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• Gaussian process (GP) regression models widely used for their expressiveness, robustness and
tractability

• Choice of kernel determines nature of GP — expressive kernels are needed

• Recent work [1] models kernel nonparametrically in a single-output time series setting

• Aim is to extend this work to multidimensional input and output spaces— numerous
important applications

Gaussian Process Convolution Model (GPCM) [1]

generative model

1 h ∼ GP(0,Kh) 2 Kf |h =1 h(t) ∗ h(−t) 3 f |h ∼ GP(0,Kf |h)

1h(t) ∗ h(−t) =
∫
R h(τ + t)h(τ )dτ

• Parameterising Kf |h as the convolution between h(t) and h(−t) ensures that
Kf |h is positive definite

• Equivalently, f = x ∗ h for x ∼ GP(0, δ(t− t′))
• Learning and inference are performed using state-of-the-art variational free-

energy approximations

• Particular choice of Kh reveals Kf |h as a spectral mixture kernel [2] with an
infinite number of components

Multidimensional Signal Estimation

Extension to multidimensional input space T involves
extending h’s domain to T ; for high-dimensional T let

h(t1, . . . , tn) = h1(t1) · · ·hn(tn)

• Separability of h avoids exponential growth in computational
complexity

application in astroinformatics
Unsupervised compensation of distortion due to the lens and
atmosphere in astrophotography

Sky Distortion Observed sky

∗ =

Estimate “real sky” from observed skyStar

further applications

• Image denoising

• Non-stationary signal estimation

Multi-Task Learning

Extension to incorporate multiple outputs fi:

Kfi,fj |h =
∑
k

hi,k(t) ∗ hj,k(−t)

application in geostatistics
Interpolation of concentration level surfaces of expensive to
sample minerals

Surface of expensive to sample
mineral

Surface of correlated, but
cheap to sample mineral

Exploit correlations between the surfaces to better estimate a
new point on the expensive one

further applications

• Study of transcription factors in gene expression

• Prediction of exchange rates

Bayesian Power Spectrum Estimation

The GPCM defines a distribution over stationary kernels, which
thus implies a distribution over power spectra

F
{
Kf |h

}
(f ) = |H(f )|2

applications

• Extension to multiple outputs to perform Bayesian cross power
spectrum estimation:

F
{
Kfi,fj |h

}
(f ) =

∑
k

H∗i,k(f )Hj,k(f )

• Bayes optimal signal detection in the power spectrum to
improve dynamic spectrum management
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