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Introduction

* Dialogue Manager (DM) is the brain of the dialogue system
* DM tracks believes and determines behaviour of system

* DM uses Reinforcement Learning (RL) to learn a policy

» RL is learning from feedback/ rewards

Motivation

e Hard to obtain user feedback/ external reward

* Explore more efficiently
¢ Improve policy learning

Policy learning

* Choose policy that maximises total Reward
¢ = Policy with optimal Q function
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¢ Q-function represented by deep Neural Network

* Policy optimisation with DQN
« For DQN policy is used eps-greedily to determine action
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The Dialogue Manager:
1. Updates believe state of system bt
2. Selects action 4

Intrinsic Reward Signal

* RL relies on reward signals (usually external feedback)

« For Dialogue systems those reward signals are often hard to
obtain, not accurate or even absent

« Intrinsic reward systems such as curiosity, can replace external
feedback or be used in addition to external rewards

* Explore more efficiently by actively seeking new knowledge, no
random exploring

Intrinsic Curiosity Module (ICM)

¢ State prediction error as curiosity reward (Pathak et al. 2017)
+ No random exploration needed anymore i.e. no eps-greedy
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Handcoded Curiosity Experiments

« Increased initial exploration (random)
¢ Vary the use of turn penalty as reward signal
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Most simple environment, only one seed;

Next Steps

¢ Tuning the reward signal and other parameters

* Intrinsic reward signals only

« Predicting using larger (more specific) action space
¢ Alternative curiosity rewards to state prediction error
* Implement in hierarchical framework
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