
Compression without Quantization

Gergely Flamich

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

St John’s College August 2019





Szüleimnek.





Declaration

I, Gergely Flamich of St John’s College, being a candidate for theMPhil inMachine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

Software Use The project does not rely on any previously written software, all methods
and experiments presented in this report have been implemented by the author.

Word Count: 14950

Gergely Flamich
August 2019





Acknowledgements

I would like to acknowledge first and foremost my two supervisors, Marton Havasi and Dr
José Miguel Hernández-Lobato. They both have been extremely supportive and resourceful
during the completion of this project, and I have been greatly inspired by their enthusiasm
and seemingly endless pool of ideas.

I would also like to thank Ferenc Huszár for providing invaluable early guidance, which
has greatly facilitated finding the right direction for our project and applying the correct
methods in the design of our models and experiments.

Finally, I would like to thank Stratis Markou, Joshua Kramer and Nick Tikhonov for be-
ing the amazing friends they were to me during the whole year and who have helped me get
through the many challenging periods of this MPhil. I spent a very enjoyable and intellec-
tually stimulating year in their company.





Abstract

There has been renewed interest in machine learning (ML) based lossy image compression,
with recently proposed techniques beating traditional image codecs such as JPEG,WebP and
BPG in perceptual quality on every compression rate. A key advantage of ML algorithms in
this field are that a) they can adapt to the statistics of individual images to increase compres-
sion efficiency much better than any hand-crafted method, and b) they can be used to very
quickly develop efficient codecs for new media such as light-field cameras, 360∘ images,
Virtual Reality (VR), where classical methods would struggle, and where the development
of efficient hand-crafted methods could take years.

In this thesis, we present an introduction to the field of neural image compression, first
through the lens of image compression, then the lens of information-theoretic neural com-
pression. We examine how quantization is a fundamental block in the lossy image com-
pression pipeline, and emphasize the difficulties it presents for gradient-based optimization
techniques. We review recent influential developments in the field and see how they circum-
vent the issue of quantization in particular.

Our approach is different: we propose a general lossy compression framework that al-
lows us to forgo quantization completely. We use this to develop a novel image compression
algorithm using an extension of Variational Auto-Encoders (VAEs) called Probabilistic Lad-
der Networks (PLNs) and evaluate its efficiency compared to both classical and ML-based
approaches on two of the currently most popular perceptual quality metrics. Surprisingly,
with no fine-tuning, we achieve close to state-of-the-art performance on low bitrates while
slightly underperforming on higher bitrates. Finally, we present an analysis of important
characteristics of our method, such as coding time and the effectiveness of our chosen model,
and discuss key areas where our method could be improved.
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Chapter 1

Introduction

1.1 Motivation
There have been several exciting developments in neural image compression recently, and
there are now methods that consistently outperform classical methods such as JPEG, WebP
and BPG (Toderici et al. (2017), Theis et al. (2017), Rippel and Bourdev (2017), Ballé et al.
(2018), Johnston et al. (2018), Mentzer et al. (2018)).

The first advantage of ML-based image codecs is that they can adapt to the statistics of
individual images much better than even the best hand-crafted methods. This allows them to
compress images to much fewer bits while retaining good perceptual quality. A second ad-
vantage is that they are generally far easier to adapt to new media formats, such as light-field
cameras, 360∘ images, Virtual Reality (VR), video streaming etc. The purposes of compres-
sion and the devices on which the encoding and decoding is performed varies greatly, from
archiving terabytes of genetic data for later research on a supercomputer, through compress-
ing images to be displayed on a blog or a news article to improve their loading time in a
user’s web browser, to streaming video on a mobile device. Classical methods are usually
“one-size-fits-all”, and their compression efficiency can severely degrade when attempting
to compress media for which they were not designed. Designing good hand-crafted codecs
is difficult, can take several years, and requires the knowledge of many experts. ML tech-
niques, on the other hand, allow to create equal or better performing, and much more flexible
codecs within a few months at a significantly lower cost.

The chief limitation of current neural image compression methods is while most models
these days are trained using gradient-based optimizers, quantization, a key step in the (lossy)
image compression pipeline, is an inherently non-differentiable operation. Hence, all current
methods need to resort to “tricks” and approximations so that the learning signal can still be
passed through the whole model. A review of these methods will be presented in Chapter 3.
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Our approach differs from virtually all previous methods in that we take inspiration from
information theory (Rissanen (1986) and Harsha et al. (2007)) and neural network compres-
sion (Hinton and Van Camp (1993) and Havasi et al. (2018)) to develop a general lossy
compression framework that allows us forgoing the quantization step in our compression
pipeline completely. We then apply these ideas to image compression and demonstrate that
our codec using Probabilisitic Ladder Networks (Sønderby et al. (2016)), an extension of
Variational Auto-Encoders (Kingma and Welling (2014)), achieves close to state-of-the-art
performance on the Kodak Dataset (Eastman Kodak Company (1999)) with no fine-tuning
of our architecture.

1.2 Thesis Contributions
The contributions of our thesis are as follows:

1. A comparative review of recent influential works in the field of neural image com-
pression.

2. The development of a general lossy compression framework that allows forgoing the
quantization step in the compression pipeline, thus allowing end-to-end optimization
of models using gradient-based methods.

3. A novel image compression algorithm using our framework, that achieves close to
state-of-the-art performance on the Kodak Dataset Eastman Kodak Company (1999)
without any fine-tuning of model hyperparameters.

4. Three sampling algorithms for multivariate Gaussian distributions, that can be read-
ily used in our compression framework.

1.3 Thesis Outline
Our thesis begins with an introduction to the field of neural image compression. We first
review concepts in image compression in Chapter 2, such as lossless versus lossy compres-
sion, the rate-distortion trade-off and linear and non-linear transform coding. We empha-
size the fundamental role quantization plays in virtually all previous approaches in image
compression. In Section 2.2, we shift our focus to information theory, where we introduce
the Minimum Description Length (MDL) Principle (Rissanen and Langdon (1981)) and the
Bits-back Argument (Hinton and Van Camp (1993)). Taking inspiration from these, as well
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as from Harsha et al. (2007) and Havasi et al. (2018), in Section 2.3 we develop a general
framework for the lossy compression of data and show how it is related to quantization.

In Chapter 3, we give a comparative review of recent influential developments in neural
image compression. We examine their whole pipeline: the datasets used, their architectures,
the “tricks” and approximations used to circumvent the non-differentiability of quantization,
their coding methods, training procedures and evaluation methods.

In Chapter 4, we describe our proposed method. We explain our choice of the dataset,
and preprocessing steps. We give a detailed description of our model and why we chose it.
We describe our training procedure, based on ideas from Sønderby et al. (2016), Higgins
et al. (2017), Ballé et al. (2018) and Dai and Wipf (2019). Next, we present 3 “codable”
sampling techniques, that can be used in our compression framework and point out their
strengths and weaknesses.

Finally, in Chapter 5 we compare our trained models to current compression algorithms,
both classical such as JPEG and BPG, and the current state-of-the-art neural methods (Ballé
et al. (2018)). In particular, we compare these methods by their compression rates for a given
perceptual quality as measured by the two most popular perceptual metrics, Peak Signal-
to-Noise Ratio (PSNR) (Huynh-Thu and Ghanbari (2008)) and the Multi-scale Structural
Similarity Index (MS-SSIM) (Wang et al. (2003)). We achieve close to state-of-the-art per-
formance, with no fine-tuning of model hyperparameters. We also present some further
analysis of our chosen models, to empirically justify their use, as well as to analyze some of
the aspects that were not of primary concern of this work, such as coding speed.





Chapter 2

Background

2.1 Image Compression
The field of image compression is a vast topic that mainly spans over the fields of computer
science and signal processing, but incorporates methods and knowledge from several other
disciplines, such asmathematics, neuroscience, psychology and photography. In this section,
we introduce the reader to the basics of the topic, starting with source coding, then through
lossy compression, we arrive at the concepts of rate and distortion. Finally, we introduce
transform coding, the category in which our work falls as well.

2.1.1 Source Coding
From a theoretical point of view, given some source 𝑆, a sender and a receiver, compression
may be described as the aim of the sender communicating an arbitrary sequence𝑋1, 𝑋2, … , 𝑋𝑛
taken from 𝑆 to the receiver in as few bits as possible, such that the receiver may recover
relevant information from the message. If the receiver can always recover all the information
from the message of the sender, we call the algorithm lossless, otherwise, we call it lossy.

At first, it might not seem intuitive to allow for lossy compression, and in some domains,
this is true, e.g. in text compression. However, humans’ audio-visual perception is neither
completely aligned with the range of what can be digitally represented, nor does it always
scale the same way (Eskicioglu et al. (1994), Huynh-Thu and Ghanbari (2008), Gupta et al.
(2011)). Hence, there is a great opportunity for compressing media in a lossy way by dis-
carding information with the change being imperceptible for a human observer while making
significant gains in size reduction.
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2.1.2 Lossy Compression
As the medium of interest in lossy compression is generally assumed to be a real-valued
vector x ∈ ℝ𝑁 , such as RGB pixel intensities in an image or frequency coefficients in an
audio file, the usual pipeline consists of an encoder 𝐶 ∘ Enc, mapping a point x ∈ ℝ𝑁 to a
string of bits and a decoder mapping from bitstrings to some reconstruction x̂. The factor of
the encoder Enc can be understood as a map from ℝ𝑁 to a finite symbol set 𝒜 , called a lossy
encoder, and 𝐶 can be understood as a map from 𝒜 to a string of bits called a lossless code
(Goyal (2001)). We examine both Enc and 𝐶 in more detail in Section 2.1.5. The decoder
then can be thought of as inverting the code first and then using an approximate inverse of
Enc to get the reconstruction x̂: Dec ∘ 𝐶−1. Given these, it is of paramount importance to
quantify

• The distortion of the compressor. On average, how closely does x̂ resemble x?

• The rate of the compressor. On average, how many bits are required to communicate
x? We want this to be as low as possible of course.

2.1.3 Distortion
In order to measure “closeness” in the space of interest 𝒳 , a distance metric 𝑑(⋅, ⋅) ∶ 𝒳 ×
𝒳 → ℝ is introduced. Then, the distortion 𝐷 is is defined as

𝐷 = 𝔼𝑝(x̂) [𝑑(x, x̂)] .

A popular choice of 𝑑, across many domains of compression is the normalized 𝐿2 metric or
Mean Squared Error (MSE), defined as

𝑑(x, x̂) = 1
𝑁

𝑁

∑
𝑖

(𝑥𝑖 − �̂�𝑖)2, 𝒳 = ℝ𝑁 .

It is a popular metric as it is simple, easy to implement and has nice interpretations in both
the Bayesian (Bishop (2013)) and the MDL (Hinton and Van Camp (1993), to be introduced
in Section 2.2.1) settings. In the image compression setting, however, the MSE is prob-
lematic, since optimizing for it does not necessarily translate to obtaining pleasant-looking
reconstructions (Zhao et al. (2015)). Hence, more appropriate, so-called perceptual metrics
were developed. The two most common ones used today are Peak Signal-to-Noise Ratio
(PSNR) (Huynh-Thu and Ghanbari (2008), Gupta et al. (2011)) and the Structural Similar-
ity Index (SSIM) (Wang et al. (2004)) and its multiscale version (MS-SSIM) (Wang et al.
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(2003)). Crucially, these two metrics are also differentiable, thus they lend themselves for
gradient-based optimization.

2.1.4 Rate
We noted above that the code used after the lossy encoder is lossless. To further elaborate, in
virtually all cases it is an entropy code (Goyal (2001)). This means that we assume that each
symbol in the representation z = Enc(x) has some probability mass 𝑃 (𝑧𝑖). A fundamental
result by Shannon states that z may not be encoded losslessly in fewer than 𝐻[z] nats:

Theorem 1 (Proven by Shannon and Weaver (1998), presented as stated in MacKay et al.
(2003)) 𝑁 i.i.d. random variables each with entropy 𝐻[𝑋] can be compressed into more
than 𝑁 ⋅ 𝐻[𝑋] bits with negligible risk of information loss, as 𝑁 → ∞; conversely if they
are compressed into fewer than 𝑁𝐻[𝑋] bits it is virtually certain that information will be
lost.

Entropy codes, such as Huffman codes (Huffman (1952)) or Arithmetic Coding (Rissanen
and Langdon (1981)) can get very close to this lower bound. We discuss coding methods
further in Section 4.4.

In particular, entropy codes can compress each symbol 𝑧𝑖 in − log𝑃 (𝑧𝑖) nats.

The rate (in nats) of the compression algorithm is defined as the average number of nats
required to code a single dimension of the input, i.e.

𝑅 = 1
𝑁 𝐻[z].

2.1.5 Transform Coding
The issue with source coding is that coding x might have a lot of dependencies across its
dimensions. For images, this manifests on multiple scales and semantic levels, e.g. a pixel
being blue might indicate that most pixels around it are blue as the scene is depicting the sky
or a body of water; a portrait of a face will also imply that eyes, a nose andmouth are probably
present, etc. Modelling and coding this dependence structure in very high dimensions is
challenging or intractable, and hence we need to make simplifying assumptions about it to
proceed.

Transform coding attempts to solve the above problem by decomposing the encoder func-
tion Enc = 𝑄 ∘ 𝑇 into a so-called analysis transform 𝑇 and a quantizer 𝑄. The idea is to
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transform the input into a domain, such that the dependencies between the dimensions are
removed, and hence they can be coded individually. The decoder inverts the steps of the
encoder, where the inverse operation of 𝑇 is called the synthesis transform (Gupta et al.
(2011)).

In linear transform coding, 𝑇 is an invertible linear transformation, such as a discrete co-
sine transformation (DCT), as it is in the case of JPEG (Wallace (1992)), or discrete wavelet
transforms in JPEG 2000 (Rabbani and Joshi (2002)). While simple, fast and elegant, linear
transform coding has the key limitation that it can only at most remove correlations (i.e. first-
order dependencies), and this can severely limit its efficiency (Ballé et al. (2016a)). Instead,
Ballé et al. (2016a) propose a method for non-linear transform coding, where 𝑇 is replaced
by a highly non-linear transformation, and its inverse is now replaced by an approximate
inverse, which is a separate non-linear transformation. Both 𝑇 and its approximate inverse
are learnt, and the authors show that with a more complicated transformation they can easily
surpass the performance of the much more fine-tuned JPEG codecs.

Our work also falls into this line of research, although with significant differences, which
will be pointed out later.

2.1.6 The Significance of Quantization in Lossy Compression
The reason why quantization is required in lossy compression algorithms is that it allows
to reducing information content of data. To study the precise meaning of this, we put the
problem in a formal setting. Let us define the quantizer as a function [⋅] ∶ 𝑅 → 𝑆, where 𝑅
is the original representation space (in transform coding this would be the image 𝑇 (ℝ𝑁 )),
and a quantized space 𝑆 (usually ℤ𝑁 ). [⋅] is always many-to-one mapping. Let [𝑠]−1 =
{𝑥 ∈ 𝑅 ∣ [𝑥] = 𝑠} be the preimage of 𝑠. Then, we have the further requirement on [⋅] that
the fibres of 𝑆 partition 𝑅, i.e.

if 𝑠 ≠ 𝑡 ⇒ [𝑠]−1 ∩ [𝑡]−1 = ∅.

A popular option for the quantizer is the rounding function, mapping [⋅] ∶ ℝ → ℤ, where
for each integer 𝑧 ∈ ℤ it is defined as 𝑥 ∈ [𝑧 − 1

2 , 𝑧 + 1
2) ↦ 𝑧. Given some probability

mass 𝑃 (𝑥) for some data 𝑥, we have seen that using entropy coding 𝑥 can be encoded in
− log𝑃 (𝑥) nats. The way quantization enables better compression, is that it aggregates the
probability mass of all elements in [𝑠]−1 into the mass of 𝑠. Namely, for each 𝑠, the quantizer
induces a new probability mass function �̂�(𝑠), such that

�̂�(𝑠) = ∫[𝑠]−1
𝑝(𝑥) d𝑥,
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where the integral is replaced by summation for discrete [𝑠]−1. This will allow us to code 𝑥
in potentially much fewer nats. To put it precisely, assume [𝑥] = 𝑠, then

− log �̂�(𝑠) = − log∫[𝑠]−1
𝑝(𝑥) d𝑥 ≤ − log𝑃 (𝑥).

This is at the cost of introducing distortion (see Section 2.1.3), as we will not be able to
reconstruct 𝑥 from 𝑠. In particular, quantization is vital for continuous 𝑥, as the probability
mass of each 𝑥 is 0, and hence wewould require − log𝑃 (𝑥) = ∞ nats to encode themwithout
quantization.

2.2 Theoretical Foundations
We now shift our focus from image compression to the foundations of neural compression.
We begin with the Minimum Description Length (MDL) Principle (Rissanen (1986)) and
the Bits-Back Argument (Hinton and Van Camp (1993)), the two core theoretical guiding
principles of this work. We then see how based on these, as well as on more recent work
(Harsha et al. (2007), Havasi et al. (2018)) we can develop a general ML-based compression
framework that does not include quantization in its pipeline, thus allowing gradient-based
optimization methods to be used in training our compression algorithms.

2.2.1 The Minimum Description Length Principle
Our approach is based on the Minimum Description Length (MDL) Principle (Rissanen
(1986)). In essence, it is a formalization of Occam’s Razor, i.e. the simplest model that
describes the data well is the best model of the data (Grünwald et al. (2007)). Here, “simple”
and “well” need to be defined, and these definitions are precisely what the MDL principle
gives us. Informally, it asserts that given a class of hypotheses ℋ (e.g. a certain statistical
model and its parameters) and some data 𝒟 , if a particular hypothesis 𝐻 ∈ ℋ can be
described with at most 𝐿(𝐻) bits and the using the hypothesis the data can be described
with at most 𝐿(𝒟 ∣ 𝐻) bits, then the minimum description length of the data is

𝐿(𝒟) = min
𝐻∈ℋ

{𝐿(𝐻) + 𝐿(𝒟 ∣ 𝐻)}, (2.1)

and the best hypothesis is an 𝐻 that minimizes the above quantity.
Crucially, the MDL principle can thus be interpreted as telling us that the best model

of the data is the one that compresses it the most. This makes Eq 2.1 a very appealing
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learning objective for optimization-based compression methods, ours included. Below, we
briefly review how this has been applied so far and how it translates to our case.

2.2.2 The Bits-back Argument
Here we present the bits-back argument, introduced in Hinton and Van Camp (1993). The
main goal of their work was to develop a regularisation technique for neural networks, and
while they talk about the compression of the model, the first method that realized bits-back
efficiency came much later, developed by Havasi et al. (2018). Although the argument is es-
sentially just the direct application of the MDL principle, it can seem quite counter-intuitive
at first. Hence, we begin this section with an example to illustrate the goal of the argument,
and only then move on to formulate it in more generality.

Example Let us be given a simple regression problem on the dataset 𝒟 = (𝒳, 𝒴), where
𝒳 = (𝑥1, … , 𝑥𝑛), 𝒴 = (𝑦1, … , 𝑦𝑛) are both one dimensional input and target sets and (𝑥𝑖, 𝑦𝑖)
are a corresponding training pair. Assume we wish to fit a simple model:

̂𝑦 = 𝑓(𝑥) = 𝛼𝑥 + 𝛽,

where we wish to learn the parameters 𝛼 and 𝛽. Assuming a Gaussian likelihood with mean
0 and variance 1 on the residuals 𝛿 = 𝑦 − ̂𝑦 ,

𝑝(𝛿 ∣ 𝑥, 𝛼, 𝛽) = 𝒩 (𝛿 ∣ 0, 1) ,

a popular way of fitting the model is using Maximum Likelihood Estimation (MLE), i.e.
maximizing ∏𝑖 𝑝(𝛿𝑖 ∣ 𝑥𝑖, 𝛼, 𝛽) which is equivalent to minimizing the negative logarithm of
this quantity, − ∑𝑖 log 𝑝(𝛿𝑖 ∣ 𝑥𝑖, 𝛼, 𝛽). It can be easily seen that this works out to be equivalent
to minimizing the Mean Squared Error (MSE) between the predicted values and the targets:

𝐿(𝒟 ∣ 𝛼, 𝛽) = 1
𝑛 ∑

𝑖
(𝑦𝑖 − 𝑓(𝑥𝑖))2.

A usual issue with MLE algorithms is that they are heavily overparameterized for the prob-
lem they are supposed to be solving and hence can easily overfit (this is most likely not an
issue with our toy model, but we shall pretend for the sake of the argument). To solve this
issue, a standard technique is to introduce some regularisation term to the loss. Here we are
interested in applying the MDL principle directly.
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Before we discuss how it is applied, we must make precise the setting in which it can
apply. In particular, the MDL principle assumes the form of a communications problem.
Assume two parties, Alice and Bob share 𝒳 , and some other arbitrary pre-agreed informa-
tion, but only Alice has access to 𝒴 . Then, the MDL principle asks for the minimal message
that Alice needs to send to Bob, such that he may recover 𝒴 completely. With this setup in
mind, we can continue.

To apply the MDL principle, we need to be able to calculate the MDLs of the data given
a hypothesis and the MDLs of our hypotheses. Notice, that the former is already available
in the form of the MSE for a given hypothesis, and hence 𝐿(𝒟 ∣ 𝛼, 𝛽) is not an overload of
notation. To code the hypothesis (the pair (𝛼, 𝛽) in our case), we need to define two distri-
butions over our parameters: a prior 𝑃𝜃, that gives us the regularizing effect and stays fixed,
and a posterior 𝑄𝜙, the distribution that we learn and assume that our parameters come from
it. We use the 𝜃 and 𝜙 to denote the sufficient statistics of the prior and posterior, respec-
tively. Now, learning changes, as we are no longer optimizing a single hypothesis (𝛼, 𝛽), but
a whole class of hypotheses 𝑄𝜙(𝛼, 𝛽), by finding the best fitting set of sufficient statistics 𝜙
for our dataset. Thus, our initial data description length now becomes an expectation over
the possible hypotheses:

𝐿(𝒟 ∣ 𝜙) = 𝔼𝑄𝜙 [𝐿(𝒟 ∣ 𝛼, 𝛽)] .

Defining the regularizing term, however, turns out to be trickier than expected, and lies at
the core of the bits-back argument. We seek to find the minimum description length of a hy-
pothesis (𝛼, 𝛽). Using a 𝑄𝜙, we know we can encode a concrete hypothesis in − log𝑄𝜙(𝛼, 𝛽)
nats, and thus a reasonable first guess for the MDL would be

𝔼𝑄𝜙 [− log𝑄𝜙(𝛼, 𝛽)] , (2.2)

i.e. the Shannon entropy of 𝑄𝜙. This turns out to be wrong, however, for the reason that
Bob should be able to decode Alice’s message, and since he does not have access to 𝑄𝜙, he
cannot do this. At this point, we note, that as 𝑃𝜃 is fixed, we may assume that Alice and
Bob share it a priori. This allows us to code a pair (𝛼, 𝛽) in − log𝑃𝜃(𝛼, 𝛽) nats that Bob can
decode, and hence a reasonable second guess for the MDL could be

𝔼𝑄𝜙 [− log𝑃𝜃(𝛼, 𝛽)] , (2.3)

i.e. the cross-entropy between 𝑄𝜙 and 𝑃𝜃, which is also the expected length of the actual
message that gets sent to communicate the parameters. Note, that since the hypotheses are
still drawn from 𝑄𝜙, the expectation needs to be taken over it. This also turns out to be
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wrong, as the bits-back argument shows that not all of the bits used for the message are used
to code 𝑄𝜙. Once the parameters are sent, Alice also sends every residual 𝛿𝑖, obtained by
using the parameter set sent to Bob.

Once Bob has decoded (𝛼, 𝛽) and each 𝛿𝑖, he can fully recover each 𝑦𝑖 by calculating
𝑥𝑖 +𝛿𝑖. Now, since he has access to both 𝒳, 𝒴 and 𝑃𝜃, he may also fit a 𝑄𝜓 to the data, using
the same learning algorithm as Alice used to fit her 𝑄𝜙. The key observation in (Hinton and
Van Camp (1993)) is that so long as this learning algorithm is deterministic after sufficient
training Bob can achieve 𝜓 = 𝜙, i.e. he recovers Alice’s posterior distribution. This means
that Bob can sample the same (𝛼, 𝛽) pair that was sent to him (e.g. by also sharing a random
seed with Alice either before their communication or during, at at most an 𝒪(1) cost, which
is negligible).

This must mean, that Alice not only communicated 𝑄𝜙 itself to Bob, but also the
random bits that were used in conjunction with 𝑄𝜙 to draw the sample (𝛼, 𝛽).

The fact that Alice has communicated both 𝑄𝜙 and the random bits in a − log𝑃𝜃(𝛼, 𝛽)
nat long message, means that to get the cost of communicating 𝑄𝜙 only, we simply need to
subtract the length of the random bits. But since (𝛼, 𝛽) were drawn from 𝑄𝜙, their length is
going to be precisely − log𝑄𝜙(𝛼, 𝛽). Hence, the expected hypothesis description length is
the expectation of this difference, namely

𝔼𝑄𝜙 [− log𝑃𝜃(𝛼, 𝛽) − (− log𝑄𝜙(𝛼, 𝛽))] = 𝔼𝑄𝜙 [log
𝑄𝜙(𝛼, 𝛽)
𝑃𝜃(𝛼, 𝛽) ] = KL [ 𝑄𝜙 || 𝑃𝜃 ] .

Above the rightmost term is called the Kullback-Leibler Divergence between 𝑄𝜙 and 𝑃𝜙.
It is defined as

KL [ 𝑄 || 𝑃 ] = ∑
𝑥∈Ω

𝑄(𝑥) log 𝑄(𝑥)
𝑃 (𝑥)

for probability mass functions 𝑄 and 𝑃 , where Ω denotes the sample space, and

KL [ 𝑞 || 𝑝 ] = ∫Ω
𝑞(𝑥) log 𝑞(𝑥)

𝑝(𝑥) d𝑥

for probability density functions 𝑞 and 𝑝.
The fact that Bob can “get the random bits back ”used in sampling the hypothesis is the

namesake of the argument.
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The general argument We are now ready to state the general bits-back argument. Assume
Alice has trained a model for a regression problem, on a dataset 𝒟 = (𝒳, 𝒴), with training
pairs (x𝑖, y𝑖), and shares 𝒳 with Bob. Her model has parameters w, with prior 𝑝𝜃(w), and
uses the likelihood function 𝑝(y ∣ w, x), both shared with Bob. Assume that Alice has a
learned posterior 𝑞𝜙(w ∣ 𝒟) over the weights, and now wishes to communicate the targets
𝒴 to Bob.

Then, the bits-back argument states that if Alice acts according to the MDL principle,
then she can communicate 𝑞𝜙 to Bob in KL [ 𝑞𝜙 || 𝑝𝜃 ] nats, as follows:

1. Alice draws a random sample ŵ ∼ 𝑞𝜙(w). This represents a message of − log 𝑞𝜙(ŵ)
nats.

2. ŵ is then used to calculate the residuals r𝑖 between the model’s output and the targets.

3. ŵ is coded using its prior 𝑝𝜃, and sent to Bob alongside the residuals r𝑖. The total
length of the message that contains the posterior information is hence − log 𝑝𝜃(ŵ).

4. Bob, decodes ŵ using the same prior 𝑝𝜃. He then recovers all targets 𝒴 by adding
each r𝑖 to his model’s output with parameters set to ŵ upon input x𝑖.

5. He then trains his model using the same deterministic algorithm as Alice did, to re-
cover Alice’s posterior 𝑞𝜙. Hence, the random bits that were used to communicate the
sample must be deducted from the cost of communicating 𝑞𝜙. The cost of these bits
is precisely − log 𝑞𝜙(ŵ). Taking the expectation of the difference w.r.t. 𝑞𝜙, the total
cost of communicating 𝑞𝜙 is

𝔼𝑞𝜙 [log 𝑞𝜙(w) − log 𝑝𝜃(w)] = KL [ 𝑞𝜙 || 𝑝𝜃 ] .

Caveats of the argument Note, that the original argument merely derives the minimum
description length for the weights w, but clearly does not achieve it (as we have to send a
messagewhose expected length is𝔼𝑞𝜙 [− log 𝑝𝜃(w)]). The authorsmerely state that these bits
can be “recovered”, and propose that a “free” auxiliary message might be coded in them, but
do not give any propositions as to how sending these bits in the first place might be avoided.
Nonetheless, as the notion of bit-back efficiency has expanded in recent years, it is customary
to call any method bits-back efficient that transmits some information in KL [ 𝑞 || 𝑝 ] nats,
for some posterior 𝑞 and prior 𝑝 over the information.
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2.3 Compression without Quantization
In this section, we present a general framework for lossy data compression, based on the
arguments presented above, as well as the works of Harsha et al. (2007) and Havasi et al.
(2018).

As mentioned at the end of the previous section, the bits-back argument postulates that
communicating the distribution of the parameter set of a model may be achieved in 𝐾 =
KL [ 𝑞(w) || 𝑝(w) ] nats, where 𝑞 and 𝑝 are the posterior and prior over the parameters, re-
spectively. However, they do not give a method for achieving this, rather they show that
only 𝐾 nats are used to communicate the posterior in a longer message. Furthermore, the
original MDL setup also requires to send the residuals from the model output.

For compression, however, we are only interested the communicating a sample and not
its distribution, though still at bits-back efficiency. The correct communication problem for
this was formulated by Harsha et al. (2007), and it is as follows:

Let 𝑋 and 𝑌 be two correlated random variables, with sample spaces 𝒳 and 𝒴
respectively, and with joint distribution 𝑝(𝑋, 𝑌 ) = 𝑞(𝑌 ∣ 𝑋)𝑝(𝑌 ). Given a concrete
𝑥 ∈ 𝒳 , what is the minimal message Alice needs to send to Bob, such he can generate
a sample according to the distribution 𝑞(𝑌 ∣ 𝑋 = 𝑥)?

We can interpret 𝒳 as the set of all data that we might wish to compress (e.g. the set of
all RGB-coded natural images, the set of all MP3 coded audio files, etc.), and 𝒴 as the set
of latent codes of the data, from which we may obtain our lossy reconstruction.

The solution to the above problem requires essentially the same mild assumptions the
bits-back argument does, namely that Alice and Bob are allowed to share a fixed prior 𝑝(𝑌 )
on the latent codes, as well as the seed used for their random generators. The significance
of the latter assumption is that Alice and Bob will be able to reconstruct the same sequence
of random numbers. Given these assumptions, Harsha et al. (2007) propose a rejection sam-
pling algorithm to sample from 𝑞(𝑌 ∣ 𝑋 = 𝑥) using 𝑝(𝑌 ), depicted in Algorithm 4 in the
Appendix. Alice uses this algorithm to sample 𝑞, but she also keeps track of the number
of proposals made by the algorithm. Once Alice’s algorithm accepts a proposal from 𝑝, it
is sufficient for Alice to communicate the sample’s index 𝐾 to Bob. Bob can then obtain
the desired sample from 𝑞, by simply drawing 𝐾 samples from 𝑝, and since he can generate
the same 𝐾 samples as Alice did, the 𝐾th sample he draws is going to be an exact sample
from 𝑞. The communication cost of 𝐾 is log𝐾 nats. Harsha et al. (2007) then also prove the
following result.
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Theorem 2 (Harsha et al. (2007)) Let 𝑋 and 𝑌 be random variables as given above. And
let the communication problem be set as above. Let 𝑇 [𝑋 ∶ 𝑌 ] denote the MDL (in nats) of
a sample 𝑌 = 𝑦 ∼ 𝑞(𝑌 ∣ 𝑋 = 𝑥). Then,

𝐼[𝑋 ∶ 𝑌 ] ≤ 𝑇 [𝑋 ∶ 𝑌 ] ≤ 𝐼[𝑋 ∶ 𝑌 ] + 2 log [𝐼[𝑋 ∶ 𝑌 ] + 1] + 𝒪(1), (2.4)

where 𝐼[𝑋 ∶ 𝑌 ] is called the mutual information between 𝑋 and 𝑌 , and is defined as

𝐼[𝑋 ∶ 𝑌 ] = 𝔼𝑝(𝑋) [KL [ 𝑞(𝑌 ∣ 𝑋) || 𝑝(𝑌 ) ]]

Furthermore, log𝐾 , given by Algorithm 4, achieves the upper bound in Eq 2.4.

The above theorem tells us that while in the classical sense bits-back efficiency is the
best that we can do, it also tells us that we can get very close to it. Hence, from now on, we
shall refer to any algorithm that achieves this tight upper bound as bits-back efficient as well.

To translate this to a general ML-based compression framework, we shall switch to no-
tation more common in statistical modelling, concretely, we shall denote our data by x and
the latent code z. Now, let us assume a generative model over these variables, 𝑝(x, z) = 𝑝(x ∣
z)𝑝𝜃(z), where 𝑝(x ∣ z) is the data likelihood, and 𝑝𝜃(z) is the prior over the latent code, with
sufficient statistics 𝜃. Let us also assume an approximate posterior 𝑞𝜙(z ∣ x) over the latent
code, with sufficient statistics 𝜙. Then our framework is as follows:

1. Given some dataset 𝒟 = {x1, … , x𝑛} where the training examples are distributed ac-
cording to 𝑝(x), we fit our generativemodel to it, by fitting 𝜃 and 𝜙 using the (weighted)
MDL objective:

𝐿(𝒟) = 𝔼𝑝(x) [𝐿(x)] ,
where 𝐿(x) = 𝔼𝑞𝜙 [𝐿(x ∣ z) + 𝐿(z)] = −𝔼𝑞𝜙 [log 𝑝(x ∣ z)] + 𝛽KL [ 𝑞𝜙 || 𝑝𝜃 ] .

(2.5)

This training objective is well known in the neural generative modelling literature
as the Evidence Lower Bound (ELBO) (Kingma and Welling (2014), Higgins et al.
(2017)). The expectation over 𝑝(x) is usually taken over randomly drawn mini-batches
from 𝒟 using Stochastic Gradient Descent (SGD). Here 𝛽 is a hyperparameter that can
be set to trade off a smaller description length at the cost of worse reconstruction, or the
other way around, thus allowing the user to reach different points on the rate-distortion
curve. See Section 2.3.2 for the derivation of Eq 2.5 and discussion on its validity.

2. Once 𝜃 and 𝜙 have been learned, we fix them (equivalent to sharing them with Bob in
the communication problem).
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3. Now, if we wish to compress some new data x′, use a bits-back efficient sampling
algorithm (such as Algorithm 4) to sample 𝑞(z ∣ x′) using 𝑝(z), and use the code
output of the sampling algorithm as the compression code, along with the random
seed that was used to obtain the sample. We shall refer to such algorithms as coded
sampling algorithms.

4. To decompress, since we always have access to the fixed prior 𝑝𝜃, and we have the
random seed the compressing party used, we may run the coded sampling algorithm
in “decode” mode to recover the sample z′ from 𝑞𝜙. Finally, we may run the recon-
struction transformation of our generative model to recover a lossy reconstruction x̂′.

This framework is inspired by the work of Havasi et al. (2018), where they used a very
similar framework to achieve state-of-the-art weight compression in Bayesian Neural Net-
works.

In this thesis, we use this framework to train 𝛽-VAEs as our choice of generative mod-
els and demonstrate the efficiency of our method compared to the state-of-the-art in neural
compression. More details on this will be given in Chapter 4.

2.3.1 Relation of Quantization to Our Framework
We present a similar argument to the one given in Havasi et al. (2018). Recall the original
representation space 𝑅 and quantized space 𝑆 of a quantizer [⋅]. Recall also the Kronecker
delta function on 𝑥, defined as

𝛿𝑥(𝑦) =
⎧⎪
⎨
⎪⎩

1 if 𝑦 = 𝑥
0 otherwise.

Given a particular 𝑥 ∈ 𝑅, we have seen that quantization allows us to code it in − log �̂�([𝑥])
nats. If we manipulate this term slightly, we get

− log �̂�([𝑥]) = ∑
𝑠∈𝑆

⎡
⎢
⎢
⎢
⎣

−𝛿[𝑥](𝑠) log ̂𝑞([𝑥]) + 𝛿[𝑥](𝑠) log 𝛿[𝑥](𝑠)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

⎤
⎥
⎥
⎥
⎦

= ∑
𝑠∈𝑆

𝛿[𝑥](𝑠) log
𝛿[𝑥](𝑠)

̂𝑞([𝑥])

= KL [ 𝛿[𝑥] || �̂� ] .
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This shows that quantization of a deterministic parameter set is also bits-back efficient, with
the posterior distribution family restricted to point masses. Thus the clear advantage of our
framework comes from the fact that we allow much more posteriors than point masses.

2.3.2 Derivation of the Training Objective
In this section, we present the derivation of Eq 2.5. Thus, let our likelihood 𝑝(x ∣ z), our
latent prior 𝑝𝜃(z) and approximate posterior 𝑞𝜙(z ∣ x) be given. Then, given a budget of 𝐶
nats, we want to optimize the following constrained objective on the description lengths:

𝔼𝑝(x) [𝔼𝑞𝜙(z) [−𝐿(x ∣ z)]] subject to 𝔼𝑝(x) [𝐿(z)] < 𝐶.

As we have seen in the sections above, these quantities can be replaced by

𝔼𝑝(x) [𝔼𝑞𝜙(z) [log 𝑝(x ∣ z)]] subject to 𝔼𝑝(x) [KL [ 𝑞𝜙(z ∣ x) || 𝑝𝜃(z) ]] < 𝐶. (2.6)

As we want to use gradient-based optimization of our models, we need to find a continu-
ous relaxation of Eq 2.6. To this end, we rewrite the terms inside the “outer” expectation as
their Lagranagian relaxation under the KKT conditions (Karush (2014), Kuhn and Tucker
(2014), Higgins et al. (2017)) and get:

ℱ (𝜃, 𝜙, 𝛽, x) = 𝔼𝑞𝜙(z) [log 𝑝(x ∣ z)] − 𝛽(KL [ 𝑞𝜙(z ∣ x) || 𝑝𝜃(z) ] − 𝐶).

By the KKT conditions if 𝐶 ≥ 0 then 𝛽 ≥ 0, hence discarding the last term in the above
equation will provide a lower bound for it:

ℱ (𝜃, 𝜙, 𝛽, x) ≥ ℒ(𝜃, 𝜙, 𝛽, x) = 𝔼𝑞𝜙(z) [log 𝑝(x ∣ z)] − 𝛽KL [ 𝑞𝜙(z ∣ x) || 𝑝𝜃(z) ] .

Finally, taking the expectation over this again gives

𝔼𝑝(x) [ℒ(𝜃, 𝜙, 𝛽, x)] = 𝔼𝑝(x) [𝔼𝑞𝜙(z) [log 𝑝(x ∣ z)]] − 𝛽𝔼𝑝(x) [KL [ 𝑞𝜙(z ∣ x) || 𝑝𝜃(z) ]]

= 𝔼𝑝(x) [𝔼𝑞𝜙(z) [log 𝑝(x ∣ z)]] − 𝛽𝐼[x ∶ z]

= 𝔼𝑝(x) [𝐿(x)] .

(2.7)

This is the training objective of 𝛽-VAEs first derived in Higgins et al. (2017), although we
note that it is applicable any generative model where the assumed conditions are present.

An important caveat of the above formulation is that the samples from 𝑝(x) should com-
parable, in the sense the initial hard optimization objective of setting an average nat budget
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is reasonable. In the case of image data, if all images are the same size, this is fine, as our
continuous relaxation will allow for images with high information content to have slightly
longer code lengths than 𝐶 nats and ones with low information content will have shorter
lengths. However, if we used different sized images during training, it would be less justi-
fied to set the same average code budget for, say, a 200 × 300 pixel image and a 2000 × 2000
image, as the latter will naturally contain more information than the former. Hence, in this
case, it would be more reasonable to make the budget a function of the number of pixels
the image contains, although this might make the formulation of the training objective much
harder.

An approach taken in all neural image compression methods we examined is instead to
train on random, but equal-sized patches extracted from each training image. While other
works do this to make training more computationally feasible. As far as we are aware, we are
the first ones to argue that this practice is not only convenient but mandatory for the training
procedure to be sound.



Chapter 3

Related Works

In this chapter, we give a brief overview of the history of ML-based image compression.
Then, we focus on recent advances in lossy neural image compression and describe and
compare them against each other.

3.1 Machine Learning-based Image Compression
Neural image compression goes back to at least as far as the early 1980s (Mougeot et al.
(1991), Jiang (1999)). These methods very closely resemble in high-level structure to con-
temporary methods, in that they were designed as transform coding methods. In partic-
ular, virtually all early methods used some flavour of linear auto-encoders (LAEs, no non-
linearities applied on the hidden layer), with a single-layer encoder and decoder (Jiang (1999)).
As convolutional layers had not yet been available back then, all architectures were fully
connected and relied on splitting up images into equal-sized blocks and feeding them block-
by-block to the LAE. Most methods optimized the MSE between the reconstruction and the
original image, although different learning objectives were also explored (Mougeot et al.
(1991)). Furthermore, the issue of quantization was not formally addressed. While the
pipeline was to quantize the hidden layer activations of the LAE, no explicit treatment of
the distortion introduced by quantization was given (Jiang (1999)).

A notable early example of a non-neural ML-based practical compression method is
DjVu (Bottou et al. (1998)), which focused on segmenting foreground and background in
documents and usingK-means clustering to for the analysis transforming followed by entropy
coding the background.

More recently, the work of Denton et al. (2015), Gregor et al. (2015) focused on dis-
covering compressive representations using auto-encoders on low-resolution images, using
datasets such as CIFAR-10 (Krizhevsky et al. (2009)). Toderici et al. (2015) proposed an
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RNN-based auto-encoder for compressing 32 × 32 thumbnails and outperformed classical
methods such as JPEG and WebP on these sizes. Their method has been later extended in
Toderici et al. (2017) for large-scale images.

3.2 Comparison of Recent Works
In this section, we focus on compression methods that allow for the compression of arbitrary-
sized images. The most notable recent works in this area (that we are aware of) are Ballé
et al. (2016b), Toderici et al. (2017), Theis et al. (2017), Rippel and Bourdev (2017), Ballé
et al. (2018), Johnston et al. (2018) and Mentzer et al. (2018). Of these, Ballé et al. (2016b),
Theis et al. (2017), Rippel and Bourdev (2017) and Ballé et al. (2018) are closest to our work
and thus we present a review of these below.

Note on Notation: In this chapter, we denote the output of the encoders by z, their quan-
tized values by ̂z and their continuous relaxations by ̃z.

3.2.1 Datasets and Input Pipelines
Somewhat surprisingly, it appears that there appears to be no canonical dataset yet for gen-
eral lossy neural image compression. Such a dataset should be comprised of a set of high-
resolution, variable-sized losslessly encoded colour images, although theCLICDataset (CLIC
(2018)) seems to be an emerging one. Perhaps the reason is that generally in other domains,
such as image-based classification, cropping and rescaling images can effectively side-step
the need to deal with variable-sized images. However, when it comes to compression, if we
hope to build anything useful, side-stepping the size issue is not an option.

Ballé et al. (2016b) trained on 6507 images, selected from ImageNet Deng et al. (2009).
They removed images with excessive saturation and since their method is based on dither-
ing, they added uniform noise to the remaining images to imitate the noise introduced by
quantization. Finally, they downsampled and cropped images to be 256 × 256 pixels in size.
They only kept images while resampling factor was 0.75 or less, to avoid high-frequency
noise.

Theis et al. (2017) used 434 high-resolution images from flickr.com under the creative
commons license. As flickr store its images as JPEGs, they downsampled all images to be
below 1536 × 1536 in resolution and saved them as PNGs to reduce the effects of the lossy

flickr.com
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compression. Then, they extracted several 128 × 128 patches from each image and trained
on those.

Rippel and Bourdev (2017) took images from the Yahoo Flickr Creative Commons 100
Million dataset, with 128 × 128 patches randomly sampled from the images. They do not
state whether they used the whole dataset or just a subset, neither do they describe further
preprocessing steps.

Ballé et al. (2018) scraped ≈ 1 million colour JPEG images of dimensions at most 3000 ×
5000. They filtered out images with excessive saturation similarly to Ballé et al. (2016b).
They also downsampled images by random factors such that the image’s height and width
stayed above 640 and 1200 pixels, respectively. Finally, they use several randomly cropped
256 × 256 pixel patches extracted from each image.

A clear trend is downsampling large, lossy-encoded images to get rid of the compression
artefacts as an easy way of obtaining reasonable “approximations” of losslessly encoded
images. Another trend is that (as we see in the next section) since all architectures are fully
convolutional, it is sufficient to train on small image patches to train the convolution kernels
to speed up training, as well as to heavily “increase” the training set size.

Datasets for testing In contrast to the lack of datasets for training, all authors have used
standard datasets for testing their methods, taken from classical lossy image compression
research. These are the Kodak (Eastman Kodak Company (1999)) and Tecnick (Asuni and
Giachetti (2014)) datasets. For our results to be comparable to these methods, we have also
decided to test our method on the Kodak dataset.

3.2.2 Architectures
This is the most diverse aspect of recent approaches, and so we will only discuss them on a
high level. We incorporated ideas from all of these papers as well as others into our work,
we discuss these in Chapter 4. All architectures (including ours) realize a form of non-
linear transform coding. This means all architectures will have an analysis transform or
encoder, and a synthesis transform or decoder (see Section 2.1.5), both of whose parameters
the methods learn using gradient descent.

All methods achieve the ability to deal with arbitrary-sized images by only utilizing con-
volutional and deconvolutional layers as their linear transformations. This leads to the very
natural consequence that the number of latent dimensions, and thus the latent code length
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increases linearly in the number of pixels of the input image. They all utilise downsampling
after some convolutions. Every work that gives details on how they perform downsampling
do it by using a stride larger than 1 on the convolutions, and it is reasonable to assume that
the rest do it likewise. Padding and convolution mode is generally not discussed except in
Theis et al. (2017), but we believe all other methods use one of the two ways they present,
namely zero-padded or mirror-padded convolutions in same mode. The further details of
each work are detailed below.

Ballé et al. (2016b) They build a relatively shallow autoencoder (5 layers) (Shown in the
left half of Figure 3.3). They propose their own activation function, custom-tailored for
image compression. These non-linearities are a form of adaptive local gain control for the
images, called Generalized Divisive Normalization (GDN). At the 𝑘th layer for channel 𝑖 at
position (𝑚, 𝑛), for input 𝑤(𝑘)

𝑖 (𝑚, 𝑛), the GDN transform is defined as

𝑢(𝑘+1)
𝑖 (𝑚, 𝑛) =

𝑤(𝑘)
𝑖 (𝑚, 𝑛)

(𝛽𝑘,𝑖 + ∑𝑗 𝛾𝑘,𝑖,𝑗 (𝑤(𝑘)
𝑗 (𝑚, 𝑛))

2

)

. (3.1)

Its approximate inverse, IGDN for input ̂𝑢(𝑘)
𝑖 (𝑚, 𝑛) is defined as

�̂�(𝑘)
𝑖 (𝑚, 𝑛) = ̂𝑢(𝑘)

𝑖 (𝑚, 𝑛) ⋅
(

̂𝛽𝑘,𝑖 + ∑
𝑗

̂𝛾𝑘,𝑖,𝑗 ( ̂𝑢(𝑘)
𝑗 (𝑚, 𝑛))

2

)

1
2

. (3.2)

Here, the set 𝛽𝑘,𝑖, 𝛾𝑖,𝑗,𝑘, ̂𝛽𝑘,𝑖, ̂𝛾𝑖,𝑗,𝑘 are learned during training and fixed at test time.

Theis et al. (2017) They define a Compressive Autoencoder (CAE) as a regular autoen-
coder with the quantization step between the encoding and decoding step. (In this sense, the
architectures of Ballé et al. (2016b) and Ballé et al. (2018) are also CAEs.) They mirror pad
the input first and then they follow it up by a deep, fully convolutional, residual architec-
ture He et al. (2016). They use valid convolutions and downsample by using a stride of 2.
Between convolutions they use leaky ReLUs as nonlinearities, which are defined as

𝑓𝛼(𝑥) = max{𝑥, 𝛼𝑥}, 𝛼 ∈ [0, 1].

The decoder mirrors the encoder. When upsampling is required, they use what they term
subpixel convolutions, where they perform a regular convolution operation with an increased
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Fig. 3.1 Compressive Auto-Encoder architecture used by Theis et al. (2017). Note that for
visual clarity only 2 residual blocks are displayed, in their experiments they used 3. They
use a 6-component Gaussian Scale Mixture model (GSM) to model the quantization noise
during the training of the architecture. The normalization layer performs batch normalization
separately for each channel, denormalization is the analogous inverse operation. (Image is
taken from their Theis et al. (2017).)

number of filters, and then reshape the resulting tensor into one with a larger spatial extent
but fewer channels. Their architecture can be seen in Figure 3.1.

Rippel and Bourdev (2017) They use a reasonably shallow architecture as well, but also
add in additional residual connections from every layer to the last, summing at the end.
They call this pyramidal decomposition and interscale alignment, with the rationale behind
it being that the residual connections extract features at different scales, and so the latent
representations can take advantage of this. Their encoder architecture is shown in Figure
3.2.

Ballé et al. (2018) They extend the architecture presented in Ballé et al. (2016b), see Figure
3.3. In particular, the encoder and decoder remain the same, and they add onemore stochastic
layer on top of the architecture, resembling a probabilistic ladder network (PLN) (Sønderby
et al. (2016)). The layers leading to the second level are more standard. They are still fully
convolutional with downsampling after convolutions, however, instead of GDN they use
ReLUs.
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Fig. 3.2 Encoder architecture used by Rippel and Bourdev (2017). All circular blocks denote
convolutions. (Image taken from Rippel and Bourdev (2017).)
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Fig. 3.3 Analysis and synthesis transforms 𝑔𝑎 and 𝑔𝑠 along with first level quantizer 𝑄(y)
used in Ballé et al. (2016b). This architecture was then extended by Ballé et al. (2018) with
second-level analysis and synthesis transforms ℎ𝑎 and ℎ𝑠, along with second level quantizer
𝑄(z). This full architecture is also the basis of our model. A slightly strange design choice
on their part is since they will wish to force the second stage activations to be positive (it
will be predicting a scale parameter), instead of using an exponential or softplus (log(1 +
exp{𝑥})) activation at the end, they take the absolute value of the input to the first layer,
and rely on the ReLUs never giving negative values. We are not sure if this was meant to
be a computational saving, as taking absolute values is certainly cheaper then either of the
aforementioned standard ways of forcing positive values or it if it gave better results. (Image
is taken from Ballé et al. (2018))
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Fig. 3.4 Comparison of quantization error and its relaxations. A) Original image. B) Arte-
facts that result from using rounding as the quantizer. C) Stochastic rounding used by
Toderici et al. (2017). D) Uniform additive noise used by Ballé et al. (2016b) and Ballé
et al. (2018). (Image taken from Theis et al. (2017).)

3.2.3 Addressing Non-Differentiability
As all methods surveyed here are trained using gradient-based methods, a crucial question
that needs to be answered is how they dealt with the issue of quantization. This is because
end-to-end optimizing the transform coding pipeline involves back-propagating gradients
through the quantization step, which yields 0 derivatives almost everywhere, stopping the
learning signal. Two issues that need to be addressed and that we examine below: first, the
quantization operation itself, and second, the rate estimator 𝐻[𝑃 (z)] (except for Rippel and
Bourdev (2017) as they do not use it). As we have seen in Section 2.3, not only is there an
inherent error in whatever approximation is used to circumvent the non-differentiability of
quantization, the use of quantization itself already fundamentally limits how effective these
methods can be. A graphical representation of various continuous relaxations / approxima-
tions of quantization error can be seen in Figure 3.4.

Quantization

All methods use some form of rounding z as

̂𝑧𝑖 = 1
2𝐵 [2𝐵 × 𝑧𝑖] , (3.3)

for some 𝐵 (usually 𝐵 = 0). Below we see what continuous relaxations are used during
training time.
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Ballé et al. (2016b) and Ballé et al. (2018) They model quantization error as dither, i.e.
they replace their quantized latents ̂𝑧𝑖 by additive uniform noise

̃𝑧𝑖 = 𝑧𝑖 + 𝛿𝑧𝑖, 𝛿𝑧𝑖 ∼ 𝒰 (0, 1) .

Theis et al. (2017) They replace the derivative of the rounding operation in the backprop-
agation chain by the constant function 1:

𝑑
𝑑𝑦[𝑦] = 1.

This is a smooth approximation of rounding and they report that empirically it gave good
results. However, as quantization itself creates an important bottleneck in the flow of infor-
mation, it is key that only the derivative is replaced during the backward pass and not the
operation itself during the forward pass.

Rippel and Bourdev (2017) use 𝐵 = 6 in Eq 3.3, however, they do not reveal their re-
laxation of the quantization step during the learning phase. They cite Ballé et al. (2016b)
and Toderici et al. (2017) though, so our best guess is that they most likely picked a method
proposed in either one of those.

Rate Estimation

As all methods but Rippel and Bourdev (2017) under review aim to optimize the rate-
distortion trade-off directly, they also need to estimate the rate 𝐻[ ̂z] = −𝔼𝑃 ( ̂z) [log𝑃 ( ̂z)].
Hence to model the rate during training, they also require a distribution over the ̃𝑧𝑖s.

Ballé et al. (2016b) They assume that the latents are independent, and hence they can
model the joint as a fully factorized distribution. They use linear splines to do this, whose
parameters 𝜓 (𝑖) they update separately every 106 iterations using SGD to maximize its log-
likelihood on the latents, independently from the optimization of the rest of the model pa-
rameters. Then, they use this prior to replace the entropy term as

𝐻[ ̃z] = 𝔼
[

− ∑
𝑖

log2 𝑝(𝑧𝑖 + 𝛿𝑧𝑖 ∣ 𝜓 (𝑖))
]

.
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Theis et al. (2017) They note that

𝑃 (z) = ∫
[− 1

2 , 1
2 )

𝑀 𝑞(z + u) du

for some appropriate density 𝑞, where the integral is taken over the centred 𝑀 dimensional
hypercube. Then, they replace the rate estimator with an upper bound using Jensen’s in-
equality:

− log2 𝑃 (z) = − log2 ∫
[− 1

2 , 1
2 )

𝑀 𝑞(z + u) du ≤ − ∫
[− 1

2 , 1
2 )

𝑀 log2 𝑞(z + u) du.

This upper bound is now differentiable. They pick Gaussian Scale Mixtures for 𝑞, with 𝑠 = 6
components, with the mixing proportions fixed across spatial dimensions, which gives the
negative log likelihood

− log2 𝑞(z + u) = ∑
𝑖,𝑗,𝑘

log2 ∑𝑠
𝜋𝑘,𝑠𝒩 (𝑧𝑘,𝑖,𝑗 + 𝑢𝑘,𝑖,𝑗 ∣ 0, 𝜎2

𝑘,𝑠) ,

where 𝑖, 𝑗 iterate through the spatial dimensions and 𝑘 indexes the filters. The integration
of this in the architecture can be seen in Figure 3.1. This allows them to replace the rate
estimator with

𝐻[ ̃z] = −𝔼 [log2 𝑞(z + u)] .

Ballé et al. (2018) They us a non-parametric, fully factorized prior for the second stage:

𝑝( ̃z(2) ∣ 𝜓) = ∏
𝑖

(𝑝 ( ̃𝑧(2)
𝑖 ∣ 𝜓𝑖) ∗ 𝒰 (−1

2, −1
2)) .

Then, they model the first stage as dithered zero-mean Gaussians with variable scale depend-
ing on the second stage, thereby relaxing the initial independence assumption on the latent
space to a more general conditional independence assumption Bishop (1998):

𝑝( ̃z(1) ∣ ̃z(2)) = ∏
𝑖

(𝒩 ( ̃𝑧(1)
𝑖 ∣ 0, �̃�2

𝑖 ) ∗ 𝒰 (−1
2, −1

2)) .

They then replace the rate estimator similarly to Ballé et al. (2016b).
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3.2.4 Coding
Another important part of the examinedmethods is entropy coding. In particular, an interest-
ing caveat of entropy codes is that they tend to perform slightly worse than the predicted rate,
due to neglected constant factors in the algorithm Rissanen and Langdon (1981). Hence, it
is always more informative to present results where the actual coding has been performed
and not just the theoretical rate reported. All examined works have implemented their own
coding algorithms, and we briefly review them here.

Ballé et al. (2016b) Use a context adaptive binary arithmetic coding (CABAC). They code
dimensions in raster-scan order, which means they do not fully leverage the spatial depen-
dencies between adjacent latent dimensions. As the authors note, this means that CABAC
does not yield much improvement over non-adaptive arithmetic coding.

Theis et al. (2017) used their estimated probabilities 𝑞(z) and used an off-the-shelf publicly
available range coder to compress their latents.

Rippel and Bourdev (2017) treat each bit of their 𝐵-bit precision quantized representa-
tions individually because they want to utilize the sparsity of more significant bits. They
train a separate binary classifier to predict probabilities for individual bits based on a set of
features (they call it a context) to use in an adaptive arithmetic coder. They further add a
regularizing term during training based on the code length of a batch to match a length tar-
get. This is to encourage sparsity for high-resolution, but low entropy images and a longer
codelength for low resolution but high entropy images.

Ballé et al. (2018) use a non-adaptive arithmetic coder as their entropy code. As they
have two stochastic levels, with the first depending on the second, they have to code them
sequentially. For the second level, they get their frequency estimates for ̂z(2) from the non-
parametric prior:

𝑝( ̂𝑧(2)
𝑖 ) = ∫

̂𝑧(2)
𝑖 + 1

2

̂𝑧(2)
𝑖 − 1

2

𝑝( ̃𝑧𝑖 ∣ 𝜓𝑖) d ̃𝑧𝑖.

Then, on the first level, their probabilities are given by:

𝑝( ̂𝑧(1) ∣ ̃𝑧(2)) = 𝑝( ̂𝑧(1) ∣ �̃�2
𝑖 ) = ∫

̂𝑧(1)
𝑖 + 1

2

̂𝑧(1)
𝑖 − 1

2

𝒩 ( ̃𝑧𝑖 ∣ 0, �̃�2
𝑖 ) d ̃𝑧𝑖.
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3.2.5 Training
Ballé et al. (2016b), Theis et al. (2017) and Ballé et al. (2018) optimize the rate-distortion
trade-off directly,

𝐿(𝒟) = 𝐻[ ̂z] + 𝛽𝔼 [𝑑(x, x̂)] ,

where the expectation is taken over training batches. This turns out to be equivalent to
maximizing the ELBO for a certain VAE, whereas Rippel and Bourdev (2017) use a more
complex loss function, see below for details. All methods train their model using Adam
Kingma and Ba (2014), but most do not state the number of training epoch.

Ballé et al. (2016b) Since they use MSE as the distance metric, they note that their archi-
tecture could be considered as a (somewhat unconventional), VAE with Gaussian likelihood

𝑝(x ∣ ̃z, 𝛽) = 𝒩 (x ∣ x̂, (2𝛽)−11) ,

mean-field prior
𝑝( ̃z ∣ 𝜓1, … , 𝜓𝑁 ) = ∏

𝑖
𝑝( ̃𝑧𝑖 ∣ 𝜓 (𝑖))

and mean-field posterior
𝑞( ̃z ∣ x) = ∏

𝑖
𝒰 ( ̃𝑧𝑖 ∣ 𝑧𝑖, 1) ,

where 𝒰 ( ̃𝑧𝑖 ∣ 𝑧𝑖, 1) , is the uniform distribution centred on 𝑧𝑖 of width 1. They used learning
rate decay during training.

Theis et al. (2017) They performed the training incrementally, in the sense that theymasked
most latents at the start, such that their contribution to the loss was 0. Then, as the train-
ing performance saturated, they unmasked them incrementally. They also used learning rate
decay during training.

Rippel and Bourdev (2017) They use a complex loss function, with an MS-SSIM distor-
tion cost, a code length regularization term (not equivalent to the rate term) as well as an
adversarial loss term. In their adversarial setup, they feed ground truth, reconstruction pairs
to the discriminator, where they shuffle the images in the pair with probability 1

2 and their
discriminator was trained to predict which image was the reconstruction. Their setup can
be seen in Figure 3.5. To stabilize the adversarial training procedure, they also introduce an
adaptive learning signal scheduler, preventing any of the signals from dominating the total.
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Fig. 3.5 Compression pipeline used by Rippel and Bourdev (2017). The red boxes show the
terms used in their loss function. (Image is taken from Rippel and Bourdev (2017).)

Ballé et al. (2018) In the same vein as they laid out their VAE-based training objective
in Ballé et al. (2016b), the data log-likelihood term stays, but now the regularizing term is
the KL divergence between the joint posterior 𝑞( ̃z(1), ̃z(2) ∣ x) and the joint prior 𝑞( ̃z(1), ̃z(2)).
Here, as due to the dithering assumption, the joint posterior works out to be

𝑞 ( ̃z(1), ̃z(2) ∣ x) = ∏
𝑖

𝒰 ( ̃𝑧(1)
𝑖 ∣ ̂𝑧(1), 1) ⋅ ∏

𝑖
𝒰 ( ̃𝑧(2)

𝑖 ∣ ̂𝑧(2), 1) .

Then, taking the KL between these, the full traning objective works out to be

𝐿 = 𝔼
[

− ∑
𝑖

log2 𝑝( ̃𝑧(2)
𝑖 ∣ 𝜓 (𝑖)) − ∑

𝑖
log2 𝑝( ̃𝑧(1)

𝑖 ∣ �̃�2
𝑖 ) + 𝛽𝑑(x, x̂)

]
. (3.4)

Eq 3.4 is important from our perspective, as it will be directly translated to our learning
objective.

They train 32 models, half using the architecture from Ballé et al. (2016b) and the other
half using the current one, half optimized for MSE and the other half of MS-SSIM, with 8
different 𝛽s. They report that neither batch normalization nor learning rate decay gave better
results, which they attribute to GDN.

3.2.6 Evaluation
Asmentioned at the end of Section 3.2.1, all methods were tested on the Kodak dataset (East-
man Kodak Company (1999)). All authors report the (interpolated) rate-distortion curves
achieved by their models. All methods report the curves using PSNR (Huynh-Thu and Ghan-
bari (2008)) as the distortion metric as well as MS-SSIM (Wang et al. (2003)), except for
Rippel and Bourdev (2017), who only report MS-SSIM. Based on these reported curves, the
current state-of-the-art in neural compression is set by Ballé et al. (2018).

An important issue raised in Ballé et al. (2016b) and Ballé et al. (2018) is how aggre-
gate results over should be reported, or whether reporting such figures is meaningful in the
first place. This is because since models were trained on different datasets, with different
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model design philosophies, there might be significant fluctuation in the comparative model
performance between individual images. Furthermore, averaging results achieved by classi-
cal methods that were not directly optimized for the rate-distortion trade-off (virtually all of
them) might lead to inconsistent results even on the same image, depending on what settings
were used to achieve a given bitrate. Hence, they argue that the efficiency of the methods
should be examined on individual images instead. This is also the philosophy we follow,
and hence we will be reporting model performances on individual images.





Chapter 4

Method

In this chapter, we describe the models we use to demonstrate the efficiency of the general
lossy compression framework developed in Section 2.3. We begin by describing the input
pipeline, followed by our model architectures and their training procedure. We then present
3 tractable, coded sampling algorithms that can be used within our framework.

Based on our framework, at a high level our image compression algorithm is as follows:

1. Pick an appropriate VAE-based architecture (Probabilistic Ladder Networks
(PLNs) in our case) for image reconstruction. (Section 4.2)

2. Train the model on a reasonably selected dataset for this task. (Sections 4.1 and
4.2)

3. Once the VAE is trained, given a new image x, we can use the latent posterior
𝑞(z ∣ x) and prior 𝑝(z) for our coded sampling algorithm. (Section 4.4)

4. We may consider using entropy codes to further increase the efficiency of our
coding, if appropriate.

A rather pleasing aspect of this is the modularity that is allowed by the removal of quan-
tization from the training pipeline: our method is reusable with virtually any regular VAE
architecture, which opens up the possibility of creating efficient compression algorithms for
any domain where a VAE can be used to reconstruct the objects of interest.
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4.1 Dataset and Preprocessing
We trained our models on the CLIC 2018 dataset (CLIC (2018)), as it seemed sufficiently
extensive for our project. It was also curated for an image compression challenge, and thus
“bad” images have been filtered out, which reduced the amount of preprocessing required
on our side.

The dataset contains high-resolution PNG encoded photographs, 585 in the training set
and 41 photos in the validation set. The test set is not publicly available, as it was reserved
for the competition. To make training tractable, similarly to previous works, we randomly
extracted 256 × 256 pixel patches from each image. The number of patches 𝑃 was based on
their size of the image, according to the formula

𝑃 (𝑊 , 𝐻) = 𝐶 × ⌊
𝑊
256⌋ × ⌊

𝐻
256⌋ ,

where 𝑊 , 𝐻 are the width and height of the current image, respectively and 𝐶 is an integer
constant we set. We used 𝐶 = 15, which yielded us a training set of 93085 patches.

We note that all image data we used for learning was in RGB format. It is possible to
achieve better compression rates using the YCbCr format (Ballé et al. (2016b), Rippel and
Bourdev (2017)), however, for simplicity’s sake as well as due to time constraints we leave
investigating this for later work.

4.2 Architectures
In this section, we describe the various architectures that we experimented with. The basis
of all our architectures was inspired by the ones used in Ballé et al. (2016b) and Ballé et al.
(2018). In particular, we use the General Divisive Normalization (GDN) layer for encoding
and its approximate inverse, the IGDN layer for decoding (Ballé et al. (2015), Ballé et al.
(2016b)).

4.2.1 VAEs
As a baseline, we started by replicating the exact architecture presented in Ballé et al. (2016b)
but using a Gaussian prior and posterior instead. We chose mirror padding with our convo-
lutions, as it is standard for in this setting (Theis et al. (2017)). Luckily, the most error-prone
part, the implementation of theGDNand IGDN layerswas already available in Tensorflow1.



4.2 Architectures 35

WhileVAEs are by now fairly standard andwe assume that the reader is at least somewhat
familiar with them, our later models build on them and are non-standard, hence it is useful
to briefly go over them and introduce notation that we extend in the following sections.

Note: In the following, we will assume that all multivariate distributions have diagonal
covariance structure, and hence we parameterize their scales using vectors, to be understood
as the diagonal of the covariance matrix. Furthermore, In the case of Gaussians, in this
section only we parameterize them using their standard deviations instead of their variances.
All arithmetic operations on vectors are also to be understood elementwise.

In a regular VAE, we have a first-level encoder, that given some input x predicts the pos-
terior

𝑞(1)(z(1) ∣ x) = 𝒩 (z(1) ∣ 𝜇𝜇𝜇𝑒,(1)(x),𝜎𝜎𝜎𝑒,(1)(x)) ,

where 𝜇𝜇𝜇𝑒,(1)(x) = (𝑚 ∘ 𝑓)(x) predicts the mean and 𝜎𝜎𝜎𝑒,(1)(x) = (exp ∘𝑠 ∘ 𝑓 )(x) predicts the
standard deviation of the posterior. Here 𝑓 is a highly nonlinear mapping of the input; in
reality corresponding to several layers of neural network layers. Notice that 𝑓 is shared for
the two statistics. Then, 𝑚 and 𝑠 are custom linear transformations, and finally, we take the
exponential of 𝑠 ∘ 𝑓 to force the standard deviation to be positive. We sample ̃z(1) ∼ 𝑞(1).
We show a typical posterior distribution given an image in Figure 4.1. The first level prior
is usually assumed to be a diagonal Gaussian

𝑝(1)(z(1)) = 𝒩 (z(1) ∣ 0, 𝐼) .

Finally, the first level decoder predicts the statistics of the data likelihood,

𝑝(x ∣ ̃z(1)).

A note on the latent distributions We have chosen to use Gaussian latent distributions
due to their simplicity, as well as their extensibility to PLNs (see Section 4.2.3). On the
other hand, we note that Gaussians are inappropriate, as it has been shown that the filter re-
sponses of natural images usually follow a heavy-tailed distribution, usually assumed to be a
Laplacian (Jain (1989)), as used directly in (Zhou et al. (2018)), but can also be approximated
reasonably well by Gaussian ScaleMixtures (Portilla et al. (2003)), as adopted by Theis et al.
(2017). While it would be interesting to investigate incorporating these into our model, as
they do not extend trivially to our more complex model settings (in particular PLNs, as we

1https://www.tensorflow.org/api_docs/python/tf/contrib/layers/gdn

https://www.tensorflow.org/api_docs/python/tf/contrib/layers/gdn
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Fig. 4.1 a) kodim21.png from the Kodak Dataset. b) A random sample from the VAE pos-
terior. c) Posterior means in a randomly selected channel. d) Posterior standard deviations
in the same randomly selected channel. We can see that there is a lot of structure in the latent
space, on which the full independence assumption will have a detrimental effect. (We have
examined several random channels and observed the similarly high structure. We present
the above cross-section without preference.)
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(a) Clean image

(b) Clean (c) Noisy (d) L2 (e) L1 (f) SSIM (g) MS-SSIM (h) Mix

(b) Clean (c) Noisy (d) L2 (e) L1 (f) SSIM (g) MS-SSIM (h) Mix

Fig. 4.2 Image reconstruction quality comparison on the task of joint image denoising and
demosaicing, for the same architecture optimized using different distortion metrics. a)-b)
Show the original image. c) Show the input to the networks. d) - h) Show reconstructions
using various distortion metrics. Mix is (approximately) defined as (1 − 𝜆)𝐿1 + 𝜆MS-SSIM
for 𝜆 = 0.84. The differences are best seen on the electronic version, zoomed in. We can
clearly see the patchy artefacts introduced byMean Squared Error (d)), and howmuch better
Mean Absolute Error (e)) performs compared to it. (Image is taken from Zhao et al. (2015).
We changed the fonts of their captions to a sans-serif font for better readability.)

formulated them here require the latent posterior distribution’s family to be self-conjugate),
we leave this for future work.

4.2.2 Data Likelihood and Training Objective
Based on the framework presented in Section 2.3, the training objective used to train the
VAE is the (weighted) ELBO:

𝔼𝑞(1)(z(1)) [log 𝑝(x ∣ z(1))] − 𝛽KL [ 𝑞(1)(z(1) ∣ x) || 𝑝(1)(z(1)) ] . (4.1)

As the latent posterior and prior are both Gaussians, the KL can be computed analytically,
and there is no need for a Monte Carlo estimation. A popular and simple choice for the
likelihood to be chosen a Gaussian, in which case the expectation of the log-likelihood cor-
responds to the mean squared error between the original image and its reconstruction. This
also corresponds to optimizing for the PSNR as the perceptual metric. However, PSNR cor-
relates badly with the Human Visual System (HVS)’s perception of image quality (Girod
(1993) Eskicioglu et al. (1994)). This is mainly because an MSE training objective is toler-
ant to small deviations regardless of the structure in the image, and hence this leads to blurry
colour patch artefacts in low-textured regions, which the HVS quickly picks up as unpleas-
ant. A thorough survey of different training losses for image reconstruction was performed
by Zhao et al. (2015), see Figure 4.2. Optimizing the MS-SSIM distortion for the same ar-
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chitecture, they show that the artefacts are greatly reduced. They also show that, somewhat
surprisingly, Mean Absolute Error (MAE) also significantly reduces and in some cases com-
pletely removes the unpleasant artefacts introduced byMSE. This is because MAE no longer
underestimates small deviations, at the cost of somewhat blurrier edges, which MSE penal-
ized more. The MAE corresponds to a diagonal Laplacian log-likelihood with unit scale,
which is what we decided to use in our experiments. This results in efficient training (an
MS-SSIM training loss, though differentiable, is very expensive to compute) as well as it
will enable us to use a further enhancement, see Section 4.3.1.

Concretely, our likelihood is going to be

𝑝(x ∣ z(1)) = ℒ (x̂ ∣ 𝜇𝜇𝜇𝑑,(1)( ̃z(1)), 𝐼) , (4.2)

where 𝜇𝜇𝜇𝑑,(1) is the reverse operation of 𝜇𝜇𝜇𝑒,(1).

4.2.3 Probabilistic Ladder Network
We now introduce two extensions of VAEs to accommodate more complex latent depen-
dency structures: hierarchical VAEs (H-VAEs) and Probabilistic Ladder Networks (PLNs)
(Sønderby et al. (2016)). For simplicity’s sake, we only consider two-level H-VAEs and
PLNs, these can be easily extended to more stochastic levels. In both cases, we essentially
stack VAEs on top of each other and train them together, though the way this is done is
crucial for our use case.

To extend the VAE architecture from Section 4.2.1 to get a 2-level H-VAE, once ̃z(1) is
sampled, we use it to predict the statistics of the second level posterior

𝑞(2)(z(2) ∣ ̃z(1)) = 𝒩 (z(2) ∣ 𝜇𝜇𝜇𝑒,(2)( ̃z(1)),𝜎𝜎𝜎𝑒,(2)( ̃z(1))) ,

where 𝜇𝜇𝜇𝑒,(2)( ̃z(1)) and 𝜎𝜎𝜎𝑒,(2)( ̃z(1)) are analogous to their first level counterparts. Next the
second level is sampled ̃z(2) ∼ 𝑞(2). The second level prior 𝑝(2)(z(2)) is now the diagonal
unit-variance Gaussian, and the first level priors’ statistics are predicted using ̃z(2):

𝑝(1)(z(1) ∣ ̃z(2)) = 𝒩 (z(1) ∣ 𝜇𝜇𝜇𝑑,(2)( ̃z(2)),𝜎𝜎𝜎𝑒,(2)( ̃z(2))) .

The data likelihood’s mean is predicted using ̃z(1) as before (Sønderby et al. (2016)).
The issue with H-VAEs is that the flow of information is limited by the bottleneck of the

final stochastic layer. PLNs resolve this issue by allowing the flow of information between
lower levels as well. To arrive at them, we make the following modification to our H-VAE:
first, once 𝑞(1) is known, instead of sampling it immediately, we instead use its mean to
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Fig. 4.3 PLN network architecture. The blocks signal data transformations, the arrows signal
the flow of information. Block descriptions: Conv2D: 2D convolutions along the spatial
dimensions, where the 𝑊 × 𝐻 × 𝐶/𝑆 implies a 𝑊 × 𝐻 convolution kernel, with 𝐶 tar-
get channels and 𝑆 gives the downsampling rate (given a preceding letter “d”) or the up-
sampling rate (given a preceding letter “u”). If the slash is missing, it means that there is
no up/downsampling. All convolutions operate in same mode with mirror padding. GDN
/ IGDN: these are the non-linearities described in Ballé et al. (2016b). Leaky ReLU: el-
ementwise non-linearity defined as max{𝑥, 𝛼𝑥}, where we set 𝛼 = 0.2. Sigmoid: Ele-
mentwise non-linearity defined as 1

1+exp{−𝑥} . We ran all experiments presented here with
𝑁 = 196, 𝑀 = 128, 𝐹 = 128, 𝐺 = 24.
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predict the statistics of the second level posterior:

𝑞(2)(z(2) ∣ ̃z(1)) = 𝒩 (z(2) ∣ 𝜇𝜇𝜇𝑒,(2)(𝜇𝜇𝜇x),𝜎𝜎𝜎𝑒,(2)(𝜇𝜇𝜇x)) ,

where 𝜇𝜇𝜇x = 𝜇𝜇𝜇𝑒,(1)(x). Now, ̃z(2) ∼ 𝑞(2) is sampled. The first level prior 𝑝(1) is calculated as
before. Finally, we allow the flow information on the first level by setting the posterior 𝑞(1)

as the combination of the statistics predicted on the first level from the data and the statistics
of 𝑝(1), inspired by the self-conjugacy of the Normal distribution in Bayesian inference2:

𝑞(1)( ̃z(1) ∣ ̃z2, x) = 𝒩
⎛
⎜
⎜
⎝

̃z(1)
|

𝜎𝜎𝜎−2
z(1)𝜇𝜇𝜇x + 𝜎𝜎𝜎−2

x 𝜇𝜇𝜇z(1)

𝜎𝜎𝜎−2
x + 𝜎𝜎𝜎−2

z(1)
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√𝜎𝜎𝜎−2
x + 𝜎𝜎𝜎−2

z(1)

⎞
⎟
⎟
⎠

,

where 𝜇𝜇𝜇x = 𝜇𝜇𝜇𝑒,(1)(x),𝜇𝜇𝜇z(1) = 𝜇𝜇𝜇𝑑,(2)( ̃z(2)) and 𝜎𝜎𝜎x = 𝜎𝜎𝜎𝑒,(1)(x),𝜎𝜎𝜎z(1) = 𝜎𝜎𝜎𝑑,(2)( ̃z(2)). We sample
̃z(1) ∼ 𝑞(1)( ̃z(1) ∣ ̃z(2), x), and predict the mean of the likelihood using it.

The reason why H-VAEs and PLNs are more powerful models than regular VAEs, is
because regular VAEs make an independence assumption between the latents to make the
model tractable to compute, while H-VAEs and PLNs relax this to a conditional indepen-
dence assumption. In this sense, the architecture of Ballé et al. (2018) also defines a PLN.We
present the PLN architecture we used in our experiments in Figure 4.3. We demonstrate the
power of conditional independence in PLNs compared to the full independence assumption
in Figure 4.4.

Finally, we need to update the regularizing term of the ELBO to incorporate the joint
posterior and priors over the latents. This works out to be

KL [ 𝑞(z(1), z(2) ∣ x) || 𝑝(z(1), z(2)) ] = KL [ 𝑞(z(2) ∣ x) || 𝑝(z(2)) ] +
KL [ 𝑞(z(1) ∣ z(2), x) || 𝑝(z(1) ∣ z(2)) ] ,

which we can also compute analytically.

4.3 Training
Sønderby et al. (2016) give two key pieces of advice to train PLNs:

2We note that the formula we used in our definition is the actual combination rule for a Gaussian likelihood
and Gaussian prior. The formula given in Sønderby et al. (2016) is slightly different. We are not sure if it is a
typo or it is what they actually used. We found our combination rule worked quite well in practice.
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Fig. 4.4 We continue the analysis of the latent spaces induced by kodim21 from the Kodak
Dataset. Akin to Figure 4.1, we have selected a random channel for both the first and second
levels each and present the spatial cross-sections along these channels. a) Level 1 prior
means. b) Level 1 posterior means. c) Level 1 prior standard deviations. d) Level 1 posterior
standard deviations. e) Random sample from the Level 1 posterior. f) The sample from
e) standardized according to the level 1 prior. Most structure from the sample is removed,
hence we see that the second level has successfully learned a lot of the dependencies between
the latents. We have checked cross-sections along several randomly selected channels and
observed the same phenomenon. We present the above with no preference.
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• Use batch normalization (BN) (Ioffe and Szegedy (2015)).

• Use a warmup on the coefficient of the KL term in the loss. Concretely, given a target
coefficient 𝛽0, the actual coefficient they recommend should be

𝛽(𝑡) = min{
𝑡

𝑊 , 1} × 𝛽0,

where 𝑡 is the current iteration and 𝑊 is the warmup period.

We ended up not utilizing point 1, due to an argument of Ballé et al. (2018), namely that
GDN already performs a similar kind of normalization as BN, and it did not improve their
results.

4.3.1 Learning the Variance of the Likelihood
As we have noted, the reconstructions are blurry. A solution offered by Dai andWipf (2019)
is to introduce a new parameter 𝛾 to the model, that will be the scale of the data likelihood.
In our case, since we are using a Laplace likelihood, we will have

𝑝(x̂ ∣ z(1)) = ℒ (x̂ ∣ 𝜇𝜇𝜇𝑑,(1)( ̃z(1)), 𝛾) .

In the case of a Gaussian, 𝛾 would be the variance of the distribution. Then, it is suggested
that instead of predicting gamma (i.e. using a heteroscedastic model), or setting it as a hy-
perparameter, we learn it. In Dai and Wipf (2019) this is used in conjunction with another
novel technique to achieve generative results with VAEs that are competitive with state-of-
the-art GANs (Goodfellow et al. (2014)). In this work, however, as the second technique is
irrelevant to us, we focus on learning 𝛾 only.

Let us examine this concept a bit more: let 𝐷 be the (original) log-likelihood term with
unit scale, and 𝑅 the (original) regularizing term, already multiplied by our target coefficient
𝛽. Then, our new loss is going to be

𝐿 = 1
𝛾 𝐷 + 𝑅.

Multiplying this through by 𝛾 does not change the minimizer3of the expression, but we get
the new loss

𝐿′ = 𝐷 + 𝛾𝑅.

Dai and Wipf (2019) show that if 𝛾 is learned, then under some mild assumptions 𝛾 → 0 as
𝑡 → ∞ (where 𝑡 is the number of iterations in the training procedure). This means that if we
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set some target 𝛾∞, and use
𝛾′ = max{𝛾, 𝛾∞},

as the scale of the data likelihood, we get a dual effect to the warmup recommended by
Sønderby et al. (2016), but with automatic scaling.

In practice, 𝛾 does not converge to 0, but to a number very close to zero, which in ex-
periments was around ≈ 0.02, and hence instead of using 𝛾′, we set different 𝛽s to achieve
different rate-distortion results. From now on, we will refer to PLNs where we also learned
𝛾 as 𝛾-PLNs. In Figure 4.5 we show the posterior of one of our 𝛾-PLNs.

4.4 Sampling and Coding
Once the appropriate network has been trained, this means that for any image x we are able
to produce a latent posterior 𝑞(z ∣ x) and prior 𝑝(z). The next step in our framework is to
use a bits-back efficient coded sampling algorithm to code a sample from the posterior. The
first practical coded sampling algorithm to was described in Havasi et al. (2018), but there
are several key differences between our setting and theirs:

• Variable sized latent space: The original method was developed for compressing
the weight distribution of a BNN, whose dimension is fixed. In our case, due to our
fully convolutional architecture, our rendition of the algorithm must be able to adapt
gracefully to a range of latent space dimensions.

• Different posterior effects: As our latent spaces will carry much more information
about the topological nature of the coded image, the distribution of informative versus
non-informative posteriors and their properties will be different from the original set-
ting, and we will need to adapt to these effects. These effects can be seen in Figures
4.1, 4.4 and 4.5.

• Practicality / Resource efficiency: Since the original method has been proposed to
compress neural networks after they have been trained, the algorithm was proposed
with people who have sufficient resources to train them in mind. In particular, the
original method incorporates several rounds of incremental retraining during the com-
pression process to maintain low distortion, which might require several GPU hours
to complete. As our aim in this work to present a practical, universal compression
algorithm, we must also design our method with a much broader audience in mind.

3https://openreview.net/forum?id=B1e0X3C9tQ&noteId=ByeNgv9KTQ

https://openreview.net/forum?id=B1e0X3C9tQ&noteId=ByeNgv9KTQ
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Fig. 4.5 We continue the analysis of the latent spaces induced by kodim21 from the Kodak
Dataset. Akin to Figures 4.1 and 4.4, we have selected a random channel for both the first
and second levels each and present the spatial cross-sections along these channels. a) Level
1 prior means. b) Level 1 posterior means. c) Level 1 prior standard deviations. d) Level 1
posterior standard deviations. e) Random sample from the Level 1 posterior. f) The sample
from e) standardized according to the level 1 prior. We observe the same phenomenon, with
no significant difference, as in Figure 4.4. We note that while the posterior sample may
seem like it has more significant structure than the one in the previous Figure. This is only
coincidence; some of the regular PLN’s channels contain similar structure, and some of the
𝛾-PLN’s channels contain more noisy elements.
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Though we still assume the presence of a GPU, our requirements and coding times are
much lighter than that of the original work.

In the rest of this section, we present the ways we addressed the above points.

4.4.1 Parallelized Rejection Sampling and Arithmetic Coding
Sampling As a baseline, we designed a parallelized version of Algorithm 4, the original
bits-back efficient sampling algorithm presented by Harsha et al. (2007). As pointed out by
Havasi et al. (2018), this algorithm quickly becomes intractable once we leave the univariate
setting. Fortunately, as we are working with (conditional) independence assumptions be-
tween the latents, sampling each dimension individually and then concatenating them will
also give an exact multivariate sample.

We modify Algorithm 4 in two ways to make it more efficient. While their algorithm
is Las Vegas, i.e. it always gives the right answer, but in random time, this can get very
inefficient if we have a few dimensions with very high KL divergence. We circumvent this
issue and fix the runtime of the algorithm by allocating a bit budget 𝐵 to each dimension, and
only allowing 2𝐵 samples to be examined. If the sample is accepted within these draws, then
we have a code for them. The dimensions where all 2𝐵 samples were rejected, we sample
from the target 𝑞, and quantize the samples to 16 bits. This gave about a 1% increase in size
at a much-improved runtime. In particular, for dimensions with KL larger than 16 bits, this
is more efficient than coding them with Algorithm 4. We then use the quantized samples as
code. The concrete details can be seen in Algorithm 1. Instead of using the density of the
posterior and the prior to sample, we finely quantized them and used the probability masses
in the algorithm.

Coding Simply writing the codes of the individual dimensions given by the rejection sam-
pler would be very inefficient, because without additional assumptions the way to uniquely
decode them would be to block code them (i.e. code all indices in 8 bits, say). This would,
however, add an 𝒪(1) cost per dimension on the coding length, which is very undesirable.
Hence, we implemented a simple non-adaptive arithmetic coder (Rissanen and Langdon
(1981)) to mitigate this issue. Probabilities for the symbol table have been estimated by
encoding the entire CLIC training set and using the empirical probability distribution on
the indices. We used Laplace/additive smoothing for unseen indices (Chen and Goodman
(1999)). In particular, given the empirical distribution of the sample indices 𝑃 , the proba-
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Algorithm 1 Parallelized, bit-budgeted rejection sampling based on Algorithm 4.
Inputs:
𝐵 - Bit budget for coding the rejection sample indices
𝑃 - Prior probability mass function
𝑄 - Posterior probability mass function
⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩ - Sequence of random draws from 𝑄

procedure Rej-Sampler(𝐵, 𝑃 , 𝑄, ⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩)
𝐷 ← dim(𝑃 )
𝑝𝑑,0(𝑥) ← 0 ∀𝑥 ∈ 𝒳, ∀𝑑 = 1, … 𝐷.
𝑝∗

𝑑,0 ← 0, ∀𝑑 = 1, … 𝐷.
𝐴 = 0 ∈ {0, 1}𝐷 ▷ Keeps track of whether a dimension has been accepted or not
𝑆 = 0 ∈ ℝ𝐷 ▷ Sample we are “building”
𝐼 = −1 ∈ ℕ𝐷 ▷ Index vector for each dimension
for 𝑖 ← 1, … 2𝐵 do

for 𝑑 ← 1, … 𝐷 do
if 𝐴𝑑 = 1 then

Skip
end if
𝛼𝑑,𝑖(𝑥) ← min𝑃𝑑(𝑥) − 𝑝𝑑,𝑖−1(𝑥), (1 − 𝑝∗

𝑑,𝑖−1)𝑄𝑑(𝑥) ∀𝑥 ∈ 𝒳
𝑝𝑑,𝑖(𝑥) ← 𝑝𝑑,𝑖−1(𝑥) + 𝛼𝑑,𝑖(𝑥)
𝑝∗

𝑑,𝑖 ← ∑𝑥∈𝒳 𝑝𝑑,𝑖(𝑥)
𝛽𝑑,𝑖(𝑥𝑖) ← 𝛼𝑑,𝑖(𝑥)

(1−𝑝∗
𝑑,𝑖)𝑄𝑑 (𝑥)

Draw 𝑢 ∼ 𝒰 (0, 1)
if 𝑢 < 𝛽𝑑,𝑖(𝑥𝑖) then

𝐴𝑑 ← 1 ▷ Indicate we accepted the sample
𝑆𝑑 ← 𝑥𝑖
𝐼𝑑 ← 𝑖

end if
end for

end for
Draw 𝑆′ ∼ 𝑄where 𝐼=−1 ▷ Sample dimensions where we have not accepted.
𝑆where 𝐼=−1 ← 𝑆′ ▷ Set the “built” sample’s missing dimensions to 𝑆′.
𝐼where 𝐼=−1 ← Quantize(𝑆′, 16)

▷ Set the missing dims. of 𝐼 to 𝑆′ quantized to 16 bits.
return 𝐼, 𝑆

end procedure
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bility distribution used is

̃𝑃 (𝑖) =
⎧⎪
⎨
⎪⎩

(1 − 𝛼)𝑃 (𝑖) if 𝑖 ∈ 𝐼
𝛼
𝑁 otherwise

where 𝐼 = {𝑖 ∈ ℕ ∣ 𝑃 (𝑖) > 0}. In our case we allocated 𝐵 = 8 bits for each individual
dimension, 𝐼 = {0, … 255} as all codable indices appeared. Since we quantized the outliers
to 16 bits, 𝑁 = 216 − 28. We found that choosing 𝛼 ≈ 0.01 gave the best results.

A note on the Arithmetic Coder While for small alphabets the naive implementation
of the arithmetic coder is very fast, the decoding time grows as 𝒪(|𝒜|) in the size of the
alphabet. In particular, decoding the arithmetic code of a reasonably large image would
take up to 30 minutes using the naive implementation on a CPU. The inefficiency is due to a
bottleneckwherewe need to find in a partition of [0, 1] intowhich the currently coded interval
fits. The naive uses a linear search over the partitions. This can be made more efficient by
using height-balanced binary search trees (BSTs). In particular, we need to find the least
upper bounding item in the BST for the given point, which can be done in 𝒪(log2 |𝒜|) time.
Using this additional trick, we can decode large images’ code in a few seconds. In particular,
we implemented an AVL-tree to serve as the BST, which is always guaranteed to be height-
balanced (Adel’son-Vel’skii and Landis (1962)).

Issues Theorem 2 guarantees that the MDL of a realization of a random variable 𝑌 given
𝑋 by using Algorithm 4 is

𝐿(𝑋) ≤ KL [ 𝑞(𝑌 ∣ 𝑋) || 𝑝(𝑌 ) ] + 2 log (KL [ 𝑞(𝑌 ∣ 𝑋) || 𝑝(𝑌 ) ] + 1) + 𝑐,

for some small constant 𝑐. However, to achieve this for the joint latents z, we would need to
sample them jointly, which is intractable. Instead, we sample the dimensions individually,
which by the same theorem introduces a 𝐷⋅𝑐 nat extra length to the code, where we assumed
z ∈ ℝ𝐷. This is because the constant cost 𝑐 is now incurred in every dimension. Since in
our case 𝐷 is usually on the magnitudes of 105 −106 even for small 𝑐 this cost becomes non-
negligible. In our experiments (not shown here) this lead to coding efficiencies 2.5 − 3.5
times worse than the optimal efficiency predicted by Theorem 2 for the whole multivariate
sample. This lead us to abandon rejection sampling early on in the project for more efficient
approximate methods, which we describe below.
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4.4.2 Greedy Coded Sampling

Algorithm 2 Greedy Coded Sampler
Inputs:
𝐾 - Number of proposal shards
𝐵 - Bit budget for coding the seed of individual shards.
Will result in 2𝐵 samples to be examined per shard.
𝜇𝜇𝜇𝑝 - Mean of proposal distribution
𝜎𝜎𝜎2

𝑝 - Variance of proposal distribution
𝑞 - Posterior distribution

procedure Greedy-Sampler(𝐾, 𝐵,𝜇𝜇𝜇𝑝, 𝜎𝜎𝜎2
𝑝, 𝑞)

̃z0 ← 0 ▷ Initialize the sample
𝐼 = () ▷ Initialize the index set to an empty list
for 𝑘 = 1, … , 𝐾 do

Set random seed of generator to 𝑘.
Draw s𝑘,𝑏 ∼ 𝒩 (

𝜇𝜇𝜇𝑝
𝐾 , 𝜎𝜎𝜎𝑝

𝐾 ) for 𝑏 = 1, … , 𝐵
c𝑘,𝑏 = ̃z𝑘−1 + s𝑘,𝑏
̃z𝑘 ← argmaxc𝑘,𝑏 {log 𝑞(c𝑘,𝑏)} ▷ Create new sample

𝑖𝑘 ← argmax𝑏 {log 𝑞(c𝑘,𝑏)} ▷ Store the index of the shard sample that we used
Append 𝑖𝑘 to 𝐼 .

end for
return ̃z𝐾 , 𝐼

end procedure

To solve the issue of dimensionality, we need a way to code a sample drawn from the
multivariate distribution. The strategy of the greedy sampler is to progressively “build” a
reasonable sample from the posterior. A well-known fact about Gaussian distributed random
variables is that they are closed under addition. Concretely, if 𝑋 ∼ 𝒩 (𝜇𝑋 , 𝜎2

𝑋) , 𝑌 ∼
𝒩 (𝜇𝑌 , 𝜎2

𝑌 ), then
𝑋 + 𝑌 ∼ 𝒩 (𝜇𝑋 + 𝜇𝑌 , 𝜎2

𝑋 + 𝜎2
𝑌 ) .

In the multivariate case assuming they are diagonal, the extension of the above is straight
forward. Using this, we may now do the following: pick an integer 𝐾 , that we will call the
number of shards. Then, given the prior 𝑝(z ∣ 𝜇𝜇𝜇,𝜎𝜎𝜎2), we can break it up into 𝐾 equal shards
𝑝𝑘 (z ∣ 𝜇𝜇𝜇

𝐾 , 𝜎𝜎𝜎2

𝐾 ). Note, if we assign a different, but pre-agreed sequence of random seeds to
each shard, then each shard sample can be coded in 𝐵 bits that we can set. Start with an
initial sample ̃z0 = 0 and draw 2𝐵 samples s1,𝑏 from the first shard 𝑝1 and create “candidate
samples” c1,𝑏 = ̃z0 + s1,𝑏 and calculate their log-likelihoods under the target. Finally, set
̃z1 = argmaxc1,𝑏 log 𝑞(c1,𝑏), and repeat until we reach ̃z𝐾 , at which point we return it. Then
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the returned vector will be approximately from the target. More precisely, this is a “guided”
random walk, where we bias the trajectory towards the median of the distribution. The
code of the distribution is then the codes of the selected shard samples, concatenated. The
algorithm is described in more detail in Algorithm 2.

A note on implementation We note that empirically the greedy sampler underperforms
when the variances of some priors are small. To ameliorate this, we standardize the prior
and scale the posterior according to the standardization, i.e. we set

𝑞′(z ∣ x) = 𝒩
(
z|

𝜇𝑞 − 𝜇𝑝
𝜎𝑝

,
𝜎2

𝑞

𝜎2
𝑝 )

,

where 𝜇𝑝, 𝜎2
𝑝 are the statistics of the original prior and 𝜇𝑞, 𝜎2

𝑞 are the statistics of the original
posterior. We communicate the approximate sample z′ from 𝑞′ instead of 𝑞. This is not prob-
lematic, as Gaussian distributed random variables are closed under linear transformations,
i.e. given 𝑋 ∼ 𝒩 (𝑚, 𝑠2), we have

𝛼𝑋 + 𝛽 = 𝑌 ∼ 𝒩 (𝛼𝑚 + 𝛽, 𝛼2𝑠2) .

Hence, the decoder may recover an approximate sample from 𝑞, by calculating z = 𝜎𝑝z′ +𝜇𝑝.

Issues While the greedy sampler makes sampling efficient and tractable from the posterior,
it comes at the cost of reduced sample quality. In particular, it gives blurrier images. This also
means that if we use a PLN to compress an image andwe use the greedy technique to code the
latents on the second level, the first level priors’ statistics derived from the biased sample will
be off, and KL [ 𝑞(z(1) ∣ ̃z(2), x) || 𝑝(z(1) ∣ ̃z(2)) ] will be higher. We have verified empirically,
that while using a biased sample on the second level does not degrade image quality (possibly
due to the noise tolerance of PLNs), it does significantly increase the compression size (by
a factor of 1.2 − 1.5) of the first level, which is very significant. This motivated the final
sampling algorithm presented here, only used on the second level of our PLNs.

4.4.3 Adaptive Importance Sampling
The adaptive importance sampler uses the importance sampler described in Algorithm 5,
introduced by Havasi et al. (2018). The idea is to use similar block-based importance sam-
pling as proposed in Havasi et al. (2018). However, unlike them, we allocate the block sizes
dynamically. In particular, we set a bit budget 𝐵 per group, a maximum group size 𝐺 and
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Algorithm 3 Adaptive Importance Sampler based on Algorithm 5, introduced by Havasi
et al. (2018)
Inputs:
𝐾 - Maximum individual KL allowed
𝐺 - Maximum group size
𝐵 - Bit budget per group
𝑃 - Proposal distribution
𝑄 - Target Distribution
⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩ - Shared sequence of random draws from 𝑄

procedure Adaptive-Importance-Sampler(𝐾, 𝐺, 𝐵, 𝑃 , 𝑄, ⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩)
Γ ← () ▷ Group sizes
𝑘𝑙𝑖 ← KL [ 𝑄𝑖 || 𝑃𝑖 ] ∀𝑖 = 1, … 𝑁 ▷ Get KLs for each dimension
𝑂𝐼 ← Where(𝑘𝑙𝑖 > 𝐾) ▷ Outlier indices in the vector
Sample 𝑂 ∼ 𝑄𝑂𝐼
�̂� ← Quantize(O)
𝑄′ ← 𝑄⧵𝑂𝐼 ▷ Target distribution restricted to the dimensions defined by 𝑂𝐼 .
𝑃 ′ ← 𝑃⧵𝑂𝐼 ▷ Remove outlier dimensions
𝛾 ← 0 ▷ Current group size
𝑘 ← 0 ▷ Current group KL
for 𝑖 ← 1, … dim(𝑄′) do

if 𝑘 + 𝑘𝑙𝑖 > 𝐵 or 𝛾 + 1 > 𝐺 then
Append 𝛾 to Γ
𝑘 ← 𝑘𝑙𝑖
𝛾 ← 1

else
𝑘 ← 𝑘 + 𝑘𝑙𝑖
𝛾 ← 𝛾 + 1

end if
end for
Append 𝛾 to Γ ▷ Append the last group size
𝑆 = () ▷ Importance samples for the groups
𝐼 = () ▷ MIRACLE sample indices
𝑔 ← 0 ▷ Current group index
for 𝛾 in Γ do ▷ Now importance sample each group

𝑖𝑑𝑥, 𝑠 ← Importance-Sample(𝑃𝑔∶𝑔+𝛾 , 𝑄𝑔∶𝑔+𝛾 , ⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩)
Append 𝑖𝑑𝑥 to 𝐼
Append 𝑠 to 𝑆

end for
return I, S

end procedure



4.4 Sampling and Coding 51

an individual limit 𝐾 . We begin by discarding individual dimensions where the KL is larger
than 𝐾 . Then, we flatten the remaining dimensions in raster-scan order and iteratively add
dimensions into the current group so long as the total KL of the group reaches either the
bit budget 𝐵 or the number of dimensions added to the group reaches 𝐺. At this point, we
start with a new group. Once the whole vector has been partitioned, we importance sample
each group using Algorithm 5. The removed dimensions are sampled directly from the pos-
terior and then the samples are quantized to 16 bits. The complete algorithm can be seen in
Algorithm 3.

For ease of referral, since we would perform Adaptive Importance Sampling on the sec-
ond level, followed by the Greedy Sampling on the first, We will refer to this way of sample
coding as IS-GS.

For the importance sampler, the 𝒪(1) sampling cost impeding the rejection sampler is
negligible, as it will be now shared across approximately 𝐺 dimensions. We can also forgo
the arithmetic coder, as the indices output by the sampler are already going to be quite ef-
ficient. On the other hand, we also have to communicate the groups as well. Instead of
communicating group indices, we can instead order the latents and communicate consecu-
tive group sizes, from which the indices can be easily reconstructed. Each group’s size takes
up at most ⌈log2 𝐺⌉ bits. In total, we usually get slightly more than ⌈

𝑁2
𝐺 ⌉ groups, (where

𝑁2 is the dimensionality of the second level). This is still very inefficient, but so long as
𝑁2 is sufficiently small compared to the code length for the indices, it will be manageable.
We also note that the group size is likely to be biassed towards higher values, and hence
building an empyrical distribution them and arithmetic coding the sequence could lead to a
big reduction in the inefficiency, however, we found this not to be too important to focus on.

Greedy Sampler It is easy to see that the greedy sampler is already as efficient as it could
be. The sample indices for each shard are as compactly represented as possible, as we expect
the maximum of the samples to be uniformly distributed. Hence, the only other items that
need to be coded is the number of shards and the number of samples for each shard for the
cumulative sample to be decodable. Hence, for the greedy sampler, we just wrote the indices
straight to the binary file.





Chapter 5

Experiments

In this chapter, we detail our experimental setup and empirically show the correctness and the
efficiency of our model. We compare our results to two classical lossy image compression
methods, JPEG, and BPG. JPEG is the most widely used lossy compression method (Bull
(2014)), and hence showing that we can outperform it is important to show the viability of
our method. BPG (Better Portable Graphics) is a more modern transform coding method,
that adapts to the statistics of images and is the current state-of-the-art in classical lossy
image compression (Rippel and Bourdev (2017)). We also compare to the current state-of-
the-art in neural compression, the results of Ballé et al. (2018)1. We implemented all of our
architectures and experiments from scratch in Python 3.5, using Tensorflow (Abadi et al.
(2015)) and Sonnet (Reynolds et al. (2017)) libraries. All of our code is available publicly
at https://github.com/gergely-flamich/miracle-compression.

5.1 Experimental Setup
As we based our models on the work of Ballé et al. (2016b) and Ballé et al. (2018), we mirror
a lot of their training setup as well (see Section 4.1 for the dataset and preprocessing). We
trained all our models with Adam (Kingma and Ba (2014)) with a starting learning rate of
𝛼0 = 3 × 10−5 and trained all of our models for 20 epochs or equivalently, approximately
200,000 iterations, by using batches of 8 image patches per iteration. For training VAEs and
regular PLNs, we used a smooth exponential learning rate decay schedule according to the
formula

𝛼(𝑡) = 𝛼0 × 𝑟
𝑡
𝐷 .

1We thank the authors of the paper for making their data available to us.

https://github.com/gergely-flamich/miracle-compression


54 Experiments

Where 𝑟 is the decay rate, 𝐷 is the decay step size and 𝑡 is the current iteration. We found
𝑟 = 0.96 and 𝐷 = 1500 worked well for our experiments. While we did not notice significant
performance gains using the learning rate schedule, our models converged slightly faster.

For 𝛾-PLNs we found learning rate decay actually hurt the training performance of the
model, as it kept 𝛾 from converging to 0.

The architecture used for the VAE is the same as what we used for PLNs (shown in Figure
4.3), with the second level omitted. For the convolution capacities, we used 𝑁 = 192
channels on the first level and 𝑀 = 128 channels on the second. We have significantly
reduced the channels on the latent dimensions compared to Ballé et al. (2018), as we use
𝐹 = 128 and 𝐺 = 24, where they use 𝐹Ballé = 192/320, and 𝐺Ballé = 128. On the first level,
we found that adding more channels did not significantly increase the performance of our
model, which we credit to the more flexible latent distributions used in our model. On the
other hand, we chose 𝐺 = 24 because we found that when increased beyond this, the cost of
communicating the group indices for the importance sampler became very inefficient. With
24 channels, the overhead is already 30-40% of the second level’s code length.

In all experiments, we used the adaptive importance sampler on the second level and the
greedy sampler (IS-GS) on the first. For the importance sampler we used 𝐾 = 12 bits as the
outlier KL limit, 𝐵 = 20 bits for the maximum total group KL and 𝐺 = 16 as the maximum
number of dimensions in a single group. For the greedy sampler, we set 𝐾 = 30 shards and
𝐵 = 14 bits per shard, leading to 214 samples per shard. See Section 4.4 for a review of
these terms.

All experiments were run on a GeForce GTX 1080 GPU.

5.2 Results
We present the rate-distortion curves for the following:

• JPEG, with quality settings from 1 to 92, with increments of 7 between settings. As
this is the most widely used lossy image compression codec (Bull (2014)), it is crucial
to demonstrate that our method is at least competitive with it, and ideally beats it.

• BPG2with 4:4:4 chroma sampling, as we are comparing against RGB-based compres-
sion techniques. We used quantization settings between 51 to 33 with decrements of
3 between settings.

• Two models with the same architecture from Ballé et al. (2018), one optimized for an
MSE training objective, and one optimized for the MS-SSIM perceptual metric.
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Fig. 5.1 PLN reconstructions of kodim05. Top: 𝛽 = 0.03, 0.810 bpp, MS-SSIM: 0.913,
PSNR: 23.053 dB Bottom: 𝛽 = 0.1, 0.354 bpp, MS-SSIM: 0.848, PSNR: 21.495 dB.
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Fig. 5.2 𝛾-PLN reconstructions of kodim05. Top: 𝛽 = 3, 0.354 bpp, MS-SSIM: 0.937,
PSNR: 21.397 dB Bottom: 𝛽 = 10, 0.189 bpp, MS-SSIM: 0.824, PSNR: 21.068 dB.
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• Two of our models, all of which were optimized with Laplacian likelihoods, one PLN
and one 𝛾-PLN. We trained the PLNs using 𝛽 = {1, 0.3, 0.1, 0.03} and the 𝛾-PLNs
using 𝛽 = {10, 3, 1, 0.3, 0.1}. We plot both their theoretically optimal performance as
well as their actual performance, with the differences explained below. The reason for
not presenting results of the VAEs is because their rate-distortion curves are quite a
lot worse than the other models’, and would have distorted the figures too much.

When presenting our method, for each model we present two results: the theoretically
optimal performance, and the actual performance. The theoretically optimal bits per pixel
(BPP) was calculated using the theoretically achievable upper bound for the compression
size in bits as given by Theorem 2, without the constant term. Concretely, for a drawn latent
sample ̃z for image x, it is

KL [ 𝑞𝜙(x ∣ ̃z) || 𝑝𝜃( ̃z) ] + 2 log (KL [ 𝑞𝜙(x ∣ ̃z) || 𝑝𝜃( ̃z) ] + 1) .

The optimal reconstruction error was calculated by passing an image through the PLN using
a normal forward pass, instead of using the IS-GS approximate sample. Thus, any actual
method’s performance using the same setup should appear to the right of (worse rate) or
below (worse distortion) the theoretical position.

We show a comparison between reconstructions at different rates of kodim05 from the
Kodak Dataset (Eastman Kodak Company (1999)) for PLNs in Figure 5.1 and for 𝛾-PLNs
in Figure 5.2. A much more thorough comparison of reconstructions is given at the end of
the thesis in Appendix B.

The rate-distortion curves for kodim05 are shown in Figure 5.3. We observe a similar
phenomenon as Ballé et al. (2018): there is a mismatch in the comparison of models accord-
ing to different perceptual metrics, depending on what objective they have been optimized
for. In particular, JPEG and BPG have both been optimized so that they give high PSNR
(thus, low MSE), whereas they underperform on the newer MS-SSIM metric. MS-SSIM
correlates better with how the human visual system (HVS) perceives quality (Wang et al.
(2003)), hence it is generally more desirable to perform well on that metric (Toderici et al.
(2017), Rippel and Bourdev (2017), Ballé et al. (2018)). The fact that our models perform
well on MS-SSIM also justifies our choice of the MAE as the training objective.

Somewhat surprisingly, with no fine-tuning, our results, especially the 𝛾-PLNs get very
close to the state-of-the-art results of Ballé et al. (2018). The distortion gap caused by the
greedy method is clearly exposed: there is an approximately 1-2 dB gap for both PLNs and
𝛾-PLNs across all bitrates for both MS-SSIM and PSNR. The theoretically optimal perfor-

2We used the implementation available at http://bellard.org/bpg

http://bellard.org/bpg
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Fig. 5.3 Rate-Distorsion curves of several methods on kodim05. Please see Section 5 for
the description of how we obtained each curve. MS-SSIM results are presented in decibels,
where the conversion is done using the formula −10 ⋅ log10 (1 − MS-SSIM(x, x̂)). PSNR is
computed from the mean squared error, using the formula −10 ⋅ log10 MSE(x, x̂).
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mance of 𝛾-PLNs is competitive with the state-of-the-art on lower bitrates, so finding a better
sampling algorithm is of paramount importance to make our method competitive in general.

On the other hand, we see that the actual bitrates are not much higher than the theoret-
ically optimal ones, even though the actual numbers include the overheads, such as the list
of group indices for importance sampling.

Interestingly, ourmethods’ curves tail offmuchmore heavily as the bitrate increases, than
other methods. The fact that distortion gap remains the same between the theoretical and
actual curves for both models though indicates that the discrepancy does not come from the
sampling techniques’ degrading performance, rather it must come from themodel itself. One
contributing factor is the inherent blurriness of VAE (and by extension PLN) reconstructions
with Gaussian latent distributions. A key indication of this is that the technique of learning
𝛾 was introduced by Dai and Wipf (2019) with the precise reason of ameliorating this issue,
and indeed our 𝛾-PLNs do perform significantly better than the regular ones. Another likely
reason is the capacity limitation of the second level to 24 channels only, although we have not
performed experiments to confirm this due to time constraints. Other possible limitations
might come from a small training dataset size (Ballé et al. (2018) train on 1,000,000 high-
resolution images, we train on 585), as well as from the loss (Ballé et al. (2018) directly
optimize an MS-SSIM loss). We leave investigating all of these reasons for future work.

Contribution of second levels An important part of verifying the validity of using PLNs is
to analyze the contribution of the second level. Comparing Figure 4.1 to Figures 4.4 and 4.5,
we saw how using the conditional independence structure instead of the full independence
assumption allows us tomodel the spatial dependencies between dimensions far better, which
is the clear reason why PLNs heavily outperform VAEs. As Figure 5.4 shows, the second
level does not only greatly improve the distortion, it also does this very efficiently, as we see
that above very low bitrates, it does not contribute more than 10% of the total bits per pixel.

5.2.1 Compression Speed
Although not a focus of our project, we nowbriefly examine the encoding and decoding speed
of our method. We have plotted the compression ratios of our models against the time it took
them to encode / decode them using IS-GS in Figure 5.5. As increasing the reconstruction
quality leads to higher KL divergences between the latent posteriors and priors, both the
importance sampler and the greedy sampler will need to split up a higher total KL. Thus,
we expect the coding to become slower, and is precisely what we observe, with seemingly
approximately linear growth. We also see that encoding consistently takes around 3 times
as long as decoding. It is clear that our method is not yet practical: even the fastest case
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Fig. 5.4 Contribution of the second level to the rate, plotted against the actual rate. Left:
Contribution in BPP, Right: Contribution in percentages. We see that for lower bitrates
there is more contribution from the second level and it quickly decreases for higher rates. It
is also clear that on the same bitrates, the 𝛾-PLN requires less contribution from the second
level than regular PLN.

PLNs 𝛾-PLNs
𝛽 1 0.3 0.1 0.03 10 3 1 0.1

Encoding Time (s) 55.91 64.95 98.85 145.38 71.40 120.54 172.34 452.49
Decoding Time (s) 24.85 26.61 33.34 44.85 27.81 38.87 54.86 140.52

Table 5.1 Compression times of our models for various compression rates.

takes around a minute to encode and about 20 seconds to decode, which very far away for
real-time applications for now. The precise values are reported in Table 5.1.
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Fig. 5.5 Coding times of models plotted against their rates. Left: Regular PLNs. Right:
𝛾-PLNs. The striped lines indicate the concrete positions of our models in the rate line.
While it seems that there is a linear relationship between rate and coding time, we do not
have enough data points to conclude this.





Chapter 6

Conclusion

6.1 Discussion
In this work, we gave an introduction to image compression and machine learning-based
compression. Based on the MDL principle (Rissanen (1986)) and the Bits-back argument
(Hinton and Van Camp (1993)), as well as more recent work in information theory (Harsha
et al. (2007))and neural network compression (Havasi et al. (2018)), we developed a general
lossy compression framework, and described how previous quantization based approaches fit
into it. We gave a comparative review of recent influential works in the field of neural image
compression. We demonstrated the efficiency of the framework we developed by applying
it to image compression. We trained several Probabilistic Ladder Networks, optimized for
different rate-distortion trade-offs, and achieved results close to the current state of the art.
We also presented 3 coded sampling algorithms with different advantages and disadvantages
that may be used to compress data using our framework. We present a detailed analysis
supporting our model choices.

6.2 Future Work
Many aspects should be considered for a practical compression algorithm. Some of these
are

• Quality,

• Rate,

• Speed,
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• Memory footprint,

• Power consumption of compression and decompression,

• Robustness of the compressor (i.e. resistance to errors or adversarial attacks),

• Security / privacy of compressed representation,

• Scalability e.g. in terms of image size.

In this work, we focused only on the first two items and also propose future directions
along these lines, although some improvements could help the other items as well.

6.2.1 Data Related Improvements
We have trained our models on the training dataset of the CLIC 2018 dataset (CLIC (2018)),
which consists of 585 images. This is quite meagre, and thus increasing the dataset size could
lead to large improvements in performance. In particular, using 𝛾-PLNs might be prone to
overfitting to some degree, especially in conjunction with small 𝛽s. A larger dataset could be
gathered from flickr.com similarly to Theis et al. (2017), and reduce the risk of overfitting.

6.2.2 Model Related Improvements
Architecture In this thesis, we selected Probabilistic Ladder Networks (PLNs) and 𝛾-
PLNs and showed that with standard training techniques and no fine-tuning we may achieve
rate-distortion results close to the current state-of-the-art. Thus, finding a better fitting ar-
chitecture and fine-tuning our models, e.g. in terms of the number of layers, convolution
filters per layer, latent dimension size could greatly increase the efficiency of the network.
Exploring the contributions of further stochastic layers, or residual connections might also
be a fruitful direction.

Loss As shown by Zhao et al. (2015), the training loss used is crucial for the perceptual
quality of the reconstructed image. In this work, we trained using an 𝐿1 loss which is equiv-
alent to a Laplacian data likelihood given the latents. An interesting line of research could
be investigating more complex losses, e.g. the mixture loss proposed by Zhao et al. (2015),
or using an extended transform coding pipeline, where the distortion between the original
and reconstructed images is measured in a transformed space, as proposed by Ballé et al.
(2016b). A simple example would be to use the VGG-19 loss, where both images would be
passed through the VGG-19 classifier, and an 𝐿2 loss is measured between the activations

flickr.com
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of certain convolutional layers (Johnson et al. (2016)). Adversarial losses, like the one used
in Rippel and Bourdev (2017) might also be interesting to try.

Latent Representations We used Gaussians to represent the distribution of the latents
space, mainly because this allowed a simple extension fromVAEs to PLNs in our case. How-
ever, as discussed earlier, filter responses of natural images are much better represented as
Laplacians or Gaussian Scale Mixtures (Portilla et al. (2003)). Hence, it may be worthwhile
to investigate if PLNs or similar models could be extended to allow for these distributions
in a mathematically sound fashion, still relying on conjugacy, but perhaps not requiring a
self-conjugate distribution.

6.2.3 Coding Related Improvements
As we have seen, currently both the output quality of and sampling speed of our current
algorithms are suboptimal. In particular, it is currently unclear how the postulated bits-back
efficiency of the joint latent posterior could be achieved in a tractable manner. An interesting
candidate could be 𝐴∗ sampling (Maddison et al. (2014)) for coding, however, this method
also suffers from the curse of dimensionality.

Another open question is whether index-based codes using variants of rejection sampling
are the only bits-back efficient codes.
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Appendix A

Sampling Algorithms

The rejection sampling algorithm presented in Algorithm 4 is due to Harsha et al. (2007).

Algorithm 4 Rejection sampling presented in Harsha et al. (2007).
1: procedure Rej-Sampler(𝑃 , 𝑄, ⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩) ▷ 𝑃 is the prior

▷ 𝑄 is the posterior
▷ 𝑥𝑖 are i.i.d. samples from 𝑄

2: 𝑝0(𝑥) ← 0 ∀𝑥 ∈ 𝒳 .
3: 𝑝∗

0 ← 0.
4: for 𝑖 ← 1, … ∞ do
5: 𝛼𝑖(𝑥) ← min𝑃 (𝑥) − 𝑝𝑖−1(𝑥), (1 − 𝑝∗

𝑖−1)𝑄(𝑥) ∀𝑥 ∈ 𝒳
6: 𝑝𝑖(𝑥) ← 𝑝𝑖−1(𝑥) + 𝛼𝑖(𝑥)
7: 𝑝∗

𝑖 ← ∑𝑥∈𝒳 𝑝𝑖(𝑥)
8: 𝛽𝑖(𝑥𝑖) ← 𝛼𝑖(𝑥)

(1−𝑝∗
𝑖 )𝑄(𝑥)

9: Draw 𝑢 ∼ 𝒰 (0, 1)

10: if 𝑢 < 𝛽𝑖(𝑥𝑖) then
11: return 𝑖, 𝑥𝑖
12: end if
13: end for
14: end procedure

The importance sampling algorihtm presented in Algorithm 5 is due to Havasi et al.
(2018).



74 Sampling Algorithms

Algorithm 5 Importance sampling algorithm proposed by Havasi et al. (2018)
procedure Importance-Sampler(𝑃 , 𝑄, ⟨𝑥𝑖 ∼ 𝑄 ∣ 𝑖 ∈ ℕ⟩) ▷ 𝑃 is the prior

▷ 𝑄 is the posterior
▷ 𝑥𝑖 are i.i.d. samples from 𝑄

𝐾 ← exp{KL [ 𝑄 || 𝑃 ]}
�̃�𝑖 ← 𝑄(𝑥𝑖)

𝑃 (𝑥𝑖)
∀𝑖 = 1, … 𝐾

Sample 𝑗 ∼ 𝑝(�̃�)
return 𝑗, 𝑥𝑗

end procedure



Appendix B

Further Image Comparisons

In this appendix we present some further reconstruction comparisons for the models we
trained. All of the plots presented in this appendix as well as plots for images are available
online at https://github.com/gergely-flamich/miracle-compression/tree/master/img/plots.

The images and their statistics are displayed in the following order: kodim04, kodim10
and kodim17. For each image, we first present their regular PLN and then their 𝛾-PLN recon-
structions. The 𝛽s corresponding to the images in the quartered comparison plots are shown
in Table B.1. We also present the compression comparison plot and the side information plot
as described in Chapter 5.

Top Left Top Right Bottom Left Bottom Right
Regular PLNs 0.03 0.1 0.3 1

𝛾-PLNs 0.1 1 3 10
Table B.1 𝛽s used in the quartered comparison plots for PLNs and 𝛾-PLNs.

https://github.com/gergely-flamich/miracle-compression/tree/master/img/plots
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