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Introduction

PILCO, a model-based reinforcement learning algorithm [2],
offers state-of-the-art data efficiency for controlling mechan-
ical dynamical systems (see Figure 1) despite the use of
greedy policy selection. This project takes a Bayesian ap-
proach to the exploration-exploitation trade-off by quantify-
ing the epistemic and aleatoric uncertainty in the transition
and loss functions. These values are then used to identify
areas of high value for active exploration.

Fig. 1: Mechanical dynamical systems: cartpole (left) and unicycle (right) [2]

Model

Conditionally independent transition functions modelled for
each target dimension.

• Gaussian prior on the weights: w ∼ N
(
0, σ2wI

)
• finite weight transition function: fw(x) =K(x)>w

• random features provide an efficient and scalable ker-
nel approximation [4]:

k(x,x′) = 〈φ(x), φ(x′)〉 ≈ z(x)>z(x′),

z(x) ≡
√

2

D

[
cos
(
ω′1x + b1

)
· · · cos

(
ω′Dx + bD

)]>
for D iid offsets b1, . . . , bD ∈ R from a uniform distribu-
tion on [0, 2π]

• trained using reparameterisation trick: ω = σ � ε, ε ∼
N (0, I) and minimising the variational upper bound:

Eq(w)[− log p(y|fw(x))] +KL(q(w)‖p(w))

Dealing with Uncertainty

Total loss uncertainty for policy π decomposed into the i aleatoric
and ii epistemic components using the law of total variance [3]:

Vq(w) (L
π(x)) = Eq(w)[V(Lπ(x))]︸ ︷︷ ︸

i

+Vq(w)(E[Lπ(x)])︸ ︷︷ ︸
ii

Where q(w) is the posterior distribution over the model weights and

Lπ(x) = 1− exp
(
−
∥∥x− x target

∥∥2 /σ2c) ∈ [0, 1]

Preliminary Results

Figure 2 (right) shows the transition function for a single target di-
mension with 95% confidence interval (grey) and 3 functions sam-
ple (dotted) from the posterior distribution over the weights w.

Monte Carlo approximation to the distribution over trajectories (Fig-
ure 2 left) under policy π is generated by sampling w ∼ q(w) a total
of M times and then performing N roll-outs for each M with fixed
w and start state s0 sampled uniformly on the input space.

Trajectory samples used to calculate uncertainty decomposition
and expected return.

Fig. 2: Transition function (right) and MC approximation to the distribution over trajectories (left)

Ongoing Work

Work in progress includes:

• completion of PyLCO implementation

• uncertainty sensitive objective function to minimise
the loss [1]:

π∗ = argmin
π

Eq(w) [L
π]− β

√
Vq(w) (Lπ)− Eq(w) [V (Lπ)]

• experiments and comparisons to current algorithm ef-
ficiency (see Figure 3)

Fig. 3: Target algorithm efficiency [2].
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