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Introduction

The semi-supervised learning algorithm has impor-
tant practical impact due to the ever-increasing data
size and difficulty of manually labeling the data. One
of the goals is to learn the structure of small labeled
data and generalize it to larger unlabeled sets. The
main contribution of this paper is to develop new
semi-supervised classification model using a fusion
of deep neural network and probabilistic modeling
to parametrize the data density. The experiment
results for benchmark data set have quantitatively
shown significant improved performance with small
number of labeled data compared to previous ap-
proaches. The model can also capture the inter-class
and intra-class variabilities.

Latent-feature Discriminative
Model (M1)

Due to the large amount of unlabeled data, one com-
mon idea is to construct a mapping from the orig-
inal data to its embedding space and then train a
separate classifier on this latent space. This will
allow the clustering of related data points for accu-
rate classification. In fact, M1 model is equivalent
to Variational Auto-Encoder. The model is defined
as:

p(zzz) = N (zzz|000, III); pθ(xxx|zzz) = f (xxx;zzz,θθθ) (1)

where zzz is the latent representation of data xxx and
f (•) is a Gaussian Distribution over xxx parameter-
ized by deep neural network, and acting as the de-
coder (Figure 1). The samples from posterior ap-
proximation q(·) can be then used to train separate
classifiers. The training minimizes the variational

Fig. 1: M1 Graphical Model. The φφφ and dashed line represent
the variational parameters and encoder distribution qφφφ(zzz|xxx).

lower bound, which is defined as

log pθ(xxx) > Eqφ(zzz|xxx)[log pθ(xxx|zzz)]
−KL[qφ(zzz|xxx)||pθ(zzz)]

(2)

where qφ(zzz|xxx) is used for feature extraction.

Generative semi-supervised model
(M2)

Compared to M1 model, M2 assumes the unlabeled
data xxx is generated by the latent class variable y in
addition to a continuous latent variable zzz. To be
precise, the generative model is defined as:

p(y) = Cat(y|πππ); p(zzz) = N (zzz|000, III);
pθ(xxx|y,zzz) = f (xxx; y,zzz,θθθ)

(3)

Fig. 2: The M2 graphical model. f (·) is a Gaussian
distribution parametrized by MLPs.

The system can be trained by optimizing the varia-
tional lower bound. For data with observed labels:

log pθ(xxx, y) > L(xxx, y) = Eqφ(zzz|xxx,yy)[log pθ(xxx|zzz, y)
+ log pθ(y) + log p(zzz)− log qφ(zzz|y,xxx)]

(4)
For unlabeled data:
log pθ(xxx) >− U(xxx) = Eqφ(zzz,y|xxx)[log pθ(xxx|zzz, y)

+ log pθ(y) + log p(zzz)− log qφ(y,zzz|xxx)]
(5)

Thus, putting them together and adding an extra
term accounting for the effect of labeled data to dis-
criminative distribution qφ(y|xxx):

J α = Σ(xxx,y)∼p̃lL(xxx, y) + Σxxx∼p̃uU(xxx)
+ α E

pl(xxx,y)
[− log qφ(y|xxx)] (6)

Stacked Model (M1+M2)

The two models can be stacked together for bet-
ter performance. M1 will first map raw data to its
embedding space and then use generative M2 to per-
form classification on this latent space. The model
can be described as:

pθ(xxx, y,zzz1, zzz2) = p(y)p(zzz2)pθ(zzz1|y,zzz2)pθ(xxx|zzz1) (7)

where raw dataxxx is replaced with its latent represen-
tation zzz1 and zzz2 acts as zzz in M2 model. pθ(zzz1|y,ZZZ2)
and pθ(xxx|zzz1) are parametrized as MLPs.

Scalable Variational Inference

Due to the non-linearity and non-conjugated depen-
dencies in the model, exact posterior cannot be ob-
tained, instead, recent advances in variational infer-
ence can be used to approximate the marginal and
posterior distribution by optimizing the variational
lower bound. Equations 2 and 6 show the lower
bound for M1 and M2 model. The reparameteriza-
tion trick and Monte Carlo approximation can be
used to estimate the objective function. This ap-
proach is referred as stochastic gradient variational
Bayes (SGVB). For example, for M1 we can write:

Eqφ(zzz|xxx)[log pθ(xxx|zzz)] = EN (εεε|000,III)[pθ(xxx|µµµφ(xxx)+σσσφ(xxx) ⊙ εεε)]
(8)

Thus, the generative parameter θθθ and variational pa-
rameter φφφ can be easily computed by gradient based
optimization method.

Fig. 3: Visualisation of samples from x generated by fixing the
class label y and varying the 2D latent variable z on MNIST.

Results

N M1+TSVM M1+M2
100 20.82 (± 2.49) 4.68 (± 0.22)
300 4.98 (± 0.57) 2.49 (± 0.07)
1000 3.68 (± 0.28) 2.57 (± 0.23)
3000 2.36 (± 0.09) 2.27 (± 0.03)

Table 1: Semi-supervised classification on MNIST. M1+M2
results after 1000 epochs averaged over 3 runs.

Experiments

Performance of the stacked M1+M2 model is eval-
uated using the MNIST dataset split into labeled
(N) and unlabeled data points. Both M1 and M2
models use 50-dimensional latent space, 500 hidden
units per layer and softplus activation function. M1
and M2 models use respectively two and one hid-
den layers. Transductive SVM (TSVM) and the M2
model are trained on the reduced-dimension z from
M1. Table 1 shows significant improvement of the
stacked M1+M2 model with respect to TSVM on
small number of labeled points N. In addition, Fig.
3 illustrates that points close in latent space in fact
have similar writing style. Finally, Fig. 4 visualizes
SVHN images generated using inferred style z from
a sample image and varying class y. This demon-
strates separation of latent style and class labels.

Fig. 4: SVHN analogies (right) generated from samples (left).
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