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Motivation Questions to Answer 2. Defences
Adversarial examples pose a security threat to neural 1 What is the most suitable measure of robustness A. One-hot thermometer encoding of input.
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networks, with or without knowledge of model parameters speech recognisers?
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Distortion Loss function: performance of targeted Encoding of Input E. Non-differentiable Transform of Input.
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F. Randomised Sequence of Networks from Ensemble
label unsegmented data sequences. _ _ 1 Train an ensermble of networks
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Mozilla DeepSpeech is a CTC speech recogniser. speech recogniser trained separately?



