectively able to drastically improve
sample-efficiency. In particular, in Kaiser et al. [2019], the performances of SimPLe are com-
pared to those of Rainbow2 (Hessel et al. [2017]), the state-of-the-art Q-learning algorithm
for the Atari games. The experiments show that Rainbow needs many more steps to reach
the same score reached by SimPLe after 100K iterations. For some games, the number of
time-steps required by Rainbow is almost one order of magnitude larger than that needed by
SimPLe.

However, the final scores obtained by SimPLe are significantly lower than those reached by
Rainbow. Relatively poor final performances represent the major drawback of model-based
approaches. Overcoming this limitation is arguably a key research direction for future work.
A possible strategy to tackle this problem could be to use alternative model-free approaches
than PPO.

We come back to the model-based approach described in this section at the end of Chapter 4,
where we discuss some potentially fruitful research directions in the context of DRL, which
is the subject of the next chapter.

1For more details about the neural network design choices, we refer the interested reader to the original
paper (Kaiser et al. [2019]) or to the official paper’s project website.

2Please refer to Chapter 3 for a brief description of the Rainbow agent.

https://goo.gl/uiccKU


Chapter 3

Distributional Reinforcement Learning

3.1 Motivation

As we saw in the previous chapters, the Bellman’s equation is the fundamental starting
point for most RL algorithms. This equation is written in terms of the expected return
which therefore represents a key element for guiding the agent in its interactions with the
environment.

However, the return, as defined in Eq. 1.1, can be a very complex quantity, especially when
the RL problem under consideration is characterised by high-dimensional state and action
spaces. In particular, the return distribution can be multimodal and only considering its
expected value might result in losing relevant information regarding the intrinsic randomness
characterising the RL task.
DRL studies how the entire return distribution can be modelled and used in practice to tackle
RL tasks in a more general way.

Before going through the details of the DRL theoretical and algorithmic frameworks, we
provide a visual example and one thought experiment aimed at emphasising some possible
advantages resulting from the adoption of a distributional point of view on RL.

Atari Games: Space Invaders. Figure 3.1 describes a particular frame from “Space
Invaders”, one of the games included in the Atari 2600 suite (Bellemare et al. [2013]) and
the return distribution associated with each possible action the agent can perform. In this
case, the return distributions are able to capture all the different outcomes of the episode.
Most importantly, they separate the low returns and the high ones associated with losing or
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winning the game respectively. This aspect represents a substantial difference from classical
RL, where instead only unrealisable expected values are taken into account.

Fig. 3.1 Return distributions generated by the C51 algorithm associated with a particular
frame of Space Invaders (Bellemare et al. [2017]).

Financial Transactions. A possible scenario where a distributional approach could be
useful is within the context of financial transactions. Let’s suppose that an agent needs to
choose between two different chains of investments that are forecasted to pay him back the
same expected return. A possible action-selection criterion could be to select the investment
strategy corresponding with the smallest variance so as to minimise the risk. In other words,
it would be reasonable to follow the strategy that leads to the same final expected return with
a relatively high level of precision instead of that whose outcome is more fluctuating.
This example proposes an application in which the design of risk-aware policies plays a
crucial role. In the final part of this chapter, we present some recent works that use DRL to
cope with the problem of uncertainty and risk-estimation in RL.

3.2 An Introduction to DRL: Key Concepts and Algorithms

In this section, we introduce the main aspects of the DRL framework both from the algorith-
mic and the theoretical points of view.

As explained in Chapter 1, the Bellman’s equation is written in terms of the expected return,
Qπ(x,a), as follows:

Qπ(x,a) = E
[
R(x,a)+ γQπ

(
x′,a′

)]
where x′ ∼ P(·|x,a) and a′ ∼ π

(
·|x′
) (3.1)

The basic idea of DRL is to consider a distributional version of Eq. 3.1 as the core of its new
theoretical structure. This new equation is called distributional Bellman’s equation and is
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given by:
Zπ(x,a) D

= R(x,a)+ γZπ
(
X ′,A′

)
, (3.2)

where the random return Zπ(x,a) is implicitly defined by Qπ(x,a) = E [Zπ(x,a)] and R, X ′

and A′ are random variables. The symbol D
= indicates that Eq. 3.2 is a distributional equation

which means that the random variable to its LHS is distributed in the same way as the one to
the RHS.

The goal of the following sections of this chapter is to try to address two different sets of
questions related to Eq. 3.2, that summarise some of the latest research directions emerged
in the DRL literature:

1 Does Eq. 3.2 maintain the same convergence guarantees provided by the “classical”
Bellman’s equation?

2 How can we practically design an algorithm based on Eq. 3.2 whose output is a
distribution over returns and how can we exploit the additional amount of information
carried by this distribution?

Although these two questions are strictly related to each other, it is quite common to find
the theoretical (Question 1) and the algorithmic (Question 2) approaches separated in the
literature.

In the remaining part of this section, we start by introducing the theoretical background and
the implementation details of two of the most successful distributional algorithms, namely
C51 and QR-DQN. Then in the next sections, we first summarise some recent additional
mathematical findings aimed at making DRL a more principled branch of classical RL, and
finally, we present an overview of some recent applications of DRL algorithms.

3.2.1 Categorical DRL: C51

The idea of a distributional approach to RL is not new and has been already investigated by a
relatively large number of previous works in the RL literature. However, the first practical
attempts at studying the return distribution aimed to cope with very specific tasks, such as the
implementation of risk-sensitive algorithms (Morimura et al. [2010a,b]), or the estimation of
the epistemic uncertainty (Dearden et al. [1998]).

In contrast, Bellemare et al. [2017] propose a new algorithm (C51) which is devised to
approximate the return distribution and whose implementation is based on the distributional
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version of the Bellman’s equation 3.2. The ideas proposed in Bellemare et al. [2017] paved
the way to a rich series of new interesting methods in DRL and, for this reason, Bellemare
et al. [2017] can be considered as the first demonstration of the potential of this field.

The paper is divided into two parts: in the first part, a theoretical analysis of Eq. 3.2 and
of its properties under the policy evaluation and control settings is presented, while in the
second one, the C51 algorithm is introduced and the results of its application to the Atari
games are discussed. The most salient aspects of Bellemare et al. [2017] are summarised in
the following.

The Distributional Bellman Operator

In Section 1.1.1, we defined the Bellman operator T π and the optimality operator T as:

T πQ(x,a) := ER(x,a)+ γ E
P,π

Q
(
x′,a′

)
(3.3)

T Q(x,a) := ER(x,a)+ γEP max
a′∈A

Q
(
x′,a′

)
(3.4)

As discussed in Chapter 1, popular algorithms such as SARSA (Rummery and Niranjan
[1994]) and Q-Learning (Watkins and Dayan [1992]) can be described in terms of these
operators and rely on their contraction properties.

A fully distributional approach inevitably requires a characterisation of the behaviour of the
distributional operators associated with Eq. 3.2. These operators can be straightforwardly
defined as follows1:

T πZ(x,a) := R(x,a)+ γZ
(
X ′,A′

)
(3.5)

T Z(x,a) := R(x,a)+ γZ
(

X ′,argmax
a′∈A

EZ
(
X ′,a′

))
(3.6)

for the policy evaluation and the control case, respectively. As for the “classical” Bellman
operators, we need to understand if the operators introduced above are contraction mappings
in order to determine their convergence properties.

Intuitively, the idea behind the Banach fixed point theorem is closely related to the concept of
distance. If we define a metric with respect to which distances are measured, an operator T

1Here again we adopt the convention that capital letters are used to indicate random variables.
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is a contraction mapping if its application to two distinct functions Q0 and Q1 generates two
new functions whose relative distance (measured with respect to the initially defined metric)
is smaller than that between the original ones. This rationale implies that the contraction
mapping property depends on the particular metric under consideration.

As regards the distributional Bellman operator, it has been proved (Chung and Sobel [1987])
that T π is not a contraction mapping relatively to the total variation distance, the Kullback-
Leibler divergence and the Kolmogorov distance. On the other hand, in Bellemare et al.
[2017] a new metric called Wasserstein distance (Bickel and Freedman [1981]) is introduced
and used to demonstrate new convergence properties of the distributional operators T π and
T . A brief description of this metric is reported in the next paragraph.

The Wasserstein Distance. Given two random variables U and V with inverse cumulative
distribution functions F−1

U and F−1
V respectively, the p-Wasserstein distance is defined as23:

dp(FU ,FV ) =

(∫ 1

0

∣∣F−1
U (u)−F−1

V (u)
∣∣p du

)1/p

(3.7)

It can be shown (Levina and Bickel [2001]) that the p-Wasserstein distance is equivalent to
the so-called Earth Mover’s Distance (EMD) when p = 1. This distance is closely related to
the minimal cost necessary for transporting one distribution’s mass into the other to make the
two distributions identical (Dabney et al. [2018a]).
Given Z1,Z2 ∈Z , where Z is the space of value distributions with bounded moments, the
maximal form of the Wasserstein metric is defined as follows:

dp (Z1,Z2) := sup
x,a

dp (Z1(x,a),Z2(x,a)) (3.8)

In the following, we use the Wasserstein distance to characterise the behaviour of the
distributional Bellman operators defined by Eq. 3.5 and Eq. 3.6. We prefer to focus on the
main results, omitting the mathematical details used to obtain them in order to maintain the
exposition as fluid as possible.

Policy Evaluation. We now consider the policy evaluation setting where the goal consists
in evaluating the return distribution Zπ associated with a given policy π .
Given an initial distribution Z0 ∈ Z , we are interested in the iterative process implicitly

2In the following, we often use the notation dp(U,V ) instead of dp(FU ,FV ), for the sake of clarity.
3For p = ∞,W∞(Y,U) = supω∈[0,1]

∣∣F−1
Y (ω)−F−1

U (ω)
∣∣
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defined by the distributional Bellman operator, Zk+1 := T πZk. The following important
result holds:

• Theorem 3.2.1 (Bellemare et al. [2017]) T π : Z →Z is a γ -contraction in dp, where
γ ∈ [0,1) is the discount factor.

The above contraction property holds under the maximal form of the Wasserstein metric,
dp, and this implies that all the moments of Zk converge exponentially quickly. In particular,
this is true for E[Zk], as expected from the contraction property of the “classical” Bellman
operator.

Control. In the control setting, the goal is to find a policy that maximises the value function.
Unfortunately, in this case, we can only prove that the corresponding Bellman operator (Eq.
3.6) converges in a weak sense, to the set of nonstationary optimal value distributions.

• Theorem 3.2.2 (Bellemare et al. [2017]) Let X be measurable and suppose that A

is finite. Then
lim
k→∞

inf
Z∗∗∈Z ∗∗

dp (Zk(x,a),Z∗∗(x,a)) = 0 ∀x,a

where Z ∗∗ is the set of non nonstationary optimal value distributions, i.e. the set of
value distributions associated with a sequence of optimal policies.
If the optimal policy, π∗, is unique, then the iterates Zk+1←T Zk converge to Zπ∗ .

It can be easily shown that Theorem 3.2.2 implies that, in general, the operator T is not a
contraction mapping. By comparing theorem 3.2.1 and 3.2.2 we can see that the distributional
Bellman operators behave in a significantly different way to each other.

Finally, for the sake of completeness, it is worth mentioning that the “classical” case can be
recovered from the optimality operator in the distributional case:

• Theorem 3.2.3 (Bellemare et al. [2017]) Given Z1,Z2 ∈Z , then

∥ET Z1−ET Z2∥∞
≤ γ ∥EZ1−EZ2∥∞

and in particular EZk→ Q∗ exponentially quickly.
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The C51 Algorithm

In this section, we describe the C51 algorithm, firstly introduced in Bellemare et al. [2017].
C51 is based on the distributional Bellman optimality operator. However, its design details do
not take into account the theoretical considerations reported in the first part of the paper. The
link between theory and practice is more thoroughly investigated in the following sections.

The basic idea of C51 is to parametrise the return distribution by a finite set of N equally-
spaced support points4 included into the interval [VMIN ,VMAX ]. The probability associated
with each support point zi is given by a parametric model θ : X ×A → RN :

pi(x,a) :=
eθi(x,a)

∑ j eθ j(x,a)
for i = 1, ...,N (3.9)

The parametric model is chosen to be a deep neural network of the same kind of the DQN
architecture5 (Mnih et al. [2015]) described in Chapter 2. The only difference is that, in this
case, the outputs are the probabilities pi(x,a) associated with each action, given a certain
state as input. An illustration of the C51 network architecture is showed in Fig. 3.2.

The goal of the algorithm is to iteratively minimise a distance measure between the Bellman
update T Zθ and the distribution Zθ returned by the parametric model defined above.

However, the computation of the target distribution presents a complication: T Zθ and Zθ

have often disjoint supports. To cope with this issue, the sample Bellman update T̂ Zθ is
firstly projected onto the support of Zθ . This operation is summarised by the application of a
projection operator Φ. Finally, the distance between the projected update and the parametric
distribution is measured by the cross entropy term of the KL divergence:

DKL

(
ΦT̂ Z

θ̃
(x,a)∥Zθ (x,a)

)
(3.10)

that naturally lends itself to SGD-based minimisation. Given a sample transition (x,a,R,x′),
the action of the projection operator Φ on the parametric distribution Zθ is given by the

4The name of the algorithm derives from the choice N = 51 which guaranteed the best performance on
several Atari games.

5As in the DQN algorithm, a replay buffer and a distinct target network with a separate set of parameters θ̃

are used.
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Fig. 3.2 C51 neural network architecture. The outputs are the distributions over returns
associated with each action. Image extracted from Rémi Munos’ presentation at ENS
Organization.

following equation:

(
ΦT̂ Zθ (x,a)

)
i
=

N−1

∑
j=0

[
1−
|[T̂ z j]

VMAX
VMIN

− zi|
∆z

]1

0

p j
(
x′,π

(
x′
))

(3.11)

where ∆z = VMAX−VMIN
N−1 and T̂ z j := R+ γz j. Eq. 3.11 shows how the probability associated

with each atom z j is distributed to the nearest neighbours of T̂ z j.
The complete version of the C51 algorithm is reported below.

https://ewrl.files.wordpress.com/2018/10/distributional_rl.pdf


3.2 An Introduction to DRL: Key Concepts and Algorithms 27

Algorithm 3 Categorical Algorithm (C51)

Require: A transition xt ,at ,Rt ,xt+1,γ ∈ [0,1)
Q(xt+1,a) := ∑i zi pi(xt+1,a)
a∗← argmaxa Q(xt+1,a)
mi = 0, i = 0, ...,N−1
for j ∈ 0, ...,N−1 do

Initialise x
# Compute the projection T̂ z j onto the support {zi}
T̂ z j← [Rt + γz j]

VMAX
VMIN

b j← (T̂ z j−VMIN)/∆z
l← ⌊b j⌋ u← ⌈b j⌉
# Distribute probability of T̂ z j

ml ← ml + p j(xt+1,a∗)(u−b j)

mu← mu + p j(xt+1,a∗)(b j− l)
end for
return −∑i mi log pi(xt ,at)

Discussion. When it was published in 2017, the application of the C51 algorithm to the
Atari games suite resulted in state-of-the-art results in the majority of the games.
Despite its surprising performances, the gap between theory and practice was significant. In
particular, the projection step heuristic defined by Eq. 3.11 and the use of the KL divergence
as the loss function to be minimised by SGD did not find any clear mathematical justification.
These two points have been recently more accurately investigated by Bellemare et al. [2018]
and Rowland et al. [2018]. The most salient findings of these works are discussed later within
this chapter.
In the next section, we describe the QR-DQN algorithm that partially addresses some of the
aforementioned open-problems and further improves performances.

3.2.2 Quantile Regression DRL

The KL divergence is directly related to maximum likelihood estimation and it is relatively
easy to optimise. However, its major drawback is that it does not take into account how geo-
metrically close two outcome events might be, but only their relative probability (Bellemare
et al. [2018]).
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On the other hand, the Wasserstein metric is sensitive to the underlying geometry between
outcomes. As pointed out by Dabney et al. [2018b], this property makes the choice of the
Wasserstein metric particularly suitable in those cases where the evaluation of outcomes’
similarity is more or equally important than the probabilistic agreement between likelihoods.

The algorithm proposed in Bellemare et al. [2017] does not provide an end-to-end approach
based on the Wasserstein metric. Indeed, the C51 algorithm makes use of the KL divergence
to minimise the distance between the parametrised distribution Zθ and the target distribution
obtained by the Bellman’s update projected onto the support of Zθ , i.e. ΦT̂ Z

θ̃
.

In Dabney et al. [2018b], a new approach motivated by the previous considerations is
proposed. The resulting algorithm, named Quantile-Regression-DQN (QR-DQN), has a
more solid theoretical structure than C51 and further improves the experimental results
obtained by Bellemare et al. [2017].

Quantile Parametrisation

QR-DQN is based on a new parametrisation of the return distribution. Specifically, if
the aim of Eq. 3.9 consisted in approximating the return distribution by fixing a set of
support points and modelling the corresponding probabilities, now the goal is to estimate the
quantiles of the return distribution. The main difference is that, this time, the probabilities are
fixed at N constant numbers but the support points are variable. Given a parametric model
θ : X ×A → RN , a quantile distribution supported on {θi(x,a)}N

i=1 can be defined as:

Zθ (x,a) :=
1
N

N

∑
i=1

δθi(x,a), (3.12)

where δθi indicates a Dirac delta centred at θi ∈ R. Following the notation of Dabney et al.
[2018b], we indicate as ZQ the space of quantile distributions for fixed N. The cumulative
probabilities associated with the quantile distribution defined in Eq. 3.12 will be denoted by
τi =

i
N for i = 1, . . . ,N.

Quantile Projection and Contraction Property. Similarly to Bellemare et al. [2017], we
now define a new operator which will be referred to as ΠW1 , that projects an arbitrary return
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distribution Z ∈Z onto the space ZQ:

ΠW1Z :=argmin
Zθ∈ZQ

W1 (Z,Zθ ) =

= argmin
Zθ∈ZQ

( N

∑
i=1

∫
τi

τi−1

∣∣F−1
Z (ω)−θi

∣∣dω

) (3.13)

It turns out that the set of θ ∈ R minimising
∫

τ ′

τ

∣∣F−1(ω)−θ
∣∣dω for any τ,τ ′ ∈ [0,1] is

given by: {
θ ∈ R|F(θ) =

(
τ + τ ′

2

)}
(3.14)

The previous result shows that W1(Z,Zθ ) is minimised by θi = F−1
Z (τ̂i) for i= 1, ...,N, where

τ̂i =
τi−1+τi

2 .
The reason for the particular choice of the projection operator defined in Eq. 3.13 is that
its combination with the distributional Bellman operator T π is a contraction in the ∞-
Wasserstein metric, as shown by the following theorem:

• Theorem 3.2.4 (Dabney et al. [2018b]) Let ΠW1 be the quantile projection defined as
above, and when applied to value distributions gives the projection for each state-value
distribution. For any two value distributions Z1,Z2 ∈Z for an MDP with countable
state and action spaces,

d∞ (ΠW1T
πZ1,ΠW1T

πZ2)≤ γd∞ (Z1,Z2) (3.15)

where d∞ is the maximal form of the Wasserstein metric, as defined in Eq. 3.8.

QR-DQN makes use of the projection operator ΠW1 in its implementation, providing an
algorithm capable of effectively exploiting the benefits of the Wasserstein metric (with respect
to which ΠW1T

π is a contraction and that defines the projection operator ΠW1), bridging the
gap with theory. Before going through the details of QR-DQN, we need to include one last
important ingredient in the theoretical formulation: the quantile regression loss.

Biased Gradients

Using the p-Wasserstein metric as a loss function with the parametrisation introduced in Eq.
3.12 leads to biased gradient, as shown by the following theorem:

• Theorem 3.2.5 (Dabney et al. [2018b]) Let Zθ be a quantile distribution, and Ẑm the
empirical distribution composed of m samples from Z. Then for all p≥ 1, there exists
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a Z such that
argminE

[
Wp
(
Ẑm,Zθ

)]
̸= argminWp (Z,Zθ ) (3.16)

This result implies that this loss can not be minimised by SGD. A solution to this complication
is provided by the so-called quantile-regression loss (Koenker [2005]) that we define in the
following paragraph.

Quantile Regression Loss. Given a distribution Z and a quantile τ , the inverse cumulative
distribution function F−1

Z (τ) can be defined as the minimiser of the quantile regression loss:

L τ
QR(θ) := EẐ∼Z

[
ρτ(Ẑ−θ)

]
, where

ρτ(u) = u
(
τ−δ{u<0}

)
,∀u ∈ R

(3.17)

It turns out (Koenker [2005]) that the minimisation of this loss gives unbiased sample gradi-
ents.

We are now in the position to exploit all the theoretical arguments developed so far. We know
that the operator ΠW1T

π is a contraction and that the values of {θ1, . . . ,θN} that minimise
W1(T

πZ,Zθ ) are given by θi = F−1
T π Z(τ̂i). Therefore, the quantile regression loss can be

rewritten as follows:

L τ̂
QR(θ) =

N

∑
i=1

EẐ∼T π Z
[
ρτ̂i

(
Ẑ−θi

)]
(3.18)

The minimisation of L τ̂
QR(θ) yields the set of support points θi = F−1

T π Z(τ̂i) which in turn
minimise the 1-Wasserstein distance to T πZ.

The QR-DQN Algorithm

In Dabney et al. [2018b], the theoretical results discussed above are used to propose a
new control algorithm, named QR-DQN. Its main steps are summarised in the pseudocode
reported below.
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Algorithm 4 Quantile Regression DQN (QR-DQN)
Require: N

input: x,a,R,x′,γ ∈ [0,1)
# Compute distributional Bellman target
Q(x′,a′) := 1

N ∑ j θ j(x′,a′)
a∗← argmaxa′Q(x,a′)
T θ j← R+ γθ j(x′,a∗), ∀ j
# Compute quantile regression loss

output: ∑
N
i=1E j

[
ρτ̂i

(
T θ j−θi(x,a)

)]
In order to minimise the quantile regression loss defined above, a very similar architecture to
DQN (Mnih et al. [2015]) is used6. The main differences between the two implementations
are the following:

• The network output is of size |A |×N, meaning that for for each action, N support
points {θi}N

i=1 are returned. The QR-DQN network architecture is illustrated in Fig.
3.3

• The quantile regression loss7 is considered instead of the Huber loss used in DQN.

• The Adam optimiser (Kingma and Ba [2014]) is used instead of RMSProp.

Fig. 3.3 QR-DQN neural network architecture. The outputs are the quantile distributions
associated with each action. Image extracted from Rémi Munos’ presentation at the ENS
Organization.

6As in Mnih et al. [2015], a separate target network is used to compute the distributional Bellman update.
7In Dabney et al. [2018b], a slightly different version of the quantile regression loss, called quantile Huber

loss, is used. The reason for this modification is that the quantile regression loss is not smooth at zero, generating
constant gradients. We refer the interested reader to Dabney et al. [2018b] for a more detailed explanation.

https://ewrl.files.wordpress.com/2018/10/distributional_rl.pdf
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Discussion. The QR-DQN algorithm described in Fig. 3.3, further improves the perfor-
mances of the C51 algorithm on the Atari games suite. Contrarily to C51, the relation between
theory and practice is more consistent in this case. Furthermore, the new parametrisation
introduced in 3.12 does not constrain the return distribution on a finite set of support points.
As suggested by Dabney et al. [2018b], this may be advantageous when the underlying range
of returns varies significantly across different states.

Both algorithms described so far have been widely tested on the Atari Games, resulting in
excellent performances. A comparison between the human-normalised scores (Hasselt et al.
[2016]) obtained by C51, QR-DQN and some of the most successful deep RL algorithms is
reported in Table 3.1.

Mean Median
DQN 228% 79%
DDQN 307% 118%
DUEL. 373% 151%
PRIOR. 434% 124%
PRIOR. DUEL. 592% 172%

C51 701% 178%
QR-DQN 864% 193%

Table 3.1 Best mean and median performances (expressed as human normalised scores) of
DQN, Double DQN (DDQN) (Hasselt et al. [2016]), Dueling Architecture (DUEL) (Wang
et al. [2016]), Prioritised Replay (PRIOR) (Schaul et al. [2016]), C51 and QR-DQN. These
scores are obtained by training each agent for 200 million frames.

Citing the words of Bellemare et al. [2017]: “It’s already evident from our empirical results
that the distributional perspective leads to better, more stable reinforcement learning”.
However, several questions remain open:

• Why does the C51 algorithm provide very good performances despite the gap between
theory and practice present in its formulation?

• Why does DRL work better than “classical” RL?

• Is it possible to introduce a common theoretical ground for apparently different DRL
algorithms such as C51 and QR-DQN?
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3.3 Towards a More Principled Formulation of DRL

In this section, we provide a summary of the most significant attempts at answering the set of
questions introduced at the end of the previous paragraph. The following results have been
extracted from the most recent works in the DRL literature and, as we will see, some of them
leave room for further improvements and refinements.

3.3.1 C51: Bridging the Theory-Practice Gap

In this section, we provide a formal justification of the projection step introduced in Belle-
mare et al. [2017] which, despite being a key component of the final algorithm, does not find
any theoretical motivation in the original paper.

We start by introducing a new metric, the Cramér metric, that combines useful properties of
the KL divergence and the Wasserstein distance.

The Cramér Distance

The Cramér distance (Rizzo and Székely [2016]) between two distributions P and Q is given
by:

l2(P,Q) :=
(∫

∞

−∞

|FP(x)−FQ(x)|2 dx
)1/2

(3.19)

where FP and FQ are the cumulative distribution functions of P and Q respectively8. It can be
proved (Bellemare et al. [2018]) that the Cramér distance satisfies three important properties,
as shown by the following theorem.

• Theorem 3.3.1 (Bellemare et al. [2018]) Consider two random variables X ,Y , a ran-
dom variable A independent of X ,Y , and a real value c > 0. Then,

l2(A+X ,A+Y )≤ l2(X ,Y ) (III) l2(cX ,cY )≤ |c|β l2(X ,Y ) (SSS) (3.20)

where β = 1
2 . Furthermore, the Cramér distance has unbiased sample gradients. That

is, given Xm := X1, . . . ,Xm drawn from a distribution P, the empirical distribution
P̂m := 1

m ∑
m
i=1 δXi , and a distribution Qθ :

EXm∼P∇θ l2
2
(
P̂m,Qθ

)
= ∇θ l2

2 (P,Qθ ) (UUU) (3.21)
8Similarly to the Wasserstein metric, given two value distributions Z1,Z2 ∈Z , we can define the maximal

form of the Cramér distance as l2 (Z1,Z2) := supx,a l2 (Z1(x,a),Z2(x,a))
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Interestingly, Bellemare et al. [2018] showed that the p-Wasserstein metric possesses proper-
ties III and SSS (with β = 1) but not UUU . As opposite, the KL divergence possesses property UUU
but not SSS.

As shown in Bellemare et al. [2017], III and SSS are crucial to prove the contraction property of
the distributional Bellman operator. On the other hand, as we saw in the previous section
when we defined the quantile regression loss, property UUU is key to design loss functions that
are compatible with SGD and whose minimisation converges to the right minimum.
Therefore, in virtue of its good properties, the Cramér distance seems to be an ideal candidate
for DRL algorithms.

The Projection Operator in the C51 Algorithm

The results reported in this section are mainly extracted from Rowland et al. [2018] and
presented here with a slight change of notation for the sake of coherence with the previous
sections.
We start by the most important result in Rowland et al. [2018] which provides a meaningful
interpretation of the C51 projection operator Φ in terms of the Cramér metric (in its maximal
form) defined in the previous section.

• Theorem 3.3.2 (Rowland et al. [2018]) The operator ΦT π is a
√

γ-contraction in
l2, where γ ∈ [0,1) is the discount factor. Further, there is a unique distribution
function ZC such that given any initial distribution function Z0, we have:

(ΦT π)m Z0→ ZC in l2 as m→ ∞ (3.22)

Although the previous theorem proves that the combination of the projection operator Φ

and the Bellman operator T π is contraction in the Cramér metric, it is still unclear how the
limiting distribution ZC is related to the “true” distribution Zπ . Fortunately, it can be proved
(Rowland et al. [2018]) that the following result holds:

l
2
2 (ZC ,Zπ)≤ 1

(1− γ)
max

1≤i<N
|zi+1− zi| (3.23)

where N is the number of support points of the parametrised distribution. Interestingly, Eq.
3.23 shows that, as the density of support points in the interval [z1,zN ] increases, the true
distribution can be approximated with increasingly higher accuracy.
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3.3.2 Why does DRL work better than “classical” RL?

A clear theoretical explanation of the successful performances of DRL algorithms compared
to standard “expectation-based” RL techniques is still missing. However, the first attempts at
coping with this open-problem have provided interesting results.

In Lyle et al. [2019], an investigation of the behavioural differences between distributional
and expectation-based RL algorithms is carried out. The methodology used to draw this com-
parison is based on coupling the experience exploited by the update rules of the two classes
of algorithms. In other words, given a distributional update rule UD and the corresponding
expectation-based operator UE , the sequence of updates in the two cases is described as
follows:

Qt+1 :=UE (Qt ,ωt) Zt+1 :=UD (Zt ,ωt) (3.24)

where ωt is the common sample of experience used by the two agents at time-step t.

In Lyle et al. [2019], the goal is to identify under which conditions the following relation is
satisfied:

Z0
E
= Q0⇐⇒ Zt

E
= Qt ∀t ∈ N,∀ Z0,Q0 (3.25)

where the notation E
= has the following interpretation:

Z E
= Q⇐⇒ E[Z(x,a)] = Q(x,a) ∀(x,a) ∈X ×A (3.26)

In the paper, the authors use the criterion in Eq. 3.25 to establish if a standard RL algorithm
and its distributional counterpart share the same behaviour.

Surprisingly, it has been shown that, when the tabular and the linear approximation settings
are considered, using DRL instead of standard RL algorithms is not beneficial (the algorithms
are equivalent in the sense specified by Eq. 3.25) and it has been empirically demonstrated
that it can sometimes hinder performances. Similar negative results concerning the linear
approximation setting have been highlighted in Bellemare et al. [2019].

On the other hand, when non-linear approximators such as deep neural networks are used,
Eq. 3.25 does not hold, meaning that that the two classes of algorithms behave differently, as
confirmed by the success of DRL over standard RL approaches.
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The aforementioned recent findings seem to suggest that a distributional approach to RL is
actually beneficial only within a DL framework. The reason why this is the case is still not
clear and needs to be further investigated.

3.3.3 DRL: a Comprehensive Interpretation

In this section, we provide a brief summary of one of the most recent and interesting advances
in the DRL theoretical formulation (Rowland et al. [2019]). The main contribution of this
work is to propose a unifying framework that allows us to view apparently diverse DRL
algorithms such as C51 and QR-DQN under the same perspective.

Specifically, as explained in Rowland et al. [2019], DRL algorithms can be rephrased in
terms of two basic complementary concepts, namely statistics and imputation strategies,
which we define in the next section.

Statistics and Imputation Strategies in DRL

A statistic is simply defined as a function s : P(R)→ R, where P(R) is the space of
probability distributions9.

DRL algorithms can be generally interpreted as methods devised to recursively estimate sets
of statistics. While the statistics learned in QR-DQN can be easily identified as the finite set
of quantiles extracted from the target distribution by minimising the quantile regression loss,
the statistics associated with the C51 algorithm are less obvious to recognise. As shown by
Rowland et al. [2019], given a set of support points z1 < .. . < zK , the statistics learned in
C51 are defined as:

szk,zk+1(µ) = EZ∼µ

[
hzk,zk+1(Z)

]
for k = 1, . . . ,K−1 (3.27)

9Here, we use a slightly different and more imprecise notation than the original paper. In Rowland et al.
[2019] the return distribution is indicated as ηπ(x,a), whereas here Zπ(x,a) is used. Although this notation is
incorrect since Z is used also to indicate the return random variable, we use it for the sake of coherence with the
previous sections.
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where µ := (T πZ)(x,a) is the target distribution and the function ha,b : R→ R is defined as
follows:

ha,b =


1 if x≤ a
x−b
a−b if x ∈ (a,b)

0 if x≥ b

(3.28)

DRL algorithms are all based on a common recursive update scheme for the corresponding
statistics, which is given by:

ŝk(x,a)← sk ((T
πZ)(x,a)) (3.29)

where ŝk(x,a) denotes the current approximation of the value of the statistic sk(x,a) at a state
action pair (x,a). In fact, in order to use Eq. 3.29, we would need to have access to the target
distribution10 T πZ which in turn depends on the return distribution Z(x′,a′) at each possible
next state-action pair (x′,a′). Indeed, the knowledge of the target distribution would allow us
to compute the argument of the statistic function sk and perform the update.

The next state-action pair distribution Z(x′,a′), and hence the target distribution T πZ(x,a)
can be obtained by applying an imputation strategy. An imputation strategy Ψ : RK→P(R)
is a function that maps a set of statistic values into a distribution that is characterised by those
statistic values.

As shown in Rowland et al. [2019], both C51 and QR-DQN use imputation strategies in
their implementations. In QR-DQN, given a collection of statistic values σ1:K ∈ RK , the
imputation strategy is given by Ψ(σ1:K) =

1
K ∑

K
k=1 δσk . In C51, given approximate statistics

ŝzk,zk+1(x,a) for k = 1, . . . ,K−1, the imputation strategy is given by selecting the distribution

∑
K
k=1 pkδzk such that p1 = ŝz1,z2(x,a), pk = ŝzk,zk+1(x,a)− ŝzk−1,zk(x,a) for k = 2, . . . ,K − 1,

and pK = 1−∑k<K pk.

We are now in the position to define a general three-step procedure to guide the design of new
DRL algorithms and to explain the behaviour of the existing ones (Rowland et al. [2019]):

• Select the family of statistics to learn

10Or an approximation of it.
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• Select an imputation strategy

• Apply Eq. 3.29 to perform updates

This rationale is summarised in the pseudocode reported below and is illustrated in Fig. 3.4.

Algorithm 5 Generic DRL update algorithm.

Require: Statistic estimates ŝ1:K(x,a) ∀(x,a) ∈X ×A

and k = 1, ...,K, imputation strategy Ψ

Select state-action pair (x,a) ∈X ×A to update.
Inpute distribution at each possible next state-action pair:

Z(x′,a′) = Ψ(ŝ1:K(x′,a′)), ∀(x′,a′) ∈X ×A

Update statistics at (x,a) ∈X ×A :
ŝk(x,a)← sk ((T

πZ)(x,a))

Fig. 3.4 DRL formulated in terms of statistics and imputation strategies. Image extracted
from Will Dabney’s presentation at ICML 2019.

The new framework described in this section is particularly interesting because it allows
us to interpret all the existing DRL algorithms under the perspective of learning sets of
statistics. At the same time, this new point of view provides a more principled and consistent
way to design novel DRL algorithms. For instance, in Rowland et al. [2019], the authors
introduce Expectile-Regression DQN (ER-DQN), a new DRL algorithm based on learning
expectiles instead of quantiles. The first tests of ER-DQN on the Atari games seem to provide
improved results, in terms of mean human-normalised performances, relative to existing
DRL techniques, such as QR-DQN.

https://icml.cc/media/Slides/icml/2019/104(12-16-00)-12-16-25-4534-statistics_and_.pdf
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3.4 Applications and Current Trends

In this section, we build upon the concepts introduced so far to describe how distribu-
tional methods can either be effectively exploited to accomplish specific RL tasks or how
they can be integrated into other algorithms to boost their performance in various RL contexts.

In particular, in the following, we analyse three scenarios in which distributional algorithms
have been recently employed:

• Uncertainty and risk estimation: Can we exploit the richer information content
provided by the return distribution to model uncertainty in RL tasks or to design
risk-aware policies?

• Performance optimisation: Can the combination of DRL algorithms with recent
technical advances in the deep RL framework produce better performances?

• Continuous control setting: Can DRL algorithms be efficiently applied to RL envi-
ronments characterised by continuous action spaces, such as robotics tasks?

3.4.1 Uncertainty and Risk Estimation

Learning the return distribution empirically results, in and of itself, in better performances.
Several interpretations of this behaviour have been proposed and some of them impute the
success of DRL algorithms to their interaction with DL techniques (Lyle et al. [2019]) or to
the introduction of a set of auxiliary tasks carrying more training signals than a scalar value
Q(s,a) (Francois-Lavet et al. [2018]).

Despite their empirical success, all the algorithms described in the previous sections do not
directly take advantage of the estimated return distribution. Indeed, they follow the same
approach as standard RL algorithms where the resulting policies are entirely based on the
mean of the return distribution.

Intuitively, as mentioned in the thought experiment at the beginning of the chapter, having
access to the entire return distribution could provide useful information about the risk and
the uncertainty characterising the RL task under consideration.

In the following section, we first briefly discuss the two main types of uncertainty character-
ising a typical RL problem and then we present some examples of DRL algorithms applied
to risk and uncertainty estimation.
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Two Types of Uncertainty

RL algorithms are characterised by two types of uncertainty: epistemic or parametric uncer-
tainty and aleatoric or intrinsic uncertainty (Moerland et al. [2018]). The former arises from
our limited knowledge of the environment and can be reduced by collecting more data. The
second derives from the inherent stochasticity characterising the environment or the policy
and represents an intrinsic feature of the RL task under consideration.

As explained in Moerland et al. [2017a], estimating these two types of uncertainty can be
useful for different purposes: the epistemic uncertainty can be used to guide exploration
towards poorly known states, whereas the intrinsic uncertainty can be more informative for
designing risk-sensitive policies, where careful planning strategies can be devised from a
better knowledge of the environmental uncertainty. This last kind of uncertainty can be
efficiently modelled by the distribution over returns (Moerland et al. [2017a]; Clements et al.
[2019]; Dabney et al. [2018a]; Nikolov et al. [2018]).

In the following, we present three recent examples from the literature of how DRL can be
used to design risk-aware policies and enhance exploration.

1) Quantile-Based Risk Estimation. In Zhang et al. [2018], a new interesting action-
selection heuristic, called QUOTA, is introduced. This simple approach is entirely based on
the quantile distribution, that represents the output of the QR-DQN algorithm.

The basic idea is that high (low) quantiles correspond to optimistic (pessimistic) estimates of
the action value. In Zhang et al. [2018], actions are selected w.r.t. specific quantile intervals
that are chosen depending on the level of optimism of the agent at a particular time-step
during its interaction with the environment.

To put this idea in practice, in Zhang et al. [2018], the option framework (Sutton et al. [1999])
is used: besides the standard policy, a higher-level policy, QΩ, that establishes which quantile
interval to use is learned.
More formally, at time-step t, actions are selected as follows:

at ←

{
random action w.p. ε

argmaxa∈A ∑
( j−1)K+K
k=( j−1)K+1 θk (xt ,a) w.p. 1− ε

(3.30)
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where j = 1, ...,M indicates the particular option selected by the high-level policy and θk

denotes the k-th quantile.

This method has been tested on both a relatively simple toy experiment and on the Atari
games suite. The toy experiment consisted of two simple Markov chains whose solution
required optimistic and pessimistic strategies respectively. The comparison of the quantile-
based action-selection rule described above and other techniques designed by taking into
account chain-specific knowledge, shows that QUOTA is able to adapt to the particular
environment by following either an optimistic or pessimistic strategy automatically.
QUOTA is then tested on the Atari games, resulting in improved performances than QR-DQN
in 23 games and worse results in 14.

As explained in Dabney et al. [2018a], the canonical approach to design risk-averse or
risk-seeking policies is based on the introduction of a utility function that is used to distort
a value distribution. The method proposed in Zhang et al. [2018] is particularly interesting
because, as the authors suggest, “using the quantile-based action-selection implicitly adopts
the idea of utility function.”, whose role is played by the high-level policy QΩ in QUOTA.
Compared to classical approaches where a utility function is specified in advance, in QUOTA
QΩ is automatically learned from experience samples.

2) A Bayesian Perspective on DRL. This paragraph discusses a new exploration technique
recently proposed in Clements et al. [2019]. In this work, a Bayesian approach is combined
with the QR-DQN algorithm to decouple epistemic and aleatoric uncertainty. In particular,
the quantile regression loss, given by:

L (θθθ) = Ez∼Z(x,a)

[
N

∑
i=1

ρτi (z−θi(x,a))

]
, where ρτi(u) = u

(
τi−δ{u<0}

)
(3.31)

can be viewed as the negative log-likelihood of a dataset D consisting of K samples (z1, ...,zK)

drawn form a distribution Z(x,a) and N given quantile estimates11:

P(D|θθθ) =C exp

(
− 1

K

K

∑
j=1

N

∑
i=1

ρτi

(
z j−θi(x,a)

))
=C exp(−L (θθθ)), (3.32)

11Interestingly, in the paper it is shown that the quantile loss can be related to a likelihood function based on
the asymmetric Laplace distribution.
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where C = ∏
N
i=1 τi(1− τi).

A Bayesian approach to uncertainty estimation requires to specify a prior P(θθθ) over quantiles.
The product of this prior by the likelihood defined in Eq. 3.32, P(D|θθθ)P(θθθ), is proportional
to the posterior distribution over quantiles.

However, if the quantiles are approximated by a neural network, they will be parametrized
by the set of weights and biases of the network, that we indicate as ψψψ . A popular choice of
the prior over the network parameters is given by a Gaussian distribution with zero mean and
variance σ2

ψψψ . With this choice of prior, the posterior distribution can now be written as:

P(θθθ(ψψψ)|D) ∝ exp
(
−L (θθθ(ψψψ))−σ

2∥ψψψ∥2) (3.33)

where σ = σθθθ/σψψψ , and σθθθ is a parameter regulating the relative magnitudes of quantile and
network parameters. The framework introduced above allows us to decouple parametric
and intrinsic uncertainty. In particular, the first is estimated by the variance of the posterior
distribution, whereas the second is quantified by the variance of the return distribution.

The approach to exploration proposed in Clements et al. [2019] is mainly based on Thompson
sampling (Thompson [1933]) and consists in the following steps:

• Estimate the mean µZ,a and the variance σ2
Z,a of the posterior distribution for each

action a. This step is based on a modified version of the “anchored neural network”
approach used in Pearce et al. [2018].

• Draw a sample Q̂a from N
(

µZ,a,σ
2
Z,a

)
• Select an action: argmaxa

[
Q̂a
]

The technique described above has been tested on the CartPole environment12 and a compar-
ison with the classical ε-greedy strategy has been drawn. In particular, the exploration ability
of the two strategies has been assessed by starting the game from different initial positions.
The idea is that a good exploration should guarantee better generalisation performances.
The result is that the Bayesian approach based on DRL described in Clements et al. [2019]
generalizes better that the simple ε-greedy strategy, as shown in Fig. 3.5.

12For a complete description of this environment, please refer to the relative OpenAI webpage.

https://gym.openai.com/envs/CartPole-v0/
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Fig. 3.5 QR-DQN with Thompson sampling generalizes better than QR-DQN with ε-greedy
exploration strategy (Clements et al. [2019]).

The main shortcoming of this work is that, although the proposed method seems promising,
there is not an obvious way to replicate the same generalisation experiment described before
on the Atari games. In the absence of an explicit assessment of the behaviour of the algorithm
in more challenging environments is not possible to demonstrate its efficacy.

3) Information Directed Exploration. Common approaches to exploration do not take
into account an important aspect that plays a major role in RL: observation noise is rarely
uniformly distributed and often depends on the evaluation point. In other words, in RL
observation noise is heteroscedastic. This means that the variance of the return distribution Z
is a function of states and actions.

In Nikolov et al. [2018], an interesting method that copes with heteroscedasticity in RL is in-
troduced. This new approach combines ideas from DRL and Information-Directed Sampling
(IDS) (Kirschner and Krause [2019]), a framework for designing exploration-exploitation
strategies based on the ratio between regret and information gain.

More formally, at each time-step t, the IDS policy is defined as:

aIDS
t (x) ∈ argmin

a∈A

∆̂π
t (x,a)

2

It(x,a)
(3.34)
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where It(x,a) is an arbitrary information gain function and ∆̂π
t (x,a) is a conservative estimate

of the instantaneous regret13:

∆
π
t (x,a) := EP

[
max

a′
Qπ
(
x,a′

)
−Qπ

t (x,a)|Ft−1

]
(3.35)

with Ft = {x1,a1,r1, . . .xt ,at ,rt} being the observation history at time t. In order to explicitly
compute the regret-information ratio defined in Eq. 3.34, we need to introduce a meaningful
approximation, ∆̂π

t (x,a), of the instantaneous regret in Eq. 3.35 and we must specify a
particular information gain function.

In Nikolov et al. [2018], an approximation of the instantaneous regret based on confidence
intervals is proposed:

∆̂
π
t (x,a) = max

a′∈A

(
µt
(
x,a′

)
+λtσt

(
x,a′

))
− (µt(x,a)−λtσt(x,a)) (3.36)

where λt is a scaling hyperparameter while µ and σ are obtained by computing the empirical
mean and variance of the Q-values estimated by an ensemble of K action-value functions,
following the approach of Osband et al. [2016a]:

µ(x,a) =
1
K

K

∑
k=1

Qk(x,a), σ(x,a)2 =
1
K

K

∑
k=1

(Qk(x,a)−µ(x,a))2 (3.37)

Finally, in Nikolov et al. [2018] the following information gain function is proposed:

It(x,a) = log
(
1+σt(x,a)2/ρt(x,a)2) (3.38)

where ρ(x,a)2 is equal to the variance of the return distribution, i.e. Var(Z(x,a)). Given a
state x, the information gain function defined in 3.38 is small for actions with little uncertainty
in the estimated Q-values or with reward characterised by high observation noise.

From an algorithmic standpoint, the method proposed in Nikolov et al. [2018] estimates
epistemic and aleatoric uncertainties by splitting the DQN architecture into K +1 heads after
the convolutional modules: the first K heads are used to compute the mean and the variance
of the Q-values (Eq. 3.37), while the remaining one outputs the estimate of Z(x,a) that is in
turn used to compute ρ(x,a)2. In Nikolov et al. [2018], this last head is trained with C51 and

13This quantity can not be computed directly since it depends on the true value function, Qπ , that is not
available in practice.
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for this reason the resulting algorithm is called C51-IDS.

The results of the experiments on the Atari games demonstrate that C51-IDS outperforms
both C51 and QR-DQN in terms of mean and median of best human-normalised scores. Fur-
thermore, C51-IDS provides a significant performance improvement over its homoscedastic
counterpart, called DQN-IDS, which simply sets ρ(x,a)2 to a constant. This last observation
gives further evidence of the beneficial empirical impact of a distributional approach in the
context of deep RL.

The approach described in this section represents a convincing demonstration that the return
distribution provided by DRL algorithms can be efficiently exploited to model uncertainty in
RL problems. Moreover, this method is particularly interesting because it explicitly builds
its policy (Eq. 3.34) by including information on both the parametric uncertainty (that is
considered in Eq. 3.37 by averaging multiple predictions of the Q-function) and the intrinsic
uncertainty (modelled by the return distribution and encoded in the term ρ(x,a) used in Eq.
3.38).

3.4.2 DRL: Performance Optimization

Deep RL is a well established and growing research field. DQN (Mnih et al. [2015]) is prob-
ably the most popular deep RL algorithm and since its first publication, many independent
extensions have been proposed to further enhance its performances. In Hessel et al. [2017],
the most successful improvements to the DQN baseline are combined together and their rela-
tive contribution in boosting performances is measured to establish their effective importance.
The resulting algorithm is called Rainbow and provides the current state-of-the-art results on
the Atari games suite. A comparison of the performances of Rainbow and other deep RL and
DRL methods is shown in Table 3.2.

Six extension have been taken into account to devise the Rainbow algorithm: Double Q-
Learning (Hasselt et al. [2016]), Prioritised Replay (Schaul et al. [2016]), Dueling Networks
(Wang et al. [2016]), Multi-Step Learning (Sutton [1988]), Noisy Nets (Fortunato et al.
[2017]) and C51 (Bellemare et al. [2017]).

When analysing the single contribution of each of the aforementioned techniques to the final
performance, it turns out the three most important methods are Prioritised Replay, Multi-Step
Learning and C51. In particular, the distributional approach results in being particularly
important in those games where Rainbow performed at the human level or above. This last
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observation can be interpreted as a further proof of the positive impact of a distributional
approach on RL.

Mean Median
DQN 228% 79%
DDQN 307% 118%
DUEL. 373% 151%
PRIOR. 434% 124%
PRIOR. DUEL. 592% 172%

C51 701% 178%
QR−DQN 864% 193%

RAINBOW 1189% 230%
Table 3.2 Updated version of Tab. 3.1, including the performances of Rainbow under the
same training conditions.

3.4.3 Continuous Action Space

In this section, we discuss an example where the DRL framework is applied to the continuous
control setting.
The design of efficient algorithms that can solve complicated tasks in high-dimensional state
and action spaces represents a crucial challenge for modern AI. Such techniques could indeed
find numerous applications in several complex real-world scenarios. In robotics, for instance,
dealing with continuous action spaces is key.

The great success of DQN (Mnih et al. [2015]) lays on its capacity of implementing an
efficient decision-making pipeline through a direct interpretation of real-world visual stimuli.
However, deep RL algorithms such as DQN are often limited to discrete and finite action
spaces.

In this section, we briefly present a relatively recent algorithm called Distributed Distribu-
tional Deterministic Policy Gradient (D4PG) (Barth-Maron et al. [2019]), that builds on the
Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al. [2015]) we introduced
in Chapter 2 to provide state-of-the-art performances in multiple continuous control tasks
such as manipulations tasks and hard obstacle-based locomotion tasks.
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D4PG introduces a number of refinements to DDPG to boost its performances and, in Barth-
Maron et al. [2019], an analysis of the individual contribution of each of these improvements
is carried out. In particular, prioritised experience replay, N-step returns and the distributional
framework (C51) are incorporated into the DDPG baseline architecture.

From the ablation of the aforementioned individual components, it is possible to assess
which of them contributes most significantly to the final performances. It turns out that the
combination of DDPG with C51 is beneficial in the vast majority of control tasks considered
in Barth-Maron et al. [2019]. Additionally, the inclusion of the distributional framework
results in being particularly important in the hardest tasks where it significantly enhances
performances.





Chapter 4

Experiments and Future Directions

In the last chapter, we introduced the motivation and the logic behind DRL along with an
overview of the most recent works in the field.
The goal of this chapter is to present a number of experiments aimed at supporting some of
the considerations reported in Chapter 3 and discuss a number of research scenarios where
we believe DRL could be fruitfully applied.

We start from an analysis of the two most popular distributional algorithms, namely C51 and
QR-DQN. Specifically, we compare their performances with those of DQN on three OpenAI
gym environments and we analyse their output return distributions.

Next, we propose a simple exploration method to cope with the problem of sample-inefficiency
affecting model-free RL algorithms. In particular, we present an extension of the model-based
approach proposed in Gou and Liu [2019], based on the Kernel Density Estimation technique.

In the last part of the chapter, we discuss three future research directions, with a particular
focus on presenting our findings on the potential application of DRL to the financial field.

4.1 The Return Distribution

In this section, we present a comparison between C51, QR-DQN and DQN in terms of
performances on three popular OpenAI gym environments, namely Mountain-Car, CartPole
and Acrobot. Finally, we present some illustrations of the return distribution provided by
C51 and QR-DQN when applied to the Cartpole and the Mountain-Car environments.
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4.1.1 Performance Comparison

Figs. 4.1, 4.2, 4.3, show a comparison of the performances of DQN, C51 and QR-DQN. All
the environments used for these experiments are characterised by finite-dimensional state
and action spaces, as reported in Tab. 4.1.

State-Space Action Space
CartPole 4 2
Acrobot 6 3
MountainCar 2 3

Table 4.1 State and action spaces dimensions of the three environments under consideration.

Since the state is not represented by images as it was for the Atari Games, in the architectures
used for these experiments we substituted the convolutional modules of the original algo-
rithms with standard feed-forward fully-connected layers. In particular, for each experiment
we used the same architecture for all the three algorithms1.

Specifically, we used a three-layer neural network with 256 units in the hidden layer. The
Adam optimiser (Kingma and Ba [2014]) was chosen to train the network and the learning
rate providing the best performances was selected individually for each algorithm. A mini-
batch size of 32 was used and the target network was updated every 10 episodes for all the
experiments. Finally, the number of quantiles and atoms was set equal to 51 and the same
ε-greedy exploration strategy was used for each algorithm.

The results in Figs. 4.1, 4.2, 4.3 have been obtained from 30 independent runs of each
algorithm. Solid lines are used to indicate the mean and shaded regions represent the
confidence region.

1The three algorithms are characterised by different final layers, as described in Chapter 2 and Chapter 3.
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Fig. 4.1 (Left) Running Average of the episode cumulative rewards obtained by C51, QR-
DQN, DQN on (Right) the CartPole environment. The learning rates used for C51, QR-DQN
and DQN are 10−3,10−2 and 10−2 respectively. A complete description of this environment
can be found here.

Fig. 4.2 (Left) Running Average of the episode cumulative rewards obtained by C51, QR-
DQN, DQN on (Right) the AcroBot environment. The learning rates used for C51, QR-DQN
and DQN are 10−3,10−2 and 10−3 respectively. A complete description of this environment
can be found here.

https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/Acrobot-v1/
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Fig. 4.3 (Left) Running Average of the episode cumulative rewards obtained by C51, QR-
DQN, DQN on (Right) the MountainCar environment. The learning rates of used for C51,
QR-DQN and DQN are 10−3,10−2 and 10−2 respectively. A complete description of this
environment can be found here.

The empirical evaluation reported in this section shows that in general, the distributional
algorithms provide better performances than DQN, although they converge to the same final
score on CartPole and Acrobot. On MountainCar, the difference in performance is more
distinct even if, also in this case , the three algorithms converge to the same final value after
many iterations. These results are in agreement with the experimental findings reported in
Bellemare et al. [2017]; Dabney et al. [2018b]; Lyle et al. [2019].

The reason why DRL algorithms provide better performances is still largely unaddressed
by the works in the literature. The current working hypothesis in the community is that
better results are induced by an auxiliary task effect (Jaderberg et al. [2016], Francois-Lavet
et al. [2018]; Lyle et al. [2019]). Specifically, the return distribution provides a richer set of
predictions than the single value function. These additional training signals lead to better
performances despite not being directly necessary for the maximisation of the expected return.

We believe that the idea of including auxiliary tasks into the RL problem under consideration
can be interpreted as taking into account a number of additional constraints that must be
satisfied throughout the learning process. The change of perspective from strictly value-based
to distributional algorithms can be viewed as the addition of the aforementioned types of

https://gym.openai.com/envs/MountainCar-v0/
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constraints that enrich the set of training signals available to the agent.

However, including auxiliary tasks often requires a significant amount of tuning to make sure
they do not conflict with the main task (Jaderberg et al. [2016]). In DRL, this does not seem
to be the case and this could be due to some special properties of distributional algorithms. A
deeper comprehension of these properties could lead to the design of even better auxiliary
tasks.

4.1.2 Return Distribution Visualisation

In this section, we provide a number of visualisations of the return distribution provided by
C51 and QR-DQN. Fig. 4.4 illustrates some examples of the output of the algorithms at four
different time-steps.

Fig. 4.4 The two different parametrisations of the return distributions associated with each
action, provided by C51 and QR-DQN on the CartPole and MountainCar environments. The
plots to the left show the cumulative distribution function (y-axis) associated with the return
values (x-axis) output by QR-DQN. The plots to the right show the output probabilities
provided by the C51 algorithm (y-axis) as a function of the return values (x-axis). Each
colour corresponds to a different action.

The first and second rows in Fig. 4.4 describe the output of QR-DQN and C51 associated
with two similar input states of the MountainCar and the CartPole environments, respectively.
The two algorithms have similar behaviours, indeed they both select the same action (“right”
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for the first row and “left” for the second) as the best one in order to achieve the largest
expected return from that state.

However, the output of C51 tends to overestimate the variance of the return distribution. This
is a well-known problem of C51 and has already been highlighted by the experiments on
the Atari games performed in Bellemare et al. [2017] and by the theoretical considerations
developed in Rowland et al. [2019].
In particular, this behaviour can be viewed as a side-effect of the action of the projection
operator Φ (see Eq. 3.11), which spreads probability mass across the space of returns.
Bellemare et al. [2017] interpret this effect as a consequence of “the discretization of the
probability diffusion process induced by γ”.
We believe that this bias introduced by the C51 algorithm could be potentially harmful in
those applications that aim to design risk-aware policies or estimating risk and uncertainty.

Fig. 4.5 shows an interesting aspect of the return distribution provided by the C51 algorithm.
Specifically, in the case illustrated in the left image, the car does not have enough velocity to
reach the top of the hill and this is reflected by the second mode of the return distribution
associated with smaller values. The shape of the return distribution in this case highlights the
agent’s uncertainty about the outcome of the episode.

On the other hand, in the case illustrated in the right image, the agent has enough speed to
climb the hill and this results in a more peaked distribution reflecting the agent’s belief of
successfully terminating the episode.

This example is particularly interesting since the MountainCar environment is purely deter-
ministic given that the state-transition function is entirely determined by the physics of the
problem. The multimodality in the return distribution showed in Fig. 4.5 captures the agent’s
uncertainty resulting from an incomplete knowledge of the environment.

Furthermore2, in C51, we perform the policy improvement step as though the evaluation
is complete even if we have only done a small number of updates. This means that the
distribution shifts towards the potentially deterministic return for a policy, but then the policy
moves on ahead before it converges. This induces a non-stationary target that looks like a
non-deterministic signal. As the policy converges, the distribution moves more consistently
towards a single (now stationary) target and this effect disappears.

2We thank Will Dabney for this useful hint.
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Fig. 4.5 Comparison of the return distributions associated with two different scenarios in the
MountainCar environment.
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4.2 Model-Based Exploration

As mentioned in Chapter 2 and Chapter 3, the major drawback of model-free RL methods
and hence of all the existing distributional algorithms, lays in their sample-inefficiency, i.e.
the large number of agent-environment interactions they require to converge. A possible way
to improve this aspect is to implement better exploration strategies that can allow the agent
to get a better knowledge of the environment by selecting actions that lead to previously
unexplored states.

On the other hand, DQN, C51 and QR-DQN make use of an ε-greedy exploration strategy
based on choosing a random action with probability ε , where ε is a decreasing function of
the number of iterations. This method can be particularly inefficient (Osband et al. [2016b]),
especially on environments characterised by sparse rewards (Gou and Liu [2019]).

In this section, we propose a variation of the model-based exploration method described
in Section 2.2.1. In our experiments, we used a feed-forward neural network characterised
by two 256-units hidden layers to model the environment dynamics. The input of the
network is a state-action pair (x,a), while its output is given by the next-state prediction
x′. The effectiveness of deep neural networks to describe the model dynamics has been
previously demonstrated for example in Nagabandi et al. [2018], where the authors claim
that: “multi-layer neural network models can in fact achieve excellent sample-complexity in
a model-based reinforcement learning algorithm”.

In order to drive exploration, we modify Eq. 2.8 by replacing the Gaussian assumption on the
state distribution with the model provided by a non parametric density estimation technique
called Kernel Density Estimation3, KDE for short. The advantage of this method over the
original one is that it is more flexible and can better adapt to the a-priori unknown shape of
the state distribution.

Fig. 4.6 shows the states visited by the agent over 50 episodes of pure exploration (ε = 1)
based on the standard ε-greedy method (left) and on the KDE model-based exploration
method.

3For more details about this method, please refer to Appendix A
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Fig. 4.6 Comparison between standard ε-greedy exploration (left) and model-based explo-
ration (right).

As shown above, the model-based exploration strategy seems to be much more effective than
the standard technique based on random actions.
Fig. 4.7 reports a comparison in terms of performances of the C51 agent with the two types
of exploration strategies under consideration, showing that the exploitation of the knowledge
of the environment gained with the model-based approach leads to faster convergence than
the case when the standard exploration technique is used.

Fig. 4.7 Performance improvement of the C51 agent with model-based exploration over the
C51 agent with ε-greedy exploration. These results are obtained by forcing the agent to
explore for the first 50 episodes (ε = 1) and then fixing ε = 0.01.

The application of the KDE-based exploration method seems to be effective also on the
Acrobot environment which is characterised by a higher-dimensional state-space than Moun-
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tainCar. In particular, Fig. 4.8 shows a comparison between the regions of the state space
(first two dimensions) visited by the agent after 50 episodes of pure exploration.

Fig. 4.8 Comparison between standard ε-greedy exploration (left) and model-based explo-
ration (right) on the Acrobot environment. The first two dimensions reported above are the
sine and cosine of the first rotational joint angle, θ1 (measured w.r.t the vertical axis, see Fig.
4.9).

Again, the proposed model-based approach seems to provide better results in terms of
exploration than the standard one. In particular, with the ε-greedy exploration strategy, the
first link rarely exceeds the horizontal axis passing through the first joint (see Fig. 4.9).

Fig. 4.9 A schematic model of the Acrobot environment (Sutton [1996]).

A possible interpretation of the better performances provided by this method could be that
it represents an active exploration technique in contrast to the standard method based on
random action that can be viewed as a reactive exploration approach. As explained in
Shyam et al. [2019], the difference between reactive and active methods is that the former
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“accidentally observe something novel and then decide to obtain more information about it”,
whereas the latter actively perform the action that they believe could lead to unexplored states.

Although the method proposed in this section seems to outperform the standard exploration
strategy used by DQN, C51 and QR-DQN, further experiments on more challenging control
environments need to be carried out to assess its real value. Furthermore, when the com-
plexity of environments increases, it might be useful to consider different neural network
architectures to model the dynamics. For example, as suggested by Nagabandi et al. [2018],
instead of considering the next state, xt+1, as the output of the network, a better strategy
could be to model the difference, xt+1− xt between two consecutive states. This could be
advantageous when different actions result in very similar transitions, especially when the
time interval between two steps of the MDP is small.

As a final remark, it is worth mentioning that the specific type of exploration strategy can
actually depend on the characteristics of the particular environment under consideration (e.g.
sparse rewards, high-dimensional state and action spaces, etc..).

.

4.3 Future Work

In this section, we propose three future research directions where we believe distributional
algorithms could be successfully employed. Specifically, we focus on the combination
of DRL with existing model-based approaches, the design of a new algorithm capable of
potentially improving performances on the Atari games and finally, we briefly discuss the
application of distributional algorithms to the financial setting.

Model-Based Approaches. All the distributional algorithms proposed so far are model-
free and therefore they suffer from sample-inefficiency. Since DRL methods seem to provide
very good results in terms of learning performances, a new natural research direction consists
in finding a way to reduce the number of interactions with the environment they need to
converge. The intersection between model-based and model-free techniques seems to be a
very interesting avenue for potentially combining the sample-efficiency of the former and the
learning performances of the latter.

One possible research direction is to further investigate whether model-based methods such as
the one proposed in Section 4.2 can be valuable options to enhance exploration of model-free
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algorithms. In practice, new experiments on more complex environments can be performed
to further assess the value of the KDE-based technique used in Section 4.2 and different
non-parametric density estimation techniques can be investigated. Moreover, we expect
that, as the state-dimensionality grows, more advanced neural network architectures will be
needed to fit the transition dynamics.

Beside the design of better exploration strategies, model-based approaches can be applied
following the paradigm introduced with the Dyna algorithm (Sutton [1991]). We believe
that a very interesting future research direction could be to explore how to combine DRL
techniques with model-based algorithms, such as the SimPLe algorithm (Kaiser et al. [2019])
described in Section 2.2.2, so that experience samples can be simulated and efficient strategies
can be planned directly from the learned model of the environment. On the other hand, a
limitation of this approach lays in its potential high computational load. SimPLe makes use of
a complex architecture to model the environment and its combination with DRL algorithms
could be harmful from this perspective. Interestingly, the return distribution is closely related
to the randomness of outcome in the model-based transition function. Therefore, DRL al-
gorithms could actively cooperate with the model-based component to build the world-model.

Performance Optimization. DRL algorithms provide state-of-the-art performances on
several challenging RL environments. In particular, as explained in Section 3.4.2, the Rain-
bow algorithm combines several successful deep RL techniques in order to optimise the final
results on the Atari games. An important component of Rainbow is the C51 algorithm that
significantly contributes to the algorithm final performances.

An interesting subject of future work could be to modify the Rainbow agent by replacing
C51 with QR-DQN in light of the better results obtained by the latter compared to the first
(see Tab. 3.2). This modification has the potential of further improving performances on the
Atari games, leading to new state-of-the-art results.

Applications to Finance. The application of ML techniques to finance is a very active
research area (Atsalakis and Valavanis [2009]; Emerson et al. [2019]; Fischer [2018]; Li
[2018]). However, the attention of the scientific community is mainly focused on SL methods
(Atsalakis and Valavanis [2009]), typically based on predicting financial assets or future
returns by using DL algorithms (Fischer [2018]).
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The application of RL, and specifically of deep RL, to trading financial assets and to the
portfolio optimisation problem has witnessed an increasing interest in the last few years. As
pointed out by Fischer [2018], deep RL has the potential to overcome some limitations of
the SL setting that can deteriorate its final performances. In particular, deep RL combines
the prediction of future asset’s prices and the actual trading decision problem into a unique
step, whereas classical ML approaches separate these two processes, leading to a series of
detrimental effects (Fischer [2018]; Hegde et al. [2018]).

The majority of the deep RL methods applied to trading are critic-only (e.g. Huang [2018])
(value-based) and actor-only (e.g. Deng et al. [2017] ) although a number of very recent
works are based on actor-critic algorithms such as DDPG (Hegde et al. [2018]; Liang et al.
[2018]; Xiong et al. [2018]) since these methods have the potential to combine the advantages
of the first two approaches. An interesting feature of actor-critic methods in the context of
finance is that they allow the agent to trade a potentially large number of assets or, more
generally, to perform many diverse trading decisions. Indeed, as mentioned in Section 2.6,
methods like DDPG, as opposed to value-based techniques like DQN, can be used to handle
problems characterised by high-dimensional action spaces.
The first potential contribution of DRL to finance could be to replace DDPG with D4PG in
light of its state-of-the-art performances on challenging control tasks (Barth-Maron et al.
[2019]; Huang et al. [2019]). The application of D4PG in this context would consists in a
relatively straightforward extension of the existing works based on DDPG whose results
could be used as a benchmark for comparing performances.

As explained by Li [2018] and Fischer [2018], taking into account risk is crucial in portfolio
construction. Many interesting methods have been introduced in the literature to cope with
this important task. For instance, in Ritter [2017], it is shown that by choosing a particular
reward function, it is possible to apply the Q-learning algorithm in such a way that a risk-
averse trading strategy is followed.
However, most of the proposed deep RL-based methods in the literature are focused on
maximising the expected value of some notion of return depending on the problem under
consideration. As suggested by Huang [2018], an alternative approach could be to choose
the action greedily with respect to the ratio between the expected return and its standard
deviation, i.e. the so-called Sharpe Ratio (Sharpe [1994]). The standard deviation of the
return could be directly estimated by a DRL algorithm such as QR-DQN (in order to avoid
the variance overestimation problem introduced by C51). A similar idea has been proposed
by Stanko [2018], where instead a risk-averse policy is learned by maximising the so-called
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Conditional Value-at-Risk (CVaR), one of the most widely used parameters to measure risk
in finance.
Furthermore, having access to the return distribution could be insightful for understanding if
any interesting pattern emerges under certain market conditions. In principle, given the high
level of stochasticity inherently present in the financial domain, we expect significantly more
complex distributions compared to those obtained from the deterministic environments of
the Atari games.



Chapter 5

Conclusions

In this thesis, we have described the most important features of DRL, a relatively new frame-
work based on a more general approach than that used by classic RL. The main ingredient
of this new formulation is the distributional Bellman’s equation which focuses on the entire
return distribution instead of its expected value. The basic idea is that the distributional
Bellman’s equation could potentially provide a more consistent description from a proba-
bilistic point of view than its “classical” counterpart by taking into account all the additional
constraints introduced by the higher-order moments of the return distribution.

To the best of our knowledge, this work represents the first extensive review of the most
relevant achievements reached in the field of DRL in the last few years. Since the literature
in this branch is quite sparse and very little connected, we believe that this project could be a
valuable resource for anyone interested in working on DRL.

We strongly believe that DRL is a very promising scientific area in light of the results obtained
by the existing techniques. However, as mentioned in the previous chapters, there are still
many questions that need to be addressed.

From a theoretical point of view, several advances have been made in the last few years,
although a mathematically principled justification of the positive impact of the distributional
approach on learning performances is still lacking. The interpretation based on auxiliary
tasks, although plausible and object of an active research area, is still scarcely supported by
robust theoretical arguments.

As a conclusive remark, we believe that DRL naturally lends itself to applications to those
fields where uncertainty and risk estimation leads to better performances. As shown in
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Chapter 3, several recent works are pointing in this direction. However, the application of
these methods to real-world problems is still strongly limited by their model-free nature.
As discussed in Chapter 4, a hybrid approach including both model-free and model-based
components could potentially bridge this gap.
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Appendix A

Kernel Density Estimation

Kernel Density Estimation1 is a classical approach to provide an estimate pn of the true
underlying probability distribution p describing a set of n independent observations x1, ...xn,
where xi ∈ RD.

The basic idea of KDE is summarised by the following equation:

pn(x) =
1
n

n

∑
i=1

1
h

D
K
(
∥x− xi∥

h

)
, (A.1)

where K is called kernel, whereas h is a scale parameter called bandwidth. In one-dimensional
problems (D = 1) a kernel can be defined as a function K : R→ R, possessing the following
properties: ∫

K(x)dx = 1,
∫

xK(x)dx = 0,
∫

x2K(x)dx < ∞ (A.2)

One of the most popular choices is the Gaussian kernel, which is defined as follows:

K(x) =
1√
2π

ex2/2 (A.3)

Common ways to define higher-dimensional kernels are given by:

D

∏
j=1

K
(
x j) or K(∥x∥) (A.4)

The choice of the scale parameter h is important to obtain a good estimate of the true
distribution. One possible way to determine an appropriate value for this quantity is to use

1This brief summary of KDE is extracted from Rosasco [2018].
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cross-validation of the training data. In our experiments in Chapter 4, we use the Scipy
implementation of KDE that utilises a Gaussian kernel and implements automatic bandwidth
determination.
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