DISENTANGLING SOURCES OF UNCERTAINTY FOR ACTIVE EXPLORATION

Introduction

PILCO, a model-based reinforcement learning algorithm [2],
offers state-of-the-art data efficiency for controlling mechan-
ical dynamical systems (see Figure 1) despite the use of
greedy policy selection. This project takes a Bayesian ap-
proach to the exploration-exploitation trade-off by quantify-
ing the epistemic and aleatoric uncertainty in the transition
and loss functions. These values are then used to identify
areas of high value for active exploration.
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Disc torque max = 10 Nm (random) trial # 10, T=10.05 sec

Wheel torque max = 50 Nm total experience (after this trial): 6 sec

trial # 4, T=4 sec
total experience (after this trial): 16 sec

y [m] 2, x [m]

Fig. 1: Mechanical dynamical systems: cartpole (left) and unicycle (right) [2]

Conditionally independent transition functions modelled for
each target dimension.

e Gaussian prior on the weights: w ~ A (0, 03,1)
e finite weight transition function: fy(x) = K(x)'w

e random features provide an efficient and scalable ker-
nel approximation [4]:

k(x, %) = (¢(x), 6(x)) ~ z(x) '2(x),
z(x) = \/% cos (w]x +by) -+ cos (wWhx + bD)]T

for D iid offsets b1, ...,bp € 'R from a uniform distribu-
tion on |0, 27|

e trained using reparameterisation trick: w = o © €, € ~
N(0,T) and minimising the variational upper bound:

E,(w)l—log p(y| fw(x))] + KL(g(W)||p(w))
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Ongoing Work

Dealing with Uncertainty

Work in progress includes:

Total loss uncertainty for policy = decomposed into the (i ) aleatoric

and @ epistemic components using the law of total variance [3]: e completion of PyLCO implementation

e uncertainty sensitive objective function to minimise

VCI(W) (CW(X)) — Eq(w) V(L (x))] _I_Vq(w) (EIL7(x)])
h ~~ 7N ~ 4 the loss [1]:
Y @ T = arg;nin Eq(w) L] — 5\/Vq<w) (L™) — Eq(w> V(L))

Where ¢(w) is the posterior distribution over the model weights and

, e experiments and comparisons to current algorithm ef-
L7(x) =1—exp (— ||X — X target || /0(2:) € [0, 1]

ficiency (see Figure 3)

KK: Kimura & Kobayashi 1999

D: Doya 2000

C: Coulom 2002

WP: Wawrzynski & Pacut 2004

R: Riedmiller 2005

RT: Raiko & Tornio 2009

vH: van Hasselt 2010

pilco: Deisenroth & Rasmussen 2011

Preliminary Results

Figure 2 (right) shows the transition function for a single target di-
mension with 95% confidence interval (grey) and 3 functions sam-
ple (dotted) from the posterior distribution over the weights w.

required interaction time in s

Monte Carlo approximation to the distribution over trajectories (Fig-
ure 2 left) under policy 7 is generated by sampling w ~ ¢(w) a total KK D C WP R RT VH  pilco
of M times and then performing N roll-outs for each M with fixed
w and start state sy sampled uniformly on the input space.

Fig. 3: Target algorithm efficiency [2].
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Fig. 2: Transition function (right) and MC approximation to the distribution over trajectories (left)



