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Abstract

Deep Gaussian Processes (DGPs) are a powerful multi-layer hierarchical generalisation of
Gaussian Processes. However, the composition of non-linear layer mappings makes learning and
inference analytically intractable, thus requiring approximate inference. Recently, sparse DGPs
demonstrated state-of-the-art performance on several large-scale datasets for the first time
using an inference scheme that combines FITC sparse GP approximations and an approximate
Expected Propagation scheme. With the goal of investigating a potential implementation of
sparse DGPs in Bayesian Optimisation, we study the performance of this method in some
challenging medium-size synthetic datasets. In addition to reporting the pathological behaviour
encountered, we propose a greedy initialisation scheme that solves it and brings the use of
DGPs in Bayesian Optimisation one step closer.
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Chapter 1

Introduction

In this project, we investigate the pathologies encountered in sparse Deep Gaussian Process
regression for medium-size datasets. We start by discussing the limitations of Gaussian Processes,
a popular Bayesian non-parametric model used in many areas of supervised learning.

1.1 Limitations of Gaussian Processes

Part of the popularity of Gaussian Processes (GPs) relies on a simple and elegant inference
and learning framework that provides well-calibrated uncertainty estimates. However, as
non-parametric models the expressiveness of GPs is constrained by the choice of covariance
function, which encapsulates our prior modelling assumptions. In complex datasets, where the
underlying function presents non-stationary behaviour, heteroscedastic (input-dependent) noise
or dependencies between output dimensions, standard GPs are known to have limited predictive
performance.

To address these limitations, many variants of GPs have been proposed in recent literature. Some
approaches require sophisticated hand-designed covariance functions, Durrande et al. (2012),
which only guarantee local smoothing at fixed length-scales. In addition, hyperparameter tuning
becomes non-trivial in those cases. Other approaches include: input and output wrapping,
Shahriari et al. (2015); and convolution processes for leverage of multiple correlated outputs,
Alvarez et al. (2011).

1.2 History of Deep Gaussian Processes

A well-known fact about Gaussian Processes is that a neural network with an infinitely wide
hidden-layer and unknown weights is formally equivalent to a GP as shown in Warner and Neal
(1997). Motivated by this fact and the recent success of deep architectures in a variety of chal-
lenging problems in probabilistic modelling, Damianou and Lawrence (2013) introduced Deep
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Gaussian Processes (DGPs) as a multi-layer hierarchical generalisation of Gaussian Processes.

While preserving the non-parametric nature of GPs, the hierarchical structure of DGPs allows for
multiple-level abstract representations of complex datasets characteristic of deep models. Hence
by performing automatic input wrapping, data compression/expansion and non-parametric
kernel design, DGPs can potentially overcome the limitations of standard GPs mentioned above.

Approximate inference is required for DGPs as the composition of non-linearities through the
GP-layers makes inference and learning analytically intractable. Damianou and Lawrence (2013)
presented a variational-free-energy approach inspired by the variational sparse approximation
of GPs of Titsias (2009). However, this method presents problems in small datasets, where
initialisation is known to be an issue, as well as, large datasets since number of variational
parameters to optimise in this model increases linearly with the number of training points.
Later, Hensman and Lawrence (2014) proposed a variational nested scheme that solved the
latter issue.

More recently, Bui et al. (2016) presented an inference scheme for sparse DGPs based on the
combination of the FITC (Full Independent Training Conditional) sparse approximation of
GPs with an approximate Expected Propagation (AEP) inference. This approach has proven
to be a flexible, scalable and well-calibrated regression model, demonstrating state-of-the-art
performance in several of large-size datasets.

In addition, Duvenaud et al. (2014) reported a pathology in the representational capacity of
DGPs with a single hidden-unit per layer. As the number of layers increases, the composition
of GP mappings concentrates the predicted density onto one-dimensional curves, making DGPs
unsuitable for modelling higher-dimensional manifolds. This pathology can be fixed by increasing
the number of hidden units per layer or by introducing an input-connected architecture as
Duvenaud et al. proposed.

1.3 Challenging problems in Bayesian Optimisation

Bayesian Optimisation aims to find global optima of black-box functions, where evaluation is
expensive, noisy and generally gradient information is not available. Black-box functions are
unknown, non-convex functions that often exhibit complex non-stationary behaviour. Based
on current data available, Bayesian Optimisation employs probabilistic models to predict the
shape of the objective function and guide an efficient data collection strategy.

Bayesian non-parametric models, such as Gaussian Processes, are a popular choice for such
tasks as they can incorporate prior beliefs about the objective and iteratively update them
based on new queries. GPs also provide uncertainty estimates over the predicted objective
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function, something specially useful in reduced data domains typically encountered in Bayesian
Optimisation. In addition, the analytic properties of the predictive distribution of GPs make
certain choices of acquisition function, such as Expected Improvement (EI), tractable.

Part of the motivation behind this thesis was to investigate the implementation of Deep Gaussian
Processes for Bayesian Optimisation. Apart from potentially overcoming many of the modelling
limitations of GPs, DGPs could leverage correlations between multiple outputs and exploit
evaluations on cheap surfaces to estimate expensive correlated objectives. In this thesis, we
make a first step and study the performance of sparse DGPs on one-dimensional medium-size
synthetic datasets that exhibit some of the properties expected in challenging higher-dimensional
problems in Bayesian Optimisation.

1.4 Thesis contribution

Deep Gaussian Processes (DGPs) are flexible Bayesian non-parametric models with a high
representational power. In this thesis, we study the predictive performance of the approximate
Expected Propagation (AEP) inference scheme for sparse DGPs proposed by Bui et al. (2016),
which has demonstrated state-of-the-art results on several large-scale datasets.

We start by reviewing the full AEP-DGP model, emphasizing the characteristics and limitations
of the approximations it is based upon (Chapter 2). Then, we study the modelling capacity of
AEP-DGPs on benchmark toy datasets, such as the step function, where full GPs are known to
struggle (Chapter 3).

Later, we test the predictive performance of AEP-DGPs on medium-size datasets generated from
DGP samples that exhibit variable length-scales. We investigate the pathologies encountered
in AEP-DGP regression, when compared with sparse and full GPs, by revising the training
procedure and proposing alternative configurations (Chapter 4).

In addition, we introduce a sparse GP greedy initialisation scheme for the DGP layers that
resolves this pathological behaviour by facilitating the propagation from input to output. We
compare this and other initialisation schemes by evaluating their performance on out-of-sample
test sets (Chapter 5).

For our experiments, we make use of the Python library geepee1, which includes a full
implementation of the AEP-DGP model.

1https://github.com/thangbui/geepee

https://github.com/thangbui/geepee




Chapter 2

Theoretical Framework

In this chapter, we set the theoretical framework required for the discussion of experiment
results in future chapters. First, we give a formal description of Gaussian Processes (GPs) and
extend it to the probabilistic model of a full Deep Gaussian Process (DGP). Then, we explain
in detail the approximate inference scheme for sparse DGP regression proposed in Bui et al.
(2016) and implemented the geepee library. Finally, we describe the evaluation metrics used in
future experiments for model comparison.

2.1 Generalising Gaussian Processes

A Gaussian Process is non-parametric generative model that yields distributions over functions.
Formally, a Gaussian Process is a collection of random variables, any finite number of which
have a joint Gaussian distribution, Rasmussen and Williams (2004). In other words, the
joint distribution of GP function evaluations f(x1), · · · , f(xN ) ∈ R at inputs xi ∈ RDin for
i = 1, · · · , N is given by the multivariate Gaussian f1:N ∼ N (m, Kff ). Here, we compute the
mean vector m = (mθ(x1), · · · , mθ(xN )) ∈ RN from a mean function mθ(x) = E(f(x)), and
the N × N covariance matrix with entries (Kff )ij = Kθ(xi, xj) from a symmetric positive-
definite covariance (or kernel) function Kθ(x, x′) = Cov(f(x), f(x′)). For simplicity, we denote
a Gaussian Process prior over a function f as f ∼ GP(m(·), K(·, ·)) .

Figure 2.1 Three updates of the Gaussian Process posterior distribution.
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2.1.1 Gaussian Process regression

In Gaussian Process regression given inputs xi ∈ RDin , observations are modelled as yi = f(xi)+
ϵi for i = 1, · · · , N , where f ∼ GP(0, K(·, ·)) and ϵi ∼ N (0, σ2

out) is the homoscedastic (input inde-
pendent) Gaussian noise term. Thus, the data likelihood p(y1:N |x1:N , f) = N (y1:N ; f1:N , σ2

outI).
By conditioning on the dataset, we can compute the posterior over f and analytically derive a
closed-form expression for the predictive distribution at a new test point x∗:

p(y∗|x∗, y1:N , x1:N , α) = N (y∗|µpred(x∗), σ2
pred(x∗)) (2.1)

where α = (θ, σ2
out) is the set of hyperparameters and:

µpred = kT
f∗f (Kff + σ2

outI)−1y1:N (2.2)

σ2
pred = K(x∗, x∗) + σ2

out − kT
f∗f (Kff + σ2

outI)−1kf∗f

with (kf∗f )i = K(x∗, xi) for i = 1, · · · , N

Similarly, the objective function used for model comparison and hyperparameter tuning, the
marginal likelihood, is also Gaussian:

p(y1:N |x1:N , α) = N (y1:N ; Kff + σ2
outI) (2.3)

The inversion of the covariance matrix in (2.2) elevates the computational cost of a full GP
model to O(N3) making inference slow and even intractable for large-scale datasets.

2.1.2 Deep Gaussian Process model

Deep Gaussian Processes were introduced in Damianou and Lawrence (2013) as a non-parametric
deep generative model that generalises Gaussian Processes. Damianou et al. proposed a multi-
layer hierarchical structure where the mappings between layers are modelled by Gaussian
Processes.

Figure 2.2 Graphical model of a full DGP with 2 hidden-layers connected by GP mappings f (l).

Given data inputs xi ∈ RDin and observations yi ∈ RDout for i = 1, · · · , N , we denote the l-th
hidden layer of size Dl with layer noise σ2

(l) as the N-vector h
(l)
1:N = (h(l)

1 , · · · , h
(l)
N ) ∈ RN×Dl

for l = 2, · · · , L − 1 1. Then, the generative process a full L-layer DGP is a composition of
1Sometimes we may refer to xi as h

(1)
i , yi as h

(L)
i and σ2

out as σ2
(L).
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Gaussian Process mappings f (l) ∼ GP(0, K(l)(·, ·)) for l = 1, · · · , L:

p(h(1)
1:N |f (1), x1:N , σ2

(1)) =
N∏
i

N (h(1)
i |f (1)(xi), σ2

(1)) – input layer (2.4)

p(h(l)
1:N |f (l), h

(l−1)
1:N , σ2

(l)) =
N∏
i

N (h(l)
i |f (l)(h(l−1)

i ), σ2
(l)) – for l = 2, · · · , L − 1

p(y1:N |f (L), h
(L−1)
1:N , σ2

out) =
N∏
i

N (yi|f (L)(h(L−1)
i ), σ2

out) – output layer

In this project, the covariance functions of GP mappings, K(l)(·, ·) : RDl−1 ×RDl−1 7→ R, are set
to be from the standard squared exponential (SE) kernel family with:

K(l)(x, x′) = v2
(l) exp(−|x − x′|2

2l2(l)
)

For L > 1, the composition of non-linear mappings between layers makes inference of the posterior
analytically intractable. Hence, approximate inference is required in order to approximate
the posterior over GP mappings, f (l), and produce an estimate of the marginal likelihood
p(y1:N |x1:N , α) used in hyperparameter α = {l(l),v(l), σ2

(l)}
L
l=1 learning.

2.2 Sparse Deep Gaussian Processes

In this project, we test and investigate the performance of the approximate inference scheme
for Deep Gaussian Process regression presented in Bui et al. (2016). This technique has shown
state-of-the-art performance in several large-scale datasets, while providing a fast, flexible and
well-calibrated approximate DGP inference framework.

2.2.1 FITC sparsification

For this inference scheme, GP-mappings between the layers of a DGP, f (l)-s, are approximated
using FITC (Fully Independent Training Conditional), Quiñonero-candela et al. (2005) and
Snelson and Ghahramani (2006), a pseudo-point based sparse approximation of GPs. Consider
the l-th DGP layer h

(l)
i = f (l)(h(l−1)

i ) + ϵi ∈ RDl , with ϵi ∼ N (0, σ2
(l)) for i = 1, · · · , N . FITC

Figure 2.3 Graphical model of a two-hidden-layer FITC-DGP with inducing outputs u(l).

creates a semi-parametric model by inducing a small set of M << N pseudo-outputs {u
(l)
j }M

j=1
in RDl , the infinite output space of f (l). By assuming that other function evaluations, f (l)(·),
are conditionally independent from each other given u

(l)
1:M , we can construct an approximate
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probabilistic model for the DGP hidden-layers l = 1, · · · , L:

p(u(l)
1:M ) = N (u(l)

1:M ; 0, K(l)
uu) (2.5)

p(h(l)
1:N |u(l)

1:M , h
(l−1)
1:N , σ2

(l)) =
N∏
i

N (h(l)
i |C(l)

i u
(l)
1:M , Σ(l)

i ) (2.6)

where (K(l)
uu)ij = K(l)(z(l)

i , z
(l)
j ) evaluated at layer pseudo-inputs z

(l)
j ∈ RDl−1 whose location can

be chosen by optimizing an estimate of the marginal likelihood. In addition, we define matrices:

C(l)
i = K(l)

hiu
K(l)−1

uu (2.7)

Σ(l)
i = K(l)

hihi
+ σ2

(l)I − C(l)
i K(l)

uhi
(2.8)

with (K(l)
hiu

)nm = K(l)(h(l−1)
i,m , z(l)

n ) and (K(l)
hihi

)nm = K(l)(h(l−1)
i,m , h

(l−1)
i,n ) (2.9)

The computational cost of inference and learning associated with the FITC method is O(NM2),
tractable as long as M remains relatively small compared to N. However, the FITC approxi-
mation induces a heteroscedastic (non-stationary) noise on the layer outputs, capturing the
uncertainty produced by the sparsification, which propagates through the DGP network. In
future chapters, we will discuss some of the subtleties when training FITC sparse GP layers,
including number of induced pseudo-points per layer, the impact of adding more pseudo-points
and the initial location the pseudo-inputs.

The composition of non-linearities through the DGP layers makes the posterior over inducing
outputs p(u|x1:N , y1:N ) analytically intractable, requiring approximate inference. Next, we
present a inference scheme that approximates the posterior and yields an approximation to the
estimate marginal likelihood p(y1:N |x1:N , z(1:L), α).

2.2.2 Approximate Expected Propagation (AEP)

Approximating the posterior p(u|x1:N , y1:N ) ∝ p(u)
∏N

i=1 p(yi|xi, u) with q(u) = p(u)
∏N

i=1 ti(u)
using Expectation Propagation (EP), Minka (2001), yields an EP-energy function that can be
optimised for DGP training. However, storing natural parameters θi of Gaussian factors ti(u)
has a high computational cost of O(NLM2) for large datasets.

Alternatively, Stochastic EP (SEP) in Li et al. (2015) adds a tied factor constraint to EP by
setting ti(u) = t(u) for all i ∈ {1, · · · , N}, which reduces the cost in memory to O(LM2). The
tied factor t(u) captures the average effect of the likelihood. The negative of the resulting
SEP-energy function was proposed byBui et al. (2016) as objective function for DGP training:

F = (1 − N)ϕ(θ) − ϕ(θprior) + Nϕ(θ\1) +
N∑

i=1
log Zi (2.10)

where Zi =
∫

u
p(yi|xi, u)q\1(u)du =

∫
u

p(yi|xi, u)p(u)tN−1(u)du (2.11)

Here θprior, θ1, θ = θprior + Nθ1 and θ\1 = θ − θ1 are the natural parameters of unnormalised
Gaussians p(u), t(u), q(u) and the cavity q\1(u) = q(u)/t(u) (respectively) and ϕ(λ) is the log
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normaliser of a Gaussian with natural parameters λ.

Interestingly, the approximation of marginal log-likelihood in (2.10) is a particular case of the
Black-Box-α energy function when α = 1, see Hernández-Lobato et al. (2015):

EBB−α(θ, θprior) = ϕ(θprior) − ϕ(θ) − 1
α

N∑
i=1

logEq(u)[(p(yi|xi, u)/t(u))α] (2.12)

and EBB−1(θ, θprior) = −F

Black-Box-α inference simplifies the approximate posterior q(u) of Power EP, a generalisation
of EP, by tying its factors. Furthermore, one can recover the variational objective for training
DGPs proposed by Hensman and Lawrence (2014), by taking the limit α → 0 in (2.12) using
L’Hopital’s rule:

EV B = Eq(u)[log p(u, x1:N , y1:N ) − log q(u)] (2.13)

The DGP training procedure presented in Bui et al. (2015) runs Stochastic EP algorithm to
approximate the true posterior p(u|x1:N , y1:N ) using message passing updates on the tied factor
t(u), Li et al. (2015), to later compute the approximate marginal log-likelihood F used for hyper-
parameter tuning. Later Bui et al. (2016) obtained an improved performance in DGP training
by employing direct optimisation on F in (2.10) for jointly tuning of hyperparameters and
inducing inputs, as well as, approximating factors, taking advantage of the tied factor constraint.

The stationary conditions for SEP-energy derived in Hernández-Lobato et al. (2015) imply that
both optimisation procedures yield an approximate posterior q(u) where moments are matched
with the mean of the p(yi|xi, u)q\1(u) moments. In addition, the moment matching step in
SEP-based training, where local Kullback–Leibler divergences KL(p(yi|u, xi)q\1(u)||t(u)q\1(u))
are minimised, requires evaluating log Zi = log

∫
u p(yi|xi, u)q\1(u)du and its gradients with

respect to mean and covariance of the cavity q\1(u). Hence both training procedures rely on
the evaluation log Zi and its gradients, which is analytically intractable for L > 1 as the data
likelihoods given u are non-linear and the propagation of the cavity through the DGP network
yields a complex distribution.

2.2.3 Probabilistic Back-propagation

First, we present an algorithm equivalent to Assumed Density Filtering (ADF), Li et al. (2015),
that allows us to efficiently propagate Gaussians forwards through DGP layers projecting the
resulting complex distributions into moment matched Gaussians. Then, a similar Probabilistic
Back-propagation scheme to Adams (2015) can be used to obtain estimates log Zi and its
gradients.
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Figure 2.4 Forward propagation of Gaussian factors through GP-layer

This method obtains a Gaussian approximation to Z in a sequential fashion, where for each GP
layer l we compute Gaussian approximations q(h(l)) with the following recursive relation:

q(h(l)) =
∫

h(l−1)
q(h(l)|h(l−1))q(h(l−1))dh(l−1) (2.14)

where q(h(l)|h(l−1)) =
∫

u(l)
p(h(l)|h(l−1), u(l))q\1(u(l))du(l) (2.15)

with q(h(1)) =
∫

u(1) p(h(1)|x, u(1))q\1(u(1))du(1) and q(h(L)) = q(y) = Z. Contrary to the
approach in Damianou and Lawrence (2013), we can exactly marginalise out the induc-
ing outputs u(l) of each layer to obtain Gaussian conditional distributions q(h(l)|h(l−1)) =
N (h(l); ml|l−1, vl|l−1) with:

ml|l−1 = K(l)
huK(l)−1

uu m\1
l (2.16)

vl|l−1 = K(l)(h(l−1), h(l−1)) + σ2
(l) − K(l)

huK(l)−1
uu K(l)

uh + K(l)
huK(l)−1

uu V\1
l K(l)−1

uu K(l)
uh (2.17)

and q\1(u(l)) = N (u(l); m\1
l , V\1

l ) (2.18)

Note q(h(1)) is also Gaussian following the above. As a final step, we use the law of iterated
conditionals to estimate the integral (2.14) and complete the Gaussian approximation of
q(h(l)) ≈ N (h(l); ml, vl) through moment matching:

ml = Eq(h(l−1))[ml|l−1] = Eq(h(l−1))[K
(l)
hu]A(l) (2.19)

vl = Eq(h(l−1))[vl|l−1] + Covq(h(l−1))[ml|l−1]

= Eq(h(l−1))[K
(l)(h(l−1), h(l−1))] + σ2

(l) − m2
l + tr(B(l)Eq(h(l−1))[K

(l)
uhK(l)

hu]) (2.20)

where A(l) = K(l)−1
uu m\1

l and B(l) = K(l)−1
uu (V\1

l + m\1
l m\1T

l )K(l)−1
uu − K(l)−1

uu which are common
to all data points. It is worth noticing that the expectations taken in (2.19) and (2.20) are
only analytically tractable for specific kernel functions such as the SE kernels used in this
project. Then, in the forward propagation step, we compute Gaussian approximations of
q(h(1)), · · · , q(h(L−1)) storing the gradients of ml and vl with respect to layer hyperparameters,
pseudo-inputs and ml−1 and vl−1. In the backwards step, we compute log Z = log N (y; mL, vL)
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and use the chain-rule to take gradients through the ADF procedure.

The geepee library uses a minibatch approximation of F for stochastic optimisation, which
gives an unbiased noisy estimate of the objective. The minibatch size can play a fundamental
roll in the convergence of the objective during training as we will see later on in future chapters.

2.3 Evaluation metrics

In future experiments, we will use the three metrics described below to evaluate the predictive
performance of our models on the test set and compare them. Given2 a training set D =
{xi, yi}Ntrain

i=1 and a test set {x̂j , ŷj}Ntest
j=1 , we denote the predictive distribution as p(ŷ|x̂, D, α)

with mean µpred(x̂) and variance σ2
pred(x̂).

– Mean Squared Error (MSE):

MSE = 1
Ntest

Ntest∑
j=1

|ŷj − µpred(x̂j)|2 (2.21)

– Mean Negative Log-Predictive Probability (MNLPP):

MNLPP = − 1
Ntest

Ntest∑
j=1

log p(ŷj |x̂j , {xi, yi}Ntrain
i=1 , α) (2.22)

= 1
Ntest

Ntest∑
j=1

1
2 log(2πσ2

pred(x̂j)) + |ŷj − µpred(x̂j)|2

2σ2
pred(x̂j)

(2.23)

– Sample based Negative Log-Predictive Probability:
Let f (m) ∼ p(f |D, α) for m = 1, · · · , M be M samples generated from the posterior
of a fully trained model. Assume we model observations ŷ given a sample f (m) as
p(ŷ|f (m), x̂) = N (ŷ; f (m)(x̂), σ2

out). Then, the predictive distribution can be estimated
with a mixture of M Gaussians centred at samples f (m):

p(ŷ|x̂, D, α) =
∫

p(ŷ|f, x̂)p(f |D, α)df (2.24)

≈ 1
M

M∑
m=1

N (ŷ; f (m)(x̂), σ2
out) := p̂M (ŷ|x̂, D, α) (2.25)

The sample-based MNLPP score is obtained simply by substituting p̂M (ŷ|x̂, D, α) into
(2.22).

In hold-out test sets, where the training and test sets have a similar distribution, the sample-
based and regular MNLPP return the same scores. However, in out-of-sample test sets with
points isolated from the training set, the sample-based MNLPP score gives a better measure
of the predictive ability of a sparse Deep Gaussian Process, as it ignores the poor moment
matching approximation made at these isolated points.

2Although, described for 1-dimensional output regression (y ∈ R), it can be easily generalised to higher
dimensional outputs





Chapter 3

Experiments with toy data

In this chapter, we evaluate the representational capacity of sparse DGPs in two toy datasets
traditionally challenging for Squared Exponential (SE) GPs, namely, the step function and a
piecewise linear function. Our goal is to demonstrate that despite the hierarchical structure
of DGPs, the sparsification of the GP-layers can damage predictive performance. We report
the anomalies exhibited by DGPs when compared to full GPs and perform experiments on
out-of-sample test sets.

3.1 Step function

In this section, we perform experiments on a 100 point dataset generated from a noisy step
function similar to the one in Rasmussen and Williams (2004). g(xi) = +1 + ϵi if x > 0 and
g(xi) = −1 + ϵi otherwise, where ϵi ∼ N (0, 0.025) is a homoscedastic Gaussian noise. Despite
its simplicity, the step function has become a benchmark toy dataset for DGPs as SE kernel
GPs struggle to model its discontinuity at zero.Rasmussen and Williams (2004) showed that
a function drawn from a SE-GP would have infinite support – infinite continuous derivatives
– everywhere with probability 1. In addition, its first derivative is point-wise distributed as
N (0, v2

(l)/l2(l)), requiring a very short lengthscale to model the jump at zero.

3.1.1 Experiments

Scores in table 3.1 are obtained using training set of 60 equally spaced training points and
a hold-out test set of 40. The SE kernel AEP-DGP architectures are trained by directly
optimising the objective F in Chapter 2 for hyperparameters and 10 pseudo-point, using Adam
with an appropriate learn rate (0.01), no minibatch, 1,500 iterations and the default geepee
initialisation1.

1The default geepee initialisation is described in full detail in Chapter 5
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Model Hidden-size MSE MNLPP
Full GP – 0.009 -0.315

DGP

[2] 0.003 -0.845
[1,1] 0.001 -1.058
[3,2] 0.001 -1.055

[3,2,2] 0.001 -1.036

Table 3.1 Step function scores as hidden-layer configurations changes.

(a) Full GP model. (b) AEP-DGP model with M = 10.

Figure 3.1 Step function regression and samples from GP and AEP-DGP.

Results demonstrate that a single hidden-layer2 gives AEP-DGP sufficient representational
power to overcome full GP scores. Adding an extra hidden layer decreases the MSE and MNLPP
scores. However, as we go deeper this is no longer the case as the AEP-DGP starts to over-fit
the small training set. It is worth pointing out that AEP-DGPs have a tendency to not employ
their full representational capacity by only using one hidden unit per layer, "shutting down" –
explaining data simply with a large pseudo-point noise – additional units as it is shown in figure
3.2b. This shallow behaviour is also observed in Damianou and Lawrence (2013) variational
DGPs.
Each of the figures 3.2 show the training points (black crosses) different GP-mappings f (l) of an

optimised AEP-DGP for the step function with: mean functions in dark blue with 2σ-error-bars
(light blue), pseudo-outputs u(l) (red dots) and their standard deviation (vertical red lines).
The black and red x-s represent the initial and optimised location of z(1) pseudo-inputs.

Similarly, figure 3.1, shows the mean function (dark blue) with 2σ-error-bars (light blue) and 100
samples (green) from a full GP (left) and one-hidden-layer AEP-DGP (right) with two hidden
units and 10 inducing points (red). We observe how the outside the training points the full GP
model quickly returns to the zero prior mean with a lot of uncertainty. In contrast, outside
this region the samples from the AEP-DGP show the bimodal behaviour as a consequence the

2[2] represents a AEP-DGP with a hidden-layer with two hidden units. Similarly, [3,2] represents a AEP-DGP
with two hidden-layers with 3 hidden units in the first layer and 2 in the second one
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(a) f
(1)
1 (x) GP-mapping. (b) f

(1)
2 (x) GP-mapping.

(c) f (2)(h(1)) GP-mapping. (d) AEP-DGP regression from input to output space.

Figure 3.2 Representation of f (l) GP-mappings and AEP-regression plots for step function.

hierarchical structure capturing this extreme non-stationarity. This can also be appreciated at
the discontinuity at zero, where SE kernel puts zero mass , and the GP uses a short lengthscale
and smoothly transitions from the bottom to the top part, whereas the AEP-DGP is capable of
modelling the sharp jump shrinking with the composition of two short lengthscale GPs (see
figure 3.2a, c).

3.1.2 Out-of-sample test sets

Our interest for out-of-sample test sets is motivated by the isolated points frequently found on
highly dimensional black-box functions in Bayesian Optimisation. To recreate similar conditions,
we remove interval blocks from the training set, leaving a few points in between. Then , we
select the test set to be in the region where the interval blocks were removed.
In this case, we remove a large portion of the top part of the step function leaving a single point

in between. As shown in figure 3.3, the full GP model attempts to return to the prior increasing
the uncertainty in that region significantly. On the contrary, AEP-DGP model ignores the
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(a) Full GP model. (b) AEP-DGP model with M = 10.

Figure 3.3 Out-of-sample full GP and AEP-DGP regression on step function.

Model MSE MNLPP Sample MNLPP
Full GP 0.040 0.549 –

DGP 0.003 -0.648 -0.832

Table 3.2 Out-of-sample test scores for step function.

initialisation and locates one of the 10 inducing points at the middle point. Scores in table
3.2 reserve as justification of the previous explanation. Important to note that the bimodal
behaviour of the AEP-DGP is still present here, showing the robustness of AEP-DGP training
point removal.

3.2 Piecewise linear function

We build on the characteristic properties of the step function – discontinuity at zero and piecewise
linearity – to design a more challenging function that would show the potential damage of
sparsification on the representational capacity of AEP-DGPs, while also force SE-GPs to choose
short lengthscales to model the jumps. In this section, we perform experiments on a 100 point
dataset generated by adding homoscedastic Gaussian noise ϵi ∼ N (0, 0.025) to the function:

disc(x) =



− x if x < −1.75

x + 2.5 if − 1.75 < x < −1

−0.25x if − 1 < x < 0.5

0.25x + 2 if x > 0.5

3.2.1 Experiments

Scores in table 3.3 are obtained using training set of 60 equally spaced training points and a
hold-out test set of 40. For these experiments, we vary the number of inducing points in the
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Model M MSE MNLPP σ2
out

Full GP – 0.033 -0.147 0.16

DGP
10 0.042 0.189 0.13
20 0.032 0.019 0.11
30 0.026 -0.238 0.08

Table 3.3 disc(·) scores as hidden-layer configurations changes.

AEP-DGP model while maintaining an architecture of a single hidden-layer with two units.

The optimiser configuration is exactly the same as in the previous experiments. Figure 3.4 shows
that since the output of the disc(·) function is not normalised, outside the training set region
the uncertainty of AEP-DGP is significantly lower than the full GPs that quickly return to the
prior zero mean. This can also be observed in the generated samples (green) in figure 3.4b that
demonstrate that AEP-DGP is capable of learning some kind of periodic function representation.

In table 3.3, we see that it takes about 30 inducing points – half of the training size – for the
AEP-DGP model to overcome the full GP. In figures 3.5a,b,c we observe pseudo-points clumping
instead of spreading out evenly in the region [−1, −0.5], affecting its predictive performance.
This behaviour was also noticed by Bauer et al. (2016) in standard FITC sparse GPs, where
the optimiser finds solutions that clump pseudo-points on the top of another to avoid the
complexity penalty of the FITC objective. One could argue that AEP-DGP architectures with
few hidden layers are not sufficient to repair some of damage caused by the sparsification of the
GP-mappings. We will look more in depth into the pathologies the modelling capacity of this
type of architectures in Chapter 4.

(a) Full GP model. (b) AEP-DGP model with M = 30.

Figure 3.4 Regression and samples from GP and AEP-DGP on disc(·) function dataset.
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(a) M=10. (b) M=20. (c) M=30.

Figure 3.5 Regression and samples from AEP-DGP as the number inducing points M increases.

Model M MSE MNLPP Sample MNLPP
Full GP – 0.040 0.380 –

DGP 10 0.203 0.677 0.563
20 0.048 0.220 0.160

Table 3.4 Out-sample test scores for disc(·) function.

3.2.2 Out-of-sample experiments

(a) Full GP model. (b) AEP-DGP model with M = 10.

Figure 3.6 Out-of-sample full GP and AEP-DGP regression on disc(·) function.

In this case, we remove a large portion of the right part of the disc(·) function leaving a single
point in between. As shown in figure 3.6, the full GP model increases the uncertainty in
that region when attempting to return to the prior, but the predictive mean still gives good
predictions in that region. On the contrary, the gradients of AEP-DGP model move the 10
inducing points away from the middle point ignoring the initialisation (black crosses on the
top). Scores in table 3.4 show how at least 20 inducing points are need to beat full GPs, at
least in terms of MNLPP.
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3.3 Conclusions

In this chapter, we tested the modelling ability of AEP-DGPs on two benchmark toy datasets,
where the predictive performance of standard SE-GPs is known to be limited. We observe that
AEP-DGPs have a tendency to find configurations which do not make use of their full represen-
tational capacity, either by having a single active unit per layer or by clumping its pseudo-points.

Motivated by this indication that the sparsification of the GP-mappings can have a damaging
impact on the predictive performance of one-hidden-layer AEP-DGPs, in the next chapter we
test these models on medium-size datasets formed by samples generated from a DGP with the
same architecture.





Chapter 4

Experiments with DGP samples

In this chapter, we investigate the performance of AEP-DGPs on a medium-size synthetic
dataset formed by 10 samples from a one-hidden-layer DGP. We first explain how to sample
from a DGP and how the dataset for our experiments was generated. Then, we analyse the
pathological behaviour exhibited by AEP-DGPs when compared to sparse and full GPs.

4.1 Generating samples from a Deep Gaussian Process

One can understand a Deep Gaussian Process as generative model based on the composition
of a series of GP mappings. We take a one-hidden-layer DGP with one-dimensional inputs
and outputs as running example (see figure 5.6). We can generalise the generative process
to higher-dimensional hidden-layers simply by generating multiple i.d.d. samples from a
one-dimensional-output GP mapping as demonstrated in Damianou and Lawrence (2013).

Figure 4.1 Graphical model of one-hidden-layer Deep Gaussian Process.

Suppose we are given a finite set of input locations {xi}N
i=1 and GP mappings f (l) ∼ GP(0, K(l)),

characterised by the kernel functions K(l)(·, ·) : RDl−1 × RDl−1 7→ R. As described in Chapter
2, we can generate hidden-layer samples by computing the gram covariance matrix (K(1)

hh )ij =
K(1)(xi, xj) for i, j ∈ {1, · · · , N} and sampling from the multivariate Gaussian:

h
(1)
i ∼ N (0, K(1)

hh + σ2
(1)I) (4.1)
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Similarly, to generate outputs yi = f (2)(h(1)
i ) + ϵi with ϵi ∼ N (0, σ2

out) from the hidden-
layer values, we simply compute the gram covariance matrix (K(2)

hh )ij = K(2)(h(1)
i , h

(1)
j ) for

i, j ∈ {1, · · · , N} and sample from the multivariate Gaussian:

yi ∼ N (0, K(2)
hh + σ2

outI) (4.2)

The samples {yi}N
i=1 obtained correspond to samples from a one-hidden-layer Deep Gaussian

Process at input locations {xi}N
i=1.

In this project, we will restrict ourselves to GP mappings with squared exponential (SE) kernel
functions:

K(l)(x, x′) = v2
(l) exp(−|x − x′|2

2l2(l)
) (4.3)

The values taken by a kernel function give us a measure of the similarity between two points.
Hence the shape of the sampled function is controlled by: the characteristic lengthscale l(l),
which controls the smoothness, and v2

(l), which controls the variance or range of the function as
pointed in Rasmussen and Williams (2004).

(a) f (1)(x). (b) f (2)(h(1)). (c) f (1:2)(x).

Figure 4.2 (a)(b) Functions drawn from two GP mappings and their composition in (c).

4.2 Experiments on DGP samples

In this section test the predictive performance of AEP-DGPs on a medium-size one-dimensional
synthetic dataset formed by 10 samples generated from a one-hidden-layer DGP as described
above. Our interest in this type of dataset relies on the non-stationary behaviour of the
samples with length-scales varying across input space, a property present in challenging higher-
dimensional problems in Bayesian Optimisation.

Samples are generated at 2500 equally-spaced input points on [0, 10] by first sampling from a
large length-scale – relative to interval length – bottom layer GP (for example: l(1) = 5) and
then from a short length-scale top layer GP (for example: l(2) = 0.025). Variances are set to
be the same v(1) = v(2) = 1 and the noise parameters σ2

(1) and σ2
out are kept small (of order 10−4).
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Scores in figure 4.3 are obtained by testing our models on a hold-out test set of a 1000 sample
points, as the training set size increases from 250 to 1250 points. Our AEP-DGP model
consisting of a single hidden-layer with two hidden units is trained by directly optimising the
objective F in Chapter 2 for hyperparameters and pseudo-points. For the scores in figure 4.3,
we used a default configuration of the optimiser Adam with appropriate learn rate (0.01), a
mini-batch size of 250 points, the default geepee initialisation and no fixed hyperparameters
running for 1,500 iterations. However, it should be pointed out that due to the high variance
of the initial AEP-DGP scores, experiments were repeated using alternative configurations
and only the best performing were selected to form the graphs in figure 4.3. Some of these
configurations include: using alternative optimization schemes such as L-BFGS-B, chunking
– optimising subsets of hyperparameters iteratively – or CG; fixing the output noise σ2

out and
pseudo-input locations z(1); increasing the number of iterations and changing the learning rate
and mini-batch sizes. None of them were particularly successful, with the default configuration
giving close-to-best scores most of the time.

Results in figure 4.3 are presented using the mean scores and σ-error bars over 10 DGP samples.
Before the experiments, we expected AEP-DGPs to outperform full GPs and VFE sparse GPs
given the same number of inducing points M in large enough datasets with Ntr > 750 say,
improving scores as Ntr increased. However, the experiment results contradicted our intuition.
Full GPs are the best performing model and VFE sparse GPs with M ≥ 40 outperform
AEP-DGPs for all M values up to 60. In addition, AEP-DGPs show an oscillatory trend, not
necessarily improving scores as Ntr or M increases. This brings to question whether AEP-DGP
suffer from sparsity problems or the underlying issue are the optimisation dynamics.

(a) MSE scores. (b) MNLPP scores.

Figure 4.3 Scores of GP, VFE sparse GP with M = 40 and AEP-DGP with M ∈ {30, 40, 50, 60}
as Ntr increases.
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4.2.1 Pathological behaviour

In figure 4.4 we show examples of the pathological behaviour exhibited by AEP-DGPs during
the collection of scores in figure 4.3. We divide these pathologies in four groups:

– Explaining data with noise: As shown in figure 4.4a, in certain occasions the optimi-
sation procedure finds AEP-DGP configurations that explain the data by increasing the
output noise σ2

out. This shows that even with sufficient inducing points, the AEP-DGP
model can not capture the short length-scales well, giving up in those regions. Our
attempts to fix the output noise σ2

out during training resulted in a very slow convergence
of the objective yielding poor results.

– Clumped z(1): As shown in figure 4.4a,b sometimes inducing points are clumped on the
top of each other, resulting on a poor distribution of z(1)-s that damages the predictive
performance of AEP-DGPs. This could serve as an explanation for the small impact of
increasing the number of inducing points observed in figure 4.3. A similar behaviour was
reported by Bauer et al. (2016) in standard FITC sparse GPs. Inducing inputs were
clumped together in order to reach a local minima by reducing the complexity penalty
associated with having more pseudo-points in the FITC objective.

– High z(1) noise: As shown in figure 4.4c, instead of explaining data by increasing the
output noise σ2

out, here the posterior variance of the bottom layer inducing points S
(1)
u is

increased. This results in a very poor predictive performance, where many training points
are left out of the confidence regions. Interestingly, FITC sparse GPs have a tendency of
underestimate noise at inducing points due to the heteroscedastic noise induced by the
FITC objective as pointed in Snelson and Ghahramani (2006).

– z(1) away from training set: As shown in figure 4.4d, sometimes the optimiser finds
local optima in configurations that place inducing points away from the training set,
where the uncertainty is large. We also observe these "outliers" with FITC sparse GPs in
practice.

Despite of our efforts, these pathologies are recurrent issue across all our experiments on DGP
samples, independently of the dataset or the optimiser configuration used.

4.3 Conclusion

After having a closer look at counter-intuitive results obtained by AEP-DGPs on samples from
DGPs, we observed some pathologies that constrain the representational capacity of AEP-DGPs.
These pathologies seem to be closely related to issues in the optimisation dynamics as they occur
independently of the number of inducing points used. Thus, we conclude that the optimisation
procedure requires a more careful treatment.
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(a) Explaining data with noise. (b) z(1) clumped on flat region.

(c) High z(1) noise. (d) z(1) away from training set.

Figure 4.4 Examples of pathologies exhibited by AEP-DGP models.

In many optimisation problems, choosing an appropriate initialisation of the model can have
a dramatic impact in the optimisation dynamics and help finding global optima. In the next
chapter, we discuss a variety of initialisation schemes for AEP-DGP models and how these
affect the predictive performance of AEP-DGPs.





Chapter 5

Initialisation Schemes

In this chapter, we introduce a greedy initialisation scheme for one-hidden-layer Deep Gaussian
Processes with the goal of fixing the pathologies encountered in Chapters 3 and 4. We compare
the performance of this and other alternative initialisation schemes to the default initialisation
in the geepee library. Then, we analyse the impact of this initialisation in the evolution of
DGP-layers during training and perform tests on reduced data domains and out-of-sample test
sets.

5.1 Greedy Initialisation

In a recent review of Fully Independent the Training Conditional (FITC)[Quiñonero-candela
et al. (2005), Snelson and Ghahramani (2006)] and the Variational Free Energy (VFE) [Titsias
(2009)] sparse approximation methods for Gaussian Processes, Bauer et al. (2016) demonstrated
that VFE has a tendency to find under-fitting solutions, mainly due to problems in the optimisa-
tion procedure. In their experiments on the 32-dimensional pumadyn32 dataset, VFE initialised
with the inducing inputs and hyperparameters of a FITC solution was the best performing
sparse approximation, close to full GP performance.

Inspired by this, we propose a greedy bottom-up sparse GP initialisation of the AEP-DGP
model that can be easily implemented in the geepee library. Although, originally intended
for one-hidden-layer DGPs with Squared Exponential kernel functions, this initialisation can
easily be extended to a more general form of sparse DGPs. Here, we take the one-hidden-layer
AEP-DGP with two hidden units architecture used in Chapter 4 as running example.

5.1.1 Description

As described in Chapter 2, the GP-mappings of a AEP-DGP network are approximated with
FITC sparse GPs at M inducing points. Before initialising our AEP-DGP model, we train and
store the defining parameters of a separate sparse GP model with same number of pseudo-points
M , , fSGP . These defining parameters include: the characteristic length-scale lSGP , the variance
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v2
SGP , the output noise σ2

out,SGP , the induced input locations zSGP , and θ1,SGP = S−1
u and

θ2,SGP = S−1
u mu, the natural parameters of the posterior distribution fSGP |zSGP ∼ N (mu, Su).

The training procedure is then divided into two subsequent rounds:

– First round: Bottom layer GP-mappings, f
(1)
1 (x), f

(1)
2 (x) are initialised with the op-

timised sparse GP hyperparameters previously stored. Then, the AEP-DGP model is
trained fixing the bottom layer hyperparameters and letting the output noise σ2

out evolve.
Here, we initialise the top GP-mapping, f (2)(h(1)

1 , h
(1)
2 ), with the default initialisation.

– Second round: The entire AEP-DGP architecture is trained using the optimised model
hyperparameters from the previous round. Here, the bottom layer hyperparameters are
no longer fixed.

Figure 5.1 First round of training for greedy initialisation with fixed bottom layer.

A problem that intuitively arises from this greedy initialisation scheme is that the optimiser
will have a tendency to find local solutions where the top-layer is highly linear, resulting in
a performance similar to sparse GPs. However, by introducing a small noise in the diagonal
entries of the covariance Su, we generate an asymmetric initialisation of the hidden units, which
induces a simple non-linearity in the top-layer during the first round of training that generally
prevents this issue from happening.

5.1.2 Alternative initialisations

We propose alternative initialisation schemes based on the generative process behind the DGP
samples used in Chapter 4 that could potentially help in the optimisation procedure. For
reference we also include the default initialisation implemented in the geepee library:
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– "Long-Short" initialisation: The bottom layer sparse GPs are initialised with a long
characteristic length-scale l(1) = 5 – relative to the input range [0, 10] of samples in
Chapter 4 – and the top layer sparse GPs with a short l(2) = 0.05. This initialises the
AEP-DGP model with similar characteristic length-scales that generated the data.

– "Short-Long" initialisation: The bottom layer sparse GPs are initialised a short
l(1) = 0.1 – relative to the interval [0, 10] – and the top layer sparse GPs with a long
characteristic length-scale l(2) = 1. This initialisation encourages configurations that
distribute bottom layer inducing inputs z(1) across the training set, thus avoiding the
clumping.

– "Fixed z(1)" initialisation: Builds on the above by initialising the bottom layer inducing
inputs z(1) on a regular grid and keeping them fixed throughout training.

– "Default" initialisation: The bottom GP-layer is initialised by: choosing M training
points as inducing inputs z(1) using K-means, a characteristic length-scale1 l(1) equal
to the median of the distances between training points, and a variance v2

(1) = 0.25.
Following GP-layers are initialised with z(l) regularly spaced on the identity diagonal of
the [−1, 1]Dl−1 hypercube in hidden-space and l(l) = v2

(l) = 1. The natural parameters
θ

(l)
1 = S−1

u and θ
(l)
2 = S−1

u mu are initialised in the same way for all layers with Su = 0.5I

and mu equally spaced points in the [−1, 1] interval. In addition, the output noise is
initialised with a small value σ2

out = 0.01.

5.2 Experiments

In this section, we analyse the impact of the initialisation scheme used on the modelling capacity
of AEP-DGPs. The experiments are performed on a dataset formed by one-hidden-layer DGP
samples as in Chapter 4. The default configuration of the optimiser explained in Chapter 4 is
also used in this section.

Results in figure 5.2 are presented using the mean scores and σ-error bars obtained by our
models over 10 DGP samples from Chapter 4. Here we compare the performance of AEP-DGPs
to full GPs and VFE sparse GPs with same number of inducing points M = 50, as the number
of training points Ntr increases. We initialise our AEP-DGP model using the five initialisation
schemes described above. In addition, table 5.1 shows the performance AEP-DGPs depending
on the initialisation used and how this relates to the initial value of the objective. Results
demonstrate that our greedy initialisation outperforms the others and even improves the sparse
GP scores for Ntr > 500. We also note that the default initialisation as well as "long-short" and
"Fixed z(1)" initialisations show very poor performance. The "short-long" initialisation (opposite
to the generative process of the samples) obtains second-best scores outperforming the sparse
GPs in terms of MNLPP.

1Small noise is added to most hyperparameters to avoid algebraic problems during computations.
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(a) MSE scores. (b) MNLPP scores.

Figure 5.2 Scores of GP, VFE SGP and AEP-DGP depending on initialisations as Ntr increases.

Model Initial Objective MSE MNLPP σ2
out

Full GP – 0.004 -1.317 –
VFE SGP – 0.011 -0.427 –
FITC SGP – 0.015 -0.383 –

Greedy Round 2 0.05 0.09 -0.789 0.09
Greedy Round 1 4.32 0.076 -0.160 0.18

Default 12.21 0.200 0.384 0.32
Long-short 3.60 0.163 0.258 0.27
Short-long 9.17 0.068 0.219 0.15
z(1) fixed 40.32 0.355 0.901 0.60

Table 5.1 Ranking of initialisation schemes for dataset with Ntr = 1000, M = 50.

However, greedy AEP-DGPs can still not compete with full GPs on these medium-size datasets.
This is explored more in depth in figure 5.3 where we compare greedy AEP-DGPs with different
number of pseudo points M to full GPs. Contrary to what we observed in Chapter 4, where
the AEP-DGPs showed an oscillatory behaviour as M increases, here greedy AEP-DGPs im-
prove their performance. However, this improvement is limited and highly dependent on the
performance of the sparse GP used in the greedy initialisation.

Figure 5.4 shows how AEP-DGP predictions using these initialisations exhibit the pathologies
described in Chapter 4. In particular, figures 5.4a,b show that in the default and "long-short"
initialisations there are some regions where data is explained by noise whilst others have inducing
points clumped. The "long-short" initialised AEP-DGP also presents two outlier pseudo-points,
located away from the train set, with a high variance. In figure 5.4c, the "fixed z(1)" initialised
AEP-DGP uses a very high variance at the pseudo-points to explain the data. This results in
very poor predictions as several training points are left out of the confidence regions, which also
happens in figure 5.4d with "short-long" initialised AEP-DGP.
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(a) MSE scores. (b) MNLPP scores.

Figure 5.3 Scores of GP, VFE sparse GP and AEP-DGP greedy initialisation with M ∈
{30, 40, 50, 60} as Ntr increases.

(a) Default initialisation. (b) Long-short initialisation.

(c) Fixed z(1) initialisation. (d) Short-long initialisation.

Figure 5.4 Examples of AEP-DGP behaviour depending on initialisation.

Figure 5.5 shows the optimised GP-mappings after a greedy initialisation of a AEP-DGP model
with M = 50 inducing points. In figure 5.5d, the pathological behaviour described in Chapter
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4 is no longer present as the greedy initialisation encourages an appropriate distribution of
the bottom-layer inducing points z(1). In addition, the asymmetric greedy initialisation of the
bottom layer GP-mappings guides the optimisation dynamics into a configuration where both
hidden-units are asymmetric and active as shown in figures 5.5 a,b. In figure 5.5c we see how
this asymmetry is combined by a non-linear top-layer GP mapping to yield the AEP-DGP
predictions in figure 5.5d. Hence the greedy initialisation encourages AEP-DGPs to use their
full representational capacity and avoid the tendency to use a single unit per layer described in
Chapter 3.

(a) f
(1)
1 (x) GP-mapping. (b) f

(1)
2 (x) GP-mapping.

(c) f (2)(h(1)) GP-mapping. (d) AEP-DGP regression from input to output space.

Figure 5.5 Representation of f (l) GP-mappings and AEP-regression using greedy initialisation.
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Model MSE MNLPP Sample MNLPP
Full GP – 0.055 0.011 –

SGP VFE 0.055 0.011 –
FITC 0.076 3.291 –

Greedy VFE Round 1 0.049 -0.276 0.08
Round 2 0.049 -0.596 0.07

Greedy FITC Round 1 0.036 -0.668 0.06
Round 2 0.038 -0.506 0.08

Default 0.067 -0.322 0.11

Table 5.2 Reduced data domain scores with Ntr = M = 50.

5.2.1 Reduced data domains

The performance of greedy AEP-DGPs depends highly on the number of inducing points and
the quality of the sparse approximation used in the initialisation. We showed before in figure
5.3 that as the M increases AEP-DGP scores get closer to those of a full GP. We would be
interested in knowing what happens in the limit as M approaches Ntr. For medium-size datasets
this is computationally intractable, so we will consider a small dataset of DGP samples with
Ntr = 50, while keeping a full test set of size 1000. Reduced data domains like this one are often
encountered in Bayesian Optimisation, which makes them particularly interesting to study the
performance of sparse DGPs and full GPs.

As discussed in Bauer et al. (2016), VFE sparse GPs recover the performance of full GPs as M

approaches Ntr, by placing an inducing point at each training points, whereas the clumping
of pseudo-points prevents this from happening in FITC sparse GPs. Table 5.2 shows the
performance of greedy initialised AEP-DGPs with both types of sparse GPs compared to
full GPs and the default initialisation. Both greedy initialisations outperform full GPs (with
VFE and FITC providing the best MNLPP and MSE fits respectively), whereas the default
initialisation does not. Figure 5.6 shows the difference between the predictions made by the
default and the VFE greedy AEP-DGPs.

5.2.2 Out-of-sample test sets

Next, we study the performance of greedy AEP-DGPs in out-of-sample test sets with isolated
training points, a scenario that is frequently found on high-dimensional Bayesian Optimisation
problems. We remove two large flat portions of a DGP sample leaving a few points in the middle
and train the model on 500 remaining points. Then, we tested our models on the out-of-sample
test formed by the portions removed to produce the results on table 5.3.

We observe how despite only using 25 inducing points greedy AEP-DGPs are capable of outper-
forming full GPs, as long as, they locate a pseudo-point at each of the isolated points. This is
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(a) Greedy initialisation using a VFE sparse GP. (b) Default initialisation.

Figure 5.6 AEP-DGP regression on DGP sample dataset with Ntr = M = 50.

Model MSE MNLPP Sample MNLPP σ2
out

Full GP 0.068 0.302 – –
Greedy Round 2 0.042 0.125 0.015 0.013
Greedy Round 1 0.102 0.129 0.023 0.113

Bad location 0.382 1.032 0.341 0.96

Table 5.3 Out-sample test scores for with Ntr = 500, M = 25.

more clearly observed in figure 5.7d where the lack of pseudo-points at isolated points causes a
lot of uncertainty in that region, resulting in a poor predictive performance. Figure 5.7c (in
black) shows the values of the sample based hold-out likelihood of the greedy AEP-DGP in
5.7a, which is high near training points and decreases as we distance from them.

Hence we have seen that in order to ensure a tractable Expected Improvement (EI) acquisition
function in Bayesian Optimisation using sparse DGPs, it is necessary to fix a pseudo-point at
each isolated point. However, as the number of isolated points increases the computational cost
becomes prohibited.

5.3 Conclusions

We proposed a greedy initialisation of the DGP-layers using sparse GPs, as well as, three other
alternatives to the default initialisation of the geepee library. We tested these initialisation
schemes in the same datasets as in Chapter 4, obtaining significant changes in results. Thus,
we have shown the the importance of choosing a right initialisation for DGP training.
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(a) AEP-DGP greedy. (b) Full GP.

(c) Training and test sets with sample log-lik. plot. (d) AEP-DGP missing isolated points.

Figure 5.7 Out-of-sample test set experiments.

In addition, we demonstrated how in small-size datasets our greedy initialisation is able to
attain full GP performance after the first round of training and overcome full GP after the
second round. These results, together with performance of greedy AEP-DGPs on out-of-sample
test sets, make us believe that an implementation of sparse DGPs in Bayesian Optimisation
may be plausible.





Chapter 6

Conclusions

Deep Gaussian Processes (DGPs) are powerful and flexible Bayesian non-parametric models. In
order to perform inference and learning, we require approximate inference schemes that sacrifice
representational capacity for tractability. An example of this is the inference scheme for sparse
DGPs using approximate Expected Propagation (AEP) proposed by Bui et al. (2016) and also
investigated in this thesis.

We started by giving a detailed mathematical description of the AEP-DGP model, drawing
connections with related literature and understanding the limitations and properties of the
approximations used. Then, we investigated the representational capacity of this model on
two benchmark toy datasets, where Squared Exponential kernel Gaussian Processes (GPs) are
known to have difficulties. We observed that the sparsification of the GP mappings brings
complications in the optimisation process of the DGP network and can have a damaging impact
on the modelling ability of AEP-DGPs.

Motivated by these pathologies, we tested the predictive performance of one-hidden-layer
AEP-DGPs on medium-size datasets formed by samples generated from a DGP with the same
architecture. These datasets are of special interest for our ultimate propose of implementing
DGPs in Bayesian Optimisation due to the complex non-stationarity they present. Once
encountered with series pathologies in the AEP-DGP predictions, we revised the training
procedure, proposed alternative configurations and narrow the solution to an initialisation
issue. In addition, we introduced a greedy initialisation scheme of the DGP layers that not only
resolves this pathological behaviour, but also overcomes full GP performance on reduced data
domains similar to those encountered in Bayesian Optimisation.
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6.0.1 Future work

Our greedy initialisation is a first step into a potential implementation of Deep Gaussian
Processes into the Bayesian Optimisation framework. This method has demonstrated exciting
results in one-dimensional isolated points. Future work should question whether this initialisa-
tion scheme could be generalised to higher-dimensional settings.

One of the challenges to overcome is the special treatment of the inducing points required by
this initialisation, where in the one dimensional case we place an inducing input at each of
the isolated points. In higher dimensions this method may not be computationally tractable,
since our greedy initialisation depends on a sparse approximation whose computational cost
approaches that of a Gaussian Process as the number of isolated points increases.

Deep Gaussian Processes continue to be a very active research area in Machine Learning. With
the appropriate computational resources, a Monte Carlo based inference scheme could be an
alternative to approximate inference schemes like approximate Expected Propagation, for DGPs
that could be efficiently implemented for Bayesian Optimisation. Perhaps a sequential inference,
where the data is processed sequentially, similar to the one proposed by Wang et al. (2016)
could be that alternative.

In more general terms, a question that remains to be answered is whether Deep Gaussian Process
are suitable for Bayesian Optimisation. One would expect the implementation of the Expected
Improvement (EI) acquisition function using DGPs (with an appropriate inference scheme) to
be tractable, due to the analytical properties of DGPs. Future work should investigate whether
this EI-DGPs model can compete with current state-of-the-art techniques involving Predictive
Entropy Search (PES).

In the meantime, there is nothing but excitement from my part, looking forward to the world
of possibilities that will come along with the development of new techniques in Bayesian Opti-
misation and Deep Gaussian Processes.
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