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The Inference Problem

Variational Auto-Encoders (VAEs) can effi-
ciently perform approximate inference and learning in
deep directed probabilistic models even in the pres-
ence of continuous latent variables with intractable
posterior distributions. VAEs rely on the optimi-
sation of a lower-bound of the log-likelihood, the
proximity of which to the true likelihood strongly
determines the richness of posterior distributions
that can be approximated. We present the Impor-
tance Weighted Auto-Encoder - this model re-
sults in significant improvements on density mod-
elling benchmarks by optimising a strictly tighter
lower bound on the log likelihood than the VAE .

Variational Auto-Encoder

The VAE fundamentally consists of two compo-
nents, a recognition model over the latent variables
z: Pθ(z|x) and a generative model over the observed
data Pθ(x|z). Typically the posterior distribution
is intractable, but we would like to learn and infer
θ and z respectively so that we can perform data
generation, or marginal likelihood estimation. The
VAE introduces an approximate posterior qφ(z|x)
parametrised by a new set of parameters φ, these
parameters are varied over the course of learning to
drive up the likelihood.

Neural networks are often used in the parametrisa-
tion of both generative and recognition distributions.
In the case of the recognition model, hidden layers
of the neural network can be factorised parameter
updates back-propagated in an analogous fashion to
standard neural networks.

qφ(h|x) = qφ(h
1|x)̇qφ(h1|h2)...qφ(h

L|hL−1) (1)

Similarly, in the generative distribution where h =

h1...hL denotes the stochastic hidden units:

p(x|θ) =
∑
h1,...,hL

p(hL|θ)p(hL−1|hL, θ)...p(x|h1, θ)(2)

The VAE is trained to maximize a variational lower
bound on logp(x) according to the variational poste-
rior q(h|x).

L(x) = Eq(h|x)[log
p(x, h)

q(h|x)
] (3)

The lower bound can be approximated through sam-
pling but is analytically intractable due to depen-
dence of p(x, h) on the intractable posterior. Sam-
pling directly from the variational posterior and av-
eraging returns leads to highly varied estimates of
L(x).
VAEs use a re-parametrisation trick to com-
pute latent variables h determinitically with the
help of auxilliary variables εl independently sam-
pled from N (0, I). Assume q(hl|hl−1, φ) =

N (hl|µ(hl−1, φ), σ(hl−1, φ)), we can write:

hl(εl, hl−1, φ) = µ(hl−1, φ) + σ(hl−1, φ)0.5εl (4)

Using (1), latent variables h can be expressed as
h(x, φ, ε). This parametrisation allows a Monte-
Carlo expectation to be written w.r.t qφ(h|x) such
that it is differentiable by φ.

ImportanceWeighted
Auto-Encoder

IWAE uses the same architecture as VAE but op-
timises a tighter bound on logp(x) corresponding to

the k-sample importance weighting estimate of the
log-likelihood [1]:

Lk(x) = Eh1,...,hk∼q(h|x)[log
1

k

k∑
i=1

p(x, hi)

q(hi|x)
] (5)

Training Procedure: Gradients of the lower-bound
Lθ,φ w.r.t θ and φ are estimated in both cases and
used to update the parameters until convergence.
Define f (x, hi) =

p(x,hi)
q(hi|x) and w̃i =

f (x,hi)∑k
i=1 f (x,hi)

Discrepancies in the gradient estimators:

VAE:
1

k

k∑
i=1

∇θ log f (x, h(εi, x, θ), θ) (6)

IWAE:
k∑
i=1

w̃i∇θ log f (x, h(εi, x, θ), θ) (7)

Visualisation of
learned manifolds

We show random samples from learned generative
models for MNIST, trained with VAE (right) and
IWAE (left) with 1 layer and 5 samples.

Results on density estimation

The generative performance of IWAEs improved with
increasing k, and increasing number of stochastic lay-
ers. Improvements were less significant with VAEs,
and IWAEs outperformed VAEs with all models, for
both the MNIST and the OMNIGLOT datasets.
IWAEs learned more latent dimensions than VAEs.
The table below shows results for the MNIST
dataset. (Results marked with a star are taken from
the paper directly).

VAE IWAE

# stoch
layers

k NLL
active
units

NLL
active
units

1 1 86.72 19 86.72 19
5 86.50 20 85.44 22
50 86.47 20 84.78 25

2 1 85.72 16+5 85.72 16+5
5 84.80 17+5 83.89* 21+5
50 84.85 17+5 82.90* 26+7

Future work

Weighting the KL divergence term by a variable pa-
rameter β can dictate the extent to which gradients
are driven by pure deterministic reconstruction error
and the variational regularisation term given by the
KL divergence. We intend to follow the results of
[3] by implementing ‘warm up’. A technique that
gradually increases β from 0 to 1 over the course
of training. Previous results with VAEs and Ladder
VAEs show this reduces the number of inactive la-
tent cells and improves performance over the regular
VAEs.
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