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INTRODUCTION

This work investigates the convolutional auto-
encoder (CAE) as an unsupervised learning model for ex-
tracting hierarchical features from natural images. A CAE
is similar to a traditional auto-encoder except it uses con-
volutional layers for the hidden layers in the network. We
show in our experiment replications on MNIST that this
model is capable of learning robust feature-representations
for image data. Furthermore, it is possible to use the
weights learned by a (stacked) CAE to initialize the weights
in a convolutional neural network for classification
tasks.

PRELIMINARIES

Classically, a neural network is a highly non-linear function
that maps input vectors to output classes/categories. They
typically consist of an input layer, one or more hidden lay-
ers, and an output layer. The recent success of neural net-
works is largely due to the implementation of deep topologies
where many hidden layers are used to capture high-level fea-
ture representations for the inputs. Convolutional neural
networks (CNN) extends the classic neural network by using
multiple stacks of convolutional (and pooling) layers for the
hidden-layers. These networks have been successtully applied
for a wide range of computer vision tasks with state-of-the-
art results |1, 2, 3, 4|. Auto-encoders are popular models
for performing unsupervised feature extraction for highly non-
linear data. The simplest implementation of an auto-encoder is
a simple teed-forward neural network where the learned latent
representations are given by the hidden vector h = o(W,x+0b,)
for an activation function o, weight matrix W, and bias b,.

THEIR APPROACH

A convolutional auto-encoder (CAE) differs from the tra-
ditional auto-encoder model in that it uses a convolutional (and
optionally pooling) layer for the hidden layers. The expression
for the k" feature map outputted by a convolutional layer is
given by:

hk:U(CC*Wk+bk) (1)

where o is the activation function, h; is the k" feature map,
and * denotes the 2D convolution operator. Similar to CNNs,
max-pooling can optionally be applied on the feature maps out-
putted by a convolutional layer — the activation values would
then be the max of multiple k by k patches spanning across a
oiven feature map. For highly non-linear data, a CAE can be
stacked (CAES) to obtain a deep structure for modelling the
data, similar to [5].

The deep topology of a CAES enables each layer of the net-
work to model increasingly abstract latent representations of
the input based on the latent output of the previous layer. As a
result, CAES offers a powertul model for learning robust hierar-
chical latent representations for highly-structured inputs such
as natural images. Given the similarity in structure between
a CAES and popular CNN classification models based on the
architecture of AlexNet [1], it follows that the learned weights
in a CAES can also be used for initializing the weights in the
latter group of networks. The intuition is that this will ensure
the weights in the CNN are initially set to sensible values for
training with back-propagation. This is further investigated in
the Experiments section.

EXPERIMENTS AND RESULTS

For our experiment replications, we first examined the per-
formance of a CAES in a reconstruction task on handwritten
digits from MNIST. For purposes of comparison, we trained
a CAE with a single convolutional layer and a CAES with 3
convolutional layers. Training was performed in a greedy layer-
by-layer fashion similar to the method described in [6] . We
found that CAES models trained without any additional con-
straints tended to either learn the identity mapping or a single
prototypical reconstruction for every single input. To counter-
act this problem, we performed a simple spike noise-injection
procedure where 30% of the input pixels were randomly set to
0 or 1. We also found that extending the CAE model with
a fully-connected layer (with dropout) in the decoder led to
better convolutional filters learned by the network. Recon-
struction MSE tfurther improved when we added max-pooling
layers to the model, with noticeable qualitative improvements
in the filters learned by the network.
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Figure 1: 3-layer CAE model with a noise-injected input. Left: the image at
the far-left is the clean image; the image in the middle is the noise-injected
input; and the image at the far-right is the reconstructed image. Right:
activations in the final convolutional layer before the reconstruction /decoding
layer. We used 50% for the spike-noise injection to illustrate robustness to

noise.
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Figure 2: Left: filters learned by CAE with no pooling. Right: filters

learned by CAE with pooling. In the case of no-pooling, the filters exhibit
seemingly random activation patterns. With the addition of pooling, the

filters show a distinct pattern for performing feature detection.

In our second set of experiments, we performed weight-
initialization in a CNN with the encoding weights learned from
a topologically-equivalent CAES, followed by fine-tuning of
the entire network. These experiments were conducted for
CAES/CNN models with and without pooling layers. For
our baseline, we simply trained a CNN using random weight-
initializations. We also experimented with performing fine-
tuning only in the classification layer (while keeping all other
weights fixed) to evaluate the robustness of the learned features
for classification. This was essentially implemented as a linear
classifier with the learned representations as inputs. We found
that the CNN model still performed reasonably well even with-
out fine-tuning of the weights in the convolutional layer, which
demonstrates that the feature representations learned by the
CAES were robust and directly applicable for classification.
We also observe that max-pooling consistently improved clas-
sification performance, regardless of whether fine-tuning was
performed for the entire network or just the classification layer.
This was unsurprising, since max-pooling performs an implicit
form of regularization by restricting the forward propagation
of information.

Pooling Fine-Tuning MSE ACC
NO CL 0.005091.1%
NO FULL 0.0050192.4%
YES CL 0.001893.0%
YES FULL 0.001898.5%

Table 1: Results from CNN weight-initialization with CAES. First column
indicates whether max-pooling was used. Second column indicates whether
fine-tuning was performed over the final classification layer (CL) or the entire
network (FULL). Third column displays the MSE of the CAES model used
for weight initialization. The final column is the percentage of correctly

predicted labels for the weight-initialized CNN classification model.

CONCLUSION

Feature extraction with a CAES is an effective method for
obtaining robust feature representations for natural images.
CAES outperforms traditional unsupervised learning models
in this respect due to its ability to better model spatial lo-
calities in images. Indeed, our experiments showed that the
features learned by a CAES are directly applicable for clas-
sification without the need for turther fine-tuning. Moreover,
given the similar topology of CAES and CNN models, unsuper-
vised learning in a CAES offers a simple method for weight-
initialization in CNNs. We expect this method for weight-
initialization to be particularly useful in scenarios where un-
labelled data is plentiful but the amount of labelled data is
limited. A possible extension of the CAES model would be to
investigate how the model can be augmented to handle videos
instead of images. In particular, given the temporal relation-
ships which exists between consecutive video frames, it would
be interesting to examine whether recurrent neural networks
can be incorporated within the overall CAES framework to
model these temporal localities. Given the vast availability of
unlabelled video data, weight-initialization strategies based on
the one discussed here is likely to be crucial for obtaining good
performance in video classification tasks.
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