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Abstract

PILCO is a learning algorithm that evaluates and minimises the expected cost function
by cascading uncertain inputs through the GP dynamics model, which only allows it to
make inferences based on the total uncertainty of the cost. Using variance as a metric for
uncertainty, I apply the law of total variance to decompose total cost uncertainty into aleatoric
and epistemic components. I develop a gold-standard Monte Carlo scheme to separately
estimate each quantity by propagating trajectories through a finite-parameter trigonometric
basis function approximation to PILCO’s dynamics model. I show that when PILCO is
learning efficiently, it is selecting policies associated with a high ratio of epistemic cost

uncertainty to total cost uncertainty.
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Chapter 1

Introduction

Probabilistic Inference for Learning Control or PILCO (Deisenroth and Rasmussen, 2011)
is a model-based indirect policy search method for continuous state and action dynamical
systems. PILCO evaluates a particular policy by assuming that the distribution over inputs
is Gaussian and propagating that distribution through its probabilistic representation of the
transition dynamics under a particular policy. In doing so, it gains insight into the variety
of states that could be visited under that policy and is able to make inferences about how

effective the policy is at achieving low cost.

However, this approach only allows PILCO to make decisions based on the total un-
certainty as quantified by the models predictive distribution, when in fact there are two
sources of uncertainty present in the system: aleatoric and epistemic. Aleatoric uncertainty is
uncertainty due to unknowns that differ each time an agent encounters the environment (such
as measurement noise) and is irreducible. Epistemic uncertainty arises from information that
the agent could know in principle but currently does not, and can be reduced by observing
more data. In model-based reinforcement learning, epistemic uncertainty is due to uncertainty
about the model parameters. This means that in some situations PILCO could be exploring
regions in the state space that are irrelevant for the task of learning control because it is
making decisions based on the total uncertainty without knowledge of its constituents. In this

case it could be targeting areas of high aleatoric uncertainty which could prohibit learning.

In this dissertation I investigate how PILCO uses uncertainty in its decision making
process. In particular, I disentangle and quantify the different sources of uncertainty in the
model of the transition function under a given policy. PILCO is a direct policy search method
and is formulated so that the cost function is consulted directly; therefore, I examine the

influence of the transition function uncertainty on cost uncertainty. I use variance as a metric
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for uncertainty and employ the law of total variance to decompose the total cost uncertainty
into its constituents. I introduce a gold-standard Monte-Carlo scheme to separately estimate
the aleatoric and epistemic uncertainties in the cost by propagating trajectories through an
approximation to PILCO’s dynamics model. Finally, I show that when PILCO is learning
efficiently it is selecting policies associated with a high ratio of epistemic cost uncertainty to

total cost uncertainty.

The aim of this dissertation is to lay the foundations for an active-exploration scheme to

complement PILCO. I make the following contributions:

* Present a variance decomposition that disentangles the sources of uncertainty in the

model’s predictive distribution that influence PILCO’s cost under a particular policy 7.

* Create a gold-standard Monte Carlo scheme that separates the two sources of uncer-

tainty and quantifies them.

» Show that when PILCO is learning efficiently, it is selecting policies that correspond

to a high ratio of epistemic cost uncertainty to total cost uncertainty.

* Provide well documented code to reproduce all the results in this dissertation (see

Appendix B).

1.1 Background

Reinforcement learning is a general sequential decision making framework that is best
described as learning a mapping from situations to actions in an attempt to maximise a
numerical reward signal. The agent, or learner, is not told what to do and so must embark on
a mission of trial-and-error to discover actions that produce the most reward. In many cases,
the action taken not only influences the instantaneous reward but also the next situation or
state, and therefore, all future rewards as a consequence. To find a set of optimal actions
given a sequence of situations, the agent must then take into account the effect of an action
on all future rewards. These two ideas; trial-and-error search and delayed reward, are the two

most distinguishing features of reinforcement learning (Sutton and Barto, 2018).

Another highly influential idea is the trade-off between exploration and exploitation. For
an agent to maximise the long-term reward it must favour actions which it has previously
tried and found to be successful in yielding high reward. However, in order to discover
those actions, it must first have tried actions that it had not previously selected. The agent
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must exploit its current knowledge of the system to gain a high reward but also explore
new strategies to improve its policy. A dilemma arises in that exclusively executing either
approach will lead to a failed task. The agent must interchangeably try both approaches and
progressively tend towards actions that prove to be better at attaining high reward.

There are two main approaches to reinforcement learning; model-based and model-
Jree methods. Model-free methods are explicit trial-and-error learners and directly use the
experience they gain through interactions with an environment to make decisions. In contrast,
model-based techniques use experience indirectly by building a model of the state transition
dynamics and reward structure of the environment, and evaluate actions by searching this
model (Gléscher et al., 2010). Model-free methods are therefore said to rely on learning

whilst model-based methods primarily rely on planning (Sutton and Barto, 2018).

Recently, model-free methods have achieved impressive performance in a range of
complex tasks such as playing Atari games, receiving only pixels and game scores as inputs
(Mnih et al., 2015). These methods, however, typically require millions of interactions with
the environment before they achieve reasonable performance levels. The large number of
required interactions can prohibit the use of these algorithms in some domains; such as
mechanical systems with components that quickly wear out (Deisenroth and Rasmussen,
2011) or safety-critical systems where carrying out many field trials is prohibitively expensive.
With computational power increasing exponentially, the primary bottleneck in the deployment
of real-world reinforcement learning applications is fast becoming the number of interactions
with the environment (Wan et al., 2018).

Model-based methods use field trials to create a belief about the underlying environment.
There are several advantages to this approach, amongst others; the learning process can be
more sample-efficient (Deisenroth et al., 2013a), prior knowledge and experience can be
integrated more easily (particularly when Bayesian models are used) (Lopes et al., 2012),
and more recently the incorporation of counterfactual reasoning (making inferences about
actions that were not actually taken) which can be complex to implement without an explicit
model-based representation of the environment (Buesing et al., 2018). Model-based methods
are, however, not without their challenges, building accurate representations of complex real-
world environments is difficult and failing to do so can lead to highly suboptimal algorithm
behaviour.

Until recently, model-based techniques had not been widely applied to real-world systems.
One of the main reasons for this is they can suffer from model bias. This happens when,
given a data set of observed state transitions, the learned model incorrectly assumes that

it fully describes the environment, when in fact there are many plausible functions that
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Fig. 1.1 Small data set of observed state transitions (left). Several plausible functions that could have generated
the data (centre). Posterior distribution showing model uncertainty (right). Reproduced from (Deisenroth and
Rasmussen, 2011).

could have generated the data (Atkeson and Santamaria (1997); Schneider (1997)). This is
demonstrated in Fig 1.1 where a small data set of transitions are observed (left panel) and
several transition functions exist that could have generated the data (centre panel). Selecting
any single transition function can have severe consequences because predictions are then
arbitrary at positions away from the data, but are claimed with full confidence (Deisenroth

and Rasmussen, 2011).

PILCO (Deisenroth and Rasmussen, 2011) is a model-based indirect policy search method
for continuous state and action dynamical systems. PILCO learns a probabilistic Bayesian
representation of the dynamical systems it seeks to govern. Bayesian models explicitly
quantify their uncertainty, and PILCO uses this information in a principled way to reduce
model bias by explicitly incorporating model uncertainty into long-term planning. Fig
1.1 (right panel) shows how PILCO represents the observed data by placing a posterior

distribution over the transition function.

PILCO reports unprecedented data-efficiency for a variety of control tasks, such as the
cart-pole and cart-double-pole problems. Surprisingly, it does so without any intentional
exploration i.e. it is greedy. Any exploration that does occur comes from one of three sources:
first, the presence of stochasticity in the system; second, the use of a saturating cost function
resulting in the controller favouring uncertain states (Deisenroth et al., 2013a); third, future
controllers being informed of the performance of past controllers.

Attempting to further increase PILCO’s data-efficiency would require either more in-
formative prior knowledge of the task or extracting more relevant information from the
available data. The addition of a exploration scheme would constitute the latter. Many ap-
proaches to learning control realise exploration through introducing randomness into action
selection. Some approaches comprise a random exploration phase, where the controller
generates actions randomly, followed by an exploitation phase (Thrun and Moller, 1992).
However, with this strategy once the exploration phase has finished, the agent is unable to
adapt to environmental changes during the purely exploitative phase. Others use €-greedy
policies, which exploit the action with the maximum expected reward most of the time,
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but with some probability € a random action is selected (Sutton and Barto, 2018). While
e-greedy approaches encourage learning, for real-world systems, selecting random actions
can repeatedly steer the system towards undesirable or dangerous states. In addition, random
action selection can be inefficient and often causes the agent to repeatedly return to already

well-explored regions of the state-space because exploration is undirected.

Information-directed or active exploration schemes aim to overcome the inefficiencies
and risks associated with undirected exploration by driving exploration towards promising
states (Guo and Brunskill, 2019). Since PILCO is primarily designed for learning control of
mechanical dynamical systems, it is natural to consider this class of exploration algorithm
when attempting to further improve its efficiency. Furthermore, since PILCO already quanti-
fies model uncertainty and uses this uncertainty in long-term planning, it is also logical to

attempt to incorporate this information in any considered exploration strategies.

Currently, PILCO evaluates a particular policy by cascading uncertain inputs through the
probabilistic model of the transition dynamics. In doing so, it gains insight into the variety
of states that could be visited under that policy and is able to make an informed decision
about how effective the policy is at achieving low cost. However, this approach only allows
PILCO to make decisions based on the total uncertainty as quantified by the model, when in
fact there are two sources of uncertainty present in the system. One source of uncertainty
is aleatoric; that is, representative of unknowns that differ each time the agent encounters
the environment. Examples include measurement error or chaotic motion in dynamical
systems that lead to stochastic transitions. The second source of uncertainty is epistemic;
that is, arising from information that the agent could know in principle but currently does
not. In model-based methods, this can be thought of as lack of knowledge about the system’s
transition dynamics. Hence, epistemic uncertainty can be reduced by observing more data
while aleatoric uncertainty is irreducible. This means that in certain situations PILCO could
be making decisions based on uncertainty of which the primary constituent is aleatory. In this
case, PILCO could be repeatedly selecting policies corresponding to trajectories associated

with high aleatoric uncertainty which could be prohibitive to learning.

This dissertation attempts to disentangle and quantify the different sources of uncertainty
(aleatoric and epistemic) present in the model of the transition function. Since PILCO is a
direct policy search method, the cost function is consulted directly, therefore, the influence of
the uncertainty in the transition function on the uncertainty in the cost is examined. This is
done by using variance as a metric to quantify uncertainty and employing the law of total
variance to decompose the total model uncertainty into its constituents. The uncertainties

are then estimated, establishing a "gold-standard" Monte-Carlo scheme that propagates
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trajectories through PILCO’s dynamics model. The intention of the research is to lay the

foundations for an active-exploration scheme to complement PILCO.

1.2 Related Work

The use of uncertainty for exploration in reinforcement learning is well-studied, either
to improve sample efficiency (Schneider, 1997) (Jung and Stone, 2010) (Deisenroth and
Rasmussen, 2011) or avoid worst-case scenarios and mitigate model bias (Bagnell et al.,
2001) (Nilim and El Ghaoui, 2005) (Kahn et al., 2017) (Deisenroth et al., 2013a). While
the majority of prior work focuses on estimation methods for either aleatoric or epistemic
uncertainty, there has recently been increasing interest in decomposing total uncertainty into

these two components, which can be used independently in the decision making process.

Prior work that estimates aleatoric uncertainty, or aleatoric risk, has focused on both
the randomness in the environment and the agent’s actions which lead to stochastic returns.
Tamar et al. (2016) extend temporal difference methods to estimate the variance of the reward
distribution by jointly estimating the second moment of the reward-to-go and the value
function with a linear function approximator. The authors then derive a relationship between
the two estimates to quantify risk. Prashanth and Ghavamzadeh (2013) define variance
measures for policies to get risk-sensitive criteria for optimisation which are used alongside
actor-critic gradient estimators. Other attempts at creating risk-sensitive agents include the
development of distributional reinforcement learning methods which approximate the entire
distribution of returns. Morimura et al. (2010) extend the Bellman equations to include
the cumulative return distribution and propose an algorithm that leads to a risk-sensitive
reinforcement learning paradigm. Bellemare et al. (2017) argue the fundamental importance
of the value distribution in reinforcement learning and present theoretical results in both the

policy evaluation and control settings.

Several methods for estimating the epistemic uncertainty have been proposed. Azizzade-
nesheli et al. (2018) and Lipton et al. (2018) both present exploration schemes that take into
account the epistemic uncertainty by performing Bayesian inference over the parameters that
define the value function. Pearce et al. (2018) estimate parameter uncertainty by regularising
the parameters of an ensemble of neural networks about their initialisation values, instead
of zero, and use these estimates to govern the exploration-exploitation process, resulting in
steadier, more stable learning. Bellemare et al. (2016) take inspiration from the intrinsic
motivation literature and quantify the uncertainty of an agent’s knowledge through the use

of density models. The authors present an algorithm for deriving a pseudo-count of state
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visits from an arbitrary density model which generalises count-based exploration algorithms
to the non-tabular case. Finally, Gal and Ghahramani (2016) use Bayesian drop-out as an
uncertainty estimate and provide a quantitative assessment of model uncertainty in the setting

of reinforcement learning.

In the literature, a number of papers tackle the problem of producing estimates for both
the aleatoric and epistemic uncertainties. Clements et al. (2019) build on the work of Gal
and Ghahramani (2016) and Pearce et al. (2018) and show that the disagreement between
only two neural networks is sufficient to produce a low-variance estimate of the epistemic
uncertainty on the return distribution and estimate aleatoric risk through a distributional
framework. Moerland et al. (2017) uses Bayesian drop-out to estimate epistemic uncertainty
and aleatoric uncertainty by propagating the return uncertainty through the Bellman equation

as a Gaussian distribution.

There are also a number of papers that consider both kinds of uncertainties in model-based
reinforcement learning. Chua et al. (2018) propose a probabilistic ensembles with trajectory
sampling (PETS) algorithm that combines uncertainty-aware deep network dynamics models
with sampling-based uncertainty propagation which has the ability to isolate both sources
of uncertainty. Finally, Depeweg et al. (2017) present two uncertainty decompositions for
Bayesian neural network models with latent variables that isolate both sources of uncertainty.
The first is in the form a variance decomposition and is similar to what is presented in this
work and the second in terms of mutual information. The sources of uncertainty are then

related to risk-sensitive reinforcement learning.






Chapter 2

Methodology

This section describes how the sources of uncertainty in PILCO’s decision making process
are disentangled and quantified. First, section 2.1 provides a brief introduction to the
PILCO algorithm. In Section 2.2 a finite-parameter trigonometric Bayesian regression
model is introduced to approximate PILCO’s probabilistic Gaussian Process (GP) dynamics
model. Section 2.2.2 relates the trigonometric model to a full GP by showing that it can
be interpreted as sparse spectrum GP that can approximate any full GP. The sources of
uncertainty in transition function and their effect on the cost are discussed in section 2.3
and a variance decomposition to separate and quantify the uncertainty into its aleatoric
and epistemic constituents is presented. Finally, section 2.4 presents a "gold-standard"

Monte-Carlo scheme to estimate the aleatoric and epistemic uncertainties.

21 PILCO

PILCO (Deisenroth and Rasmussen, 2011) is a model-based indirect policy search method
for continuous state x € RP and action u € R dynamical systems described by

X1 =f(X,u)+n, 1N N,/V(O,Zn) (2.1)

where the transition dynamics f of the system are unknown. The objective is to find a
deterministic controller/policy & : x — 7(x,0) = u such that the expected cost

T

JT(6) =) Ey, [C(x)], xo~ A (ko,Zo) (2.2)
=0
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is minimised after following 7 for 7 steps (Deisenroth et al., 2013a). The policy is
parametrised by 8, which are the weights and features in the case of nonlinear RBF networks,
or the weights matrix and bias terms in the case of linear-affine transformations. The cost
C(x;), or negative reward, of being in state x at time ¢ is the generalised binary saturating
cost (Deisenroth et al., 2013a)

C(x;) =1—exp (— ||X; — X target ||2> €[0,1] (2.3)

207
which exclusively penalises the Euclidean distance ||x, — x target || from the current state x,
to the target state X target - C(x;) is locally quadratic and saturates at 1 for large differences
between the current state and target state. The saturation distance is controlled by the width

parameter O.

2.1.1 GP Model Learning

The system dynamics are modelled as a probabilistic Gaussian Process (GP). Tuples of
the state and action vectors (X;,u;) € RP+F serve as training inputs and differences A; =
X 1—X+€ERP, &~ #(0,X) as training targets. Conditionally independent GP’s
are trained for each target dimension (Deisenroth, 2010). The dynamics model provides a

one-step prediction (Deisenroth and Rasmussen, 2011)

P (Xer1 X, 0) = A (X [y, Ey) (2.4)
M1 =X +Er[A] (2.5)
ZH—I =vary [At] (2.6)

where the mean u of the state x; | is obtained through addition of the current state x; with
the one-step difference prediction Ef [A;]. A GP is defined completely by a mean function
m(-) and a positive semidefinite covariance function K(-,-). PILCO follows the common
practice of setting the mean prior function to zero and uses the stationary anisotropic squared

exponential covariance function

1
k (%:,%,) = g exp (—5 (xi-%) A (% —i,~)) 2.7)
where X = [x u] is the state-action vector; A = diag ([Z2,...,3, z]) depends on the

characteristic lengthscales ¢; and oy is the variance of the latent function (Deisenroth et al.,
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2013a). The lengthscales determine the speed that the covariance decays with the distance

between inputs (Quifionero-Candela et al., 2010).

2.1.2 Policy Evaluation

PILCO evaluates a given policy by predicting the state evolution over the course of an episode.
This is accomplished by propagating uncertain inputs through the dynamics model, using
the one-step predictions (Egs. 2.4 - 2.6), to obtain p (x{|7),...,p (xr|7) from a given start
state distribution p(xg). Predicting x;; from p(x,) requires evaluation of the predictive

distribution over state differences

Al‘ // Xt |Xt (Xl‘) dfdit, (28)

by integrating out the random function of the GP distribution and the random variable X;.
Here p (X;) = p (X, 1) is the joint state-action distribution. Since the predictive distribution
in Eq. 2.8 is analytically intractable for uncertain inputs, it is approximated as a Gaussian
distribution using moment matching (see Fig. 2.1). This approximation ensures that the
state distribution is given by p (%) = A4 (X¢|fi;,Z;) for all . This, alongside the choice of
cost function (Eq. 2.3) enables the expected return (Eq. 2.2) to be evaluated analytically
according to

x, C(x¢)] /(C Xp) N (X | e, Xr) dX; (2.9)

fort=1,...,T.

2.1.3 Policy Improvement

PILCO is an indirect policy search method and does not require an explicit value function
model. Instead it learns a parametrised policy that can select actions without consulting
a value function. Due to the moment matching approximation, the state distribution is
considered to be Gaussian p (%) = 4 (%|fi;, %) for all ¢, where X; = (x;,u;). The control
signal w,_; = m (x;_1, 0) is a function of the state, and hence the next state is also functionally
dependent on the mean p,, and covariance X, of the control signal. This relationship allows the
gradients of the expected return J*, with respect to the policy parameters 6, to be computed
analytically. The policy parameters are then learned to maximise performance (minimise

cost) for a given task, so their updates approximate conjugate gradient minimisation in J
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Fig. 2.1 Propagating an uncertain input through the GP dynamics model (upper right panel). The input
distribution p(x,_1,u;—1), assumed to be Gaussian (lower right panel), is propagated through the dynamics
model yielding the shaded distribution p(A,). The shaded distribution is then approximated by a Gaussian with
the same mean and variance (upper left panel). Reproduced from (Deisenroth and Rasmussen, 2011).

(Sutton and Barto, 2018):
9t+1 = 9; - (XVJTC (9,) 3 (210)

where « is the learning rate. For a more thorough explanation of PILCO see (Deisenroth
and Rasmussen, 2011)(Deisenroth, 2010)(Deisenroth et al., 2013a). Algorithm 1 provides an
overview of PILCO.

Algorithm 1 Probabilistic Inference for Learning Control (PILCO)

1: init: Sample controller parameters 6 ~ .4 (0,1)

2: repeat

3 Learn probabilistic GP dynamics model using all environment data > Sec 2.1.1
4 repeat

5: Approximate inference for policy evaluation: J* (0) > Sec 2.1.2
6 Gradient-based policy improvement: dJ*(0)/d6 > Sec 2.1.3
7 Update parameters 0 > CG or L-BFGS
8 until convergence; return 8*

9 Set T «+ 7w (6*)

10: Apply ©* to environment and record data
11: until task learned > modified from (Deisenroth and Rasmussen, 2011)




2.2 Approximating PILCO’s GP 13

2.2 Approximating PILCO’s GP

To approximate the uncertainty in PILCO’s cost function using Monte-Carlo methods, it is
necessary to make one-step predictions using a function sampled from the posterior distribu-
tion of PILCO’s dynamics model. The use of the squared exponential covariance function
in PILCO’s GP corresponds to a Bayesian linear regression model with an infinite number
of basis functions (Williams and Rasmussen, 2006). This means drawing a representative
function requires an infinite number of weights since each basis function is accompanied by
its own weight. To overcome this issue, a finite-parameter stationary trigonometric Bayesian
regression model (Quifionero-Candela et al., 2010) is used to approximate PILCO’s GP. In
addition to solving the sampling issue, this model provides other advantages. First, the peri-
odicity of the trigonometric basis functions means that one does not need to explicitly specify
the location for each basis function. Second, a direct GP implementation has practical limita-
tions with regards to computational and memory requirements, which scale as &'(n?) and
O(n?), respectively. The trigonometric model has computational requirements of & (nm?)
and memory requirements of &'(nm) where m << n (Quifionero-Candela et al., 2010), which
are typical values for sparse GP approximations (Quifionero-Candela and Rasmussen, 2005).
The largest PILCO environment used for this research (cart double pendulum) generates
approximately 4k data points. The model is first introduced here in a traditional treatment of
Bayesian linear regression. Section 2.2.1 relates the model to PILCO’s one-step predictions.
Finally, section 2.2.2 shows that the model can be viewed as a sparse stationary GP that can

approximate any full GP.

The model consists of a linear combination of trigonometric functions (Quifionero-
Candela et al., 2010)

F(®) = f“ aycos (2nin) + bysin (27:.{;2) @.11)

r=1

where X = [XT uT] " € RP+F is the state-action vector, s, is a (D + F)-dimensional vector
of spectral frequencies shared by each pair of basis functions and a,, b, are amplitude
parameters which are independent for each basis function (see Sec 2.2.2 for selecting spectral
frequencies). The amplitudes have independent Gaussian priors with linearly scaled variances

2 2
4y~ N <o, @> b~ N (o, @) (2.12)
m m



14 Methodology

where m are the number basis functions. The frequencies function as deterministic parameters
and the amplitudes are treated in a Bayesian fashion. For this, the model is packaged as the

dot product between the set of amplitudes and the basis functions

fEwW) =w' (%) (2.13)
where w = [ay,by,... ,am,bm]T are the model weights and
T T T T\
P(x) = [cos (271751 x) sin (27rs1 x) ... cos (Znsmi> sin <27rsmi)] L (214

Similar to PILCO, state differences A serve as the training targets which are assumed to have
been generated by the function f(X,w) and independently corrupted by additive Gaussian

noise of constant variance ;2
A= f(&w)+e, e~ (0,07). (2.15)

This can be written as
p(AIR,w,07) = A (Alf(X,w),0;) . (2.16)

For a dataset of model inputs X = {&;,...,%y} with corresponding target values A =
{A1,...,Ay} and assuming that these data points have been drawn independently from
N (A|f(x,w),0?), the likelihood function is

N
p(AX,w,02) =[]/ (Ai|wT(p (%) ,c,f) . (2.17)
i=1

The posterior distribution over the model weights is proportional to the product of the
likelihood function and the prior. Since the Gaussian prior is conjugate, the posterior

distribution is also Gaussian (see Appendix A.1.1 for derivation)
q(w|A,X,07,07) = N (W]pw, A ") (2.18)

where the posterior mean L, and precision matrix A are

I
y = — A" 'dy (2.19)
G}’l
1
A= 00"+ 2L, (2.20)
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Here, ® = [@(X]),..., ®(Xyn)] is the 2m by N design matrix.

To make a prediction A, for a new input value X, requires evaluation of the predictive
distribution, defined by

p(AA X %, 02, 62) = / p(AL %, W, 62)g(WIA, X, 02, 52)dw 2.21)

where the conditional distribution of the target variable p(A,|&.,w,o?) is defined by Eq.
2.16 and the posterior distribution over the weights is given by Eq. 2.18. The predictive

distribution for a single input is (see Appendix A.1.2 for derivation)

p(AJA X X, 05,07) = A (Apa,,0%) (2.22)

where
1 oi TA 1A 2.23
ox, =0, +0(%.) A p(%,). (2.24)

A note on model uncertainty: The predictive variance (Eq. 2.24) consists of two terms.
The first represents the noise present on the data while the second quantifies the uncertainty
associated with the model weights w (Bishop, 2006). The latter is particularly relevant to this
research and will be expanded on in Section 2.3 and in the discussion (Section 3.3). As more
data is observed, the model becomes increasingly confident and consequently the posterior
distribution narrows due to contraction of the second term. Qazaz et al. (1997) show that
Gi i) S Gi ™) while in the limit N — oo the second term of Eq. 2.24 reduces to zero.
In this case the model has full confidence in the weights and the predictive variance’s sole

contributor is the data noise governed by the > term.

2.2.1 One-Step Predictions

The one-step predictions generated by PILCO’s GP dynamics model are produced by the
posterior predictive distribution, however, for the uncertainty estimates in Sec 2.3, functions
drawn from the posterior distribution over the model weights are used to make one-step
predictions. For this, first a set of 2m weights is drawn from the posterior distribution

w ~ g(w) (Eq. 2.18) where the conditioning variables are dropped for brevity. The one-step
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predictions are then computed with

X1 =X +A=x+W @&)+e, &~ A(0Z). (2.25)

2.2.2 A Sparse Approximation to the Full GP

This section follows the treatment in Quifionero-Candela et al. (2010) and relates the trigono-
metric basis function model of the previous section to a full GP by creating a sparse represen-
tation of the stationary covariance function. GP regression is a probabilistic, non-parametric
Bayesian approach that is completely specified by a mean function and covariance function
(Williams and Rasmussen, 2006)

E[f (%)

X)
) =E[(f(&) —m(&)) (f (%) —m (%;))].

m(
(2.26)
k(%i,X;)

Similar to the PILCO GP, a zero mean function m(X) = 0 and stationary squared exponential
covariance function
k(%i,X;) =k (% —%;) = k(1) (2.27)

are considered (see Eq 2.7). A stationary covariance function is a function T = X; —X; that
depends only on the difference between inputs. Now considering the trigonometric basis
function model in Eq 2.11. Under the prior, the distribution over functions is Gaussian with
zero mean and stationary covariance function (Quifionero-Candela et al., 2010)
N O L
E(x%) = Do) o (%)) = 2 Z] cos (2ms] (%~ ;). (2.28)
r=

m

Theorem 2.2.1 (Bochner’s theorem) A complex-valued function k on RP is the covariance
function of a weakly stationary mean square continuous complex-valued random process on

RP if and only if it can be represented as
k(t) = /R A (s) (2.29)
where [Lyy, is a positive finite measure. > Quoted from (Stein, 1999)

If 117, has a probability density S(s) then S is the spectral density associated with k (Williams
and Rasmussen, 2006) and is proportional to a probability measure S(s) =< pg(s). The
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proportionality constant can be obtained by evaluating the covariance function in Eq 2.27 at
T =0 to give
S(s) = k(0)ps(s) = o3 ps(s). (2.30)

Should S(s) exist, according to the Wiener-Khintchine theorem (Chatfield, 1989), the covari-
ance function and the spectral density form a Fourier pair

_ / S(s)5%ds,  S(s) = / k(T)e 2574, (2.31)

Since S(s) is proportional to a multivariate probability density in s the covariance function

can be rewritten as an expectation with respect to the probability measure pg(s)
ko) = [ e (8)s(s)ds
RD
=0} /R N o2’ % (ezmsTif ) ps(s)ds (2.32)
= 62, [ 27isTX; (ezmsTij)*]

where the superscript asterisk denotes complex conjugation. The result in Eq. 2.32 can
be estimated by simple Monte-Carlo. Since the spectral density is symmetric about zero,

sampling frequency pairs {s,, —s,} preserves the exact expansion where the imaginary terms
m *

Z [ 2mis,) X; < 27is, xj> + (e2msjii> eZn'is,Tij}

i 7L'lS X; ( 2nisjij)*] (2 33)
m

Z <27Z'S —X ])> .

Here, Re is the real part of the complex number and the finite set of Monte-Carlo frequencies

cancel

k(%,%;) ~

§ |Ot\> S |ON E |ON

s, called spectral points, are sampled from pg(s). This result shows that Eq. 2.28 is recovered
by sparsifying the stationary covariance function of a full GP meaning that the trigonometric

basis function model of the previous section is indeed a sparse spectrum Gaussian process.

Taking the Fourier transform of the squared exponential covariance function used in

PILCO’s GP dynamics model gives a probability density of multivariate Gaussian form

ps(s) = ﬁ /R e T (g)dT = /2w exp (—2n2sTAs> (2.34)
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from which the spectral points are drawn for the Monte-Carlo estimate of k(X;,X;).

2.2.3 Hyperparameter Optimisation

In a fully Bayesian treatment of the trigonometric basis function model one would introduce
priors over Gg and 67 and marginalise with respect to both the hyperparameters and the
weights w to make predictions. However, while marginalisation over either the hyperparame-
ters or the weights is plausible, complete marginalisation over both is analytically intractable
(Bishop, 2006). Instead, here the hyperparameters are learned through optimising the log
marginal likelihood

1
207

logp (A|@) = — ATA- GL%ATQDTA_IQJA - %log |A| —l—mlog% - glog27t6,f
(2.35)
with respect to the hyperparameters Gg, 62, and the lengthscales {¢1,...,¢p} governing each
input dimension. The hyperparameters are initialised to the variance of {y;} and o3 /4, and
half the ranges of the input dimensions for the lengthscales (Quifionero-Candela et al., 2010).
One hundred sets of m x D spectral points are drawn from Eq. 2.34 and the log marginal
likelihood is evaluated for each set. The set corresponding to the highest log marginal

likelihood value are kept. No further optimisation is performed on the spectral points.

2.3 Disentangling Sources of Uncertainty

PILCO evaluates and minimises the expected return J” by cascading uncertain inputs through
the GP dynamics model to create long term predictions of the state evolution p (x;|7),...,
p (xr|m). This gives insight into the variety of states that could be visited under a given
policy, enabling the algorithm to quantify the quality of the controller and select its succes-
sor. However, this approach only considers the total uncertainty quantified by the model’s
predictive distribution, when in fact there are multiple sources of uncertainty present in the
model. Here, the sources of uncertainty in the model are identified and disentangled into

their aleatoric and epistemic constituents.

The one-step predictions used to cascade uncertain inputs are generated by the GP

predictive distribution. In Section 2.2 this was approximated by the trigonometric model
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predictive distribution, which is reproduced here with shortened notation,

P(ALR,) = / (A %y, W)g(W)dw (2.36)

where p(A.|X.,w) is the model likelihood and ¢(w) is the posterior distribution over the
model weights. The sources of uncertainty or randomness on A, are the model weights
w ~ g(w), the prior a,,b, ~ .4 (0,03 /m) and the additive noise € ~ .4 (0,07) (Depeweg
et al., 2017). Indeed, these are the same sources of uncertainty present in PILCO’s GP
dynamics model and are analogous to the posterior and prior distributions over functions
and the additive noise. This means that there are two types of uncertainties entangled in the
predictions of Ay; aleatoric and epistemic (Der Kiureghian and Ditlevsen, 2009)(Kendall
and Gal, 2017). The aleatory arises from the randomness present in a,, b, and € and is
irreducible. In contrast, the epistemic uncertainty represents uncertainty associated with the
model weights w which reduces as more data is collected, resulting in the contraction of the
posterior g(w).

PILCO is a direct policy search method and is formulated so that the cost function is
consulted directly when minimising J” in Eq. 2.2, therefore, only uncertainty in the transition
function that directly influences uncertainty on the cost C(x) is of concern. Another way to
view this is that the model’s representation of the state-action space can be exceedingly large
for complex environments and exploring regions in state space that are irrelevant for the task
of learning control is a waste of both time and memory resources . Ultimately, one is only
interested in uncertainty that is associated with trajectories through the space that yield low
cost solutions. In the following treatment, the cost is specified as C*(x;) to denote the cost

of state x and time ¢ under policy 7.

There are a number of metrics that can be used to represent uncertainty in the transition
function. In this work, variance of the cost is used as the primary agent. First, the variance of
the cost is expressed of the aleatoric uncertainty where all sources of aleatory are grouped
into the term €

Ve (C™ (%)) = Ee [C™(x,)%] — Ee [C™(x,)]° (2.37)

In order to make use of the law of total expectation in the next step, the cost is conditioned
on the target state X;q,¢.. Here, the explicit conditioning has been omitted for notational
convenience. Applying the law of total expectation with respect to the posterior distribution

q(w) over the model weights, which represents epistemic uncertainty, gives

V(C™ (%)) = Eyw) [Ee [CT(%1)%] | — Eqiw) [Ee [C7(x:)]]° (2.38)
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where the introduction of the expectation with respect to the posterior distribution has
changed the left hand side of the equation so that it now represents total uncertainty. Noting
that E¢ [(C”(xt)z] can be replaced by the sum of the variance and the first moment gives

2

V(C® (%)) = Ey(w) [Ve (C*(%:)) +Ee [C(x,)]* ] — Eyw) [Ee [C™(x:)] ] . (2.39)

The expectation of the sum is also the sum of the expectation so separating the first term and
regrouping the last terms together gives

V(Cn (Xt)> = Eq(w) [Vg (Cn(xt))] + (Eq(w) [Ee [(C”(X[)]z] — Eq(w) [EE [C”(Xt)] } 2

(2.40)
Noting that the parenthesised term is the variance with respect to the posterior distribution in

terms of the first and second moments gives the final uncertainty decomposition

VI(C (%)) = Eg(w) [Ve (C7 (x0))] + Vg ) (Ee [CT (x0)]) (241)
—— N RN Y

" —~

© (@)

where @ is the total uncertainty, @ is aleatoric uncertainty and is the epistemic
uncertainty. All uncertainties are for state x at time ¢ under policy 7.

2.4 Gold-Standard Monte-Carlo Uncertainty Estimates

A fundamental problem with PILCO’s policy evaluation method is that it doesn’t acknowledge
that in practice there is only one true underlying dynamics and it is just not aware of the
correct one. Consequently, it repeatedly entangles all possible dynamics at each time point
when predicting the state evolution. Estimating Eq. 2.41 by Monte-Carlo sampling solves
this issue because the dynamics be can sampled, the state propagated forwards and then the
dynamics sampled again. This allows the averaging required for the computation of Eq. 2.41
to be computed in the right order.

Thinking about Eq. 2.41 in terms of Monte-Carlo sampling can also provide good
intuition into how this decomposition disentangles aleatoric and epistemic uncertainties in
the cost under policy 7 when considering the evolution of trajectories through PILCO’s
state-action representation. Starting with the term representing aleatory @ Consider a
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single set of weights sampled from the posterior distribution w ~ g(w) and using them
according to Eq. 2.25 to perform a one-step prediction of N trajectories through the transition
function under policy m. Once the set of weights is drawn and held fixed, the one-step
prediction is deterministic save for the additive Gaussian noise €. The variance of the N
one-step predictions is now taken giving the empirical estimate of the aleatoric uncertainty
for a single transition function drawn from ¢(w). This process is then repeated M times
and the empirical average taken is over the M functions drawn from the posterior. So in
effect, one is computing the average variance of transitions under the influence of noise
alone. Provided M and N are sufficiently large, what has been described above is an unbiased
estimate of the total aleatoric uncertainty in the cost for a single state transition under policy
7. The aleatoric uncertainty over the course of 7" steps through the transition function is then

the sum of aleatoric uncertainties from each step.

Similarly, for the epistemic uncertainty term . Each set of weights w drawn from the
posterior distribution and held fixed provides a deterministic one-step prediction (Eq. 2.25)
for N trajectories save for the additive Gaussian noise €. For N trajectories and provided
that N is sufficiently large, the expectation for a single one-step prediction is the mean of the
function sampled from the posterior distribution because the mean of the Gaussian noise is
zero. This expectation has removed the aleatoric uncertainty. The variance is then taken over
M posterior transition functions and provided M and N are sufficiently large then this is an
unbiased estimate of the epistemic uncertainty present in the cost for a single transition under
policy m. The epistemic uncertainty over the course of 7" steps through the transition function
is then the sum of epistemic uncertainties from each step. The total uncertainty present in the

cost under policy 7 is then the sum of the aleatoric and epistemic uncertainties.

Formalising these steps gives a "gold-standard" Monte-Carlo scheme for estimating the
aleatoric and epistemic uncertainties present in the cost under policy 7 according to Eq. 2.41.
The Monte-Carlo estimates can be generated by initialising M x N trajectories, each with
start state xo ~ -4 (Mo, Xo), which are propagated through the approximate GP dynamics
model 7 times under policy 7. For this, M sets of weights are drawn from the posterior
distribution ¢(w) and for each set N roll-outs of T steps are performed with fixed w where
Gaussian additive noise is sampled for each transition. A deterministic control action u is
computed for the state at each time ¢ as required by the dynamics model and the one-step
prediction for each transition is computed with Eq. 2.25. At each time step the cost is

calculated (Eq. 2.3) and stored to give an array of cost values C*(x;) of shape (M,N) for
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each time ¢. Equation 2.41 can then be estimated with

V(C™(x)) = j;: {VN (Cﬂg\’f)l) L1V Z(‘;CE(X’)) } (2.42)

where 1 is a column vector of ones and Vy and V), are the empirical variance of the (M,N)
cost values C”*(x;) over the rows and columns, respectively.

The detailed steps of the procedure are shown in Algorithm 2. In the Algorithm 2 it may
seem as if the use of multiple for loops could lead to slower performance than perhaps drawing
N start states and collectively propagating them through the dynamics model. However, in
step 9 a for loop is still required to draw N control actions from PILCO, although there
may in fact be a way to compute multiple control actions simultaneously. Indeed, the main
reason for using 3 for loops is that the only loop that is dependent on calculations from the
previous iteration is the 7" loop. Hence, the other two loops can be parallelised for optimal

performance.

Algorithm 2 Gold Standard Monte-Carlo Uncertainty Estimate

1: init: initialise Costs array: C <— nan(M,N,T)

2: Learn approximate GP dynamics model using all environmental data > Sec 2.2
3: form=0toM—1do:
4: Sample a set of weights: w ~ g(w) > Eq. 2.18
5: forn=0to N —1 do:
6: Sample start state: xo ~ 4 (Xo|o,X0)
7: fort =0to 7 — 1 do:
8: Store the cost of the current state: C|m,n,t] < C(x/) > Eq. 2.3
9: Get state-action representation: X; = (x;,u), u= 71(x;,0)
10: Do posterior one-step: X,11 =X, + A, +&, €~ A4(0,X,) > Eq. 2.25

T
11: Compute aleatoric uncertainty: Z;T:_o] {VN (W) }

12: Compute epistemic uncertainty: ZtT:_Ol {W} > Eq. 2.42
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Results

This section presents the results of experiments conducted using the Monte Carlo uncertainty
estimation methodology described above. Section 3.1 describes three PILCO environments
on which the uncertainty estimates are tested. The results themselves are presented in Section
3.2 followed by a discussion in Section 3.3. Finally, the conclusions are summarised in
Section 3.4.

3.1 Environments

Cart-Pole Swing Up

The simplest of the three environments used for experimentation, the cart-pole swing up
problem, is shown in Fig. 3.1. It consists of a cart of mass m, as well as a pendulum
of mass m, and length [ that is free to swing about the pivot by which it is connected to
the cart. The angle of the pendulum 6, is measured anti-clockwise from the downward
position. Continuous control actions u applied to the cart cause it to move horizontally in
the x-direction. The objective of the task is to apply horizontal force to the cart in such a
way that the pendulum is swung to the upright vertical position and balanced there while

positioning the cart in the centre of the system at x = 0.

The system has 4 continuous state variables: the position of the cart x, the velocity of the
cart X, the pendulum angle 6>, and the angular velocity of the pendulum 6 of the pendulum.

There is a target associated with each state variable.
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Fig. 3.1 Cart-pole swing up. Source: Deisenroth et al. (2013b).

Pendubot

The Pendubot, shown in Fig. 3.2, is the second most complex environment used for experi-
mentation. It consists of an inner and an outer pendulum, with masses m;| and m, and lengths
[1 and b, respectively. The two pendulums are linked together, with the inner pendulum also
being attached to the ground. The inner and outer pendulum angles are given by 6, and 63,
respectively, measured anticlockwise from the upright vertical position. The link between
the ground and the inner pendulum can be acted upon by the agent by applying a torque u to
the joint; however, the link between the pendulums cannot be acted upon. The objective of
the system is to apply torque to the central joint in such a way as to swing both pendulums to

the upright vertical position and balance them there.

Fig. 3.2 Source: Deisenroth et al. (2013b).

The system has 4 continuous state variables: the angles of the pendulums 6, and 63 and
the angular velocities of the pendulums 6, and 5. There is a target associated with each

state variable.
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Cart-Double-Pendulum

The cart-double-pendulum problem, shown in Fig. 3.3, is the most complex environment
used for experimentation. It consists of a cart of mass my, as well as an inner and an outer
pendulum of masses m; and m3 and lengths /, and /3, respectively. The two pendulums are
linked together, with the inner pendulum also being attached to the cart. The central and
outer pendulum angles are given by 6, and 63, respectively, and are measured anticlockwise
from the upright vertical position. Continuous control actions u applied to the cart cause
it to move horizontally in the x-direction. The objective of the task is to apply horizontal
force to the cart in such a way that the double pendulum system is swung to the upright
vertical position and balanced there while positioning the cart in the centre of the system at
x = 0. The unconstrained double pendulum system exhibits rich dynamical behaviour and is

a chaotic system.

Fig. 3.3 Source Deisenroth et al. (2013b).

The system has 6 continuous state variables: the position of the cart x, the velocity of the
cart x, the angles of the pendulums 6, and 63 the angular velocities of the pendulums 6, and

65. There is a target associated with each state variable.
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3.2 Experiments

3.2.1 The Effect of Cost Function Uncertainty on Learning

In this section, I present the Monte Carlo uncertainty analyses for the 3 PILCO environments
introduced in section 3.1. The procedure to produce the results is as follows. After each
PILCO episode, I train the trigonometric basis function model (see section 2.2) on all the
observed data up to the end of that episode. The inputs are the state-action tuples and the
targets are the state differences. Conditionally independent models are trained for each target
dimension. In all cases, I use 500 basis functions. The Monte Carlo trajectory roll-outs
are performed according to algorithm 2 under policy x for (M = 100, N = 100, T = Tg),
where Tr and the transition noise €g are environment specific. I then decompose the total
uncertainty into uncertainties representing total aleatoric and total epistemic uncertainty in
the cost C(x) under policy 7 for an entire episode, following the procedure detailed in section
2.3.

Cart-pole

Figures 3.4 and 3.5 show a random sample of the Monte Carlo trajectory roll-outs for the
state variables of the cart-pole environment: cart position x and cart velocity x (fig. 3.4),
and pendulum angular velocity 6 and pendulum angle 6 (fig. 3.5). In both figures, the
left vertical axis represents the state variable and corresponds to the trends for the Monte
Carlo trajectories, the actual trajectory recorded during that episode, the target of the state
variable, and PILCQ’s prediction of the state evolution before the episode. The right axis
shows the percentage of Monte Carlo trajectories that fall within the 2 standard deviation
error bars of PILCQO’s prediction for that time step. The trajectories shown are from episode
15, when PILCO has achieved the environment objective, and so represent trajectories under
a mature policy 7. For the cart-pole environment, a high agreement (greater than 80%) is

noted between the Monte Carlo trajectories and PILCO’s prediction of the state evolution.

Fig. 3.6 shows the average cost per episode and cost uncertainty decomposition under
policy 7 over the course of learning. Panel 3.6a shows the full uncertainty decomposition
and panel 3.6b shows the ratio of epistemic to total uncertainty. The average cost per episode,
shown on the left vertical axes, is indicative of success in learning. High cost indicates that
the agent is not achieving the objective, low cost indicates the objective is being achieved
and a decreasing average cost indicates that the agent is learning. The right axis shows total

cost uncertainty and its decomposition into aleatoric and epistemic cost uncertainty.
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The average cost per episode exhibits a sharp decline early in the learning process (this
can be seen in both panels of the figure) and by the third episode PILCO has solved the
environment. This is the simplest of the environments tested and because PILCO solves it
early in the learning process, we cannot gain much insight into how the cost uncertainty
varies. In episode zero (not shown in the figures), PILCO performs a series of roll-outs under
a random policy to generate initial state observations. It is likely, particularly in the case
where the state-space is well explored during the random roll-out, that these data are enough
for the algorithm to find a low cost policy that solves the environment early in the learning
process. Consequently, for episodes 1-3 the selected policy contains little epistemic cost
uncertainty because the model is already confident about its beliefs and a successful low cost

policy exists.

Interestingly, for episodes 7 and 8, PILCO selects policies with high epistemic uncertainty
in the cost and does so after it has already solved the environment. This could be due to
PILCQO’s unintentional exploration mechanism where it favours uncertain states. After this
(Fig. 3.6a episodes 9-15), the total and aleatoric uncertainties settle and the epistemic reduces,
indicating that the model is now confident in its model of parts of the state-space associated
with low cost.

Pendubot

Fig. 3.7 and 3.8 show a random sample of the Monte Carlo trajectory roll-outs for the state
variables of the pendubot environment: pendulum angular velocities 6, and 65 (fig. 3.7), and
pendulum angles 8, and 05 (fig. 3.8). In both figures, the left vertical axis represents the state
variable and corresponds to the trends for the Monte Carlo trajectories, the actual trajectory
recorded during that episode, the target of the state variable, and PILCO’s prediction of
the state evolution before the episode. The right axis shows the percentage of Monte Carlo
trajectories that fall within the 2 standard deviation error bars of PILCO’s prediction for
that time step. The trajectories shown in the figures are from episode 20, when PILCO has
achieved the environment objective, and so once again represent trajectories under a mature

policy 7.

Up to approximately 20 time steps there is cohesion in the Monte Carlo trajectories,
corresponding to the period where the pendulums are being manoeuvred to the upright
position. After this the trajectories spread out, corresponding to the period where the agent
attempts to balance the pendulums in the upright position. This indicates that there is

more uncertainty in the policy during the balancing phase than during the swing-up phase.
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(a) Cart position x (m)

(b) Cart velocity x (m/s)

Fig. 3.4 Monte Carlo roll-outs for the cart-pole environment for cart position and cart velocity. Figures show a
random sample of the Monte Carlo trajectories for episode 15. The first three legend items (actual trajectory,
target, PILCO prediction and MC trajectories) correspond to the state variable axis (left axis) and the magenta
line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations) (right axis).
Sample time 0.1s, roll-out horizon 4.0s
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(a) Pendulum angular velocity 6 (rad/s)

(b) Pendulum angle 8 (rad)

Fig. 3.5 Monte Carlo roll-outs for the cart-pole environment for pendulum angular velocity and pendulum
angle. Figures show a random sample of the Monte Carlo trajectories for episode 15. The first three legend
items (actual trajectory, target, PILCO prediction and MC trajectories) correspond to the state variable axis
(left axis) and the magenta line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard
deviations) (right axis). Sample time 0.1s, roll-out horizon 4.0s
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(a) Average cost (left axis) and uncertainty decomposition (right axis) for each episode over the course of
learning.

(b) Average cost (left axis) and ratio of epistemic to total uncertainty (right axis) for each episode over the
course of learning.

Fig. 3.6 Cart-pole: Average cost (left axis) and uncertainty (right axis) for each episode over the course of
learning.



3.2 Experiments 31

Although there is a large amount of spread in the trajectories, approximately 70% are still

within PILCO’s 2 standard deviation prediction.

Fig. 3.9 shows the average cost per episode and cost uncertainty decomposition under
policy 7 over the course of learning. Once again, panel 3.9a shows the full uncertainty
decomposition and panel 3.9b shows the ratio of epistemic to total uncertainty. As can be
seen in panel 3.9a, over the first five episodes the agent learns to swing the pendulums to
the upright position but cannot keep them balanced. During this phase, the average cost
steps down from its initial value and consequently the total and aleatoric uncertainties in the
cost increase while the epistemic cost uncertainty remains low. The increase in total cost
uncertainty is due to the agent forming an initial belief about the environment (with no belief
there is no uncertainty). Over the course of the next 10 episodes, the agent learns to maintain
the balance of the pendulums. Again a step down in average cost is observed and this time an
increase in aleatoric, epistemic and total cost uncertainty is observed. Once the environment
is solved, the aleatoric cost uncertainty stabilises and the epistemic cost uncertainty reduces.
From this representation, it is difficult to see the how the breakdown of cost uncertainties

relate to learning.

In panel 3.9b, the cost uncertainty is represented as the ratio of epistemic to total uncer-
tainty. The first three episodes each yield an average cost of approximately 0.95 indicating
that little learning is occurring over this period. During these episodes, PILCO has selected
policies that have a low ratio of epistemic to total cost uncertainty (see right vertical axes).
From episodes 3 to 4, the average cost reduces from 0.95 to 0.83 and this step in learning
corresponds to a policy which has a higher ratio of epistemic to total cost uncertainty than
the previous episodes. This trend repeats for episodes 5, 6 and 7 where the average cost
plateaus for 5 and 6, corresponding to policies with a low ratio of epistemic to total cost
uncertainty, but reduces for episode 7, corresponding to a policy with a high ratio of epis-
temic to total cost uncertainty. Perhaps the most convincing demonstration of this correlation
occurs between episodes 7 and 8 where the largest observed step decrease in average cost
occurs and corresponds to a policy with the largest ratio of epistemic to total cost uncertainty.
Finally, after the environment is solved around episode 8, the ratio of epistemic to total cost

uncertainty drops off as the agent refines the policy and model confidence increases.

Cart-Double-Pendulum

Figures 3.10 to 3.12 show a random sample of the Monte Carlo trajectory roll-outs for the

state variables of the cart-double-pendulum environment: cart position x and velocity x (fig.
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(a) Pendulum angular velocity 6, (rad/s)

(b) Pendulum angular velocity 65 (rad/s)

Fig. 3.7 Monte Carlo roll-outs for the pendubot environment for pendulum angular velocities. Figures show a
random sample of the Monte Carlo trajectories for episode 20. The first three legend items (actual trajectory,
target, PILCO prediction and MC trajectories) correspond to the state variable axis (left axis) and the magenta
line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations) (right axis).
Sample time 0.05s, roll-out horizon 3.0s.
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(a) Pendulum angle 6, (rad)

(b) Pendulum angle 6 (rad)

Fig. 3.8 Monte Carlo roll-outs for the pendubot environment for pendulum angles. Figures show a random
sample of the Monte Carlo trajectories for episode 20. The first three legend items (actual trajectory, target,
PILCO prediction and MC trajectories) correspond to the state variable axis (left axis) and the magenta line

shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations) (right axis). Sample
time 0.05s, roll-out horizon 3.0s.
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(a) Average cost (left axis) and uncertainty decomposition (right axis) for each episode over the course of
learning.

(b) Average cost (left axis) and ratio of epistemic to total uncertainty (right axis) for each episode over the
course of learning.

Fig. 3.9 Pendubot: Average cost (left axis) and uncertainty (right axis) for each episode over the course of
learning.
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3.10); pendulum angular velocities 6, and 6 (fig. 3.11); and pendulum angles 6, and 65 (fig.
3.12). In all three figures, the left vertical axis represents the state variable and corresponds to
the trends for the Monte Carlo trajectories, the actual trajectory recorded during that episode,
the target of the state variable, and PILCO’s prediction of the state evolution before the
episode. The right axis shows the percentage of Monte Carlo trajectories that fall within the

2 standard deviation error bars of PILCO’s prediction for that time step.

The trajectories shown in the figures are from episode 80, when PILCO has achieved
the environment objective, and so represent trajectories under a mature policy w. Up to
approximately 30 time steps there is cohesion in the Monte Carlo trajectories which again
corresponds to the swing-up phase. During the balance phase, the trajectories spread out. By

the end of the episode, only about 40% of the trajectories fall within PILCO’s predictions.

Fig. 3.13 shows the average cost per episode and cost uncertainty decomposition under
policy & over the course of learning. Panel 3.13a shows the full uncertainty decomposition
and panel 3.13b shows the ratio of epistemic to total uncertainty. As can be seen in panel
3.13b, after 10 episodes the agent has learned to swing the pendulums into the upright
position but cannot yet maintain them in a balanced state. During this phase there is a
small reduction in average cost. The agent then takes a further 33 episodes to learn to
maintain the pendulums in a balanced but off-centre position. During this second phase
of learning, the total and epistemic cost uncertainties increase as the agent forms a belief
about the environment; however, policies associated with low epistemic cost uncertainty
are consistently being selected. Consequently, the learning gradient is gentle. Just after 40
episodes, there is a rapid increase in learning. During this phase, the total cost uncertainty
rises further and departs from the trend of the aleatoric cost uncertainty due to the increase in

epistemic cost uncertainty.

As shown in panel 3.13b, there is an even more pronounced trend in the ratio of total
to epistemic cost uncertainty. Approaching the 40 episode mark, PILCO selects policies
with an increasing ratio of total to epistemic cost uncertainty and as a consequence learning
increases. Here there is a clear correlation between the amount of epistemic cost uncertainty
present in the policy and the average cost. This shows that policies with a high epistemic

cost uncertainty are associated with a steeper learning gradient.
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(a) Cart position x; (m)

(b) Cart velocity x; (m/s)

Fig. 3.10 Monte Carlo roll-outs for the cart-double-pendulum environment for cart position and cart velocity.
Figures show a random sample of the Monte Carlo trajectories for episode 75. The first three legend items
(actual trajectory, target, PILCO prediction and MC trajectories) correspond to the state variable axis (left axis)
and the magenta line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations)
(right axis). Sample time 0.05s, roll-out horizon 5.0s.
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(a) Pendulum angular velocity 6, (rad/s)

(b) Pendulum angular velocity 65 (rad/s)

Fig. 3.11 Monte Carlo roll-outs for the cart-double-pendulum environment for pendulum angular velocities].
Figures show a random sample of the Monte Carlo trajectories for episode 75. The first three legend items
(actual trajectory, target, PILCO prediction and MC trajectories) correspond to the state variable axis (left axis)
and the magenta line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations)
(right axis). Sample time 0.05s, roll-out horizon 5.0s.
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(a) Pendulum angle 6, (rad)

(b) Pendulum angle 6 (rad)

Fig. 3.12 Monte Carlo roll-outs for the cart-double-pendulum environment for pendulum angles]. Figures
show a random sample of the Monte Carlo trajectories for episode 75. The first three legend items (actual
trajectory, target, PILCO prediction and MC trajectories) correspond to the state variable axis (left axis) and the
magenta line shows the percentage of MC trajectories inside PILCO’s prediction (2 standard deviations) (right
axis). Sample time 0.05s, roll-out horizon 5.0s.
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(a) Average cost (left axis) and uncertainty decomposition (right axis) for each episode over the course of
learning.

(b) Average cost (left axis) and ratio of epistemic to total uncertainty (right axis) for each episode over the
course of learning.

Fig. 3.13 Cart-double-pole: Average cost (left axis) and uncertainty (right axis) for each episode over the
course of learning.
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3.2.2 The Evolution of Distributions over States and Costs

I obtain Monte Carlo uncertainty estimates by rolling out state-action values through the
dynamics model using the one-step predictions given in Eq. 2.25. For each state visited, 1

calculate the cost according to Eq. 2.3.

PILCO’s policy search method is formulated so that the cost is computed directly (see
Eq. 2.2) rather than via the state (although the cost is implicitly a function of the state). It is
therefore important to examine how the distributions over states and costs evolve differently
as they are propagated through the model, specifically in the context of the Monte Carlo
method presented in Section 2.4. I illustrate this, as shown in Fig. 3.14, by performing 9
steps through a simplified 1-dimensional transition function derived from the trigonometric
model presented in section 2.2. The transition function represents the input space x; € [—5, 5]
and is trained on targets representing the subsequent state X, rather than state differences
as is done with PILCO.

Fig. 3.14 shows the predictive mean and 95% confidence interval over observed state
transitions as well as 4 example functions drawn from the posterior distribution over the
model weights ¢g(w). To illustrate the evolution of state and cost distributions for the first
step through the transition function, I sample M = 1000 sets of weights w ~ g(w) and step
through N = 1000 starting states drawn from xg ~ % (—5,5) according to Eq. 2.25. I repeat
this process 8 more times; but for each step, I feed the subsequent state X, 1, as predicted by
Eq. 2.25, back into the equation as the input state x;. At each step I calculate the cost using
Eq. 2.3 with width o, = 1.5 and target state Xr0et = 0. No explicit policy is used here. The
experiment can be viewed as if there is only one action and the agent selects that action at

each opportunity. This enables states and costs to evolve freely under the system dynamics.

Fig 3.15 shows the evolution of the distributions over states and costs. Panels 3.15a
and 3.15b show the input distributions; panels 3.15c and 3.15d show the distributions after
1 transition; and panels 3.15e and 3.15f show the distributions after 9 transitions through
the transition function shown in Fig. 3.14. The distribution over costs associated with the
uniform initial distribution over states reveals the locally quadratic nature of the cost function
where the high density at C(x) = 1 indicates saturation of costs associated with states further
away from the target state. After the first step, the distribution over states tightens around
the target state with a peak about x = —1. The reduction in the state distribution tails means
that the cost no longer saturates and the tightening around the target state has increased the
cost density in the region of C(x) = 0. Finally, after 9 steps, the state distribution flattens out
with small peaks around the +x = 2. The high density around C(x) = 0 reduces and a bump
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Fig. 3.14 A 1-dimensional transition function example

forms around the C(x) = 0.8 position corresponding to the peaks of the state distribution at
about £x = 2.

3.2.3 A Decomposition of Cost Function Uncertainty

A toy data set with target noise variance 0.0625 is used to illustrate the Monte Carlo scheme
for estimating the aleatoric and epistemic uncertainties present in the cost C(x) under policy
7. Similar to the previous experiment, a 1-dimensional transition function is used and an
explicit policy is not defined. This is viewed as if there is only one action available for
selection and the agent selects that action at each opportunity which allows the system
dynamics to evolve freely over time. In this experiment, the agent begins by observing 4
transition data points. It then progressively observes more data a single point at a time up to
a total of 50 data points. At each observation, the trigonometric basis function model is used
to form a belief over the transition dynamics of the environment. Fig. 3.16a-3.16c shows the
predictive distribution over the transition data and 4 functions sampled from the posterior
distribution over the parameters after 4, 25 and 50 observations, respectively. For this, the
lengthscale of the spectral points is purposely set to a large value to over fit the data as can
be seen in Fig. 3.16a. This is done for two reasons: to artificially induce more epistemic
uncertainty into the model and to be more representative of a higher dimensional space where
the observation of a single data point provides the model with more information than in the
1-dimensional case. The figures show that as more data is observed, the model becomes

increasingly confident about the parameters. This can be seen in the functions drawn from the
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(a) Input distribution over states (b) Input distribution over costs
(c) Distribution over states after 1 transition (d) Distribution over costs after 1 transition
(e) Distribution over states after 9 transitions (f) Distribution over costs after 9 transitions

Fig. 3.15 The evolution of state and cost distributions with increasing numbers of steps through the transition
function.
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posterior distribution over the model parameters which increasingly resemble the predictive

mean as confidence grows.

Each time a new data point is observed, Monte Carlo trajectory roll-outs are performed
through the model using the procedure described in Sec. 2.4, the cost is calculated for a
target of x = 0 and the uncertainty in the cost is decomposed into its aleatoric and epistemic
components using Eq. 2.4. The Monte Carlo roll-outs are performed for (M = 100, N =
100, T = 100) and transition noise of variance 0.09. It is important to note that the sources
of uncertainty arise within the model and the transitions through the model but they are
measured here with respect to the cost.

Fig. 3.17 shows the uncertainty breakdown as a function of number of data points. As the
number of data points increases the model becomes more confident about the parameters and
the epistemic uncertainty decreases. With the reduction in epistemic uncertainty, the total
uncertainty also reduces and the gap between the aleatoric and total uncertainty decreases.
This is because each time the roll-outs are performed, they are done so under the same
policy. Should the policy be different after each new observation (as is typically the case
after observing new data) the uncertainties would be different under each policy as will be
demonstrated for the PILCO experiments. Finally, one might expect the epistemic uncertainty
to decrease monotonically as more data is observed and roll-outs are performed under the
same policy, but the reduction appears noisy. This could be a consequence of the Monte

Carlo approach and should reduce with a larger number of roll-outs.

3.3 Discussion

The results in section 3.2.1 demonstrate that there is a clear correlation between the ratio of
epistemic to total cost uncertainty under a given policy 7 and the rate of PILCO’s learning.
Policies with higher ratios of epistemic to total cost uncertainty resulted in more efficient
learning and policies with lower ratios learned more slowly. The ratio of epistemic and
total cost uncertainties is an interesting metric which takes into account both the aleatoric
and epistemic uncertainty values and provides a relativistic summary of cost uncertainty
for a given policy. The result for the Pendubot environment (Fig. 3.9) that considered the
ratio of epistemic to total cost uncertainty successfully highlighted policies that lead to large
step decreases in average cost which were harder to interpret when only taking either the
epistemic or aleatoric components into account. For example, in Fig. 3.9a the epistemic cost
uncertainty for the policies in episodes 8 and 9 are similar but when viewed as a ratio the

policy associated with episode 8 is highlighted as that which has a larger impact on learning.
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(a) Predictive distribution for 4 data points

(b) Predictive distribution after 25 data points

(c) Predictive distribution after 50 data points

Fig. 3.16 : Fig 3.16a - 3.16¢ show the predictive distribution over the data and samples from the posterior after
4, 25 and 50 observed data points. The lengthscale of the spectral points is purposely set to a high value to
over fit the data and imitate high dimensional space. As more data is observed the model becomes increasingly
confident about the parameter values and as a consequence the posterior distribution narrows.
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Fig. 3.17 Relating to Fig. 3.16. Trajectory roll-outs are performed through the transition function each time a
new data point is observed (from 4 to 50). For each roll-out the uncertainty in the cost is decomposed. As more
data is observed the model becomes increasingly confident about its parameters and consequently the epistemic
uncertainty reduces due to contraction of the posterior distribution.
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For the cart-double-pendulum environment it is more difficult to pin-point examples
where the ratio of epistemic to total cost uncertainty clearly highlights which of two similar
epistemic or aleatoric cost uncertainty values has greater impact on learning, as was done the
pendubot environment. This could be because cart-double-pendulum is significantly more
complex than the pendubot. There is still, however, a pronounced correlation between the
ratio of epistemic to total cost uncertainty and the rate of learning (Fig. 3.13). Although the
cart-double-pendulum simulation was only run for 80 episodes due to time constraints, one
would expect that the ratio of epistemic to total uncertainty would begin to decrease with
more episodes as the policy becomes refined and the model gains more confidence, as was

the case for the pendubot environment.

For the cart-double-pendulum environment (Fig. 3.13) PILCO learns to swing the
pendulums to the upright position in 10 episodes but then takes a further 33 to learn to
maintain them in a balanced state. Indeed, the act of balancing the pendulums is a significantly
harder problem to solve than swinging them into position. During this phase the learning rate
is slow which is indicative of the absence of an exploration scheme. PILCO always exploits
the policy associated with the minimum expected long-term cost which leads to the agent
being overly conservative in complex environments where exploration is required to properly
explore the state-space. In this setting, the use of the saturating cost function initiates a
natural exploration phase where the policy seeks out uncertain states. This is because an
unexplored region of the state space with a wide state distribution is more likely to have
substantial tails that extend into a low-cost region than a more peaked distribution. However,
the gentle learning gradient during this period indicates that learning is not taking place in an
efficient manner and highlights the need for an active-exploration algorithm. Future work
could incorporate the Monte Carlo method presented in Section 2.4 into an objective function
to create a balance between cost and the ratio of epistemic to total cost uncertainty. The
objective could then be tuned to either seek policies with higher or lower ratios of epistemic

to total cost uncertainty and the effect on learning efficiency could be examined.

A closer look at propagating uncertainties:

The approximating model predictive variance in Eq. 2.24 has two terms; one representing
the noise on the target data and the other, the uncertainty over of the model parameters. One
might incorrectly assume that the uncertainty decomposition presented in Eq. 2.41 could be
estimated in a simpler way by separately accumulating the terms of Eq. 2.24 each time a

step is taken through the transition function to get estimates of the aleatoric and epistemic
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uncertainties in the transition function. The following sources of uncertainty need to be

considered:

Observation noise: A source of aleatoric uncertainty is the observation noise. For example,
the transition function is really noise free but because the equipment has a measurement
tolerance it cannot reveal the true value of the transition. The equipment will never be
able to reveal the true state values but if a distribution is propagated through the predictive

distribution the model may be able to predict the true state.

Process noise: A further source of aleatoric uncertainty is process noise. This accounts for
uncertainties that are inherent in the dynamics of the system which mean that you cannot
predict the state exactly. These could arise when not all parts of the system are measured.

For example, friction that changes as a function of heat.

Parameter uncertainty: The primary source of epistemic uncertainty in model-based
reinforcement learning is parameter uncertainty which is reduced with the observation of

more data.

Interestingly, all three types of uncertainty propagate forward through the model in
different ways. In general, observation noise is irrelevant because the model can get around
this by gaining access to repeated measurements. Whereas the model does not necessarily
know how to deal with process noise. Since PILCO uses a GP model, it makes sense to
consider the process in terms of a GP model. GP’s are good at modelling observation noise
but it is complicated to deal with noise present on the inputs. The reason for this is that a
GP is completely defined by a mean and covariance function and the predictive distribution
depends on the inverse of the covariance matrix. So building in uncertainty into the entries
of the covariance matrix and then inverting it has influences throughout the model. PILCO
gets around this issue by training on the difference between noisy observations, and then
recognising that one source of noise on the data comes from input noise and the other from

observation noise so the noise variance is approximately double and so is divided by two.

When propagating uncertainty through the transition function, all the different types of
uncertainties and the way they propagate forward need to be considered, which becomes
complex. So simply accumulating the the two different terms as proposed for an uncertainty
would not provide a realistic estimate of the aleatoric and epistemic uncertainties in the
transitions. In particular because at each step forward the total input variance must be

considered in order to guarantee that the propagation spans all eventualities of propagated
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uncertainty. The Monte Carlo method present in Section 2.4 provides a practical way to do

this without having to deal with each source of uncertainty in a different way.

3.4 Conclusion

In this dissertation I investigate how PILCO uses uncertainty in its decision making process.
I show that when PILCO is learning efficiently it is selecting policies associated with a high
ratio of epistemic cost uncertainty to total cost uncertainty. In contrast, when learning is slow
PILCO is selecting policies associated with a low ratio of epistemic cost uncertainty to total

cost uncertainty.

To do this, I disentangle and quantify the different sources of uncertainty in a model that
approximates PILCO’s transition function. Since PILCO is a direct policy search method,
it directly consults the cost function; therefore, I examine the influence of the uncertainty
present in the transition function on uncertainty in the cost. I use variance as a metric to
quantify uncertainty and use the law of total variance to decompose the uncertainty into its
constituents. I introduce a gold-standard Monte Carlo scheme to separately estimate the
aleatoric and epistemic uncertainties present in the cost by propagating trajectories through
an approximation to PILCO’s dynamics model.

PILCO evaluates a particular policy by cascading uncertain inputs through its probabilistic
GP dynamics model. It does this to gain insight into the variety of states that could be
encountered and uses this information to search for a low cost policy. This approach only
allows PILCO to make decisions based on the total uncertainty quantified by the model’s
predictive distribution, when there are in fact both aleatoric uncertainty and epistemic
uncertainty components present in the model. This means that PILCO could be exploring
regions in the state space that are irrelevant for the task of learning control because it is

making decisions based on the total uncertainty without knowledge of its constituents.

Future work could incorporate the Monte Carlo estimation method into an objective
function to create a balance between cost and the ratio of epistemic cost uncertainty to total
cost uncertainty. The objective function could then be tuned by means of an adjustable
hyperparameter so that the agent either focuses on seeking policies with higher or lower
ratios of epistemic to total cost uncertainty and the effect on learning efficiency could be
examined. The adjustable hyperparameter could be treated in a similar fashion to €-greedy
exploration mechanisms where the amount of exploration is adjusted to create different

behavioural traits in the agent.
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Appendix A

Derivations

A.1 Model

A.1.1 Posterior Distribution

The prior distribution over the weights p(w) and the model likelihood p(A|X,w,c?) are

62
p(w)=N (w|0, ;OI) (A.1)
N
p(AX,w,07) =[]+ (Ailw" o (x).0;). (A.2)
i=1

Here, x is used instead of X for notational convenience. The posterior distribution is propor-
tional to the product of the prior and the likelihood

N 2
o wlo(x) . 62 %
p(W[A) < [TH (AilW @ (xi),07) A (w|0, - 1). (A.3)

i=1
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Focusing on the exponential term E
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Through comparison of the quadratic term of the above equation with that of the standard

Gaussian distribution, it can be seen that posterior precision matrix A is

1
A= o0 + 01 (A5)
lof Gy
Now comparing the linear term from Equation A.4 with that of a standard Gaussian distribu-

tion gives
N
1
—pTA= =Y A () (A.6)

i=1"%n
Transposing both sides (noting that A is symmetrical) and multiplying through by the

posterior precision gives the posterior mean W as

I
uW:G—’%A DA (A7)

A.1.2 Predictive Distribution

Consider a marginal Gaussian distribution for x and a conditional Gaussian distribution for y
given x

p(x) =4 (x|p,A) (A.8)
p(Alx) = A (A|Cx+b,T) (A.9)

where C, b and p are the mean parameters and A and I" are the covariance matrices. The

marginal distribution of A is then defined as

p(&) = [ p(A)p(x)dx. (A10)
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The standard result for a marginal Gaussian distribution under these conditions is Bishop
(2006)
p(A) =4 (A|Cu+b,I'+CACT). (A.11)

Reproducing Equations 2.18 and 2.16 (for a new input x,.) here and noting that f(x,,w) =
wlo(x,) = @ (x,)" w gives

p (WA X, 05,07) = A (w|pp, A7) (A.12)

P (Avfxe, W, 02) = N (A*|(p (x,)"w, c,f) . (A.13)

Comparing these to the general result given in Equation A.11 and noting that (p(x*)TA_1 O (x4)

@(x:)A"1p(x,) " gives the predictive mean s, and covariance G,
1 _
lp, = gq)(x*)TA loA (A.14)
n

02 =02+ 0(x) A lp(x,). (A.15)

*






Appendix B

Code

Code to reproduce the results in this thesis can be found at:

* PILCO (MATLAB): https://github.com/linesd/PILCO-disentangling-uncertainty

* SSGPR (Python): https://github.com/linesd/SSGPR


https://github.com/linesd/PILCO-disentangling-uncertainty
https://github.com/linesd/SSGPR
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