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Abstract

Gaussian process models are flexible, robust to overfitting and give good estimates of
predictive uncertainty. However, they are computationally expensive and approximations
must be made in order to apply them to large datasets. Standard methods for approximating
full inference include parametric methods, which utilise a parametric model that is in
some sense similar to the full model, or nonparametric methods, which instead define an
approximate posterior with additional structure that allow for computational savings.

This work develops a new nonparametric approximation to Gaussian processes that fits
within the ‘interdomain inducing feature’ framework. This approximation is based on the
spectral properties of the kernel. This imposes additional structure on the covariance matrices
used in inference that can be leveraged for computational benefits when applied to large data
sets.

This work additionally investigates the convergence properties of these new features
for M ⌧ N features, obtaining explicit rates of convergence in certain situations for M
in this regime. These results give theoretical insight into the difficulty of making sparse
approximations to different kernels, and unlike common previous convergence results for
inducing points which are known for M � N, are applicable in the same regime where
computational savings is realized. Finally, we show the practical applicability of these
features on a large classification task, in which they can outperform optimized inducing
points when computational resources are limited.
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Chapter 1

Introduction

1.1 Introduction

In Bayesian machine learning, the goal is to combine prior beliefs with observed data, D, in
order to learn a mapping from an input space, X , to an output space, Y, in a manner that takes
into account uncertainty. One common approach is parametric modelling, which introduces
an intermediate parameter space, P and then splits the task by learning a mapping from X
to P, and then a mapping from P to Y. These mappings can then be composed by either
marginalizing over the possible parameters settings in order to obtain the desired mapping
from X to Y. A key consideration in any such model is the complexity of the parameter space
P. If P is not sufficiently large, a great deal of information can be lost when mapping from
the input to parameter space, making the model unable to capture complex relationships
within the data. On the other hand, if P is large, marginalization becomes computationally
intractable and an approximation, such as simply choosing the most probable parameter
values must be used. This makes models with many parameters subject to overfitting which
leads to poor estimates of uncertainty in the final model and poor generalization of the trained
models.

An alternative approach is offered by Bayesian nonparametrics, which take a direct
approach to learning the desired mapping. This allows for models that can model arbitrarily
complex data faithfully. All (or almost all) variables within the model can be treated
probabilistically and marginalized over, avoiding the risk of overfitting that arises in complex
parametric models. The core concept of these models is to define a stochastic process, a
collection of random variables indexed by the input domain X , and use this process as a
prior over the desired map from X to Y . Commonly and for the remainder of this thesis, the
stochastic process will be a Gaussian process, meaning that any finite subset of the random
variables in the process is normally distributed. Inference in Gaussian process models scales
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cubically with the size of the available data. This limits the applicability of Gaussian process
models to small data sets unless approximations are made to reduce the computational
burden.

1.2 Contributions and Layout of this Thesis

In this thesis we develop a new nonparametric approximation within the variational inducing
feature framework based on the spectral properties of Gaussian processes. Chapter 2 provides
the necessary theoretical background for the remainder of the thesis. The new inducing
features, which we will refer to as eigenfunction inducing features are derived in Chapter 3.
This approximation has several nice properties:

• The features defined are closely related to the optimal (in terms of mean squared
reconstruction error) finite linear approximation to a Gaussian process with respect to a
specific prior. This gives rise to theoretical questions of the optimality of the resulting
inducing features with respect to the same prior in the Kullback-Liebler sense.

• The features defined are orthogonal. This offers a computational savings when trained
using stochastic variational inference.

• Under certain assumptions, the optimal approximating distribution within the varia-
tional family associated to these features can be shown to have a diagonal covariance
matrix for regression tasks. Making this assumption can provide further computational
savings in stochastic variational inference.

We additionally show how to derive more general orthogonal inducing features for a stationary
kernel in Chapter 3.

In Chapter 4, we examine rates of convergence of inducing feature approximations to full
Gaussian process regression, for M ⌧ N inducing features. We show:

• For the eigenfunction inducing features developed in this work, we derive an explicit
upper bound on the KL-divergence between the full and approximate models in the case
of the squared exponential kernel. This bound is shown to hold with high probability
for large data sets. In contrast to well known bounds in the literature, these are derived
a priori (prior to actually computing the ELBO) for a given kernel. This can indicate
the number of inducing features needed to approximate a specific kernel well.

• In the case of the exponential kernel, we derive an upper bound on the KL-divergence
that holds in probability as the amount of data tends to infinity using standard inducing
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points. This bound is not strong enough to give interesting results in the regime M ⌧N.

This aligns with the intuition that sparse approximation of non-smooth functions is far
more challenging than sparse approximation of smooth functions.

In Chapter 5 we show the practical performance of the features defined, including on
an 8-dimensional dataset used in related works containing over 5 million data points. We
conclude in Chapter 6 with a discussion of the advantages and disadvantage of these features
in relation to existing methods and several open questions of theoretical and practical interest.





Chapter 2

Theoretical Framework

This chapter reviews results in the Gaussian process literature that will be needed in later
sections. We begin with formally defining a Gaussian process, then discuss Gaussian process
models. Next we discuss spectral properties of Gaussian processes. In section 2.4 we discuss
several parametric Gaussian process approximation methods based on spectral properties.
We conclude in section 2.5 with a brief discussion of variational inference as a nonparametric
method for approximate Gaussian process inference.

2.1 Gaussian Processes

Consider an input domain, indexed by a set X . We will generally focus on the case when
X = Rd. The Kolmogorov extension theorem tells us that, subject to certain consistency
conditions, a collection of probability distributions defined on every finite X ⇢ X , can be
extended to a stochastic process defined on X , which we will denote as f . This extension is
unique when X is equipped with the product s�algebra (the smallest s�algebra containing
all finite subsets of X ). For a precise measure theoretic formulation of Gaussian processes
see Matthews (2016). Because the marginals of a Gaussian process are normally distributed,
it suffices to define the mean and covariance of every finite dimensional marginal distribution.

This is done choosing a mean function µ : X !R which returns the expected value of the
process at a given point, i.e. E[x] = µ(x). For the remainder of this thesis, we will assume
that for the prior process, µ({xi}i) = 0 for all finite collections of {xi}i 2 X , as the general
case can be easily recovered.

The covariance structure of the finite dimensional marginal must also be defined. A
kernel function k(·, ·) : X ⇥X ! R is chosen, and

cov
�

f (xi), f (x j)
�
= k(xi,x j). (2.1)
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In order for consistency conditions to be satisfied, the kernel function must be symmetric
and positive semidefinite, i.e.

k(xi,x j) = k(x j,xi) 8 xi,x j 2 X , (2.2)

and
n

Â
i=1

n

Â
j=1

cic jk(xi,x j) 8 xi,x j 2 X ,c 2 R. (2.3)

The covariance function defines a structure on the random variables that constitute the Gaus-
sian process. This structure allows us to extrapolate or interpolate information about a collec-
tion of random variables { f (xi)}N

i=1 to make predictions at new input values { f (x⇤j)}T
j=1. In

particular, it defines a particular inner product on the space of random variables. This inner
product measures the strength of the relationship between different parts of the input spcae.

Common choices of kernel function include: the squared exponential function defined by

kse(xi,x j) = s exp
✓
�
kxi �x jk2

2
2`2

◆
, (2.4)

the exponential kernel

kexp(xi,x j) = s exp
✓
�
kxi �x jk1

`

◆
, (2.5)

and the linear kernel
klinear(xi,x j) = xT

i x j, (2.6)

all defined on Rd.

A kernel is said to be stationary if it is a function of x�x0 alone. The squared exponential
and exponential kernels are stationary, while the linear kernel is not.

For any finite subset of points {xi}N
i=1 ⇢ X , the probability distribution over the corre-

sponding random variables is given by

f
�
{xi}N

i=1
�
⇠N (µn,Kn,n), (2.7)

where µn is the N-dimensional vector given by µi = µ(xi) and Kn,n is the N ⇥N covariance
matrix with ki, j = k(xi,x j).

The entire stochastic process is denoted,

f ⇠ GP(µ,k). (2.8)
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In the next section, we will discuss how this Gaussian processes is used to define a prior over
functions from X to Y in nonparameteric models.

2.2 Gaussian Process Models

Given a set of data, D= {xi,yi}N
i=1, with xi 2X , and yi 2 Y, our goal is to infer the posterior

distribution over functions mapping between inputs and outputs, that is p(y⇤|x⇤,D). In order
to define a probabilistic model over these function we need to link the observed inputs and
data probabilistically through a likelihood function. This is a function of the model given the
data.

LD( f ) := p(y|x, f ). (2.9)

For regression tasks, it is often assumed that p(y|x, f ) is normally distributed. In other words,
the outputs are given by the latent function plus independent, identically distributed Gaussian
noise.

We additionally assume that the inputs are drawn independently according to some (not
necessarily Gaussian) distribution, p(x), over the input space although this assumption is
generally not explicitly necessary for Gaussian process inference.

The modeling assumptions for a Gaussian process model can then be summarized as,

p(xi) =
n

’
i=1

p(x), (2.10)

f ⇠ GP( f ; µ,k), (2.11)

p(y| f ,x ) =
n

’
i=1

p(yi| f (xi)) =
n

’
i=1

Lyi( f (xi)). (2.12)

In the case the likelihood function is also Gaussian, i.e. p(y|x, f ) ⇠N ( f (x),s2
noiseI),

inference and prediction in the model can be performed exactly. In this case, the marginal
likelihood of the model is given (Rasmussen and Williams, 2005, Chapter 2.2) by,

p(y) =N (y;0,Kn,n +s2
noiseI), (2.13)

and the predictive mean and variance at test x⇤ are given by

f (x⇤)⇠N
�
K⇤,nK�1

n,ny,K⇤,⇤ �K⇤,nK�1
n,nKT

⇤,n
�
, (2.14)
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where K⇤,⇤ is the covariance matrix formed by evaluating the kernel function at pairs of test
points and K⇤,n is the matrix formed by evaluating the kernel function at pairs formed by
taking a single test point and a single training point.

Despite the simple closed forms expression for inference and prediction, both operations
are often computationally intractable, as inversion of the N⇥N covariance matrix is generally
a O(N3) operation and storing this matrix requires O(N2) memory. Prediction is also O(N2).

For even moderately large data sets, these operations are computationally intractable, so
exact Gaussian process inference is limited to relatively small data sets. Approximations are
utilised for applications with large datasets. Usually these approximation induce a low rank
structure on the covariance matrix.

An alternative perspective is given by variational approximations, (Titsias, 2009) and
(Matthews, 2016). Variational methods rely on finding an approximate posterior process that
is as close to the true posterior as possible, while satisfying additional structural constraints.
These constraints are imposed to allow for computationally efficient inference.

In the case when the likelihood is non-conjugate (for example in classification tasks)
inference can be performed via expectation propagation or Laplace approximation. For a
review and comparison of these methods, see Kuss and Rasmussen (2005). Straightforward
approximate inference in the non-conjugate setting has similar computational burdens as
exact inference in the conjugate setting, so additional approximations must also be made in
this case for large data sets. Variational sparse approximate inference in the non-conjugate
setting has been addressed in Hensman et al. (2015).

2.3 Spectral Properties of Gaussian Processes

Spectral methods allow us to decompose an operator, often a matrix, so that its constituent
parts act independently along each direction of a transformed coordinate system. As stated in
the previous section, many approximate Gaussian process models utilise a low rank version
of the covariance matrix. The efficacy of low rank matrix approximation is closely tied to the
spectral properties of the matrix being approximated.

As a motivating example, consider the problem of approximating the full rank positive
definite, symmetric matrix

Kn,n = ULLLUT ,

where LLL is a diagonal matrix with entries l1 � l2,� . . . ,� lN � 0 and U a unitary matrix
with columns corresponding to the eigenvectors of the N ⇥N matrix Kn,n. Suppose the goal
is to approximate Kn,n with a rank M matrix. It is well known, (Horn and Johnson, 1990)
that an optimal rank M approximation to Kn,n in terms of any unitarily invariant norm (for
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example, the Frobenius, operator, or trace norms) is achieved by taking Qn,n = UmLLLmUT
m,

where Um is the N ⇥M submatrix consisting of the first M columns of U and LLLm is the
M⇥M principle submatrix of LLL.

In this section, we review several foundational results in the spectral theory of stochastic
processes. A more detailed discussion is contained in Rasmussen and Williams (2005,
Chapter 4).

2.3.1 Mercer Kernels and Gaussian Processes

The spectral theory for finite dimensional Hermitian operators (i.e. symmetric matrices) is
simple and well-known in the machine learning literature. Any such operator is necessarily
self-adjoint and compact, hence it is diagonalizable. Moreover, all of its eigenvalues are real.
Restricting to the case of covariance (positive semidefinite) matrices, the eigenvalues are
additionally nonnegative. For any such N ⇥N matrix, K we have,

K = ULLLUT =
N

Â
i=1

liuiuT
i , (2.15)

with LLL = diag(l1,l2, . . . ,lN) and U = [u1,u2, . . . ,uN ], a unitary matrix with entries given
by the eigenvectors of K. Generally, we will assume that eigenvalues are ordered, so that
l1 � l2 � . . .� lN � 0. The spectral properties of finite dimensional matrices are commonly
used in statistical and machine learning methods such as principal component analysis for
finding compact representations of data.

In the case that the input space is infinite dimensional as is the case in Gaussian process
models, analogous statements can be made. Usually, these focus around Mercer’s theorem
and Bochner’s theorem.

Consider a Gaussian process defined over X = R with kernel function k. The case with
X = Rd is analogous. Additionally, equip X with a measure µ. In the case that µ is finite,
this has the natural interpretation as defining a prior over input variables.

The corresponding Hermitian operator, which we will refer to as the covariance operator
is defined on L2(X ,µ) by:

K : f (x)!
Z

X
K(x,x0) f (x)dµ(x). (2.16)

The operator K can be motivated from the perspective of random matrix theory. When
using the covariance matrix Kn,n, the measure µ used to define K is replaced by the empirical
input locations, {xi}N

i=1. It is known that if K is compact, the eigenvalues of the normalized
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covariance matrix, 1
nKn,n converge to the eigenvalues of K, see for example Shawe-Taylor

et al. (2002). This connection is discussed in greater detail in Section 4.1.3.
We would like to invoke the spectral theorem in order to diagonalize this operator. As a

consequence of the spectral theorem for self-adjoint compact operators, it suffices to show
that the operator is compact to obtain the infinite dimensional analogue of (2.15). In this
case, we have countably many discrete eigenvalues.

Compactness is implied by the condition:
Z

X

Z

X
K(x,x0)dµ(x)dµ(x0)< •. (2.17)

Assuming (2.17) is satisfied we can decompose the covariance operator as,

K = UDUT (2.18)

where U is a unitary operator and D is a diagonal operator. Informally, we can think of each
of the above operators as infinite dimensional matrices, with columns of U being given by
eigenfunctions of K and D an infinite diagonal matrix with entries l1 � l2 � · · ·� 0.

This decomposition gives rise to Mercer’s theorem, which states that the kernel function
can be written as:

k(x,x0) =
S

Â
i=1

lifi(x)fi(x0), (2.19)

with equality holding µ almost everywhere. The right hand side of (2.19) is L2(X ,µ)-
convergent, and the eigenvalues are

The Karhunen-Loève expansion states that we can rewrite the entire Gaussian process
via a reparameteriztion as,

f =
S

Â
i=1

fi(x)zi, (2.20)

with the zi pairwise independent, zero-mean normal random variables with variance li

defined by Z

X
fi(x) f (x)dµ(x). (2.21)

By definition, for a nondegenerate kernel we have S = • in both Mercer’s theorem and
the Karhunen-Loève expansion.

Note that (2.17) is satisfied for a stationary kernel that is bounded and not zero almost
everywhere if and only if µ is a finite measure. In particular, if X = Rd it is not satisfied for
any interesting stationary kernel if µ is taken to be the Lebesgue measure on Rd , but it is
satisfied if µ is Lebesgue measure on a finite interval or a Gaussian distribution over Rd.
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2.3.2 Noncompact Kernel Operators

While we cannot apply Mercer’s theorem, (2.19) for stationary kernels with lebesgue measure
on Rd, one can intuitively, one can imagine taking the limit as the variance of the input
distribution µ tends to infinity. As this limit is taken, the discrete eigenvalues accumulate,
and the basis functions oscillate over long regions, becoming nearly sinusoidal.

More formally, let k(w) = k(0,w). Note the the associated operator, K is a convolution
operator. The spectral theorem in this setting takes the form of Bochner’s Theorem, which
tells us

k(w) =
1p
2p

Z
s(w)eiwxdx. (2.22)

The spectral measure, s(w) is given by the Fourier transform of k(x),

s(w) = F [k](w) =
1p
2p

Z
k(x)e�iwxdx, (2.23)

and is nonnegative and integrable (i.e. proportional to a probability density). The spectral
measure plays the role of the diagonal operator in (2.18), only the eigenvalues are no longer
discrete, and instead form a distribution. The Fourier transform replaces the unitary operator
U.

2.4 Parametric Approximations Using Spectral Methods

Many parametric approximations to Gaussian process models involve either modifying
the prior kernel function, or modifying the empirical kernel matrix in order to reduce the
computational cost of inference and prediction. In general, both approaches lead to low rank
structure in the covariance matrix in the approximate model, that reduces the cost of storing
and inverting large matrices. We discuss the infinite version of principal component analysis,
with respect to a prior input distribution, developed in Zhu et al. (1997). We then compare this
method to the well know Random Fourier Feature approximation used in Rahimi and Recht
(2008) for general kernel methods and for Gaussian process regression in Lazaro-Gredilla
et al. (2010).

Infinite Dimensional PCA

In Zhu et al. (1997), the authors propose the infinite dimensional analogue of PCA. In
particular, given a Gaussian process with covariance function k and assuming the inputs
come from some distribution with density p, and some fixed M they define the degenerate



12 Theoretical Framework

kernel,

k(M)(x,x0) =
M

Â
i=1

lifi(x)fi(x0).

li and fi are the same as those appearing in (2.19). This model is parametric, parameterized
by the M eigenfunction-eigenvalue pairs, (li,fi). The authors of Zhu et al. (1997) show this
is the optimal M-dimensional linear model with respect to the prior p(x), where optimality is
defined in terms of minimizing expected mean squared approximation error.

Inference can be performed in O(NM2) in the approximate model, as the covariance
matrix is now rank M.

There are several issues with this model. First, it is optimal with respect to the prior p(x),
but does not take into account the locations of the actual data. As observed in Ferrari-Trecate
et al. (1999), significant modelling improvement can be gained from using information
about the actual locations of training data. This is achieved in Ferrari-Trecate et al. (1999)
by using information about the empirical kernel matrix evaluated at the inputs, instead of
decomposing the kernel operator with respect to a fixed prior. The challenge with methods
utilising information about the of the empirical kernel matrix is that even forming the full
kernel matrix is O(N2), both in computation and memory, and finding the first M eigenvalues
is generally not significantly faster than inverting the entire kernel matrix, unless M is very
small.

Secondly it is unclear what how to choose kernel hyperparameters within this framework.
Any good choice of hyperparameters should account for both account for both the quality of
the chosen kernel in modelling the data and the ability of features to approximate the kernel.
This issue is a primary motivation for nonparametric models discussed later, as they address
this tradeoff in a probabilistically consistent manner.

Sparse Spectrum Gaussian Processes

Sparse spectrum Gaussian processes rely on Bochner’s theorem, (2.22), to define a degenerate
kernel that converges to the original kernel pointwise as the number of basis functions
increases.

They construct this approximate kernel via Monte Carlo estimate of the Fourier transform
appearing in (2.22). Since this approximation is with respect to Lebesgue measure on Rd ,
it tends to behave uniformly along the input domain. Monte Carlo sampling is similar to
truncating the Karhunen-Loève expansion of a process defined via a compact kernel, in the
sense of obtaining a finite approximation to the spectrum of the associated operator.
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Elaborating on this connection in the case X = R, given M samples from s, without loss
of generality, assume all of the samples are rational. Define µM to be the uniform measure on
an interval, [a,b] of length given by the least common multiple of the denominators of these
frequencies, so that all of the frequencies are harmonic on [a,b]. With respect to µM, the M
basis functions defined are orthogonal (they are all elements of the standard Fourier basis).

Define a new kernel on the interval [a,b] by,

k̃(M)(x,x0) = (b�a)
M

Â
i=1

fi(x),

where the fi are sines and cosines functions with the sampled frequencies. This defines a
degenerate Karhunen-Loève expansion, which we can imagine is produced by truncation of
a Mercer kernel.

The truncated kernel can be extended periodically to the whole real line, and inference is
performed with this kernel. As M grows, the measure converges (b�a)µM to µ pointwise.
Via Monte Carlo principles, the average weights of the basis functions in any small interval
converge to the spectral weights given by s(w) to this same interval. In other words, the
approximate kernel converges to the full kernel pointwise as M tends to infinity. A slightly
different formulation of this pointwise convergence, with explicit bounds on the rate is given
in Rahimi and Recht (2008).

Note that as M is finite, the given approximation is parametric and corresponds to a
degenerate Gaussian process. Because of this, the model tends to underestimate the model
uncertainty (as compared to the full model) in certain regions of the input space far from the
training data. Additionally, when the frequencies of the fi are chosen to optimize the marginal
likelihood of this approximate model, convergence to the full model is no longer guaranteed
and overfitting results if the number of optimized frequencies is large. Additionally, the
approximate model significantly underestimates uncertainty in regions of the domain far from
training examples and, if insufficiently many basis functions are used, can have pathological
predictive uncertainties in regions of the domain close to training points, which may be of
practical concern. These issues are discussed in detail in Lazaro-Gredilla et al. (2010).

2.5 Nonparametric Approximations to Gaussian Processes

The models discussed in the previous section directly approximated the kernel. In contrast,
nonparametric approximations use the original kernel as a prior and approximate inference by
finding an approximate posterior that is close to the full model but has a additional structure
that allows for more tractable inference.
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Parametric models will necessarily underestimate uncertainty in some regions of the input
space with little data. To see why this is the case, it is useful to consider the limiting case
where the noise variance tends to zero. By a dimensionality argument, for any nondegenerate
Gaussian process the parameterization of the input space takes points that are far apart to the
same point in parameter space. For many commonly used covariance functions, we expect
such points to be essentially independent, yet in the parametric model an observation at one
completely determines the prediction at the other.

Solutions to this have been suggested, such as ‘healing’ for the relevance vector machine
Rasmussen and Quinonero-Candela (2005). However these solutions are somewhat ad hoc
and move away from the principled Bayesian framework utilised in full Gaussian process
models. In contrast, the approximate posteriors used in variational methods are nondegenerate
Gaussian processes. This maintains the infinite dimensional properties of the original model
making them robust to overfitting and better able to capture uncertainty.

2.5.1 Variational Inference

The core concept of variational inference as applied to Gaussian processes is to define a new
Gaussian process with the same prior as the original model, and a posterior that depends only
on the prior and M ⌧ N random variables. This posterior is used to approximate the posterior
process of the original model. The random variables used in variational inference, which
we will denote by {um}M

m=1, must be somehow correlated with the initial inputs in order to
make use of the data. Commonly, they are chosen as ‘pseudo-inputs,’l lying in the initial
input space, X (for a review of other ‘pseduo-input’ methods, see Quinonero-Candela and
Rasmussen (2005)). The goal of approximate inference is to make the approximate posterior
process as close to the full posterior as possible, through minimizing the KL-divergence
between the approximate posterior and the full posterior. As the approximate posterior is
restricted by the assumption that it only depends on M random variables, the KL-divergence
will generally be greater than zero. A notable exception is if M = N and the {um} are chosen
as the random variables in the input space corresponding to the original datapoints, in which
case full inference is recovered.

By placing the task in a variational framework, any parameters in the {um} (e.g. locations
of pseudopoints) are variational parameters, which can be optimized in a manner that accounts
for the locations of observed data, while remaining robust to overfitting. The form of the
KL-divergence for Gaussian process regression used in this optimization was derived in
Titsias (2009) and put on rigorous measure theoretic footing in Matthews et al. (2016). Titsias
(2009) showed that minimizing the KL-divergence is equivalent to maximizing the following
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variational lower bound to the log marginal likelihood of the original model:

Llower = log
�
N
�
y;0,Kn,mK�1

m,mKT
n,m +s2

noiseI
��

� 1
2s2

noise
tr
�
Kn,n �Kn,mK�1

m,mKT
n,m
�
,

(2.24)
where Km,m is the covariance matrix associated to the random variables and Kn,m is a matrix
made up of the cross-covariances between the training inputs and the inducing variables. The
first term in (2.24) can be thought of as an approximate marginal likelihood and the second
term is a regularization term. Note that while the full covariance matrix appears in the trace
term, only its diagonal elements must be computed, so L can be computed in O(NM2 +M3)

with O(M2) storage, allowing it to scale for relatively large data sets. This lower bound is
collapsed in that it is derived in Titsias (2009) by choosing the optimal mean and variance
for the approximating Gaussian distribution given the current setting of other variational
parameters.

A more general variational lower bound that allows for stochastic inference and can be
utilised in the non-conjugate case (e.g for classification tasks) is derived in Hensman et al.
(2013). The variational distribution is assumed to be Gaussian with q(u) =N (u;m,S). The
expanded variational lower bound is given by:

Llower =
n

Â
i=1

✓
log
�
N
�
yi;kiK�1

m,mm,s2
noiseI

��
� 1

2s2
noise

�
Kn,n �Kn,mK�1

m,mKT
n,m
�

i,i �
1
2

tr(SLLLi)

◆

�KL(q(u)kp(u)) , (2.25)

where
p(u) =N (u;0,Km,m) and LLLi =

1
s2

noise
K�1

m,mkikiK�1
m,m.

This expanded lower bound allows for stochastic evaluation. This reduce the computa-
tional burden of hyperparameter learning to O(ÑM2 +M3), per iteration where Ñ is the size
of a minibatch. This savings is crucial when applying inducing point methods to extremely
large data sets. It has been extended for classification in Hensman et al. (2015).

2.5.2 Interdomain Inducing Features

While most commonly the {um}M
i=1, are selected as ‘inducing points,’ the validity of inference

with more general forms of random variables was noted in Titsias (2009, technical report). As
shown in Matthews et al. (2016) the {um} can be taken to be any measurable transformation
of the random variables lying in the input space.
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Choosing random variables that are not in the initial input domain may lead to more
expressive representation of the data for fixed M, or additional structure in approximating
distributions that can be leveraged for computational benefit. This idea was investigated
in detail in Lázaro-Gredilla and Figueiras-Vidal (2009), which introduced the notion of
‘interdomain’ features.

A simple form of an inducing feature is given by linear transformations of the original
input space,

um =
Z

fm(x)dµ(x), (2.26)

where µ is a finite measure. This is a particularly natural generalization of the inducing
point methods when viewing the (mean-centered) random variables indexed by X as forming
a vector space. A general element of this vector space is then of the form ÂK

i=1 wi f (xi).

The covariance function defines a particular inner product on this space, h f (x), f (x0)i =
cov(x,x0). This inner product space can be turned into a Hilbert space by taking its completion
with respect to the inner product, and general elements in this space then take the form of
the um in (2.26). The covariance function is well-defined on these random variables through
extending it linearly and verifying the necessary limits converge. For a detailed discussion of
the connection between Gaussian process methods and Hilbert spaces, see Wahba (1990).

Variational inference with random variable of the form in (2.26) was proposed in Lázaro-
Gredilla and Figueiras-Vidal (2009) and placed on rigorous footing in Matthews et al. (2016)
(actually, (2.26) is a special case of the features considered in both works). In order to
perform approximate inference in the resulting model, it suffices to compute cov(um,un) and
cov(um, f (x)). Once these are computed, the equations stated in 2.5.1 can be directly applied
for inference and prediction.

2.5.3 Towards Combining Spectral and Inducing Point Methods: Vari-
ational Fourier Featues

An example of a successful application of the interdomain inducing feature framework for
approximating Matèrn kernels was given in Hensman et al. (2016). In this work, the authors
worked with respect to Lebesgue measure over a fixed interval, [a,b] in input space, and
sought to define features based on trigonometric functions. In particular they defined inducing
variables such that

cov(um, f (x)) = cos(wmx), (2.27)

(or sin(wmx)) with wm harmonic on the interval [a,b], and suggested Fourier analaysis as a
motivation for these features. They showed that these features result in a nearly diagonal
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covariance matrix, Km,m, and utilised this to obtain a computational savings during stochastic
hyperparameter optimization. In the next chapter, we elaborate more on the structure of this
approximation, and develop new interdomain inducing point methods that utilise spectral
analysis in order to obtain an exactly diagonal covariance matrix, giving similar computational
benefits.





Chapter 3

Diagonal Covariance Matrices and
Eigenfunction Based Inducing Points

In this chapter, we utilise ideas from spectral analysis to define orthogonal inducing features.
We begin this section with following simple question: given a kernel function, k, can we define
inducing features um such that Km,m is exactly diagonal? We investigate this question in two
distinct settings. In section 3.2, under the assumption that the kernel function is stationary
we obtain a general framework for defining inducing points that are exactly orthogonal.
This framework allows for analytic computation of the covariance between feature and
inducing points in certain cases and Monte Carlo approximations of the covariance more
generally. In section 3.3, we show how to obtain orthogonal inducing features based on
the Mercer expansion of the kernel with respect to an input distribution. When the Mercer
expansion with respect to a parameterized family of input distributions is known for a kernel,
all variational parameters in the features and hyperparameters in the kernel can be jointly
optimized using variational inference. We give several examples of these inducing features
for square exponential kernel with Gaussian inputs and the exponential kernel with uniform
inputs over a fixed interval. We discuss the similarity between the eigenfunction inducing
features for the exponential kernel and the Variational Fourier Features of Hensman et al.
(2016). We conclude with a brief discussion relating relating the eigenfunction inducing
feature model to the model of Zhu et al. (1997) discussed in Section 2.4.

3.1 Why are Diagonal Covariance Matrices Desirable?

It is not immediately clear that any real benefit is obtained by avoiding the inversion of the
matrix Km,m through a diagonal structure. After all, in Gaussian process regression using the
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collapsed marginal likelihood bound (2.24), we still must form the matrix product Km,nKT
m,n

in each iteration, and invert the M ⇥M matrix (K�1
m,m + 1

s2
noise

Km,nK�1
m,mKT

m,n) which leads

to complexity O(NM2 +M3) per iteration. Removing the O(M3) cost of inverting Km,m

provides only a lower order computational savings in this setting.
The computational benefit is of a diagonal covariance matrix is realized when using

the expanded bound, (2.25) in conjunction with stochastic optimization. In this case, the
cost per iteration of hyperparameter learning is O(ÑM2 +M3), where Ñ is the size of a
minibatch. In this case, it is possible that M � Ñ in which case the computational bottleneck
per iteration is the inversion of Km,m. Choosing inducing features that are orthogonal reduces
the cost of each iteration of parameter learning from O(ÑM2 +M3) to O(ÑM2) in this
setting. If additionally the approximating covariance matrix is assumed to be diagonal, a
commonly used approximation that we show can be made with no loss of performance for
large regression tasks with certain training input distributions, this is further reduced to
O(ÑM). Computational benefits for diagonal and nearly diagonal Km,m matrices were also
observed with MCMC inference in Hensman et al. (2016), though we do not explore MCMC
methods for inference here.

3.2 Orthogonal Features for Stationary Kernels

The main result of this section is the following theorem,

Theorem 3.2.1. Let k(x� x0) = k(w) be a stationary kernel with spectral measure s(w)

such that s(w) is strictly positive for all w. Let fm be an orthonormal basis for L2(R), such
that fm(�x) = (�1)mfm(x) and both fm(x)p

s(w)
and fm(x)

p
s(w) are absolutely integrable with

absolutely integrable Fourier transforms. Define

um :=
1

(2p)1/4

Z

R
f (x)F�1

 
ym(x)p

s(w)

!
dx, (3.1)

where ym = fm if m is even and ym = ifm if m is odd. Then the um are valid inducing
features satisfying cov(um,un) = dm,n.

The novelty of this result is that it gives us a recipe for defining inducing features that are
exactly orthogonal for any stationary kernel.

Remark 3.2.2. There is some redundancy in the condition fm(x)p
s(w)

and fm(x)
p

s(w) are

absolutely integrable, as the first condition implies the second. More generally, this condition
in conjunction with the condition on the Fourier transforms should be thought of as saying
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the chosen basis functions decay rapidly and have rapidly decaying derivatives, with the
precise rate of decay needed depending on the kernel function.

Proof. We begin by showing that the covariance matrix between the inducing features defined
in (3.1) is diagonal:

cov(um,un) = E
Z

R
f (x)F�1(yms�1/2)(x)

Z

x0
f (x0)F�1(yns�1/2)(x0)dxdx0

�

=
1p
2p

Z

R

Z

R
F�1(yms�1/2)(x)F�1(yns�1/2)(x0)E[ f (x) f (x0)]dxdx0

=
1p
2p

Z

R

Z

R
F�1(yms�1/2)(x)F�1(yns�1/2)(x0)k(x,x0)dxdx0

=
1

2p

Z

R

Z

R
F�1(yms�1/2)(x)F�1(yns�1/2)(x0)

Z

R
e�iw(x�x0)s(w)dwdxdx0.

By our assumption that the first two integrals are absolutely convergent and since s is a
probability density, (implying the third integral is absolutely convergent), we may apply
Fubini’s theorem to rearrange the order of integration:

cov(um,un) =
1

2p

Z

R

Z

R
F�1(yms�1/2)(x)F�1(yns�1/2)(x0)

Z

R
e�iw(x�x0)s(w)dwdxdx0

=
1

2p

Z

R

✓Z

R
F�1(yms�1/2)(x)e�iwxdx

◆✓Z

R
F�1(yns�1/2)(x0)eiwx0dx0

◆
s(w)dw

(3.2)

We can now recognize that the first term is
p

2p times the Fourier transform of F�1(yms�1/2)(x)
evaluated at w and the second is

p
2p times the complex conjugate of the Fourier transform

F�1(yns�1/2) evaluated at w . This simplifies considerably to

cov(um,un) =
1

2p

Z

R

✓Z

R
F�1(yms�1/2)(x)e�iw(x)dx

◆✓Z

R
F�1(yns�1/2)(x0)eiw(x0)dx0

◆
s(w)dw

=
Z

R
ym(w)s�1/2(w)(�1)nyn(w)s�1/2(w)s(w)dw

= (�1)n
Z

R
ym(w)yn(w)dw

= dm,n.

In particular, the matrix Km,m is the identity matrix as claimed.
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It remains to derive a formula for the covariance between inducing features and the
original points in the process.

cov(um, f (x)) = E
Z

R
f (x0)F�1(yms�1/2)(x0) f (x)dx0

�

=
1

(2p)1/4

Z

R
F�1(yms�1/2)(x0)E

⇥
f (x0), f (x)

⇤
dx0

=
1

(2p)1/4

Z

R
F�1(yms�1/2)(x0)k(x0,x)dx0

=
1

(2p)1/4

Z

R
F�1(yms�1/2)(x0)

Z

R
e�iw(x�x0)s(w)dwdx0.

Applying Fubini’s theorem,

cov(um, f (x)) =
1

(2p)1/4

Z

R

Z

R
F�1(yms�1/2)(x0)eiwx0dx0e�iwxs(w)dw

The first term is (up to a constant) the Fourier transform of the inverse Fourier transform of
y evaluated at w , giving

cov(um, f (x)) = (2p)1/4
Z

R
ym(w)s�1/2(w)e�iwxs(w)dw = (2p)1/4

Z

R
ym(w)e�iwx

p
s(w)dw.

An unbiased estimator for this covariance can therefore be obtained via the Monte Carlo
estimate,

cov(um, f (x)) =
(2p)1/4

T

T

Â
t=1

ym(wt)e�iwt x.

with wt sampled from a probability distribution proportional to
p

s(w). Additionally, sincep
s(w) is even, we can sample the wt in pairs, ±wt , to ensure the resulting approximate

covariance is real valued.

Remark 3.2.3. More generally, from (3.2) we see that for a stationary kernel, the covariance
between features is an inner product of the Fourier transform of the features taken in
L2(R,s(w)). It follows that features that are well-defined (i.e. have finite variance) are
orthogonal if and only if their Fourier transforms are orthogonal in L2(R,s(w)).

Remark 3.2.4. While in notation we have assumed one-dimensional inputs, the proof gener-
alizes to the mulitdimensional case.
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The only requirement for applying this method is to choose a basis for L2(R) consisting
of sufficiently well-behaved functions so that the necessary Fourier transforms converge. In
section 3.4 we choose the Hermite functions as such a basis, which are infinitely differentiable
with rapidly decaying derivatives. Smooth wavelet bases, for example the Meyer wavelet,
would provide an interesting choice of local inducing features that satisfy this criteria.
Wavelet based Gaussian process approximations have been previously proposed, in Zhu et al.
(1997), though it does not appear such approximations have been practically implemented.
We do not investigate these in the remainder of this work.

3.3 Eigenfunction Based Inducing Points

In the previous section, we focused on obtaining orthogonal inducing features. While the
resulting features make use of the Fourier transform the relationship between the resulting
features and the spectrum of the kernel is unclear and relies on a seemingly arbitrary choice
of basis. In this section, we define orthogonal inducing features directly based on the spectral
expansion of a compact kernel. Compactness is achieved for stationary kernels through
assuming the existence of some prior probability measure on the inputs µ. Once a particular
prior on inputs is chosen, the features are fully determined, making the resulting features
more easily interpretable.

Recall, Mercer’s theorem, (2.19):

k(x,x0) =
•

Â
n=1

lifi(x)fi(x0),

with the li absolutely summable and fi orthonormal eigenfunctions of the kernel operator K
with respect to the input measure µ.

Define the following inducing variables:

um :=
Z

X
fm(x) f (x)dµ(x).

These are exactly the same as the random variables utilised in the Karhunen–Loéve expansion
in (2.20), so the entire process can be written as

f (x) =
•

Â
m=1

lmumfm(x),

where the equality indicates convergence in distribution in L2(X ,µ).
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3.3.1 Covariances

Recall that since the fm are the eigenfunctions of a linear operator with respect to µ the fm

and fn are pairwise µ-orthogonal if lm 6= ln, and a basis can be chosen to be orthogonal
when eigenvalues are equal. This yields a diagonal structure to the matrix Km,m.

cov(um,un) = E
Z

X

Z

X
fm(x)fn(x0) f (x) f (x0)dµ(x0)dµ(x)

�

=
Z

X
fm(x)

✓Z

X
fn(x0)k(x,x0)dµ(x0)

◆
dµ(x)

= ln

Z

X
fm(x)fn(x)dµ(x)

= lndm,n.

3.3.2 Cross covariances

We additionally must compute the covariance between the inducing features and random
variables in the untransformed input domain. Using the defining property of eigenfunctions:

cov(um, f ( f x0)) = E
Z

X
fm(x) f (x) f (x0)dµ(x)

�

=
Z

X
fm(x)k(x,x0)dµ(x)

= lmfm(x0).

3.3.3 Eigenfunction based inducing points and the mean field approxi-
mation

Additional structure emerges in the covariance matrix S appearing in the expanded variational
bound, (2.25), in the case of conjugate likelihood if the training data is actually distributed
according to the probability measure µ. A popular approximation that can be used to
dramatically increase the speed of variational inference is to restrict the variational distribution
to have a diagonal covariance function. Titsias (2009) showed that the optimal choice of S
for conjugate inference has the closed form,

S�1
opt = K�1

m,m +
1

s2
noise

K�1
m,mKm,nKT

m,nK�1
m,m. (3.3)
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In the case of eigenfunction based inducing points, since Km,m is diagonal and without loss
of generality can be be taken to be the identity matrix, this simplifies to

S�1
opt = I+ 1

s2
noise

Km,nKT
m,n. (3.4)

Theorem 3.3.1. If the training data comes from the assumed input distribution p(x), then
as N ! • for fixed M, the optimal variational distribution in Gaussian process regression
when using M eigenfunction inducing points has a diagonal covariance matrix.

Proof. Let D= 1
s2

noise
Km,nKT

m,n so that S�1
opt = I+D. With this normalization, cov(ui, f (xk))=

p
lifi(xk), so

Di, j =
q

lil j

N

Â
i=1

fi(xk)f j(xk). (3.5)

If we assume that the xi are in fact distributed according to the prior measure µ, the right
hand side of (3.5) is a Monte Carlo estimate of the integral

N
q

lil j

Z

X
fi(x)f j(x)dµ(x) = N

q
lil jdi, j +o(N). (3.6)

(The error term can be made more precise under the mild assumption that the variance of
fi(x)f j(x) under p(x) exists.) Then,

Sopt = (LLL+E)�1

where the entries in E are all o(N), and LLL is a diagonal matrix with LLLi,i = liN. Intuitively, it
seems as though if the precision matrix is essentially diagonal, then the covariance matrix
should be as well. We show in appendix section A.2, that this is the case in this setting, and
Sopt is approximately diagonal with on-diagonal entries on the order of 1

N and off-diagonal
entries o(1/N).

Under the assumption that the sum that the variance of fi(x)f j(x) under p(x) exists, the
off diagonal entries are O(N�3/2).

It follows that if the features are defined with respect to a parameterized family of
measures, and there exists a selection of parameters so that the xi are approximately distributed
according µq , approximating S with a diagonal matrix should introduce almost no additional
error in regression tasks. This is shown in Figure 3.1, which compares the additional
error introduced by applying this diagonal approximation to eigenfunction inducing points
as opposed to standard inducing point for training data sampled according xi ⇠ p(x), the
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Fig. 3.1 A comparison of the gap between the ELBO with and without the diagonal approx-
imation averaged over 3 random normally distributed datasets (left) as we increase N and
convergence of the ELBO on a toy one dimensional data set with 500 inputs sampled from a
normal distribution as we increase M (right).

distribution over which the features are defined. In this case, the features used are the
eigenfunction inducing features defined in the next section, which are defined for a SE-kernel
and assume a Gaussian input distribution.

As N increases, the additional approximation error goes to zero for the eigenfunction
features, while no such guarantee is known for the inducing points. For a fixed dataset with
500 normally distributed inputs, we see that the diagonal approximation leads to almost
no loss in performance for the eigenfunction function inducing features, while the gap for
standard inducing points is noticeable.

Figure 3.2 compares the covariance matrices selected by eigenfunction based and op-
timized inducing points for a normally distributed data set. The covariance matrix of the
variational distribution selected is nearly diagonal for the eigenfunction covariance ma-
trix, while the matrix selected for optimized inducing points has several relatively large
off-diagonal entries.

3.4 Example: Squared Exponential Kernel and Hermite
Inducing Points

We now introduce an example of inducing features that are orthogonal and can be derived
in the frameworks of both Sections 3.2 or 3.3, although we only present the derivation in
the latter case, as it is significantly simpler and gives rise to more natural interpretations of
variational parameters. Fix a squared exponential kernel, k with variance vk and lengthscale
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Fig. 3.2 The covariance matrix selected by variational inference with the eigenfunction
inducing features (left) is nearly diagonal when the data is normally distributed, while for
standard inducing points (right) the off-diagonal entries are not necessarily near zero.

`2,

k(x,x0) = vk exp
✓
�kx� x0k2

2`2

◆
. (3.7)

Suppose xi ⇠N (x;0,s2) =: p(x). Consider the associated covariance operator

K : f !
Z

R
f (x)k(x,x0)p(x)dx.

The eigenbasis for K is given (up to reparameterization) in Zhu et al. (1997) as:

lm = vk

r
2a
A

Bm, (3.8)

and
fm(x) = exp(�(c�a)x2)Hm(

p
2cx), (3.9)

with a = 1/(4s2), b = 1/(2`2), c =
p

a2 +2ab, A = a+ b+ c, B = b/A, and Hm the mth

Hermite polynomial. The Hermite polynomials are defined by the differential equation:

Hm(x) = (�1)m exp(x2)
dm

dxm exp(�x2). (3.10)

The corresponding inducing features, normalized so that cov(um,um) = 1, are given by:

um :=
(4cs2)1/4plm

2n/2
p

n!

Z
Hm(

p
2cx)exp(�(c�a)x2) f (x)d exp

⇣
� x

2s2

⌘
. (3.11)
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Fig. 3.3 Covariance of first six inducing features for Hermite inducing features with the
process for `= 1,s = 1.

With this normalization,

cov(um, f (x)) =

sp
4cs2lmvk

n!2n Hm(
p

2cx)exp
�
�(c�a)x2� . (3.12)

To relate this to the framework given in Section 3.2, the Hermite functions defined by
yn := Hn(x)exp(�x2/2), form an orthogonal basis for L2(R). Using this fact the um defined
above can be derived via computing the necessary Fourier transforms with the proof being
simplified by noting the Hermite functions are eigenfunctions of the Fourier transform.

The decay of the eigenvalues, plotted on a log-linear scale in figure 3.4 for different
choices of s2, determines the rate of convergence of truncations of the sum appearing in Mer-
cer’s theorem to the full covariance function. As we will discuss in the next chapter, this rate
of convergence is also closely related to the convergence of variational approximations, with
convergence measured by the KL-divergence between the full and approximate posteriors.
Rapidly decaying eigenvalues indicate that extremely sparse approximations are possible.

For practical implementations, we must consider the computational cost of evaluating the
first M Hermite functions at each data point, as this is necessary when forming the matrix
Kn,m. This can be done in O(ÑM) time by exploiting the second order recursion relation,

fm+1(x) = x
r

2
m+1

fm(x)+
r

m
m+1

fm�1(x). (3.13)

While this allows for O(ÑM) computation of Kn,m, this recursion does not allow for easy
parallelization over the features. Additionally, care must be given to normalize the inducing
features (e.g. by computing this recursion in a manner so that fm(x) is uniformly bounded in
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Fig. 3.4 For fixed `2 = 1, larger choices of s2 result in slower decay in eigenvalues.

both x and m) to make this recursion sufficiently stable to allow for optimization of feature
hyperparameters.

3.5 Example: Exponential Kernel and Variational Fourier
Features

In Hensman et al. (2016), the authors derived nearly orthogonal inducing features for Matèrn
Kernels over a fixed interval [a,b] based on trigonometric functions. In this section, we
consider the relationship between their “Variational Fourier Features" and the eigenfunction
inducing features derived in section 3.3. We restrict to the case of the Matérn 1/2 kernel,
which is up to a reparameterization the same as the exponential kernel. The kernel considered
is,

k(x,x0) = vk exp
✓
� |x� x0|

`

◆
.

Suppose xi ⇠ U [a,b] so K : f !
R b

a f (x)k(x,x0)dx. The corresponding eigenbasis is given in
Le Maître and Knio (2010, Chapter 2, Equation 2.2) by:

lm = vk
2`

1+(wm`)2 , (3.14)
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Fig. 3.5 Covariance of first 8 eigenfunction inducing features for Matérn kernel on [0,1] with
`= 1, normalized so that the covariance matrix between features is the identity matrix. Even
features are shown in the top row, and odd in the bottom.

and

fm(x) =

8
><

>:

cos(wm(x�(a+b)/2))p
(b�a)/2+sin(wm(b�a))/2wm

m even,
sin(wm(x�(a+b)/2))p

(b�a)/2�sin(wm(b�a))/2wm
m odd.

(3.15)

The odd wm > 0 are given by the ordered solutions to the transcendental equation:

`w tan((b�a)w/2)�1 = 0, (3.16)

and the even wm > 0 are given by solutions to the equation:

tan((b�a)w/2)+ `w = 0. (3.17)

Remark 3.5.1. To fully define the approximate inference model it is also necessary to
compute the covariance with the inducing features and the process at outputs outside [a,b].
This computation is given in the section A.1 of the appendix.

The first 8 eigenfunctions are shown in figure 3.5.
Since w tan(w/2) and 1

w tan(w/2) are one-to-one with R on the interval [0,2p], there is

exactly one solution to each of these equation on each interval of the form
h

2kp
b�a ,

2(k+1)p
b�a

i
.

From this, we conclude wm = pm+O(1) and lm = 2vk(b�a)2

`p2m2 +O(1/m3). Note that the
eigenvalues for this kernel decay much more slowly than in the case of the squared exponential
kernel, as shown in figure 3.6 In general, the rate of decay of the eigenvalues of K is closely
related to the smoothness of sample functions, as mentioned in Rasmussen and Williams
(2005, Chapter 4).
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Fig. 3.6 Comparison of the eigenvalues for the Matérn kernel on [0,1] and the SE-kernel
with respect to a Gaussian with variance 1/12, both with length scales 1. (Note the priors are
chosen to have the same variance.

3.5.1 Relationship to Variational Fourier Features

Aesthetically, these features are very similar to the Matérn 1/2 Variational Fourier Features.
Both result in covariances that are sinusoidal, with the difference being that the VFF features
have harmonic frequencies over [a,b] while these inducing features have frequencies given
by the roots of a transcendental equation. To expand on the similarity between these
eigenfunction inducing points and VFF, consider the integral equation

lmgm(x0) =
Z b

a
k(x,x0)fm(x)dx. (3.18)

Note that this is the covariance between the process at x0 and um :=
R b

a fm(x) f (x)dx.
Incorporating all normalizing constants into the constant term lm, defining eigeninducing
features involves finding solutions to gm(x) = fm(x). If we instead find solutions to (3.18) of
the form fm(x) = cos(wm(x� a+b

2 )) (or sin(wm(x� a+b
2 ))) with wm = 2pm

(b�a) , this corresponds
to the even (odd) L2 Fourier features derived in Hensman et al. (2016). Alternatively, solving
(3.18) for gm(x) = cos(wm(x� a+b

2 )) (or sin(wm(x� a+b
2 ))) with wm harmonic corresponds

to the RKHS version of VFF.
The RKHS VFF features of Hensman et al. (2016) have several significant advantages for

approximating this specific kernel over using the eigenfunction inducing features defined in
(3.15) directly. First, in order to use (3.15), we must find the zeros of the transcendental equa-
tions (3.16) and (3.17). The locations of these zeros depends on the kernel hyperparameters,
so zeros must be recomputed in each iteration of optimization of kernel hyperparameters.
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Additionally, if (3.18) is solved for fixed gm independent of the kernel hyperparameters
and any variational parameters, as is done in the RKHS VFF features then there is no need to
compute Kn,m in each iteration of optimization for regression tasks. Hensman et al. (2016)
precompute this matrix and related quantities and optimize kernel parameters with cost
O(M3) per iteration completely independent of the size of the dataset.

The same pre-computation cannot be performed in optimizing eigenfunction based
inducing features, as (up to normalization) all of the variational parameters are in the matrix
Kn,m.

3.6 Optimality and Infinite Principal Component Analysis

The parametric model of Zhu et al. (1997) can be considered the infinite dimensional
analogue of PCA. The authors show that it minimizes expected mean squared modelling
error with respect to the prior on the input distribution p(x), among all linear M-dimensional
approximations. As the inducing features we define are essentially identical to the basis
used in defining this parametric model, it is natural to ask whether these features can be
said to be optimal with respect to the KL-divergence. For any fixed data set, this will not
be the case, as the KL-divergence between full and approximate inference depends on the
empirical distribution of x through both terms in (2.24). It additionally depends on y through
the likelihood term.

In order to define a quantity related to the KL-divergence that is independent of the
observed data, as is the case for the modelling error in Zhu et al. (1997), we can average the
log marginal likelihood of the full model minus the lower bound (2.24), over the priors for
both x and y. Let Qn,n = Kn,mK�1

m,mKT
n,m,

Ey[KL(p(f|u)kp(f|u,y))] =
Z

X

Z

Y
log

 
N
�
y;0,s2

noiseI+Kn,n
�

N
�
y;0,s2

noiseI+Qn,n
�
!

p(y)dyp(x)dx

+
1

2s2
noise

Z

X
tr(Kn,n �Qn,n) p(x)dx.
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For any fixed x, our prior on y is N
�
y;0,Kn,n +s2

noiseI
�

so the integral over y is a KL-
divergence between two mean-centered Gaussian distributions. This yields,

E[KL(p( f |u)kp(f|u,y))] =�N
2
+

1
2

Z

X
log
✓
|s2

noiseI+Qn,n|
|s2

noiseI+Kn,n|

◆

+ tr
⇣�

s2
noiseI+Qn,n

��1 �s2
noiseI+Kn,n

�⌘
+

1
s2

noise
tr(Kn,n �Qn,n)dx. (3.19)

Minimizing this entire quantity over low rank Qn,n appears to be a challenging problem.
The problem of minimizing the final term in the integral in (3.19) for any x is equivalent

to finding the optimal rank M approximation to the positive semidefinite matrix Kn,n. As
discussed in section 2.3 one solution to this minimization is achieved by taking the approxi-
mating matrix to have column space spanned by the lead M eigenfunctions Kn,n. The optimal
error is given by the sum:

N

Â
i=M+1

li (Kn,n) , (3.20)

with li (Kn,n) denoting the ith eigenfunction of the matrix Kn,n. For xi ⇠ p(x) the eigenvalues
of 1

N Kn,n approach the eigenvalues of the corresponding operator K, so optimal bounds on
this term are closely related to the eigenvalues utilised in defining eigenfunction inducing
features. In the next chapter, we focus on obtaining bounds on this trace term, as it seems
to be the most tractable of the terms and previous work of Titsias in Titsias (2014) in
conjunction with (2.24) enables us to obtain explicit bounds on the KL-divergence between
the approximate and full models based on the trace term alone.





Chapter 4

Eigenfunction Based Inducing Points
and the Convergence of Approximate
Gaussian Process Models

In this chapter, we motivate the eigenfunction inducing features introduced in section 3.3
from the perspective of obtaining theoretical guarantees on the rate of convergence of the
approximate likelihood to the full likelihood.

Much of the existing literature on the convergence of approximate Gaussian process
models focuses on proving that the approximate model will agree with full inference model
for either M = N (e.g. variational inducing point methods) or as M tends to infinity (e.g. with
parametric methods such as Sparse Spectrum Gaussian Processes). However, computational
savings in sparse models only occur when M ⌧ N and empirical evidence suggests that good
approximations are obtainable with M much smaller than N.

A natural method for defining convergence (in M) between the full and approximate
models is to consider the gap between the full marginal likelihood and the ELBO, which is
given (Hensman et al., 2013) by

KL [p(f|u) , p(f|u,y)] ,

with f = { f (xi)}N
i=1,u = {u j}M

j=1 and y = {yi}N
i=1.

If this gap is small for all reasonable kernel hyperparameter settings, we can be sure
the approximate model has the same global optima as the full model. More precisely, if
the globally optimal choice of hyperparameters has a log marginal likelihood that exceeds
all other local optima by d > 0 and for all reasonable kernel hyperparameter settings, this
KL divergence is less than d , then the global optima of the approximate inference objective
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function is near that of the full model, so the approximate posterior will behave similarly to
the full posterior after optimization. In this chapter we obtain both explicit and asymptotic
results about the rate of convergence of the variational lower bound obtained via inducing
feature methods to the marginal likelihood of the full model (equivalently rates of convergence
of the KL-divergence between the full and approximate models to zero) in the case of GP
regression.

Bounds appearing in the literature allow us to assess the convergence of the approximate
model to the full model after computing the full and approximate log likelihood. In particular,
by comparing the upper and lower bounds on the marginal likelihood provided in Titsias
(2009) and Titsias (2014), one can get some sense of the degree to which the approximation
has converged. In contrast the bounds in this chapter allow us to bound the rate of convergence
a priori for a given kernel, giving insight into the number of features needed to be confident
of recovering similar hyperparameter settings as full inference.

The main result in this chapter is the following for Gaussian process regression:

Theorem 4.0.1. Given a SE-kernel, suppose xi ⇠ N(0,s02) or xi ⇠ U(�r,r) and that kyk2 =

O(N2) almost surely (this is the case if the true process generating the data has finite mean
and variance, as the likelihood is assumed to be Gaussian). Let K denote the KL-divergence
between the full and approximate processes. Then we can find an M on the order of log(N)

such that as N ! •, almost surely K = o(1).

This says that if N is sufficiently large, we can find a very sparse (relative to N) model
that approximates the full model with arbitrary accuracy. Along the way, we derive explicit
probabilistic upper bounds on the KL-divergence for the squared exponential kernel under
the assumptions that the data is generated according to either a uniform or normal distribution
in Theorem 4.3.1 and 4.3.3, in conjunction with Lemma 4.1.2.

All of the proofs rely on obtaining bounds on trace of the covariance matrix used in
computation of the “approximate likelihood” relative to the trace of the full covariance matrix.
We additionally discuss the optimality properties of this error in the asymptotic regime when
N ! •.

Later in the chapter, we consider the Matérn kernel, and show that we can obtain bounds
on the ‘trace term’ in the ELBO, (2.24) in this setting for both standard inducing points
placed on a grid and for eigenfunction inducing points in this setting. These bounds imply
that we would need to take on the order of N inducing points to obtain a bounded trace error,
and due to the slackness of Lemma 4.1.2, we would need to take M significantly larger than
N to have a provably bounded KL-divergence within the framework derived in this chapter.

We conclude this chapter with theoretical results on convergence for standard inducing
points with the points subsampled from observed data. These rely on existing bounds in
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the literature for the error of Nyström approximation. While not practically applicable due
to slackness in the constants in these bounds, they provide an interesting area for further
investigation.

4.1 Preliminary Results

Let Qn,n = Kn,mK�1
m,mKT

n,m. In the case of Gaussian process regression, Titsias (2009) and
Titsias (2014) establish a strong link between the trace of the matrix En,n := Kn,n�Qn,n, and
the KL-divergence between the approximate and exact posterior. Titsias (2014) showed that
for a fixed data set, if tr(En,n) = 0 then exact inference is recovered. We begin by stating this
result and leveraging it to obtain an explicit bound on the KL-divergence based on En,n.

4.1.1 Bounding the KL-divergence based on the Trace Error

Define t := tr(En,n), (here and throughout, we suppress the dependence of this error on M in
notation). We begin by recalling the variational lower bound of Titsias (2009), (2.24),

Llower = logN (y;0,Qn,n +s2
noiseI)� t

2s2
noise

 logN (y;0,Kn,n +s2
noiseI) = L,

where L denotes the log marginal likelihood of the full model.
On the other hand, Titsias (2014) provides the following upper bound on L,

Lupper := log
�
N (y;0,Qn,n + tI+s2

noiseI)
�
+

1
2
�
log
�
|Qn,n + tI+s2

noiseI|
�

� log
�
|Qn,n +s2

noiseI|
��

. (4.1)

Remark 4.1.1. The proof provided in Titsias (2014) indicates that the trace term appearing
in the first two terms in (4.1) could be replaced by the operator norm (largest eigenvalue) of
En,n, which could be useful in refining convergence results presented in Section 4.5.

Our goal is to bound L�Llower in terms of M and kernel hyperparameters alone. It
suffices to bound Lupper �Llower. To this end we establish the following lemma:

Lemma 4.1.2. With the notation established above,

Lupper �Llower 
t

2s2
n
+

tkyk2

2s4
n +2ts2

n
. (4.2)
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Proof. The proof has a similar spirit to that of (4.1) provided in Titsias (2014). Let R =

Qn,n +s2
n I.

Lupper �Llower =
t

2s2
n
+

1
2
�
yT R�1y�yT (R+ tI)�1y

�

=
t

2s2
n
+

1
2
�
yT �R�1 � (R+ tI)�1�y

�
. (4.3)

Since Qn,n is symmetric positive semidefinite, R is positive definite with eigenvalues bounded
below by s2

noise. Write, R = ULLLUT , where U is unitary and LLL is a diagonal matrix with
non-increasing diagonal entries l1 � l2 � . . . � lN � s2

noise. (For M < N the last M �N
eigenvalues of R must equal s2

n I.)
We can rewrite the second term (ignoring the factor of one half) in (4.3) as,

yT
⇣

ULLL�1UT �U(LLL+ tI)�1UT
⌘

y = (UT y)T
⇣

LLL�1 � (LLL+ tI)�1
⌘
(UT y).

Now define, z = (UT y). Since U is unitary, kzk= kyk.

(UT y)T
⇣

LLL�1 � (LLL+ tI)�1
⌘
(UT y) = zT

⇣
LLL�1 � (LLL+ tI)�1

⌘
z

= Â
i

z2
i

t
l 2

i +lit

 kyk2 t
l 2

N +lNt
. (4.4)

The last inequality comes from noting that the fraction in the sum attains a maximum when
li is minimized. Since s2

noise is a lower bound on the smallest eigenvalue of R, we can also
write,

yT �R�1 � (R+ tI)�1�y  tkyk2

s4
noise +s2

noiset
,

from which Lemma 4.1.2 follows.

4.1.2 General Results Based on Eigenvalues

Let Kn,n have eigendecomposition

Kn,n = ULLLUT .

where U a unitary N ⇥N matrix and LLL a diagonal matrix with decreasing eigenvalues
l1(K)� l2(K)� . . .� lN(K)� 0. Such an eigendecomposition necessarily exists as the
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matrix is symmetric, positive semidefinite. As mentioned in section 2.3 an optimal rank M
approximation Kn,n in terms of any unitarily invariant matrix norm (including the trace norm)
is given by UmLLLmUT

m, where Um is given by the the first M columns of U. The resulting
approximation leads to t = ÂN

i=M+1 li(K). It follows, as noted by Titsias (2014), that,

t �
N

Â
i=M+1

li(K). (4.5)

In general, computing this optimal lower bound is computationally intractable, as it involves
finding the first M eigenvalues of Kn,n, which most commonly used algorithms require at
least W(N2M) computation to achieve.

4.1.3 Asymptotic Properties of Eigenvalues of the Kernel Matrix

While finding a precise lower bound for the error of the trace term is computationally
intractable for large kernel matrices, understanding its asymptotic properties if the training
data comes from a known input distribution p(x) is simpler. In this case, eigenvalues of
1
N Kn,n converge to the eigenvalues of the operator, K : f !

R
X f (x)k(x,x0)p(x)dx. Moreover,

concentration results can be used to obtain explicit rates of convergence in probability, see
for example Shawe-Taylor et al. (2002). Additionally, Shawe-Taylor et al. (2002) show that
the empirical covariance function has smaller tail sums in expectation than the covariance
operator, so we should expect that the optimal trace term for a finite N is somewhat lower
than an estimate derived from working with the corresponding infinite dimensional operator.
This trend can be seen in Figure 4.1 for a SE-kernel with the operator eigenvalues plotted for
normally distributed inputs, and the empricial eigenvalues plotted for covariance matrices
with different input distributions.

As an example, consider the squared exponential kernel given by

k(x,x0) = vk exp
✓
kx� x0k2

2`2

◆
, (4.6)

and suppose xi ⇠N (0,s2) =: p(x). Recall the eigenvalues of the corresponding operator, K,

are given by (3.8):

lm = vk

r
2a
A

Bm, (4.7)

with a = 1/(4s2), b = 1/(2`2), c =
p

a2 +2ab, A = a+ b+ c, B = b/A. Let li(K) denote
the ith eigenvalue of the empirical covariance matrix (we have suppressed the dependence on
n for notational convenience.



40 Convergence Properties

Fig. 4.1 Decay of first 20 eigenvalues for data points sampled from a uniform, normal and
mixture of gaussian input distributions, with N = 500 for a SE kernel with `2 = 1. All three
input distributions with standard deviation 1. The eigenvalues of the covariance operator for
defined with respect to the same normal distribution are also shown.

For fixed i, lim
N!•

1
N li(K)! li. So for any fixed M,

lim
N!•

1
N

M�1

Â
i=0

li(K)!
M�1

Â
i=0

li.

In this case, the right hand side is a finite geometric series,

M�1

Â
i=0

li = vk
p

2a/A
1�BM

1�B
. (4.8)

Additionally, 1
N ÂN�1

i=0 li(K) = vk, as each diagonal entry in Kn,n for this kernel is vk. Write

vk =
N�1

Â
i=0

1
N

li(K) =
M�1

Â
i=0

1
N

li(K)+
N�1

Â
i=M

1
N

li(K),

So,

1
N

lim
N!•

N�1

Â
i=M

li(K) = vk �
M�1

Â
i=0

li

= vk � vk
p

2a/A
1�BM

1�B

=
vk
p

2aBM
p

A(1�B)
. (4.9)
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In other words, for fixed M sending to N infinity, we should expect that under the above
assumptions the trace term will be bounded below by a quantity on the order of BM for any
inducing feature. In the next section, we show a matching bound holds almost surely for
eigenfunction based inducing points as N ! •.

4.2 General Bounds for Eigenfunction based Inducing Points

The primary obstacle to obtaining bounds on the trace term in order to apply Lemma 4.1.2
with standard inducing points is understanding the the matrix K�1

m,m. As this matrix is diagonal
for the eigenfunction inducing points bounding the trace term is significantly simplified.
Additionally, since the spectrum of the empirical covariance matrix converges to that of K
under the assumption xi ⇠ p(x) these bounds will be quite good if this condition is satisfied.

Recall from Mercer’s Theorem that

ki, j = k(xi,x j) =
•

Â
m=0

lmfm(xi)fm(x j),

holds µ a.e., with the right hand side convergent in L2(X ,µ). Note the small change of
notation, indexing the eigenvalues starting at 0.

From the definition of the covariance matrix Kn,m and the computation of covariances in
Section 3.3,

qi, j =
M�1

Â
m=0

lmfm(xi)fm(x j),

Bounding the termwise error in the estimated covariance matrix is the equivalent to bounding
the sum,

|ki, j �qi, j|=
���

•

Â
m=M

lmfm(xi)fm(x j)
���.

Consider the normalized trace error,

1
N

t =
1
N

N

Â
i=1

|ki,i �qi,i|=
1
N

N

Â
i=1

 
•

Â
m=M

lmfm(xi)
2

!
. (4.10)

Suppose xi ⇠ q, with q(x) a probability density such that q(x)  cp(x), 8x where p is the
density with respect to which the features are defined.

The right hand side of (4.10) is a sum of N i.i.d random variables, 1
N ÂN

i=1 Ai, with
Ai :=

�
Â•

m=M lmfm(xi)2� . By the strong law of large numbers, as N ! •, 1
N t ! Eq[Ai]

almost surely if the expectation exists.
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Eq[Ai] =
Z

X

•

Â
m=M

lmfm(x)2q(x)dx

 c
Z

X

•

Â
m=M

lmfm(x)2 p(x)dx

= c
•

Â
m=M

lm

Z

X
fm(x)2 p(x)dx

= c
•

Â
m=M

lm. (4.11)

The interchanging of the sum and integral is justified from the Tonelli-Fubini theorem as the
terms are nonnegative.

Hence
1
N

t  c
•

Â
m=M

lm, (4.12)

almost surely. As p and q are both probability densities, c is greater or equal to 1 with
equality if and only if p = q almost everywhere. Additionally, while we have shown this
convergence almost surely for any fixed M, since the countable union of almost sure events
holds almost surely, this estimate holds almost surely for all M.

For fixed M, as N ! •, this matches the asymptotic lower bound on the trace term of
the empirical matrix discussed in the previous section, though this lower bound does not
necessarily hold as M ! •.

4.2.1 Concentration Inequalities

While the strong law of large numbers tells us that for sufficiently large N we can be confident
the bound in (4.12) holds, it is desirable to obtain a more explicit result. This can be achieved
using concentration inequalities.

Theorem 4.2.1 (Hoeffding’s Inequality, Hoeffding (1963)). Suppose A1,A2, . . . ,AN are i.i.d
random variable with 0  Ai  v, and E[Ai] = µ  •. Define SN = 1

N ÂN
i=1 Ai. Then,

Pr(Sn �µ > r) exp
✓
�2Nr2

v2

◆
, (4.13)

for r > 0.
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Using Hoeffding’s inequality for the trace with r = d µ, µ  Â•
m=M lm and under the

supposition that ki,i �qi,i  vM,

Pr

 
t < (1+d )cN

•

Â
m=M

lm

!
 exp

 
�2Nc2d 2 (Â•

m=M lm)
2

v2
M

!
. (4.14)

This bound will be used for the squared exponential kernel when it is assumed that the data
is uniformly distributed, as in this setting the individual terms in the trace can be bounded
above by a quantity that decays at the same rate as the sum of the tail of the eigenvalues.

When we consider the squared exponential kernel with xi ⇠N (0,s02), this bound will
not be applicable, individual terms along the trace cannot be bounded uniformly in x at a rate
that decreases with M. Instead, we will use a generalized Chebyshev bound based on the the
rth moment.

Theorem 4.2.2 (von Bahr and Esseen (1965)). Let {Ai}N
i=1 be i.i.d random variables with

E[Ai] = 0 and br = E [|Mi|r] , for 1 < r  2. Take SN := 1
N ÂN

i=1 Ai, then

P(SN > a)
✓

2� 1
N

◆
bra�rN1�r. (4.15)

Remark 4.2.3. A slight refinement using a one sided inequality, e.g. a generalized Cantelli
inequality, is likely possible though this will not improve the rate of convergence significantly
in the interesting cases where we are able to show br is small.

Remark 4.2.4. For r large (greater than 1.6), von Bahr and Esseen (1965) give a refinement
in to the constant

�
2� 1

N
�
. For r = 2 the standard Chebyshev inequality allows us to replace

the constant
�
2� 1

N
�

with 1.

In section 4.3 we consider the special case of the squared exponential kernel with features
defined with respect to a normal distribution, in two settings: first when the inputs are
uniformly distributed and then when inputs are distributed according to a normal distribution
with lengthscale less than the prior input distribution used to define the features.

4.3 Bounds for Hermite Based Inducing Points and The
Squared Exponential Kernel

Throughout this sections we consider the problem of approximate inference with a squared
exponential kernel

k(x,x0) = vk exp
✓
�
kx� x0k2

2
2`2

◆
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Fig. 4.2 Actual error on the trace and the bound given in (4.18) (on an absolute scale on the
left and log scale on the right) that holds for large N plotted for a synthetic data set with
N = 200, x ⇠ U [�

p
75,

p
75] and s = 5.

using Hermite features defined with respect to the input distribution p(x)⇠N (0,s2).

Theorem 4.3.1. Suppose xi ⇠ U [�R,R] then for all M � 0, let c =
p

2ps2

R exp( R2

2s2 ). Then,

1
N

t  c
•

Â
m=M

lm (4.16)

holds almost surely for all M � 0 as N ! •. Moreover, we have the estimate

Pr

 
t > (1+d )cN

•

Â
m=M

lm

!
 exp

✓
�2Nd 2

v2
M

◆
(4.17)

with vM = 1.44(1+ s2/`2)1/4 Rp
2ps2 .

Remark 4.3.2. The proof of 4.3.1 generalizes to xi ⇠ q with q any bounded input distributions
on a fixed interval with different constants cq and vM,q.

Theorem 4.3.3. Suppose xi ⇠N (0,s02) with s0  s then for all M � 0,

t  cN
•

Â
m=M

lm (4.18)

for c = s
s0 holds almost surely for all M � 0 as N ! •. Moreover, for s0 < s we have the

estimate

Pr

 
t � (c+d )N

 
•

Â
m=M

lm

!!
 min

1<r<min(s2/s02,2)
ard�rN1�r, (4.19)
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Fig. 4.3 Actual error as measured by KL-divergence as compared to the bound in (4.16)
that holds for large N plotted for a synthetic data set with N = 200, x ⇠ U [�

p
75,

p
75] and

s = 5. Plotted on an absolute scale on the left and log scale on the right.

with

ar =

✓
2� 1

N

◆
1.44r(1+ s2/`2)r/4

vuut
1

1� r
⇣

s0
s

⌘2 .

Remark 4.3.4. Analogous results to Theorem 4.3.3 can be achieved for r > 2 obtaining a
rate of convergence of O(N1�r), but we consider the case when s0 and s are close as we
expect this to generally be the result of optimization of the feature lengthscale parameter.

Remark 4.3.5. In Theorems 4.3.1 and 4.3.3, decreasing s2 increases the rate of convergence
of (4.16) and (4.18) to 0, as B becomes closer to zero. At the same time, decreasing s2 leads
to lower probabilities of convergence, and increases the constant c in Theorem 4.3.1. The
rates of convergence also depend on the spread of the data, and align with the intuition that
we should choose inducing features corresponding to the input distribution being very wide
if the empirical data covers a large range, and inducing features corresponding to a normal
distribution with low variance if the data is tightly clustered.

Figure 4.4 indicates that the bound on the trace that can be show to hold on average
is very tight if p(x) = q(x), although in figure 4.5 we see that the resulting KL-bound is
somewhat weaker. The bounds in the uniform setting, shown in figures 4.2 and 4.3 are,
perhaps unsurprisingly, somewhat weaker. Despite this, as the bound on the KL-divergence
converges to zero exponentially, it shows the approximation has essentially converged for M
small enough to be within the realm of practical application.

The key result in the proofs is the following term-wise bound on the entries of the error
matrix En,n :
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Fig. 4.4 Actual error on the trace and the bound given in (4.18) that holds for large N plotted
for a synthetic data set with N = 200, x ⇠N (0,52) and s = 5. Plotted on an absolute scale
(left) and a log-scale (right).

Fig. 4.5 Actual KL-Divergence and upper bound given by combining (4.18) from Theorem
4.3.3 and Lemma 4.1.2 that holds for large N plotted for a synthetic data set with N = 200,
x ⇠N (0,52) and s = 5. Plotted on an absolute scale (left) and a log-scale (right).
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Lemma 4.3.6. Let Qn,n := Kn,mK�1
m,mKT

n,m, qi, j denote the i, jth entry in Qn,n and ki, j =

k(xi,x j) denote the i, jth entry in Kn,n, then

|ki, j �qi, j|
2.4p

2
vk

lM(1+ s2/`2)1/4

1�B
exp

 
x2

i + x2
j

4s2

!
. (4.20)

holds for xi,x j ⇠ q almost surely.

Proof of Lemma 4.3.6. As in earlier proofs, we have

|ki, j �qi, j|=
���

•

Â
m=M

lmfm(xi)fm(x j)
���,

We need to now take into account the location of the xi in this bound. For this we use the
following bound on Hermite functions, obtained by squaring the bound in Gradshteyn and
Ryzhik (2014),

|Hn(xi)||Hn(x j)|< 1.44n!2n/2e(x
2
i +x2

j)/2.

Expanding into the definition of the (normalized) fm we obtain

|ki, j �qi, j|=
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4cs2 exp(a(x2
i + x2

j))vk
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◆�����

•

Â
m=M

BmHm(
p

2cx j)e�cx2
j Hm(

p
2cxi)e�cx2

i

2mm!

�����


p

4cs2 exp(a(x2
i + x2

j))vk

s✓
2a
A

◆ •

Â
m=M

Bm
���Hm(

p
2cx j)e�cx2

j

���
���Hm(

p
2cxi)e�cx2

i

���
2mm!

 1.44
p

4cs2 exp(a(x2
i + x2

j))vk

•

Â
m=M

lm
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!
•

Â
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lm.

The first inequality (triangle inequality) is sharp on the terms effecting the trace since when
xi = x j the sum must be term-wise positive.

This gives us that for diagonal terms, under the assumption that xi  R, we have

vM  1.44(1+ s2/`2)1/4 exp
✓

R2

2s2

◆ •

Â
m=M

lm.

Theorem 4.3.1 then follows from Hoeffding’s Theorem, 4.2.1.
For the proof of Theorem 4.3.3, we must show that the terms satisfy a bound on the rth

centered moment. We focus on the uncentered moment, which gives an upper bound on the
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centered moment as the mean is nonnegative. Using Lemma (4.3.6) in the first line:

br  1.44r(1+ s2/`2)r/4
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The last line follows from noting that the integral is proportional to the integral of Gaussian
distribution with standard deviation

q
s02/(1� r s02

s2 ) Take a = d (Â•
m=M lm) , then

Pr

 
t � (c+d )N
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Â
m=M

lm

!!

✓

2� 1
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◆
1.44r(1+ s2/`2)r/4

vuut
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1� r
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s0
s

⌘2 d�rN1�r

(4.22)

for 1 < r < min(2,(s2/s02)). We can minimize this bound with respect to valid r.

4.3.1 The Number of Inducing Points

We now restate and prove the main result of this section, Theorem 4.0.1.

Theorem 4.3.7. Given a SE-kernel, suppose xi ⇠ N(0,s02) or xi ⇠ U(�r,r) and that kyk2 
aN2 almost surely for some constant a (this is the case if the true process generating the data
has finite mean and variance, as the likelihood is assumed to be Gaussian). Let K denote the
KL-divergence between the full and approximate processes. Then we can find an M on the
order of log(N) such that as N ! •, almost surely K = o(1).

Proof. Substituting the assumption that kyk2  aN2 almost surely into Lemma 4.1.2,

K = O
✓

t +
tN2

1+ t

◆
, (4.23)

holds almost surely, with the implicit constant depending on both a and s2
noise.

It suffices to show that for some M = O(log(N)), the trace is almost surely o(1/N2). Take
M = (4+e) log(N) = log(N4+e). The result then follows in the case of uniformly distributed
inputs from Theorem 4.3.1 and in the case of Gaussian distributed inputs from Theorem
4.3.3. In particular, from (4.9), Â•

i=M li = O(BM), so



4.4 The Exponential Kernel 49

t = O
�
N2BM�= O(1/N2+e).

almost surely.

4.4 The Exponential Kernel

We now investigate the exponential kernel,

kexp(xi,x j) = vk exp
✓
�|xi � x j|

`

◆

We begin by analysing the trace term in the case of standard inducing points placed on a grid.
Understanding this case has two benefits. First, while the bound on the trace term proven for
inducing points placed on a grid might not bound the trace term of optimized inducing points,
any bound on the KL-divergence derived from this bound must hold as a bound on the actual
KL-divergence, because this is the quantity with which optimality is defined with respect to.

Additionally, we will assume the actual data is uniformly distributed over some interval.
In this case, for large data sets it is reasonable to expect that amongst any collection of
inducing points method, placing the inducing points on an evenly spaced grid over the
interval is near optimal.

4.4.1 Inducing Points Placed on a Grid

Analysing grid structured data for the exponential kernel is particularly tractable since the
exponential kernel corresponds to a first order Markov process, so the inverse covariance
matrix K�1

m,m has a particularly simple form.
The bound we are able to obtain in this case is the following:

Theorem 4.4.1. Given an exponential kernel k with length scale and variance 1, suppose
xi ⇠ U [0,1]. Consider M inducing points placed so that zm = m

M . Then,

1
N

t =
1

3M
+O(1/M2) (4.24)

holds almost surely as N ! •.

Remark 4.4.2. It would likely be slightly better to place the inducing points at locations so
as to divide the interval into M+1 regions by not placing zM at the end of the interval, but the
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improvement in the bound obtained is O(1/M2), so for ease of exposition, this technicality is
avoided.

Proof. Define, r := exp(�1/(M`)). Then, cov(zm,zm+k) = rk. The covariance matrix Km,m

is then a Kac-Murdock-Szegö or Markovian matrix, meaning it has the form

Km,m =

0

BBBBBBB@

1 r r2 . . . rM

r 1 r . . . rM�1

... . . . . . . . . . ...

... . . . . . . . . . ...
rM rM�1 rM�2 . . . 1

1

CCCCCCCA

.

The inverse of such a matrix is tridiagonal, see (Horn and Johnson, 1990, Exercise 7.2.P13
), given by

K�1
m,m =

1
1� r2

0

BBBBBBB@

1 �r 0 . . . 0
�r 1+ r2 �r . . . 0

0 . . . . . . . . . ...
... . . . �r 1+ r2 �r
0 0 . . . �r 1

1

CCCCCCCA

.

We assume 0  xi  1, and write xi =
mx�d

M , with 0  d < 1. Define d = exp(d/(M`)). Then,

cov(zm,xi) = exp(�|m�mx +d |/(M`))

=

8
<

:
rkd mx �m = k > 0

rkd�1 m�mx = k � 0.
(4.25)



4.4 The Exponential Kernel 51

If xi = zm for some m, then d = 1. The quadratic form = k(i)T K�1
m,m

1+r2�2r2

1�r2 = 1 (the
boundary cases i = 1,n) can also be easily verified. More generally, suppose m = mxi , then
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mx�1

Â
i=1

r2i +d�2(1� r2M�2mx)�2r2
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=
1

1� r2

�
d2r2mx +d�2r2M�2mx � (1� r2)d2 +d2(1� r2mx)+d�2(1� r2M�2mx)�2r2�

=
r2 +d�4 �2r2d�2

d�2(1� r2)
. (4.26)

The corresponding entry in Kn,n is one, so the trace term consists of elements of the form,

1� r2 +d�4 �2r2d�2

d�2(1� r2)
=

(1�d�2)(d�2 � r2)

d�2(1� r2)
.

Via Taylor expansion,

r = exp(�1/(M`)) = 1�1/(M`)+O(1/M2).

So
d�2 = 1�2d/(M`)+O(1/M2) and r2 = 1�2/(M`)+O(1/M2).

Substituting these expansions into (4.26)

ki,i �k(i)T K�1
m,mk(i) =

4d�4d 2

(M`)2 +O(1/M3)

2/(M`)+O(1/M2)
=

2�2d
(M`)

+O(1/M2).

Since xi ⇠ U [0,1] implies d ⇠ U [0,1], 2E[d � d 2] = 1� 2E[d 2] = 1/3, so for large M as
N ! •, we have

1
N

N

Â
i=1

(ki,i �k(i)T K�1
m,mk(i)) =

1
3M

+O(1/M2).

holds almost surely by the strong law of large numbers.
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Unlike with the Hermite based inducing points and the squared exponential function
in which the trace error decayed exponentially in the number of inducing points, with the
exponential kernel and standard inducing points placed on a grid, we observe only linear
decay in the number of inducing points. It is natural to ask whether this is a result of the
different kernel or the features. In the next section, we apply eigenfunction based inducing
features to help resolve this.

Remark 4.4.3. Summing the termwise bound in the worst case, where we have d =
q

1
r for

all xi gives the trivial bound on the trace

1
N

t  (1� r)2r
r(1� r2)

= 1. (4.27)

On the other hand, when optimizing inducing points such a situation cannot occur, since
this bound results from all of the actual data falling on a grid consisting of the midpoints of
the inducing points, and if the M inducing points were instead selected to fall on these points,
we would recover exact inference.

4.4.2 Using Eigenfunction based Inducing Points

We now consider the bounds obtained by instead using the first M eigenfunction based
inducing points defined according to exponential kernel with uniform input distribution. In
this setting, we prove the bound:

Theorem 4.4.4. Under the same assumptions as in Theorem 4.4.1, but using eigenfunction
inducing points defined with respect to the exponential kernel defined with respect to the
uniform input distribution [0,1] (see (3.15)), we have

1
N

t =
2

Mp2 +O(1/M) (4.28)

holds almost surely.

Remark 4.4.5. Comparing the bounds in Theorem 4.4.1 and Theorem 4.4.4 shows that at
least asymptotically the eigenfunction based inducing points outperform grid based inducing
points in terms of minimising the trace, as 2/p2 = .203  1/3, but only by a constant factor.

Proof. From the general results on eigenfunction inducing points derived in section 4.2, it
suffices to bound the sum,

•

Â
m=M

lM. (4.29)
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Recall, lm = 2
1+(wm)2 , with wm = pm+O(1).

•

Â
m=M

lM =
•

Â
m=M

2
1+(wm)2 (4.30)

=
2

p2

•

Â
m=M

1
m2 +O(1/M2) (4.31)

=
2

Mp2 +O(1/M2). (4.32)

We can additionally obtain a termwise bound on the trace using that f 2
m(xi) 2

1� 1
wm

,
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lmf 2
m(xi) 4

•

Â
m=M+1

 
1

1� 1
wm

!
1
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(4.33)

=
4

p2

•

Â
m=M+1

1
m2 +O(1/M2) (4.34)

=
4

p2
1
M

+O(1/M2). (4.35)

This could be used in conjunction with concentration results. However, as M needs to be on
the order of N in order for the trace to be O(1) in expectation, we cannot obtain an interesting
result (i.e. one that holds for M  N) for the number of inducing features needed to obtain
convergence in KL-divergence using Lemma 4.1.2.

4.5 General Bounds Using Optimized Inducing Points

For optimized inducing points, we have from Lemma 4.1.2 with K denoting the KL-
divergence,

K  t
2s2

noise
+

tkyk2

2s4
noise +2ts2

noise
. (4.36)

with t = min
{zm}M

m=1:zm2Rd
Kn,n � Kn,mK�1

m,mKT
n,m. Note that the zm actually chosen may not

minimize this trace error, but the bound on the KL-divergence still applies as the lefthand side
of (4.36) is the target of the optimization. In general it is not clear how to find this minimum.

However, bounds are known for specific choices of zm, which can be used in place of the
optimal selection to derive upper bounds on K. For example, random selection of a subset of
M ⌧ N points (i.e. a subset of regressors model) leads to bounding the error of a standard



54 Convergence Properties

Nyström approximation of the matrix Kn,n. The Nyström method has been directly applied
to Gaussian process approximation, in Williams and Seeger (2001) and connections between
this approximation and inducing points methods have been previously observed in Williams
et al. (2002). This observation can be used in conjunction with the following bound:

Lemma 4.5.1. Gittens and Mahoney (2013, Lemma 4) Let E⇤
k denote the error of the

optimal rank M approximation to Kn,n by any rank k matrix, i.e. E⇤
k = ÂN

i=k+1 li(Kn,n). Let
µK = n

k maxin kUik2
2, where Ui is an n⇥k unitary matrix consisting of the top k eigenvectors

of Kn,n. Fix d and e 2 (0,1). If M � 2µk
e log(k/d ) then

t 
✓

1+
1

d 2(1� e)

◆
E⇤

k (4.37)

with probability at least 1�4d .

Remark 4.5.2. Gittens and Mahoney (2013) also give bounds on the operator norm of the
Nyström approximation that could be used with a refined version of Lemma 4.1.2 to offer an
improvement on the upper bound on the KL-divergence.

Remark 4.5.3. The constant µK, known as the coherence of the matrix is generally difficult
to compute. Good bounds on this constant in the setting of kernel matrices with inputs
coming from a specified distribution would be of interest for obtaining better bounds on the
convergence rates of non-optimized inducing point methods.

Remark 4.5.4. As we are generally interested in optimized inducing points, we can maximize
the bound over any choice of d , as the randomness in the bound comes from the sampling
scheme and not the matrix being approximated

An alternative, based on a leveraged based sampling scheme of columns is also given in
Gittens and Mahoney (2013). Again, as we are interested primarily in optimized points, we
do not focus on the sampling scheme and instead view it as a method to show the existence
of a subset of columns yielding a good low rank approximation.

Lemma 4.5.5. Gittens and Mahoney (2013, Lemma 3) There exists a stochastic method
for sampling columns of the covariance matrix such that for d and e in (0,1]. For M �
3200k/e2 log(4k/d )

t 
�
1+ e2�E⇤

k , (4.38)

with probability at least 0.6�d .

Remark 4.5.6. We can take any d < 0.6 and be sure the resulting bound on the KL-
divergence holds, as we optimize the selection.
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While theoretically interesting, in our setting this bound is not useful, as we would need
to utilise over 3200 inducing points for it to apply and at least an order of magnitude more to
obtain interesting bounds on the KL-divergence.

Bounds on the quality of Nyström approximation in trace error, specifically tailored to
kernel matrices, and perhaps under the assumption that points are drawn from a given prior
distribution would be of interest in terms of obtaining general, practical and explicit bounds
on the error introduced by performing approximate inference with optimized inducing points.





Chapter 5

Experiments

In this chapter we explore the practical applicability of eigenfunction based inducing points.
We begin the chapter looking at their performance on several toy one-dimensional datasets,
and show the effect of the empirical distribution of training data on the number of features
needed to achieve convergence. Additionally, we discuss potential issues with the approxima-
tion prior to convergence. We then discuss methods for scaling the features to approximate
multidimensional data and show the practical applicability on a large ‘airline’ dataset that has
been used to benchmark prior work in the scalable Gaussian process literature. All models
are implemented in Python using the ‘GPFlow’ library (Matthews et al., 2017).

5.1 Toy One Dimensional datasets

In defining the eigenfunction based inducing points, we needed to choose an input distribution,
p(x). In the case of the Hermite based features, this is assumed to be a normal distribution,
with mean, µ and variance s2, where µ and s are variational parameters that can be optimized
along with kernel hyperparameters. While we have justified this choice by assuming the
training inputs are distributed according to this distribution and shown convergence strong
guarantees if the training inputs are in fact drawn from a normal distribution, the inducing
features defined are valid regardless of the locations of the actual training data. However, the
number of features needed to achieve a good model depends heavily on the locations of the
training inputs.

5.1.1 Effect of input Distribution

The one-dimensional datasets considered are created by randomly sampling a function from
a zero-mean Gaussian process with squared exponential kernel with variance and lengthscale
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Fig. 5.1 Rate of convergence of approximate log likelihood for optimized inducing points,
randomly selected inducing points and eigenfunction based inducing points for x ⇠N (0,52).

parameters both equal to 1, and adding gaussian noise. Two-hundred training input locations
are selected according to:

• x ⇠N (0,52),

• x ⇠ U(�
p

75,
p

75) (note this lead to a standard deviation of 5, for sake of comparison
to the normal distribution),

• x ⇠ q where qi is a mixture of two Gaussian with equal weight, means ±10 and
standard deviations s = 1.

q is chosen to show an adversarial example when the empirical input distribution is multi-
modal and supported on a region many lengthscales long.

Figures 5.1, 5.2 and 5.3 show the ELBO for various choices of M for each set of training
inputs.

As optimized inducing points are prone to getting trapped in local optima, to ensure
monotonicity of convergence and a good solution, we initialize the inducing points for the
optimized models with M+1 inputs using the same randomly selected points as was used in
the approximation with M inputs, and take the best approximation of 3 such initializations
with different seeds. This ensures monotonicity in the bound, as well as a good optima.

The eigenfunction inducing inputs appear to avoid such optimization errors in general as
they involve far fewer parameters. These are initialized with p(x) set to have the same mean
and standard deviation as the empirical training data.

The performance for inducing points randomly selected from training data is also plotted,
along with error bars showing the best and worst performance for 10 trials.
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Fig. 5.2 Rate of convergence of approximate log likelihood for optimized inducing
points, randomly selected inducing points and eigenfunction based inducing points for
x ⇠ U(�

p
75,

p
75).

Fig. 5.3 Rate of convergence of approximate log likelihood for optimized inducing points,
randomly selected inducing points and eigenfunction based inducing points for x ⇠ q.
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Comparing the performance of the three methods, we see that the eigenfunction inducing
point features perform comparably well to the optimized inducing inputs for a given M for
inputs that are normally distributed or uniformly distributed on a short interval. At the same
time they require the optimization of fewer variational parameters and offer a computational
savings for large M.

For inputs coming from the multimodal input distribution, the quality of approximation of
M eigenfunction inducing points is inferior to both optimized and randomly selected inducing
points for moderate M. For larger M the eigenfunction based inducing points outperforms
the randomly selected inducing points, while introducing only two additional variational
parameters. In general, the eigenfunction inducing points struggle to recover the full model
in sections of the domain in the tail of the input distribution. While optimized inducing points
can handle these training inputs by placing a single or handful of points in these regions, the
eigenfunction inducing features must cover the entire support of the data in order to model
inputs contained in the tails.

5.1.2 Performance Prior to Convergence

In practical applications we may not be able to use sufficiently many inducing features in
order for the model to have fully converged to the full model. For small M, the optimized
model tends to select kernel hyperparameters that make the kernel easier to approximate
sparsely. This is presumably in order to achieve a reasonably small trace error term in the
ELBO and leads to the underfitting observed in previous papers for optimized inducing point
methods (e.g. Bauer et al. (2016)) This means selecting a kernel with larger lengthscale and
variance than the full model.

When used in conjunction with nonlocal basis functions, this can lead to pathological
mean predictions away from the data, although these prediction come with large uncertainty.
Figure 5.4 shows model behaviour prior to convergence, when all parameters are jointly
optimized so the model chooses an easy to approximate kernel. This corresponds to the
while figure 5.5 shows uses the same number of features to approximate a fixed kernel with
the same hyperparameters at the full model, in order to isolate the impact of nonlocal basis
functions.
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Fig. 5.4 Approximate models for M = 8,16,24 as well as the full model for the 1-dimensional
toy dataset with x sampled from the mixture of Gaussian model.

Fig. 5.5 Approximate models for M = 8,16,24 as well as the full model for the 1-dimensional
toy dataset with x sampled from the mixture of Gaussian model, with the kernel hyperparam-
eters fixed to the optimal obtained by the full model.
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5.2 Scaling To Higher Dimensions: Additive and Multi-
plicative Structures

While the eigenfunction inducing point framework does not depend on the dimensionality
of input data, we have not given specific examples indicating the eigenfunctions of higher
dimensional operators. Two methods for defining a kernel on D-dimensions from a basic
univariate kernels are additive kernels and Kronecker kernels, both applied to Variational
Fourier Features in Hensman et al. (2016). In this section, both models will be reviewed
considering theoretical implications from a spectral perspective as well as practical scaling
considerations. We then apply each method to a different classification task.

5.3 Kronecker Gaussian Process Models

Commonly kernels on multidimensional inputs are defined by assuming that the kernel
factors as a product of kernels over each dimension. If x = (x1, . . . ,xd) 2 Rd. and x0 =
(x01, . . . ,x

0
d) 2 Rd. we define a kernel on Rd by

k(x,x0) =
d

’
i=1

ki(xi,x0i). (5.1)

It is then natural to define features on Rd by

um =
Z

Rd
fm(x)k(x,x0) f (x0)dx, (5.2)

where m = (m1, . . . ,md) is a multi-index and,

fm(x) =
d

’
i=1

fmi(xi). (5.3)



5.3 Kronecker Gaussian Process Models 63

Then,

cov(um,u0m) =
Z

Rd

Z

Rd
fm(x)f 0

m(x)k(x,x0)dx0dx

=
Z

Rd

Z

Rd

d

’
i=1

fmi(xi)fm0
i
(x0i)ki(xi,x0i)dx0dx

=
d

’
i=1

Z

R
fmi(xi)fm0

i
(x0i)ki(xi,x0i)dxi

=
d

’
i=1

covi(umi ,um0
i
). (5.4)

and

cov(um, f (x)) =
Z

Rd
f 0

m(x0)k(x,x0)dx0

=
d

’
i=1

Z

R
fmi(x

0
i)ki(xi,x0i)dx0i

=
d

’
i=1

cov(umi , f (xi)). (5.5)

The latter equation indicates that the multidimensional features defined in this way are
eigenfunctions of the product kernel, with respect to an input distribution that factors across
each dimension. The eigenvalues are given by the product of the eigenvalues along each
dimension. This is perhaps the most natural generalization of the eigenfunction framework,
but forces axis aligned priors on inputs. Practically, this can be addressed by first performing
PCA on training data.

Scaling considerations

While product kernels are often able to express complex relationships in the data, the number
of inducing features needed will tend to scale exponentially in the number of dimensions.
If we have M features defined along each dimension, this leads to Md choices for m, each
corresponding to a feature. This leads to an inference cost of O(NM2d), with a per iteration
cost of O(ÑM2d), and a memory cost of O(NMd). The total number of hyperparameters is
HD+2MD where H is the number of kernel hyperparameters of the base kernel.

The total cost of inference and training can be reduced by imposing additional constraints
on the covariance matrix and mean vector used to represent the variational distribution. Such
constrained variational distributions are explored in Nickson et al. (2015) and Izmailov et al.
(2017) for grid structured inducing points. Both approximations come at a cost in terms of



64 Experiments

Fig. 5.6 Decision Boundaries for the normally distributed ‘bananas’ dataset for different
numbers of inducing points (top), the full model (top, rightmost) and a Kronecker product of
the Hermite Inducing Features (bottom row).

the ability of the variational posterior to approximate the true posterior, and can result in the
model not converging to full inference, even as the number of features tends to infinity.

A Simple Example of Kronecker Inference

In order to show the eigenfunction inducing features potential applicability to multidimen-
sional tasks, we consider a modified version of the toy ‘banana’ 2D classification experiment
first performed in Hensman et al. (2015). We first train a full SE-ARD (Kronecker) kernel
on a subset of 400 data points, then resample points from posterior according to a normal
distribution with diagonal covariance function, and assign each new sample either a 0 or 1
with probability equal to the samples value. As the resampled points are normally distributed,
this should be a favorable test for eigenfunction inducing points.

In figure 5.6 we see that for a fixed number of inducing features, the optimized inducing
points outperform the eigenfunction based features in approximating a SE-ARD kernel
on this classification task. However, for larger datasets and large M we should expect a
significant computational savings for the eigenfunction based features (the dataset we use
here is too small for minibatching to be practical).
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5.4 Additive Kernels

An alternative method for extending one dimensional kernels to high dimensions is additive
modelling, see Durrande et al. (2011) for a review. In an additive model, we have,

k(x,x0) =
d

Â
i=1

ki(xi,x0i). (5.6)

Following Hensman et al. (2016), we then define inducing features by,

um,i =
Z

R
fm(xi)k(x0i,xi) fi(x0i)dxi, (5.7)

so that um,i is the mth eigenfunction of the kernel defined along the ith dimension. In an
additive model, the Gaussian processes corresponding to each dimension are independent.
This can be seen by noting that a Gaussian process is uniquely characterized by its covariance
function and mean, and the covariance function for independent Gaussian processes is
additive.

cov(um,i,un, j) = di, jcov(um,un), (5.8)

and
cov(um,i, f (x)) = cov(um, f (xi)). (5.9)

This leads to a total of Md inducing features (M per dimension) and a corresponding inference
cost of O(NM2d2) inference cost.

An Example of Additive Inference on A Large dataset

As an example of the practical applicability of the features to large dataset, we focus on a
classification task. While with stochastic optimization for regression tasks we expect large
computational savings as compared to standard inducing points, if it is not essential to use a
SE-kernel, using VFF and the collapsed likelihood will generally converge far faster than
the eigenfunction features even with the a diagonal approximation to the covariance matrix
of the approximating distributions, S, discussed in Section 3.3.3. Therefore, we expect the
practical use for these features to occur with non-conjugate likelihoods, where they have
the same computational complexity per iteration as VFF and lower than optimized inducing
points.

The ‘airline’ dataset (Bureau of Transportation Statistics, 2008) has been widely used as a
benchmark in Gaussian Process literature, for example in Hensman et al. (2016). The dataset
contain 5.7 million US flight records, that has become a standard test for scalable Gaussian
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Fig. 5.7 Input distributions for the airline dataset.

process models. The response variable is the delay of the aircraft landing (minutes). We
binarize this response, making it one if this delay is greater than zero (the plane is delayed)
and zero otherwise. 43.6% of flights are delayed, while 56.4% of flights leave on time or
early. The input space is 8-dimensional, with marginal distributions shown in figure 5.7.
Several inputs have long tails and that may be difficult to model with the eigenfunction
inducing feature approximation.

Several variables are highly correlated, notably arrival and departure time and time in the
air and distance. Although it is not clear that independence of input variable distributions
is useful for additive eigenfunction models (although it certainly should be the case for the
Kronecker features) we fit several models after first applying PCA to orthogonalise the input
variables (we keep all components, so this is simply a linear transformation of the input
space). Note that an additive kernel defined on a space after a linear transformation defines a
different model than an additive kernel defined on the initial space. The distributions of the
components are shown in figure 5.8.

Inducing points are initialized via K-means on a random subset of the 10000 training
data points. Two thirds of the flight records were split for training and one third was used for
testing. The minibatch size was taken to be 500, and ADAM optimization was used with
default parameters. All experiments are run on a single cpu. Times per iteration computed in
a separate experiment from metrics and rescaled, as the cost of computing the metrics for
such a large dataset is far larger than the per iteration cost.

Table 5.1 indicates that the per iteration cost for training the Eigenfunction inducing
points is substantially lower than training standard inducing points, particularly for large
M. (Here an throughout this section, M is the number of features per dimension, so the
total number of features is 8M), On the other hand, figure 5.9 shows that for this dataset,
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Fig. 5.8 Input distributions for the airline dataset.

Table 5.1 Comparison of time (minutes) to run 1000 iterations of optimization for various M
for Eigenfunction inducing points and Optimized inducing points.

Approximation Method M

60 90 120

Optimized Inducing Point 4.44 8.74 15.66
Eigenfunction Inducing Feature 2.92 5.57 8.74
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Fig. 5.9 ELBO for various M for raw dataset.

Fig. 5.10 ELBO for various M for dataset after applying PCA.

substantially more iterations of optimization are needed for the parameters to converge for
the eigenfunction inducing points. The net effect of this is inferior performance for the
eigenfunction inducing points for the untransformed data.

When working with the transformed data, the eigenfunction inducing points appear to
need many fewer iterations than with the raw data, though still more than the optimized
inducing points. The net effect is that M = 60 and M = 90 with limited computation (under
15 minutes for M = 60), the eigenfunction features outperform the optimized inducing points
by a significant margin. This advantage reverses if longer training times are allowed. The
ELBO and accuracy over time are shown in figures 5.10 and 5.11. The transformed data also
leads to a model that is substantially better than the additive model over the untransformed
outputs, as indicated by the comparing the ELBO (y-axis) in figures 5.10 and 5.10. After
many iterations of training, there is still a gap between the performance of the eigenfunction



5.4 Additive Kernels 69

Fig. 5.11 Test accuracy for various M for dataset after applying PCA.

inducing points and the optimized inducing points. It is possible that even for M = 90
features along each dimension the eigenfunction inducing points are unable to capture the
tails of the input distribution for this dataset and kernel.

The improved performance of the eigenfunction inducing points when applied for approx-
imate inference after a linear transformation of the data space raises interesting questions
about whether greater benefits may be observed when applying in conjunction with deep
transformations of the input space, as in Wilson et al. (2016).





Chapter 6

Conclusion and Future Work

Spectral properties of Gaussian processes have been used for approximation methods for
decades. In this work, we showed that these techniques can be applied within the variational
framework, inheriting many of its theoretical and practical advantages. Expanding the
scope of this intersection to allow for compact, flexible nonparametric approximations is a
promising area for future work.

A key insight from the derivation of the eigenfunction inducing points is viewing vari-
ational optimization of inducing features as finding a measure over the input domain that
gives sufficient weight to the training data locations. Deriving inducing features parametrized
over larger classes of input distributions, and for more diverse kernels would be useful
for improving the flexibility of this model. As analytic solutions to the eigenfunction are
generally known only in special cases, finding efficient methods to approximate solutions for
use in the covariance matrix, Km,n within the variational framework is desirable.

While theoretical bounds on the rate of convergence for M ⌧ N optimized inducing
points are given, these bounds are only valid for M much larger than those values typically
used for approximate inference. Obtaining stronger bounds for the Nyström approximation
in this setting, perhaps by leveraging additional structure present in specific kernel matrices,
is a promising direction for future work that could lead practical bounds on the convergence
of approximate inducing point methods. Additionally, finding bounds on the KL-divergence
that take into account the distance between the full and approximate likelihood directly, as
opposed to only through the trace error could be an avenue for improving bounds on the
convergence of inducing feature methods more generally.

In this work, a new class of ‘interdomain features’ was derived. The features are in some
sense canonical, as they are closely related to spectral properties of the covariance matrix and
leverage Mercer’s Theorem and the Karhunen-Loéve expansion to yield features with easy
to interpret variational parameters. These features were first motivated have computational
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benefits resulting from orthogonality properties. Additionally, convergence guarantees were
obtained in certain cases for very sparse approximations using these features. Finally, the
practical performance of these features was shown on a large data set.
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Appendix A

Structure of Covariance Matrices

A.1 Matérn Feature Covariance outside Interval

In order to apply the Matérn eigenfunction inducing features, we also must consider covari-
ance with the process for x outside the interval, as the f are no longer eigenfunctions so the
covariance calculation does not apply. For x0 > a,
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For the odd roots, we have `cos(w(b�a)/2) =� sin(w(b�a)/2)
w =: v. Then
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for m odd. Similarly, if x0 < a we arrive at
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For even m, noting that we have cos(w(b� a)/2) = `w sin(w(b� a)/2) =: vm, a similar
calculation gives:

cov(um, f (x0)) =

8
>><

>>:
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A.2 Covariance Matrix of Optimal Approximating Distri-
bution

In section 3.3.3 we showed that the precision matrix of the approximating distribution has
the form,

Sopt = (LLL+E)�1

where the entries in E are all o(N), and LLL is a diagonal matrix with LLLi,i = liN. Define
L = 1

N LLL and E = 1
NE . Then, expanding the matrix

�
I+EL�1��1 via a geometric series,

(L+E)�1 = L�1 �I+EL�1 + . . .
�
= L�1 +E0, (A.1)

where E0 := L�1EL�1 +L�1 �EL�1�2
+ . . . is a matrix with entries tending to zero with

N. The geometric series used converges for N sufficiently large and E0 has entries tending
towards zero, as the largesr eigenvalue of EL�1 is bounded above M

lM
times the largest entry

in E, which tends to zero as N ! •. Using the right hand side of (A.1)

Sopt = (LLL+E)�1 =
1
N
�
L�1 +E0� ,

so Sopt is approximately diagonal with the entries on the diagonal on the order of 1
N and

off-diagonal entries o( 1
N ). Under the assumption of bounded variance mentioned earlier, we

have the off-diagonal entries are O(N�3/2).


