
Deeper Understanding of Autophagy
and pseudo-Autophagy through

Latent-Space Analysis

Sigurjón Ísaksson
Clare Hall

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of
Master of Philosophy in Machine Learning, Speech, and

Language Technology

University of Cambridge
Engineering Department

Trumpington Steet
Cambridge CB2 1PZ
United Kingdom

Email: si318@cam.ac.uk

August 16, 2018

Declaration

I Sigurjón Ísaksson of Clare Hall, being a candidate for the M.Phil in Ma-
chine Learning, Speech, and Language Technology, hereby declare that this
report and the work described in it are my own work, unaided except as may
be specified below, and that the report does not contain material that has
already been used to any substantial extent for a comparable purpose.

Total word count: 13094

Signed:

Date:

This dissertation is copyright c©2018 Sigurjón Ísaksson.
All trademarks used in this dissertation are hereby acknowledged.

Acknowledgements

First of all, I would like to thank my industrial supervisor, Dr. Matthew
Johnson, both for proposing this project, and for his indispensable support
and guidance. I would also like to thank Dr. Rupert Bale, who supervised
the biological aspect of the project. Without his guidance, this project would
have never been possible. Working with both of them has been a pleasurable
experience. Secondly, I would like to thank my girlfriend, Tinna Björk, for
her unconditional support and patience throughout this MPhil. Most impor-
tantly, I would like to thank my loving parents. Without you, none of this
would have been possible. Your love, believe in me, support and guidance
are the reasons I am where I am, and for that, I am grateful.

Abstract

Autophagy is a critical biological process due to its importance for the sur-
vival of cells. Despite it being widely studied in the biological research com-
munity, our understanding of it remains limited. This is partly due to the fact
that processes happening inside cells follow a complex, stochastic behaviour,
which is hard for human researchers to identify, or distinguish between. In
this thesis, we attempt to address this by taking advantage of recent ad-
vances in deep learning and computer vision. A large amount of imaging
data is available where these processes are known to be happening. How-
ever, to our best knowledge, there has been no research directed towards
using machine learning to understand autophagy and its causes better. We
show that with the use of discriminative models, we can find distinguishable
patterns and features in the cell images, enabling us to discriminate between
cell types with different processes happening inside of them. We also show
that by using generative latent variable models, we can model a latent space
of the cell images that contains interpretable generative features with regards
to autophagy. Findings in this thesis indicate that machine learning can be
used to improve understanding of autophagy, and with further research, it
has the potential to help make important discoveries in this field.

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Thesis outline . 4

2 Background 5
2.1 Multi-Layer Perceptron . 5
2.2 Convolutional Neural Networks 7

2.2.1 Upsampling using transposed convolution 11
2.3 Generative latent variable models 12

2.3.1 Disentangled latent space 13
2.4 Auto-encoding variational bayes 13

2.4.1 Variational Auto Encoder 17
2.4.2 β-VAE . 20

2.5 Generative Adverserial Networks 20
2.5.1 Stable GAN training 22
2.5.2 infoGAN . 23

2.6 Related Work . 24

3 The dataset and preprocessing steps 26
3.1 Fixing the size of the images 27
3.2 Normalising pixel values . 28

3.2.1 Normalising pixel values for the first channel 29
3.2.2 Normalising pixel values for second channel 30

4 Cell Filtering 33
4.1 Model architecture . 34
4.2 Results and discussion . 35

5 Discriminative Model 37
5.1 Model architecture . 38

i

5.2 Results and discussion . 40
5.2.1 Results training on the first channel 40
5.2.2 Results training on the second channel 41
5.2.3 Results training on both channels 42
5.2.4 Comparison and discussion 42

6 Generative Modelling 44
6.1 Model Architectures . 45
6.2 InfoGAN - Results and discussion 47

6.2.1 Training on first channel 48
6.2.2 Training on second channel 51
6.2.3 Training on both channels 54
6.2.4 Discussion and comparison 57

6.3 β−VAE - Results and discussion 60
6.3.1 Training on first channel 61
6.3.2 Training on second channel 64
6.3.3 Training on both channels 67
6.3.4 Discussion and comparison 70

6.4 β−VAE and InfoGAN - Comparison 73

7 Summary and Conclusions 75

ii

List of Figures

2.1 A demonstration of the Perceptron algorithm. 6
2.2 A demonstration of a 3-layer MLP 6
2.3 An example of a 3x3 convolution over a 5x5 input, using stride

= 2 and zero padding the boarders with 1 frame, resulting in
a 3x3 feature map[7]. 9

2.4 An example of a 2x2 max pooling, using stride = 2 and no
zero padding, resulting in a 2x2 feature map 10

2.5 An example of a multi-layer CNN, consisting of two convolu-
tional layers followed by max pooling, and one fully connected
layer. 11

2.6 An example of a 3x3 transposed convolution over a 2x2 in-
put, using stride = 2 and zero padding the boarders with two
frames, resulting in a 5x5 feature map[7]. 11

2.7 Directed graphical model that demonstrates the dependencies
we assume our data follows. 12

2.8 Pseudo code explaining the AEVB algorithm [15]. 17
2.9 An example of a VAE, using one hidden layer for both the

encoding and decoding networks. 19
2.10 Explanation of how generative adverserial networks are struc-

tured . 22
2.11 Demonstration of how the InfoGAN works 24

3.1 Sample images from the first and second channel, before doing
any preprocessing. 27
3.1a First channel . 27
3.1b Second channel . 27

3.2 Sample images from the first channel after normalisation . . . 30
3.3 Histogram of the log pixel values and the three component

Gaussian mixture model fitted to the pixels. 31
3.4 Sample images from the second channel after normalisation

with log pixel values. 32

iii

4.1 Explanation of the CNN architecture used for the filtering of
cell images . 34

4.2 Average training loss plotted against number of batches, and
average validation accuracy plotted against number of epochs
for the binary classifier over ten different runs. 35
4.2a Validation accuracy . 35
4.2b Training loss . 35

4.3 ROC curve and confusion matrix for the binary classifier using
the test set. 36
4.3a ROC curve . 36
4.3b Confusion matrix . 36

5.1 Explanation of the CNN architecture used for the discrimina-
tive model. 39

5.2 Confusion matrix for the discriminative model trained on the
first channel. 40

5.3 Confusion matrix for the discriminative model trained on the
second channel. 41

5.4 Confusion matrix for the discriminative model trained on both
channels . 42

6.1 Explanation of the CNN architecture used for the generator. . 45
6.2 Explanation of the CNN architecture used for the discriminator. 46
6.3 First channel - Training losses for the InfoGAN plotted agains num-

ber of batches. 48
6.3a Discriminator loss - fake images 48
6.3b Discriminator loss - real images 48
6.3c Generator loss . 48
6.3d Information loss . 48

6.4 Comparison between original and generated images for the
InfoGAN, trained on the first channel. 49
6.4a Original images . 49
6.4b Generated images . 49

6.5 Comparison between original images and their corresponding
reconstruction for the InfoGAN, trained on the first channel. . 49
6.5a Original images . 49
6.5b Reconstructed images 49

6.6 Comparison of density plots for different dimensions of the latent
space modelled by the InfoGAN, trained on the first channel. . . . 50
6.6a Dimension 4 . 50
6.6b Dimension 5 . 50

iv

6.6c Dimension 6 . 50
6.6d Dimension 9 . 50

6.7 Second channel - Training losses for the InfoGAN plotted against
number of batches. 51
6.7a Discriminator loss - fake images 51
6.7b Discriminator loss - real images 51
6.7c Generator loss . 51
6.7d Information loss . 51

6.8 Comparison between original and generated images for the
InfoGAN, trained on the second channel. 52
6.8a Original images . 52
6.8b Generated images . 52

6.9 Comparison between original images and their corresponding
reconstruction for the InfoGAN, trained on the second channel 52
6.9a Original images . 52
6.9b Reconstructed images 52

6.10 Comparison of density plots for different dimensions of the latent
space modelled by the InfoGAN, trained on the second channel. . . 53
6.10a Dimension 1 . 53
6.10b Dimension 2 . 53
6.10c Dimension 3 . 53
6.10d Dimension 4 . 53

6.11 Both channels - Training losses for the InfoGAN plotted against
number of batches. 54
6.11a Discriminator loss - fake images 54
6.11b Discriminator loss - real images 54
6.11c Generator loss . 54
6.11d Information loss . 54

6.12 Comparison between original images and generated images for the
InfoGAN, trained on both channels. 55
6.12a Original images . 55
6.12b Generated images . 55
6.12c Original images . 55
6.12d Generated images . 55

6.13 Comparison between original images and their corresponding re-
construction for the InfoGAN, trained on both channels. 56
6.13a Original images . 56
6.13b Reconstructed images 56
6.13c Original images . 56
6.13d Reconstructed images 56

v

6.14 Comparison of density plots for different dimensions of the latent
space modelled by the InfoGAN, trained on both channels. 57
6.14a Dimension 1 . 57
6.14b Dimension 5 . 57
6.14c Dimension 7 . 57
6.14d Dimension 9 . 57

6.15 Comparison of confusion matrices for the MLP trained to dis-
tinguish between cell types, using the cell images latent vectors
modelled by the InfoGAN as input. 60
6.15a First channel . 60
6.15b Second channel . 60
6.15c Both channels . 60

6.16 First channel - Training losses for the β−VAE plotted against
number of bathces. 61
6.16a Reconstruction loss . 61
6.16b KL divergence . 61

6.17 Comparison between original images and generated images for
the β−VAE, trained on the first channel. 62
6.17a Original images . 62
6.17b Generated images . 62

6.18 Comparison between original images and their corresponding
reconstruction for the β−VAE, trained on the first channel. . . 62
6.18a Original images . 62
6.18b Reconstructed images 62

6.19 Comparison of density plots for different dimensions of the latent
space modelled by the β−VAE, trained on the first channel 63
6.19a Dimension 1 . 63
6.19b Dimension 8 . 63
6.19c Dimension 10 . 63
6.19d Dimension 18 . 63

6.20 Second channel - Training losses for the β−VAE plotted against
number of batches. 64
6.20a Reconstruction loss . 64
6.20b KL divergence . 64

6.21 Comparison between original images and generated images for
the β−VAE, trained on the second channel. 64
6.21a Original images . 64
6.21b Generated images . 64

6.22 Comparison between original images and their corresponding
reconstruction for the β−VAE, trained on the second channel. 65
6.22a Original images . 65

vi

6.22b Reconstructed images 65
6.23 Comparison of density plots for different dimensions of the latent

space modelled by the β−VAE, trained on the second channel. . . 66
6.23a Dimension 3 . 66
6.23b Dimension 5 . 66
6.23c Dimension 8 . 66
6.23d Dimension 9 . 66

6.24 Both channels - Training losses for the β−VAE plotted against
number of batches. 67
6.24a Reconstruction loss . 67
6.24b KL divergence . 67

6.25 Comparison between original images and generated images for the
β−VAE, trained on both channels. 68
6.25a Original images . 68
6.25b Generated images . 68
6.25c Original images . 68
6.25d Generated images . 68

6.26 Comparison between original images and their corresponding re-
construction for the β−VAE, trained on both channels. 69
6.26a Original images . 69
6.26b Reconstructed images 69
6.26c Original images . 69
6.26d Reconstructed images 69

6.27 Comparison of density plots for different dimensions of the latent
space modelled by the β−VAE, trained on both channels 70
6.27a Dimension 2 . 70
6.27b Dimension 5 . 70
6.27c Dimension 7 . 70
6.27d Dimension 8 . 70

6.28 Comparison of confusion matrices for the MLP trained to dis-
tinguish between cell types, using the cell images latent vectors
modelled by the β−VAE as input. 72
6.28a First channel . 72
6.28b Second channel . 72
6.28c Both channels . 72

vii

List of Tables

6.1 Comparison of accuracies for the MLP trained to distinguish
between cell types, using the cell images latent vectors as input. 73

1

Chapter 1

Introduction

1.1 Motivation

Autophagy is a biological process in which dysfunctional cellular machinery
is degraded into its core components and then used to build new parts. It can
take many different forms, and other biological processes behave similarly.
These processes happen simultaneously inside cells, making distinguishing
between them a tedious and difficult task, while quantifying the processes
is even more difficult. This consumes valuable research time, resulting in
slower and less effective research. In this project, we aim to exploit recent
advances in deep neural networks and computer vision to create methods that
allow researchers to better understand autophagy, as well as automating time
consuming tasks.

We propose two different ways of approaching the problem. The first method
is to use supervised learning to train a classifier that will discriminate between
cells that are known to have different processes happening inside them. This
gives us an indication of how different the cell types we are working with are,
and whether a machine learning algorithm could find distinguishable patterns
in these cells. A more interesting approach is to use unsupervised learning,
training a generative latent variable model that models the latent space of the

2

cell images. If the latent space is properly disentangled, our hypothesis is that
it will contain valuable information about the cells, which will not only help
distinguish between cell types, but also allow us to learn which of the cells’
features are responsible for different processes. Mapping the cell images to
their latent space representation also gives us a robust method for quantifying
these features inside the cells. This has the potential to help us gain a
better understanding of autophagy and its causes, which is a very active and
important research area in biology. The goal of this thesis is not to solve this
problem comprehensively, as that would require a much more thorough study,
using more time and resources then are available for this project. Instead the
aim is to find indications which show that machine learning can be helpful for
this problem, and that it is possible to model a disentangled latent space for
the cell images that contains informative features with regards to autophagy.
According to our best knowledge, this project is the first of its kind in this
research area, making it an especially interesting study, and we hope that it
can offer a stepping stone to further research.

The dataset for this thesis was gathered using an imaging flow cytometer,
which is able to capture a large amount of individual cell images in a short
amount of time, which is convenient in machine learning. However, the data
that it generates is very raw, containing images that need to be preprocessed
before we can learn anything valuable from them. Moreover, some of the
images are simply not suitable for research, as they contain clumps of cells or
even objects that are not cells. Therefore, an important task is to preprocess
the cell images, and develop a method that allows us to distinguish between
images that contain a single cell and images that do not. We propose using
machine learning to distinguish between these images, filtering them with a
binary classifier that outperforms current methods used to filter these images.

3

1.2 Contributions

The objective of this project is to develop methods that will enable us to
carry out the processes described above. Our contributions include:

1. A method to preprocess the initial raw dataset provided by the imaging
flow cytometer.

2. A binary classifier which separates single cell images from images that
contain multiple cells or objects that are not cells.

3. A discriminative model that is able to distinguish between different cell
types of interest.

4. Generative models that are able to model the latent space of the cell
images.

1.3 Thesis outline

The rest of this thesis will be laid out as follows: In chapter 2, we describe the
relevant background knowledge necessary to understand the machine learning
methods used in this thesis and related work. Chapter 3 explains how the
dataset was preprocessed, and chapter 4 describes the binary classification
of useful cell images from unusable ones. Finally, chapter 5 explains the
discriminative model that was built as well as discussing results, while chapter
6 includes a description of the generative models and a discussion of the
results. The thesis is then concluded in chapter 7 with a summarisation of
the work that was done, and a discussion of future work. All code written
for this thesis can be found in the MLSALT machines, located in the authors
home directory. All code was written in Python, using the deep learning
library TensorFlow. All computing took place using Azure virtual machines,
provided by the MPhil.

4

Chapter 2

Background

2.1 Multi-Layer Perceptron

A multi-layer perceptron (MLP), often referred to as a feed-forward neural
network, is a powerful machine learning algorithm, whose behaviour is loosely
based on how a biological brain works. The main building block of the
algorithm is the perceptron, also called a neuron, as it is a simplified version
of a biological neuron. The neuron is a function that takes in a weighted
linear combination of signals as an input, adds a bias, and then maps it to
an output signal using an activation function, which is usually non-linear.
This can be expressed mathematically by the following equation:

a = h

(
K∑
k=1

wk ∗ xk + b

)
(2.1)

Using just one neuron, it is possible to create a classifier or a regression model,
depending on which activation function is used. For example, using a unit
step function, we can create a simple binary classifier with a linear decision
boundary, classifying it as positive (1) if the weighted linear combination of
inputs is larger than the threshold, or negative (0) if not. This algorithm is
called the Perceptron, and can be seen in Figure 2.1.

5

Figure 2.1: A demonstration of the Perceptron algorithm.

An MLP consists of a stack of layers, l = 1,2,..L, where each layer contains
kl neurons. The first layer is the input layer, where each neuron represents a
value of the input vector. The layers in-between the first and last layer are
referred to as the hidden layers of the network, as they are not observed, and
the final layer is called the output layer, as it represents the output of the
network. Each layer in the network is fully connected to the previous layer,
meaning that each neuron in layer l+1 receives a signal from all neurons in
layer l. As we add more hidden layers, the network becomes deeper, resulting
in deep learning. Figure 2.2 shows an example of a 3-layer MLP.

Figure 2.2: A demonstration of a 3-layer MLP

6

By stacking the neurons together like this, the network is able to generate
a complex, non-linear mapping of the input data. In fact, the universal
approximation theorem states that an MLP with a single layer can represent
any continuous function. However, this layer may be infeasibly large and
may fail to learn and generalise correctly [10]. Therefore, adding hidden
layers for complexity has been shown to significantly improve performance.
The output of a 3-layer MLP, using a sigmoid activation function, σ, in the
output layer and any activation function in the hidden layer, can be described
mathematically with equation 2.2

y(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(2.2)

To train the algorithm, we define an objective function, depending on our
application, that takes in the output of the network and labels that repre-
sent the ground truth, and optimise that function w.r.t the networks parame-
ters. A common choice of objective function is cross entropy for classification
problems, and mean squared error for regression problems. To optimise the
function, we use stochastic gradient optimisation methods, e.g. stochastic
gradient descent, where the gradients w.r.t all parameters in the network are
computed using backpropagation [25].

2.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a variant of the multi-layer percep-
tron algorithm (MLP), and has gained increasing popularity for use in solving
computer vision problems in recent years, achieving state of the art results
in various tasks. In MLP, each neuron is fully connected to all the neurons
in the previous layer, which quickly becomes a problem for high dimensional
data, such as images. For example, the input features of a 256x256x3 image
have a dimension of 196,608. By adding a hidden layer consisting of just 1000
neurons, the network would already have 196,608,000 parameters in the first

7

layer. This increases the capacity of the system, and for larger networks, the
computational cost quickly becomes infeasible, as well as requiring a larger
training set to generalise. Furthermore, MLPs are not invariant with respect
to translations in the input; e.g. different positioning of the object in the
image or rotation. Training a network to recognise all these variations would
be inefficient and would require a large amount of data. Moreover, in images,
pixels that are close to each other are often highly correlated, while pixels
that are far from each other are not. Since the MLP architecture is fully
connected, it does not capture this correlation [18].

CNNs offer a solution to the problems described above by introducing three
factors that distinguish them from MLP: local receptive fields, shared weights
and spatial or temporal sub-sampling [18]. Firstly, each neuron is constrained
to only depend on a subset of variables that are close to each other in the
previous layer. For example, for a 256x256x3 image, each neuron might only
depend on a 5x5x3 window of that image, often referred to as the receptive
field of the neuron. Secondly, a set of neurons with different receptive fields
are constrained to share the same parameters. Note that a neuron computes
a weighted linear combination of the input inside its receptive field, which
is then mapped using a nonlinear activation function, similarly to MLP. By
constraining all neurons with different receptive fields to share parameters,
evaluating the neurons can be thought of as sliding the same filter, whose
weights are learned by the network, across different windows of the input.
Sliding the filter across the image is equivalent to convolving the image with
the filter, which is why these layers are called convolutional layers, also ex-
plaining the name of the algorithm. The output of this convolution is then
used to construct a feature map, where each value of the feature map is the
output of a neuron. The filters learn to look for certain features in the im-
age, and the feature map tells us where these features are positioned. This
provides equivariance to translation in the input. Figure 2.3 demonstrates
how a filter, K, is convolved with an image, I, to form a feature map, I ~K.

8

Figure 2.3: An example of a 3x3 convolution over a 5x5 input, using stride
= 2 and zero padding the boarders with 1 frame, resulting in a 3x3 feature
map[7].

A complete convolutional layer generates several feature maps, computed
with different filters, allowing the network to extract many different features
for each input. The feature maps are stacked together to form the output
of the layer, and the input for the next layer. When computing convolution,
there are two hyperparameters that control the size of the resulting feature
map. The first one is called stride, which refers to the number of pixels
we move over when sliding the filter. For example, if the stride is set to
1, the filter is moved one pixel at a time, while if the stride is 2, the filter
will jump two pixels at a time when it slides over the input. The second
hyperparameter is zero padding, where zeros are added to the borders of the
input. By doing this, we can for example make sure that the output is the
same size as the input after convolution. It is possible to calculate the output
of the convolution using:

O =
(W − F + 2P)

S
+ 1 (2.3)

Where W is the input size, F is the receptive field size (filter size), S is the
stride and P is the amount of zero padding.

The final factor that distinguishes a CNN from an MLP is the sub-sampling
layers. The purpose of these layers is twofold: to reduce the dimensionality
of the feature maps and to introduce translational invariance to the net-
work. These layers are often referred to as pooling layers, and they can be

9

explained very similarly to convolutional layers. The layer slides a fixed size
window across each feature map, usually with stride = 2, and performs a
mathematical operation, most commonly finding the maximum or average
value. For example, a max pooling layer would slide across the feature map
and return the maximum value of each receptive field. The new feature map
then consists of these maximum values. Figure 2.4 describes the max pool
operation.

Figure 2.4: An example of a 2x2 max pooling, using stride = 2 and no zero
padding, resulting in a 2x2 feature map

A typical CNN consists of a number of different layers, both convolutional
and pooling, allowing us to detect complex high-level features as we increase
the number of layers. The output of the last layer is then typically flattened
into a 1D vector, which is then fed through one or more fully connected layers,
ending with the output layer. As with MLPs, the network is trained by opti-
mising an objective function with stochastic gradient based methods, where
the gradients w.r.t all parameters are computed using back propagation [25].
Figure 2.5 demonstrates an example of a multi-layer CNN.

10

Figure 2.5: An example of a multi-layer CNN, consisting of two convolutional
layers followed by max pooling, and one fully connected layer.

2.2.1 Upsampling using transposed convolution

For some applications, especially image synthesis, the goal is to increase the
size of the input, instead of decreasing it. This can be accomplished by using
transposed convolution [27]. A transposed convolutional layer is very similar
to a convolutional layer. First, the input is mapped to a sparse, enlarged
version of itself. How this transformation is computed depends on both the
zero padding and the stride used to separate each pixel. Next, a filter is
convolved with the sparse matrix, generating the new, enlarged feature map.
The weights of the filters are learned in the same way as they are for regular
convolutional layers. Figure 2.6 demonstrates the transposed deconvolution.

Figure 2.6: An example of a 3x3 transposed convolution over a 2x2 input,
using stride = 2 and zero padding the boarders with two frames, resulting in
a 5x5 feature map[7].

11

2.3 Generative latent variable models

Latent variable models (LVM) are probabilistic models which incorporate
unobserved variables that affect the observed variables, referred to as latent
variables. By defining a joint distribution over the sets of variables, complex
distributions of interest can be modelled; e.g. the marginal distribution of
the observed variables or conditional distributions [13].

For this thesis, we assume that our dataset consists of i.i.d datapoints, our
cell images, where each datapoint x(i) is generated by a generative model
that involves a latent variable, z(i). The process can be explained in two
steps [15]:

• z(i) is drawn from a prior distribution, pθ∗(z)

• The datapoint, x(i), is generated according to the conditional distribu-
tion pθ∗(x|z)

where we assume that pθ∗(z) and pθ∗(x|z) are valid parametrised probability
distributions. The space that the latent variable lies in is commonly referred
to as the latent space of the observed data, and this definition will be used
throughout this thesis. By constraining the latent space to have lower di-
mensions than the high dimensional data space, the latent variables form a
condensed representation of the data, which we hope represents important
distinguishable generative features. This can also be thought of as a directed
graphical model, where our datapoint depends on the latent variable, and
is conditionally independent of everything else when the latent variable is
observed, as Figure 2.7 shows.

Figure 2.7: Directed graphical model that demonstrates the dependencies we
assume our data follows.

12

Since the true parameter value θ∗ and the latent variables z given the observed
variable x are unknown, we are interested in estimating the model parameters
θ, as well as doing posterior inference on the latent variable z given the
observed variable x. In practice, this can prove difficult, since pθ(z|x) =

pθ(x|z)pθ(z)/pθ(x) is often intractable, especially when we have a complicated
likelihood function pθ(x|z). However, a number of approximation techniques
exist for this problem, and the ones used in this thesis will be discussed below.

2.3.1 Disentangled latent space

An important field of research for generative latent variable models is to
obtain disentangled latent space, meaning that each dimension contains in-
terpretable semantic information about the data, independent of other di-
mensions [5]. For example, a dimension in the latent space might represent
the size of the cell, and mapping the cell image to its latent space therefore
gives us quantitative information about the cell’s size. Another dimension
could tell us how certain components inside the cell are distributed, which
gives us interesting information about processes happening inside the cells,
such as autophagy.

2.4 Auto-encoding variational bayes

Auto-Encoding Variational Bayes (AEVB) [15] is a method that provides an
efficient way of inferring the latent variables z, and doing maximum likeli-
hood (ML) or maximum a posteriori (MAP) inference on the parameters,
in graphical models as described above in Figure 2.7, where the posterior
distribution pθ(z|x) is intractable and we have a large dataset. It does so by
introducing a recognition model, qφ(z|x), which is an approximation of the
true intractable posterior, pθ(z|x). This recognition model is often referred
to as a probabilistic encoder, as it outputs a distribution over the possible la-
tent space values that the data will be mapped to. Likewise, the distribution

13

pθ(x|z) is referred to as a probabilistic decoder, as it generates a distribution
of the possible values of x, given a latent variable z.

The probabilistic encoder, qφ(z|x), is approximated using variational infer-
ence, which is a technique commonly used to approximate intractable prob-
ability distributions. We approximate the intractable posterior:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
=

pθ(x, z)∫
z
pθ(x, z)dz

(2.4)

using another tractable distribution, qφ(z|x), and then try to make these
distributions as close to each other as possible. A known technique for mea-
suring the distance between two distributions is the KL divergence. A useful
feature of the KL divergence is that it is always larger than or equal to zero,
and as it gets smaller, the two distributions become increasingly similar,
achieving a KL divergence of zero when the two distributions are the same.
Therefore, we can minimise the KL divergence between pθ(z|x) and qφ(z|x)
and thus make them as close to each other as possible.

14

KL
(
qφ(z|x)||pθ(z|x)

)
=

∫
z

qφ(z|x)log
(
qθ(z|x)
pθ(z|x)

)
dz

=

∫
z

qφ(z|x)log
(
qφ(z|x)

1

pθ(z, x)/pθ(x)

)
dz

=

∫
z

qφ(z|x)log
(
qφ(z|x)

pθ(x)

pθ(z, x)

)
dz

=

∫
z

qφ(z|x)
(
log

(
qφ(z|x)
pθ(z, x)

)
+ log

(
pθ(x)

))
dz

=

∫
z

qφ(z|x)log
(
qφ(z|x)
pθ(z, x)

)
dz + log

(
pθ(x)

) ∫
z

qφ(z|x)dz

=

∫
z

qφ(z|x)log
(
qφ(z|x)
pθ(z, x)

)
dz + log

(
pθ(x)

)
⇔ log

(
pθ(x)

)
= KL

(
qφ(z|x)||pθ(z|x)

)
−
∫
z

qφ(z|x)log
(
qφ(z|x)
pθ(z, x)

)
= KL

(
qφ(z|x)||pθ(z|x)

)
+

∫
z

qφ(z|x)log
(
pθ(z, x)

qφ(z|x)

)
dz

(2.5)

log
(
pθ(x)

)
does not depend on z, and can therefore be thought of as a con-

stant. Thus, since the KL divergence is always non-negative, maximising the
second term on the right hand side in Equation 2.5 is equivalent to minimis-
ing the KL divergence. This term is referred to as the evidence lower bound
(ELBO), since it is always less than or equal to log

(
pθ(x)

)
, being equal when

pθ(z|x) and qφ(z|x) are the same distributions. The ELBO can be written
as:

15

L(θ, φ;x) =
∫
z

qφ(z|x)log
(
pθ(z, x)

qφ(z|x)

)
dz

=

∫
z

qφ(z|x)log
(
qφ(x|z)pθ(z)
qφ(z|x)

)
dz

=

∫
z

qφ(z|x)
(
log
(
pθ(x|z)

)
+ log

(
pθ(z)

qφ(z|x))

))
dz

=

∫
z

qφ(z|x)log
(
pθ(x|z)

)
dz +

∫
z

qφ(z|x)log
(
pθ(z)

qφ(z|x)

)
= Eqφ(z|x)

[
log
(
pθ(x|z)

)]
−KL

(
qφ(z|x)||pθ(z)

)

(2.6)

We now have a joint optimisation problem. We want to optimise the ELBO
w.r.t both the model parameters θ and the variational parameters φ, which
is a difficult task. Solving the expectation analytically is not possible, and
the usual approach is therefore to estimate the ELBO via use of Monte Carlo
methods. However, the estimator for the derivatives w.r.t the variational
parameters φ:

∇φEqφ(z)[f(z)] = Eqφ(z)
[
f(z)∇qφ(z)log

(
qφ(z)

)]
≈ 1

L

L∑
l=1

f(z)∇qφ(z(l))
log
(
qφ(z

(l))
)

z(l) ∼ qφ(z|x(i))

(2.7)

has been shown to exhibit high variance, making it impractical to optimise
the ELBO [20]. The AEVB method introduces a practical estimator on the
ELBO and its derivatives. It does so by reparameterising the random variable
z(l) ∼ qφ(z|x(i)) using a differentiable transformation gφ(ε, x), where ε comes
from a distribution that we are able to sample from easily. By using this
simple reparameterisation trick, we can define a Monte Carlo estimate for
the expectation of a arbitrary function f(z) w.r.t qφ(z|x(i))

∇φEqφ(z|x(i))[f(z)] = Ep(ε)[f(gφ(ε, x(i)))] ≈
1

L

L∑
l=1

f(gφ(ε
(l), x(i)))

ε(l) ∼ p(ε)

(2.8)

16

Using this technique, we obtain an approximation of the ELBO, called the
Stochastic Gradient Variational Bayes (SGVB) estimator , L̃(θ, φ;x(i)).

L̃(θ, φ;x(i)) = 1

L

L∑
l=1

log
(
pθ(x

(i), z(i,l))
)
−DKL

(
qφ(z|x(i))||pθ(z)

)
z(i,l) = gφ(ε

(i,l), x(i)), ε(l) ∼ p(ε)

(2.9)

By using the SGVB estimator of the lower bound, we obtain low-variance
gradient estimates, allowing us to use gradient based optimisation methods
to optimise the ELBO w.r.t both the variational parameters φ and model
parameters θ. Below, a pseudo code of the mini batch version of the AEVB
algorithm is shown.

Figure 2.8: Pseudo code explaining the AEVB algorithm [15].

2.4.1 Variational Auto Encoder

The variational auto-encoder is an algorithm that uses neural networks to
parameterise both the probabilistic encoder, pθ(z|x), and the probabilistic de-
coder, qφ(z|x), using the AEVB algorithm to optimise the parameters jointly.

We set the prior over the latent variables, pθ(z), as a multivariate Gaussian
with zero mean and unit variance, N (z; 0, I). The true posterior pθ(z|x) is
assumed to be approximately multivariate Gaussian with a diagonal covari-
ance matrix. Assuming this is true, we can let the probabilistic encoder,

17

qφ(z|x), be a multivariate Gaussian with a diagonal covariance matrix. We
also assume the probabilistic decoder, pθ(x|z), to be either a multivariate
Gaussian or Bernoulli (depending on the data). Under these assumptions,
we can define our model as:

pθ(x|z) = N (x;µθ(z), σθ(z)� I)

pθ(z) = N (z; 0, I)

qφ(z|x) = N (z;µφ(x), σφ(x)� I)

(2.10)

where µφ(x) and σφ(x) are the outputs of a neural network, parameterised by
φ and taking the observed variable (our data) as its input. Similarly, µθ(z)
and σθ(z) are also outputs of a neural network that is parameterised by θ,
taking the latent variable z as its input.

Using the reparameterisation trick explained above, we can sample from the
posterior distribution z(i,l) ∼ qφ(z|x(i)) using z(i,l) = gφ(x

(i), ε(l)) = µ(i) +

σ(i) � ε(l) where ε(l) ∼ N (0, I). As both distributions are Gaussian, the
KL divergence can be computed and differentiated analytically. Therefore,
we can derive the SGVB ELBO, which can be minimised using stochastic
gradient optimisation techniques, where the derivatives w.r.t all parameters
are obtained using backpropagation.

L(θ, φ;x(i)) ≈ 1

2

J∑
j=1

(
1 + log

(
(σ

(i)
j)2

)
− (µ

(i)
j)2 − (σ

(i)
j)2

)
+

1

L

L∑
l=1

log
(
pθ(x

(i)|z(i,l))
) (2.11)

z(i,l) = gφ(x
(i), ε(l)) = µ(i) + σ(i) � ε(l), ε(l) ∼ N (0, I)

We note that the second term, 1
L

∑L
l=1 log

(
pθ(x

(i)|z(i,l))
)
, is simply the recon-

struction error, in other words, how well the decoder is able to reconstruct the
original input from the latent variables. It is therefore common to train the
VAE with a mean squared error or sigmoid cross entropy objective function.

To summarise, for our application the VAE takes an image as an input, maps

18

it to the mean and variance of its latent representation, which is assumed
to be Gaussian distributed. It then draws a sample from that Gaussian
distribution, and uses it as an input to the decoder, which is trained to
reconstruct the original image given a latent vector, while keeping the KL
divergence low. This forces the encoder to map the image to values that
represent interpretable and informative generative features of the image. By
successfully training this algorithm, we have modelled an approximation of
the underlying data distribution:

Pθ(x) =

∫
z

Pθ(x, y) =

∫
z

Pθ(x|z)Pθ(z) (2.12)

allowing us to generate new samples by drawing from the prior, pθ(z), and
then mapping it to a sample by using the trained decoder. Figure 2.9 shows
an example of a VAE, using MLPs. It should be noted that CNNs can also
be used, and will be in this thesis.

Figure 2.9: An example of a VAE, using one hidden layer for both the en-
coding and decoding networks.

19

2.4.2 β-VAE

β-VAE [3] is a variant of VAE, where a new parameter, β, is introduced to
the SGVB, which is used to control how much to penalise the KL divergence
term

L(θ, φ;x(i)) ≈ β

2

J∑
j=1

(
1 + log

(
(σ

(i)
j)2

)
− (µ

(i)
j)2 − (σ

(i)
j)2

)
+

1

L

L∑
l=1

log
(
pθ(x

(i)|z(i,l))
) (2.13)

The authors of the method propose that if qφ(z|x) is factorial, then the latent
space that the VAE learns is disentangled, as the dimensions are independent
of each other. Since pθ(z) is factorial, increasing the penalty on the KL
divergence should force the latent features to be more independent of each
other, increasing the disentanglement in the latent space. Therefore, it is
proposed that setting β > 1 encourages disentanglement. However, this extra
pressure on the KL term can decrease the quality of the reconstruction, so a
trade-off exists between disentanglement and reconstruction quality.

2.5 Generative Adverserial Networks

Generative adversarial networks (GANs) [9] are a powerful method that is
capable of modelling the underlying data distribution without approximating
the intractable encoding distribution pθ(z|x). Instead, it proposes a method
related to game theory that consists of two models:

1. The generative model, G, models the data distribution and can there-
fore generate data. It does so by defining a prior distribution over the
latent variables, p(z), and a neural network, G(z; θg) , that maps the
latent variable z to the data space.

20

2. The discriminative model, D, which is also represented by a neural
network, D(x; θd), that computes the probability of whether a sample
comes from the real data distribution or not.

These models are then simultaneously trained with the following objectives:

1. D(x; θd) is trained to discriminate between real and generated samples;
i.e. assign high probability when given real samples as input, and
assign low probability when given generated samples as input.

2. G(z; θg) is trained to fool the discriminator; e.g. generate images that
are assigned high probability by the discriminator.

Intuitively, we can think of this as D(x; θd) and G(z; θg) playing a two-player
minimax game with value function V(G,D):

Min
G

Max
D
V (D,G) = Ex∼pdata(x)

[
log
(
D(x)

)]
+ Ex∼pz(z)

[
log
(
1−D(G(z))

)] (2.14)

To optimise this objective, we alternate between steps of updating the dis-
criminator, D, by maximising the objective, and one step of updating the
generator, G, by minimising the objective. Since both D and G are neural
networks, the entire model can be trained using gradient based optimisation
methods. If D and G can represent any arbitrary function, we say that there
exists a solution where Nash equilibrium is reached. For this solution, G
has captured the underlying data distribution and therefore the discrimina-
tor cannot possibly discriminate between real and generated data, always
outputting 0.5. Figure 2.10 shows the structure of a GAN.

21

Figure 2.10: Explanation of how generative adverserial networks are struc-
tured

GANs have shown great promise in capturing underlying data distributions,
especially for images, generating images of higher quality and detail than
VAEs. However, GANs do not provide any efficient ways of mapping the
data to the latent space, as they do not model pθ(z|x). Methods have been
developed to do this, and the techniques used in this thesis are explained
below.

2.5.1 Stable GAN training

Training GANs is known to be a very unstable procedure, and whether a
GAN will train successfully depends on various things; e.g choice of archi-
tecture, hyper-parameter setting and parameter initialisation. One of the
reasons for this is that the support of the generative distribution G, and the
real data distribution P, can be non-overlapping. A proposed solution to this
problem is to add Gaussian noise to both generative and real samples, to en-
sure that the supports of the distributions overlap [2]. A problem with this
method is that introducing high dimensional noise introduces variance when
estimating the parameters. Kevin Roth et al. [24] propose an analytical ap-
proach, where both distributions G and P are convolved with Gaussian noise,
which results in a weighted penalty function on the norm of the gradients,
which is added to the loss function of the discriminator. This was used in all

22

GANs trained for this project.

ω(P,G;D) = EP
[
(1−D(x))2||∇φ(x)||2

]
+ EQ

[
D(x)2||∇φ(x)||2

]
(2.15)

2.5.2 infoGAN

InfoGAN [6] is a variant of GANs, where the idea is to provide disentangled
latent space by decomposing the latent vector into:

1. The traditional input vector, z, simply considered as noise.

2. A new latent vector, c. This is the part that contains meaningful, dis-
entangled representations, which is achieved by maximising the mutual
information between c and the output of the generator.

The mutual information is maximised by introducing a new term to the
objective function, which encourages maximum mutual information.

Min
G

Max
D
VI(D,G) = V (D,G)− λI(c;G(z, c)) (2.16)

In practice, the mutual information term is hard to maximise, as it requires
access to the intractable posterior distribution P(c|x). Using variational in-
formation maximisation, we can derive a lower boundary on the mutual infor-
mation term by defining an auxiliary distribution Q(c|x) as an approximation
of P(c|x).

LI(c;G(z, c)) = H(c)−H(c|G(z, c))

= Ex∼G(z,c)

[
Ec′∼P (c|x)

[
log
(
P (c′|x)

)]]
+H(c)

= Ex∼G(z,c)

[
DKL

(
P (·|x)||Q(·|x)

)
+ Ec′∼P (c|x)

[
log
(
Q(c′|x)

)]]
+H(c)

≥ Ex∼G(z,c)

[
Ec′∼P (c|x)

[
log
(
Q(c′|x)

)]]
+H(c)

= λLI(G,Q)

(2.17)

This term can now be approximated using a Monte Carlo simulation. It

23

can be optimised directly w.r.t Q and by using the reparametrisation trick
w.r.t G. The auxiliary distribution Q is parametrised using a neural network.
Typically, it shares all layers with the discriminator network, D, except for
a fully connected layer at the end, which generates the parameters of the
distribution. Using this setup, the computational cost added by this distri-
bution is negligible. Furthermore, by successfully training Q(c|x), we obtain
a distribution that maps the data points to their latent vectors. The training
objective now becomes:

Min
G

Max
D
VI(D,G) = V (D,G)− λLI(G,Q) (2.18)

Figure 2.11: Demonstration of how the InfoGAN works

2.6 Related Work

After a thorough literature search, we found no published work where ma-
chine learning was used for autophagy research. However, a fair amount of
work has been done on microscopy image segmentation. Although segmenta-
tion is not done in this thesis, it is worth mentioning the U-net architecture,
introduced by Ronneberger et al. [23], that achieved great performance in
microscopy imaging segmentation. It consists of an contracting path, which

24

is paired with an expanding path, resulting in a U shaped architecture. It also
passes feature maps from layers in the contracting path to their analogous
layers in the expanding path, similarly to ResNet [11].

Interesting work has also been done using machine learning on the BBBC021v1
dataset [4], that consists of microscopy cell images and their corresponding
labels that represent the effect a drug has on the cells. Pawlowski et al. [21]
introduced the use of deep CNNs that are pre-trained on ImageNet images to
extract features in the images that are informative with regards to the effect
a drug has. Ando et al. [1] did the same things using different architectures
as well as introducing a normalisation technique for these features. In terms
of classification of the dataset, Kraus et al. [16] used convolutional multiple
instance learning to distinguish between the cells.

Zamparo et al. [26] investigated dimensionality reduction techniques on cell
images before classifying them using support vector machine in the lower
dimensional space. In terms of generative modelling, Osokin et al. [19]
successfully applied GANs to generate cell images. Most relevant to our
work, Goldsborough et al. [8] recently introduced the CytoGAN, where they
compare the use of three different GANs to generate cell images, and then
investigate how meaningful the features learned by the GAN are. However,
their work is limited, as they do not incorporate any method to encourage
disentanglement in the latent space. To subtract features from the network,
they use the penultimate layer of the discriminator, without any mutual
information maximisation. This leads to poor informative features, as their
results show. Also, their work is focused around cancer cells, and these cell
images differ considerably from ours, both in appearance and with regards
to where important information lies in the cell.

25

Chapter 3

The dataset and preprocessing
steps

The cell images contain two channels. The first channel is a bright-field
microscopy image of the cell, and the second is the green HLA-FITC fluores-
cence channel. The important thing to know about the channels is that the
first channel represents the shape and appearance of the cell. Currently, this
channel is not used in autophagy research, as it is not known to carry any in-
formation about the process that is visible to the human eye. Therefore, it is
interesting to see if a machine learning algorithm can find information in this
channel. The second channel shows localisation of components (lysosomes)
inside the cells. This channel contains valuable information, as the locali-
sation should be different for cells where different processes are happening;
e.g. autophagy. However, this difference is not always clear, and our aim is
to find the complex patterns in these channels that suggest certain processes
are happening.

Preprocessing of the dataset refers to every transformation of the data which
takes place before using it in the machine learning algorithm. Preprocessing
is a very important step, and is usually necessary before the machine learn-
ing algorithm can learn anything valuable. This chapter describes all steps
taken to process the raw cell images generated by the imaging flow cytome-

26

ter. Figure 3.1 shows an example of cell images for both channels before any
preprocessing was done.

(a) First channel (b) Second channel

Figure 3.1: Sample images from the first and second channel, before doing
any preprocessing.

3.1 Fixing the size of the images

The raw image dataset contains images of different sizes, which is not suitable
for machine learning algorithms like neural networks, where the input vector
needs to be a fixed size. Therefore, a fixed size had to be determined for the
images, and then the sizes of the individual images had to be either reduced
or enlarged to fit that size. In order to fix the size of the first channel, the
following steps were computed:

1. Read all images into Python, and determine a suitable size for the
images.

2. Compute the value of the pixels for all four edges of the image, and
then calculate the standard deviation and mean of these pixels.

27

3. Compute an array of same size as the images are, that consists of
normally distributed values, using the computed mean and standard
deviation.

4. If either the columns or rows are too small, they are padded using the
normally distributed pixels.

5. If either the columns or rows are too large, the images are cropped.

The same steps were performed for the second channel, except that instead
of being padded with normally distributed pixels, the images were padded
using a constant of 20. The reason for this is that when analysing the data,
we noticed that when the sensors detected no fluorescence, the pixels had a
value of 20.

3.2 Normalising pixel values

Normalising the pixel values to be distributed similarly is very important
before feeding them into neural networks. If the inputs are on a different
scale, the cost surface will be very steep in certain directions and shallow in
others, which makes convergence for optimisation algorithms slow [17]. A
simple fix for this is to subtract the mean of the input and divide by the
standard deviation.

xnormalised =
x− µx
σx

(3.1)

For many applications, it is best to have every value between 0 and 1. This
is true for us, since VAEs use cross entropy loss function, with the original
input as target values. By definition, the pixel values therefore need to be
between 0 and 1. An easy way to do this is by calculating the maximum and
minimum pixel values, and normalise according to equation 3.2

xnormalised =
x−min(x)

max(x)−min(x)
(3.2)

28

However, as our dataset contains problematic features that are not solved
using the normalisation techniques described, more complicated methods had
to be used, which we will discuss in the subsections below.

3.2.1 Normalising pixel values for the first channel

To normalise the first channel, a noticeable problem was that the background
pixels of different images had different values. This was not ideal, as we
wanted all images to have the same background colour, so the focus of the
algorithm is on the cell and not the background. To make all backgrounds
approximately the same colour, and normalise all pixels values between 0
and 1, the following steps were taken:

1. Compute the standard deviation for every pixel position over the entire
dataset. Results in an array of same size as the images are, containing
the standard deviation for every pixel position.

2. Find the indices of the standard deviation array where values are over
some threshold. Positions with low standard deviation will correspond
to positions where background values are usually located, high standard
deviation to where cells are located.

3. Use the indices to create two mask arrays, one for the background
images and another for the cells.

4. For every image, we used the mask array for background images to
compute the median pixel value of the background, and subtract this
value from every pixel. This should make each background value ap-
proximately 0.

5. Use the cell mask array to compute the standard deviation of the cell
pixels, and divide each pixel by that value.

6. Clip the values so that they range from -3 to 3, removing outliers.

7. Normalise all pixel values to be between 0 and 1 by adding 6 to every
pixel value and dividing by 3.

29

Figure 3.2 shows an example of 56 cell images after being normalised as
described above.

Figure 3.2: Sample images from the first channel after normalisation

3.2.2 Normalising pixel values for second channel

For the second channel, it is important to notice that when the flow cytome-
ter detects something that expresses luminance, it is exponentially brighter
than the pixels around it. By taking the log of the pixel values across the
whole dataset, we can plot a histogram of the pixels and notice that the
values appear to form a mixture of three normal distributions, one of which
corresponds to background pixels, one for normal cell content and one for
the dots distributed in the cell, see Figure 3.3.

30

Figure 3.3: Histogram of the log pixel values and the three component Gaus-
sian mixture model fitted to the pixels.

We would like to scale the images by the mean and standard deviation of the
Gaussian corresponding to the dots pixels, and then omit all outliers, which
will mainly be the background. Then the only non-zero pixel values will be
the bioluminescent pixels. This was done the following way:

1. Take the logarithm of the pixel values for the whole dataset.

2. Fit a 3-component Gaussian mixture model to all pixels in the dataset.

3. Subtract the mean of the dots distribution from all log pixel values in
the dataset.

4. Divide all log pixel values by the standard deviation of the same Gaus-
sian.

5. Clip the values so that they range from -3 to 3

6. Normalise all pixel values to be between 0 and 1, using equation 3.2.

Figure 3.4 shows an example of 56 cell images after being normalised as
described above.

31

Figure 3.4: Sample images from the second channel after normalisation with
log pixel values.

32

Chapter 4

Cell Filtering

To gather the dataset, an imaging flow cytometer was used. However, some
of the images that it outputs are not suitable for research, as they contain
clumps of cells or even objects that are not cells. Therefore, the dataset
had to be filtered before it was used for our purpose. In order to do this, a
discriminative binary classifier was trained, that filtered the images based on
whether they were suitable for research or not. In order to train the classifier,
a subset of 30,000 images was hand-labelled, since all the data was gathered
by us and to our best knowledge, no similarly labelled dataset exists. After
labelling the images, it was divided into training, validation and test sets.

The classifier was trained using only the first channel. The reason for this is
that the first channel images do not differ significantly for cells with different
processes, while the second channel does. By including the second channel,
we risk of overfitting to our dataset. The goal was to create a robust method
to filter these cells, independent from processes that are happening inside
them or how they were prepared beforehand.

33

4.1 Model architecture

A simple convolutional neural network (CNN) was trained as the binary
classifier to distinguish between the images. The network architecture is
illustrated in Figure 4.1. It consists of two 3x3 convolutional layers, with 20
and 50 filters respectively, using 2x2 max pooling with stride 2 after each
layer. The convolutional layers were followed by a fully connected layer with
500 neurons, followed by the output layer which generated the probability
of the sample being positive or negative. The RELU non-linearity was used
as an activation function for every layer, except for the output layer, where
the sigmoid function was used. To train the network, the Adam optimisation
algorithm [14] was used to minimise the sigmoid cross entropy loss function.
The hyperparameters of the network were tuned using grid search, obtaining
best performances using keep probability of 0.8 for dropout, batch size 50
and a learning rate of 1e−4. The number of epochs was set to 85.

Figure 4.1: Explanation of the CNN architecture used for the filtering of cell
images

34

4.2 Results and discussion

(a) Validation accuracy (b) Training loss

Figure 4.2: Average training loss plotted against number of batches, and
average validation accuracy plotted against number of epochs for the binary
classifier over ten different runs.

The average training loss plotted against the number of batches, and the
average validation accuracy plotted against the number of epochs, for 10
different runs, are shown in Figure 4.2. The final test accuracy was 97%,
showing us that this simple CNN can filter useful cell images from unusable
ones almost perfectly. For comparison, a logistic regression algorithm was
also trained, to see how a linear classifier performed with the dataset. The
final accuracy was 91%, indicating that the dataset is quite close to being
linearly separable. To ensure that the classifier was robust and not only
useful for our dataset, a hold-out dataset was prepared, using cells that were
processed differently. The dataset was not labelled, but by visually inspecting
over 2000 cell images filtered by the classifier, we concluded that it was doing
a good job on this dataset, almost only outputting single cell images. Figure
4.3 shows the confusion matrix (classification threshold of 0.5) and ROC
curve for the CNN.

35

(a) ROC curve (b) Confusion matrix

Figure 4.3: ROC curve and confusion matrix for the binary classifier using
the test set.

The most important thing is that the false positive rate was low, as we would
rather reject more good samples than accept bad samples and use them for
research. The confusion matrix shows that the false positive rate was 3%,
which is acceptable. This could be reduced by increasing the threshold of
the classifier. However, since the neural network generates very confident
predictions, and we see on the ROC break-even point that a threshold of
0.94 would still lead to a false positive rate of 3%, this was not done.

A common practice for biology researchers when working with this kind of
data is to filter the cell images based on the size of the image. The method
consists of setting three different constraints for the images: maximum size
for row and columns, minimum size for row and columns, and a maximum
for the ratio between the row and column. The argument for this is that
single cell images should approximately have the same size, with images not
suitable for research differing in both size and dimension ratio. These three
constraints were tuned using a grid-search for every possible combination,
yielding a best accuracy of 91.17%. This would not be acceptable for our
research, and shows how machine learning can immediately improve quality
of research in this area. According to our best knowledge, our model achieves
better results than any method currently being used for this task.

36

Chapter 5

Discriminative Model

This chapter describes the discriminative model that was trained in order to
see if it could find patterns in cell images that are known to have different
processes happening inside them. Three different procedures were performed
when preparing the cells used in this project. Firstly, we used cells that
were given the drug monencin, which is known as an autophagy inhibitor.
Secondly, we used cells that were given the drug doxorubicin, which is known
as an autophagy inducer. Finally, we used cells that were not given any
drugs, which we refer to as negative. Then, we also used cells from mutants,
for which the same procedures were followed. We refer to the mutants as
A1A2, and the normal cells as wild-type (WT). Therefore, in total we have
6 different type of cells: WTdox, WTmon, WTneg, A1A2dox, A1A2mon and
A1A2neg.

As discussed above, before beginning the experiment, our understanding is
that the second channel contains all information with regards to the pro-
cesses happening, as it shows how components inside the cells are localised.
Our prior knowledge about this localisation for the wild type cells was the
following:

1. WTdox: The components should be grouped together at certain places
inside the cells, appearing as dots in the cell images.

37

2. WTmon: Components should also be grouped together, but the distri-
bution of dots should different from that in WTdox.

3. WTneg: The components should be spread all over, with very few dots
showing in the cell images.

The behaviour of the mutants was less understood, and it was interesting to
see if they would react differently to the drugs. The following things were
expected before conducting the experiments:

1. A1A2dox: The components should be grouped together, forming dots,
to a certain extent. Expect much fewer dots than for WTdox.

2. A1A2mon: Unknown behaviour, and therefore exciting with regards to
our experiments. Components will most likely spread throughout the
cell, similarly to WTmon.

3. A1A2neg: Components should be spread all over, showing very few
dots in the cell images, similarly to WTneg.

5.1 Model architecture

A convolutional neural network (CNN) was trained as the discriminative
model to distinguish between the different cell types. The network architec-
ture is illustrated in figure 5.1. It consists of three 3x3 convolutional layers,
with 16, 32 and 64 filters respectively, using 2x2 max pooling with stride 2
for each layer. The convolutional layers were followed by a fully connected
layer with 512 neurons, followed by the output layer which generates the
probability of each class, using the softmax activation function. The RELU
non-linearity was used to activate all the other layers. Every layer was fol-
lowed by batch normalisation, except for the output layer. To train the
network, the Adam optimisation algorithm was used to minimise the soft-
max cross entropy loss function. Different architectures were not tested, and
no real tuning of hyperparameters was conducted, both because of time and
computing constraints, and also since the discriminator was only thought

38

of as a way to ensure that the cells had distinguishable features, and to see
which cell types behaved similarly. The networks used in the results reported
used a keep probability of 0.8 for the dropout in the fully connected layer, a
batch size of 100 and a learning rate of 1e−4. The number of epochs was set
to 85.

Figure 5.1: Explanation of the CNN architecture used for the discriminative
model.

39

5.2 Results and discussion

5.2.1 Results training on the first channel

The final test accuracy was 49% for the 6 classes, showing that the CNN
is able to find distinguishable features inside the cells using only the first
channel. These results are interesting, as first channel images are currently
not used for research purposes. Figure 5.2 shows the confusion matrix for
the classifier.

Figure 5.2: Confusion matrix for the discriminative model trained on the
first channel.

40

5.2.2 Results training on the second channel

The final test accuracy was 62% for the 6 classes using only the second
channel, confirming that the second channel contains more information than
the first one with regards to the cell types. Figure 5.3 shows the confusion
matrix for the classifier.

Figure 5.3: Confusion matrix for the discriminative model trained on the
second channel.

41

5.2.3 Results training on both channels

The final test accuracy was 66% for the 6 classes using both channels, outper-
forming both classifiers that only trained on a single channel, indicating that
there is information in the first channel that is not in the second channel.
Figure 5.4 shows the confusion matrix for the classifier.

Figure 5.4: Confusion matrix for the discriminative model trained on both
channels

5.2.4 Comparison and discussion

The results above show us that a CNN is able to find distinguishable fea-
tures inside the cells with regards to processes happening inside of them.
The confusion matrices for the classifiers are very similar with regards to
misclassification, only differing in accuracy.

By analysing the confusion matrices, a number of interesting things about
the cells can be determined. First of all, the mutant cells seemed to respond
completely differently to doxorubicin than the wild-type cells did. We ex-
pected components to localise and form dots similarly to WTdox, but with
lower number of dots. However, the algorithm seems to mainly misclassify

42

these cells as negative, indicating that the components inside the cells did not
localise as expected. Secondly, we can see that the algorithm did a very good
job of classifying the monencin cells, both for the mutants and the wildtypes.
It mainly misclassified A1A2mon as WTmon and vice versa, indicating that
the mutant behaves similarly to the drug. Thirdly, we can see that for both
mutants and wild-types, the algorithm seems to recognise negative cells well,
mainly confusing them with A1A2dox, further supporting our statement that
components inside A1A2dox did not localise as expected.

An interesting result from biological perspective was to see that the classifier
was able to find information using only the first channel, since this channel
is usually not considered for autophagy analyses. However, this should not
be to surprising, as the second channel should be a lossy function of the
first to some extent, and what is more interesting is to analyse how much
information there is in the first channel that is not in the second channel.
The fact that using both channels yields better accuracy than using only
the second channel indicates that there is some additional information in the
first channel. An interesting experiment would be to compute the mutual
information between the two channels, in order to see how much information
there is in the first channel that is not in the second. Another interesting
experiment to address this question of mutual information from another angle
is to train a variational auto encoder with the U-net architecture [23], to
translate from the first channel to the second channel. However, due to time
constraints, we leave this to future work.

43

Chapter 6

Generative Modelling

This chapter describes the two generative latent variable models that were
trained on the cell images, β−VAE and infoGAN, and the experiments con-
ducted using these models. If we can model a disentangled latent space by
training on cell images where different processes are happening, latent dimen-
sions should represent features that are different for cells which have different
processes happening in them. For example, it is known that the localisation
of components inside cells is different for cells where autophagy is happening
and for those where it is not. Therefore, a dimension that represents this lo-
calisation would contain valuable information about our cells, and the latent
space mapping of that dimension should be different for different cell types.
Modelling this latent space allows us to discover interesting features of the
cells, gives us a robust way of quantifying these features, and most impor-
tantly has the potential to help researchers better understand processes like
autophagy. For all the models, the same dataset was used as in Chapter 5.

44

6.1 Model Architectures

Scaling GANs using CNN architectures that are common in the field of com-
puter vision often leads to difficulties, resulting in unstable training. Radford
et al. [22] proposed a solution to this with the DCGAN, where they came
up with 5 simple architecture guidelines for GANs using deep CNNs:

1. For the discriminator, use convolution with a stride larger than 1 in-
stead of pooling layers, and for the generator, use transposed convolu-
tion.

2. Use batch normalisation after every convolutional layer for both the
generator and the discriminator.

3. Remove all fully connected layers.

4. In the generator, use RELU non-linearity, except for the output layer.

5. In the discriminator, use leaky-RELU, except for the output layer.

These guidelines were followed when designing the infoGAN architecture;
see Figures 6.1 (generative network) and 6.2 (discriminative network). The
auxiliary distribution Q(c|x) was designed to share all layers with the dis-
criminative network, except for a fully connected layer at the end, which
generated the prediction of the latent code c.

Figure 6.1: Explanation of the CNN architecture used for the generator.

45

Figure 6.2: Explanation of the CNN architecture used for the discriminator.

For fair comparison, and since the GAN was reconstructing the images ef-
fectively, a similar architecture was used for the β−VAE, with the encoder
using the same architecture as the discriminator and the decoder using the
same architecture as the generator.

Tuning the hyperparameters for these models is challenging, since quantifying
disentanglement is a difficult and ongoing research problem. Furthermore,
these models are computationally expensive and take a long time to train,
making it difficult to carry out many experiments. For the InfoGAN, all
reported experiments used a 10 dimensional latent vector, while the noise
vector was set to be 1 dimensional. This forced the network to generate
images mainly from latent values that contain information about the gen-
erative features. However, as the dimension of the noise vector is reduced,
the outputs become more deterministic, limiting stochastic behaviour in the
generating process, and if we excluded noise, the GAN would fail to model
any distribution except for the delta function [12]. For our experiments, we
found that using a 1 dimensional noise vector worked well. All latent vari-
ables were set to take continuous, uniformly distributed values, due to the
fact that discrete latent features would not be interesting for our problem.
For the β−VAE, the dimension of the latent vector and the value of β were
tuned together using grid search, since the optimal value of β depends on
the size of the latent vector. Best results were obtained using 32 dimensional
noise vector for all experiments, but the value of β varied.

For both models, all experiments were conducted using the Adam optimi-

46

sation algorithm to optimise the objective function, with a learning rate of
2e−4 and a batch size of 100. For the fully connected layer in the auxiliary
distribution of the InfoGAN, a keep probability of 0.75 was used for dropout.
The number of epochs was set to 150 for the InfoGAN, and 80 for the β−
VAE.

6.2 InfoGAN - Results and discussion

In this section, we present results from the InfoGAN model when trained on
only the first channel, only the second channel, and both channels. First, we
present figures that show the different training losses, plotted against number
of batches, demonstrating that the algorithm trained successfully. Secondly,
randomly generated images from the models are compared with the original
images, to validate that the model has captured the data distribution, and
generates realistic images. Thirdly, to ensure that the latent space contains
informative generating features, images are mapped to their latent vector
using Q(c|x), before reconstructing them using the generative model and
comparing them. Finally, we compare how different cell types are mapped
to the latent space by computing kernel density plots (Gaussian kernel) of
all cell types, for each latent dimension. These plots confirm that some
of the generative features that the latent space represents are connected to
the cell type, and that the InfoGAN has found distinguishable features and
patterns for cells where different processes were happening. The section
is then concluded with discussion and comparison of these three different
models. It should be noted that pixel values of all second channel images
shown are log values.

47

6.2.1 Training on first channel

(a) Discriminator loss - fake images (b) Discriminator loss - real images

(c) Generator loss (d) Information loss

Figure 6.3: First channel - Training losses for the InfoGAN plotted agains number
of batches.

48

(a) Original images (b) Generated images

Figure 6.4: Comparison between original and generated images for the Info-
GAN, trained on the first channel.

(a) Original images (b) Reconstructed images

Figure 6.5: Comparison between original images and their corresponding
reconstruction for the InfoGAN, trained on the first channel.

49

(a) Dimension 4 (b) Dimension 5

(c) Dimension 6 (d) Dimension 9

Figure 6.6: Comparison of density plots for different dimensions of the latent space
modelled by the InfoGAN, trained on the first channel.

50

6.2.2 Training on second channel

(a) Discriminator loss - fake images (b) Discriminator loss - real images

(c) Generator loss (d) Information loss

Figure 6.7: Second channel - Training losses for the InfoGAN plotted against
number of batches.

51

(a) Original images (b) Generated images

Figure 6.8: Comparison between original and generated images for the Info-
GAN, trained on the second channel.

(a) Original images (b) Reconstructed images

Figure 6.9: Comparison between original images and their corresponding
reconstruction for the InfoGAN, trained on the second channel

52

(a) Dimension 1 (b) Dimension 2

(c) Dimension 3 (d) Dimension 4

Figure 6.10: Comparison of density plots for different dimensions of the latent
space modelled by the InfoGAN, trained on the second channel.

53

6.2.3 Training on both channels

(a) Discriminator loss - fake images (b) Discriminator loss - real images

(c) Generator loss (d) Information loss

Figure 6.11: Both channels - Training losses for the InfoGAN plotted against
number of batches.

54

(a) Original images (b) Generated images

(c) Original images (d) Generated images

Figure 6.12: Comparison between original images and generated images for the
InfoGAN, trained on both channels.

55

(a) Original images (b) Reconstructed images

(c) Original images (d) Reconstructed images

Figure 6.13: Comparison between original images and their corresponding recon-
struction for the InfoGAN, trained on both channels.

56

(a) Dimension 1 (b) Dimension 5

(c) Dimension 7 (d) Dimension 9

Figure 6.14: Comparison of density plots for different dimensions of the latent
space modelled by the InfoGAN, trained on both channels.

6.2.4 Discussion and comparison

Firstly, the InfoGAN achieves impressive performance in generating realistic
and diverse images for all three models, indicating that it did well in mod-
elling the underlying data distribution. Comparing the images for the first
channel, it is hard to find any obvious artifacts in the generated images that
distinguish them from the original. For the second channel, it produces im-
ages where the distribution of dots varies between the images, with some of
them spread widely over the cell while others were localised to certain areas,
which is exactly the behaviour we were looking for.

57

Secondly, the latent space for all models contains informative generating
features, as it does a good job in mapping the images to their latent space
and then reconstructing them. However, we note that reconstruction for the
model using both channels is considerably worse than for the models trained
on a single channel. A probable explanation is that all models are built
using the same architecture and hyperparameters, and in order to encode
the generative features for both channels, the dimension of the latent space
needs to be increased, or the capacity of the network.

Finally, analysing the density plots for the models, we see evidence that
the modelled generative features differ for different cell types. For the first
channel, certain dimensions do not differ for different cell types, as they
represent generative features linked to the appearance of cells, and not the
processes happening inside of them;e.g. size of the cell. However, other
dimensions do contain some information with regard to the cell type, with
the most obvious difference being with cells that have been given the drug
monencin. This is consistent with the results from the discriminative model,
where it did considerably better in correctly identifying monencin cell types
for first channel images. For the second channel, we notice that the latent
mappings differ considerably between mutants and wild-types. Looking at
the wild-types and mutants separately, we also see a clear difference in some
dimensions based on the drug the cells were given. As an example, we see that
for mutants, the doxorubicin and negative cells behave similarly compared
to the monencin cells. For the wild-type cells, this is not the case, and we
see more difference between all cell types. This is constant with our results
from the discriminative model, which concluded that the mutants respond
differently to the drugs than wild-types. For both channels, we see same
differences in the latent mappings, but not as clearly distinguishable as for
the second channel only. Overall, these results show that the InfoGAN has
managed to model a latent space containing some disentanglement, finding
generative features of the cell images that are consistent with the results from
the discriminative model.

Looking at the dimensions independently is interesting to confirm that the

58

model has found disentangled generative features, but it does not tell the
whole story of how the models are encoding different cell types. The reasons
for this are that the latent space is not fully disentangled, and even if it was,
the cell type is not conditionally independent given one generative feature,
as it depends on a combination of these features. In order to quantify how
differently the models encode cell images of different type, a simple MLP
with two hidden layers was trained to distinguish between the cell types, us-
ing their latent code as an input. Comparison of confusion matrices for the
three models can be seen in figure 6.15. For the first channel, the classifier
achieves 26% accuracy, mainly finding distinguishable patterns for monencin
cells. The second channel does well, achieving 50% accuracy, with simi-
lar misclassifications as the discriminative model. Using both channels, the
classifier achieves accuracy of 38%, which is worse than for only the second
channel. This is not consistent with the discriminative model, that was able
to use information from both channels to improve the accuracy. Again, the
reason for this is most likely that the model is only using 10 dimensional
latent space to encode represent features for both first and second channel,
which means that it is not able to properly capture all important features,
and therefore looses important information with regards to the cell type.

59

(a) First channel (b) Second channel

(c) Both channels

Figure 6.15: Comparison of confusion matrices for the MLP trained to dis-
tinguish between cell types, using the cell images latent vectors modelled by
the InfoGAN as input.

6.3 β−VAE - Results and discussion

In this section, we present results from the β−VAE model when trained
only on the first channel, only on the second channel and on both channels.
First, we present Figures that show the reconstruction loss and KL divergence
plotted against number of batches, demonstrating that the algorithm trained

60

successfully. Secondly, we sample randomly from the prior and generate new
images, comparing them with original images to validate that the model has
captured the data distribution, and generates realistic images. Thirdly, to
ensure that the latent space contains informative generative features, images
were mapped to their latent vector using the probabilistic decoder, qφ(z|x),
and then reconstructed using the probabilistic encoder, pθ(x|z), before com-
paring the images. Finally, we compare how different cell types are mapped
to the latent space by computing kernel density plots (Gaussian kernel) of all
cell types, for each latent dimension. These plots confirm that some of the
generative features that the latent space represents are connected to the cell
type, and that the β−VAE found distinguishable features and patterns for
cells where different processes were happening. The section is then concluded
with discussion and comparison of these three different models. It should be
noted that pixel values of all second channel images shown are log values.

6.3.1 Training on first channel

(a) Reconstruction loss (b) KL divergence

Figure 6.16: First channel - Training losses for the β−VAE plotted against
number of bathces.

61

(a) Original images (b) Generated images

Figure 6.17: Comparison between original images and generated images for
the β−VAE, trained on the first channel.

(a) Original images (b) Reconstructed images

Figure 6.18: Comparison between original images and their corresponding
reconstruction for the β−VAE, trained on the first channel.

62

(a) Dimension 1 (b) Dimension 8

(c) Dimension 10 (d) Dimension 18

Figure 6.19: Comparison of density plots for different dimensions of the latent
space modelled by the β−VAE, trained on the first channel

63

6.3.2 Training on second channel

(a) Reconstruction loss (b) KL divergence

Figure 6.20: Second channel - Training losses for the β−VAE plotted against
number of batches.

(a) Original images (b) Generated images

Figure 6.21: Comparison between original images and generated images for
the β−VAE, trained on the second channel.

64

(a) Original images (b) Reconstructed images

Figure 6.22: Comparison between original images and their corresponding
reconstruction for the β−VAE, trained on the second channel.

65

(a) Dimension 3 (b) Dimension 5

(c) Dimension 8 (d) Dimension 9

Figure 6.23: Comparison of density plots for different dimensions of the latent
space modelled by the β−VAE, trained on the second channel.

66

6.3.3 Training on both channels

(a) Reconstruction loss (b) KL divergence

Figure 6.24: Both channels - Training losses for the β−VAE plotted against
number of batches.

67

(a) Original images (b) Generated images

(c) Original images (d) Generated images

Figure 6.25: Comparison between original images and generated images for the
β−VAE, trained on both channels.

68

(a) Original images (b) Reconstructed images

(c) Original images (d) Reconstructed images

Figure 6.26: Comparison between original images and their corresponding recon-
struction for the β−VAE, trained on both channels.

69

(a) Dimension 2 (b) Dimension 5

(c) Dimension 7 (d) Dimension 8

Figure 6.27: Comparison of density plots for different dimensions of the latent
space modelled by the β−VAE, trained on both channels

6.3.4 Discussion and comparison

Firstly, we see that the β−VAE has captured some information about the
underlying data distribution, but the images do contain obvious artifacts that
distinguish them from the original cell images, the most obvious one being
how blurry the images are. This is a known issue with VAEs, which is caused
by an over simplified approximation of the posterior distribution, and the loss
functions associated with them [28]. Also, the model uses a high value for β to
encourage disentanglement, which leads to worse reconstruction. However,
it does capture important generative features, both for the first channel,
and the second channel, where the distribution of dots varies between the

70

images, which is important for our task. Secondly, it does a good job in
mapping the images to their latent space and then reconstructing them. The
reconstructions are blurry, but all other features seem to be well encoded
into the latent space for all models. Finally, analysing the density plot for
the models, we see that the modelled generative features differ for different
cell types. For the first channel, the difference is not as clear, which is no
surprise since we know that there is less information in that channel with
regards to the cell type. For the models that use the second channel and
both channels, we see clear differences between cell types, with cell types
that are known from previous experiments to behave similarly being mapped
to similar values in the latent space.

Again, looking the dimensions independently does not tell us the whole story
of how the models are encoding different cell types. In order to quantify how
differently the models encode cell images of different type, the same MLP
as in section 6.2.4 was trained to distinguish between the cell types, using
their latent code as an input. Comparison of confusion matrices for the
three models can be seen in figure 6.28. For the first channel, the classifier
achieves 38% accuracy, for the second channel, the accuracy is 55%, and
for both channels it is 61%. This classification accuracy is similar to the
discriminative model, showing that the β−VAE does a very good job in
modelling the features that distinguish different cell types.

71

(a) First channel (b) Second channel

(c) Both channels

Figure 6.28: Comparison of confusion matrices for the MLP trained to dis-
tinguish between cell types, using the cell images latent vectors modelled by
the β−VAE as input.

72

6.4 β−VAE and InfoGAN - Comparison

First channel Second Channel Both channels
InfoGAN 26% 50% 38%
β−VAE 38% 55% 61%

Table 6.1: Comparison of accuracies for the MLP trained to distinguish
between cell types, using the cell images latent vectors as input.

For both methods, we were able to model a latent space with certain disentan-
glement, containing generative features of the data related to the cell type.
However, we see that both methods have their strengths and weaknesses.
With regards to image quality, the InfoGAN outperforms the β−VAE. This
was expected, as VAEs are known to output blurry images, while GANs have
shown great empirical results in generating realistic images. The reason for
this is that GANs use complicated discriminative networks that are trained
to discriminate between fake and real images as a loss function, while VAEs
use simple distance measures like the L2 distance. Using this measure, the
VAE would need to properly encode every single pixel in order to perfectly
reconstruct the image. Also, two images containing same object at different
positions are very different according to the L2 distance. Therefore, in order
to minimise the L2 distance, the VAE learns to output a rough average of
the images, resulting in blurry images.

On the other hand, the β−VAE models a latent space that contains more
informative generative features with regards to the cell type, encoding cells
of same type more similarly. This can be seen clearly in table 6.1, that
contains the accuracy of a simple MLP that was trained to distinguish be-
tween different cell types using the latent vectors as an input. However, it
should be noted that this comparison is not entirely fair, as the latent space
modelled by the β−VAE was 32 dimensional while the InfoGAN was only
10 dimensional. How this constraint hurts the performance of the InfoGAN
becomes very clear when we compare the models trained on both channels,

73

as 10 dimensions are simply not sufficient to capture the features for both
channels.

74

Chapter 7

Summary and Conclusions

In this thesis, we have successfully demonstrated how machine learning can
be used to improve understanding of autophagy. To begin with, we showed
that discriminative models are able to find distinguishable patterns and fea-
tures inside cells where different processes with regards to autophagy are
happening. Furthermore, we showed that generative latent variable models
can successfully model the latent space of the cell images, where dimensions
in this space represent distinct generative features for different cell types.
We implemented two different generative models, the InfoGAN and β−VAE,
highlighting their strengths and weaknesses. Our findings lead to two inter-
esting results from the biological perspective. First, we showed that mutant
cells respond differently to the drug doxorubicin than wild-type cells do.
Secondly, we demonstrated that the first channel of the cell images contains
information with regards to processes happening inside of them, but currently
this channel is not used for autophagy research.

We also developed robust and vigorous methods to preprocess the cell images
so they can be used for machine learning research, and to filter cells that are
suitable for research from cells that are not. To our best knowledge, our
method outperforms all methods that are currently being used to filter the
cells.

75

The work presented in this thesis shows promising results using machine
learning to better understand autophagy. However, there are many things
left to investigate, and we hope that our work offers a stepping stone to
further research in this area. Related to the work presented in this thesis,
future work includes:

1. Determine how much information there is present in the first channel
that is not in the second channel. We propose doing this by training a
variational auto encoder with a U-net structure, to translate from the
first channel to the second channel.

2. Develop a segmentation algorithm that takes in images containing mul-
tiple cells, and find every cell in that image. Methods presented in this
thesis can then be used to return quantitative information about the
processes in these cells and group cells with similar features together.

3. Further improve the algorithms introduced in this thesis; e.g. improve
reconstruction quality of the variational auto encoder, experiment with
different architectures and hyperparameter settings, implement other
methods known to encourage disentanglement.

4. Train a separate generative latent variable model for each cell type to
better understand what is happening inside of them.

An interesting continuation of this thesis would then be to make use of video
data that shows the movement of components (lysosomes) inside the cells,
and how they localise. These movements are known to follow complex pat-
terns, which most likely contains valuable information about processes hap-
pening inside of them.

76

Bibliography

[1] D. Michael Ando, Cory McLean, and Marc Berndl. “Improving Phe-
notypic Measurements in High-Content Imaging Screens”. In: bioRxiv
(2017). doi: 10.1101/161422. eprint: https://www.biorxiv.org/
content/early/2017/07/10/161422.full.pdf. url: https://www.
biorxiv.org/content/early/2017/07/10/161422.

[2] M. Arjovsky and L. Bottou. “Towards Principled Methods for Train-
ing Generative Adversarial Networks”. In: ArXiv e-prints (Jan. 2017).
arXiv: 1701.04862 [stat.ML].

[3] C. P. Burgess et al. “Understanding disentangling in β-VAE”. In: ArXiv
e-prints (Apr. 2018). arXiv: 1804.03599 [stat.ML].

[4] Peter D. Caie et al. “High-Content Phenotypic Profiling of Drug Re-
sponse Signatures across Distinct Cancer Cells”. In: Molecular Can-
cer Therapeutics 9.6 (2010), pp. 1913–1926. issn: 1535-7163. doi: 10.
1158/1535-7163.MCT-09-1148. eprint: http://mct.aacrjournals.
org/content/9/6/1913.full.pdf. url: http://mct.aacrjournals.
org/content/9/6/1913.

[5] T. Q. Chen et al. “Isolating Sources of Disentanglement in Variational
Autoencoders”. In: ArXiv e-prints (Feb. 2018). arXiv: 1802 . 04942
[cs.LG].

[6] X. Chen et al. “InfoGAN: Interpretable Representation Learning by
Information Maximizing Generative Adversarial Nets”. In: ArXiv e-
prints (June 2016). arXiv: 1606.03657 [cs.LG].

[7] V. Dumoulin and F. Visin. “A guide to convolution arithmetic for
deep learning”. In: ArXiv e-prints (Mar. 2016). arXiv: 1603.07285
[stat.ML].

77

https://doi.org/10.1101/161422
https://www.biorxiv.org/content/early/2017/07/10/161422.full.pdf
https://www.biorxiv.org/content/early/2017/07/10/161422.full.pdf
https://www.biorxiv.org/content/early/2017/07/10/161422
https://www.biorxiv.org/content/early/2017/07/10/161422
http://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1804.03599
https://doi.org/10.1158/1535-7163.MCT-09-1148
https://doi.org/10.1158/1535-7163.MCT-09-1148
http://mct.aacrjournals.org/content/9/6/1913.full.pdf
http://mct.aacrjournals.org/content/9/6/1913.full.pdf
http://mct.aacrjournals.org/content/9/6/1913
http://mct.aacrjournals.org/content/9/6/1913
http://arxiv.org/abs/1802.04942
http://arxiv.org/abs/1802.04942
http://arxiv.org/abs/1606.03657
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285

[8] Peter Goldsborough et al. “CytoGAN: Generative Modeling of Cell
Images”. In: bioRxiv (2017). doi: 10.1101/227645. eprint: https://
www.biorxiv.org/content/early/2017/12/02/227645.full.pdf.
url: https://www.biorxiv.org/content/early/2017/12/02/
227645.

[9] I. J. Goodfellow et al. “Generative Adversarial Networks”. In: ArXiv
e-prints (June 2014). arXiv: 1406.2661 [stat.ML].

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[11] K. He et al. “Deep Residual Learning for Image Recognition”. In: ArXiv
e-prints (Dec. 2015). arXiv: 1512.03385 [cs.CV].

[12] P. Isola et al. “Image-to-Image Translation with Conditional Adver-
sarial Networks”. In: ArXiv e-prints (Nov. 2016). arXiv: 1611.07004
[cs.CV].

[13] Michael I. Jordan, ed. Learning in Graphical Models. Cambridge, MA,
USA: MIT Press, 1999. isbn: 0-262-60032-3.

[14] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: ArXiv e-prints (Dec. 2014). arXiv: 1412.6980 [cs.LG].

[15] D. P Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In:
ArXiv e-prints (Dec. 2013). arXiv: 1312.6114 [stat.ML].

[16] O. Z. Kraus, L. J. Ba, and B. Frey. “Classifying and Segmenting Mi-
croscopy Images Using Convolutional Multiple Instance Learning”. In:
ArXiv e-prints (Nov. 2015). arXiv: 1511.05286 [cs.CV].

[17] Yann LeCun et al. “Efficient BackProp”. In: Neural Networks: Tricks
of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop.
London, UK, UK: Springer-Verlag, 1998, pp. 9–50. isbn: 3-540-65311-2.
url: http://dl.acm.org/citation.cfm?id=645754.668382.

[18] Yann LeCun et al. “Gradient-Based Learning Applied to Document
Recognition”. In: Proceedings of the IEEE. Vol. 86. 11. 1998, pp. 2278–
2324. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.42.7665.

[19] A. Osokin et al. “GANs for Biological Image Synthesis”. In: ArXiv e-
prints (Aug. 2017). arXiv: 1708.04692 [cs.CV].

[20] J. Paisley, D. Blei, and M. Jordan. “Variational Bayesian Inference with
Stochastic Search”. In: ArXiv e-prints (June 2012). arXiv: 1206.6430
[cs.LG].

78

https://doi.org/10.1101/227645
https://www.biorxiv.org/content/early/2017/12/02/227645.full.pdf
https://www.biorxiv.org/content/early/2017/12/02/227645.full.pdf
https://www.biorxiv.org/content/early/2017/12/02/227645
https://www.biorxiv.org/content/early/2017/12/02/227645
http://arxiv.org/abs/1406.2661
http://www.deeplearningbook.org
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1511.05286
http://dl.acm.org/citation.cfm?id=645754.668382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.7665
http://arxiv.org/abs/1708.04692
http://arxiv.org/abs/1206.6430
http://arxiv.org/abs/1206.6430

[21] Nick Pawlowski et al. “Automating Morphological Profiling with Generic
Deep Convolutional Networks”. In: bioRxiv (2016). doi: 10 . 1101 /
085118. eprint: https://www.biorxiv.org/content/early/2016/
11/02/085118.full.pdf. url: https://www.biorxiv.org/content/
early/2016/11/02/085118.

[22] A. Radford, L. Metz, and S. Chintala. “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks”.
In: ArXiv e-prints (Nov. 2015). arXiv: 1511.06434 [cs.LG].

[23] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”. In: ArXiv e-prints (May
2015). arXiv: 1505.04597 [cs.CV].

[24] K. Roth et al. “Stabilizing Training of Generative Adversarial Networks
through Regularization”. In: ArXiv e-prints (May 2017). arXiv: 1705.
09367 [cs.LG].

[25] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning representations by back-propagating errors”. In: Nature 323
(Oct. 1986), pp. 533–. url: http://dx.doi.org/10.1038/323533a0.

[26] L. Zamparo and Z. Zhang. “Deep Autoencoders for Dimensionality
Reduction of High-Content Screening Data”. In: ArXiv e-prints (Jan.
2015). arXiv: 1501.01348 [cs.LG].

[27] M. D Zeiler and R. Fergus. “Visualizing and Understanding Convolu-
tional Networks”. In: ArXiv e-prints (Nov. 2013). arXiv: 1311.2901
[cs.CV].

[28] S. Zhao, J. Song, and S. Ermon. “Towards Deeper Understanding of
Variational Autoencoding Models”. In: ArXiv e-prints (Feb. 2017).
arXiv: 1702.08658 [cs.LG].

79

https://doi.org/10.1101/085118
https://doi.org/10.1101/085118
https://www.biorxiv.org/content/early/2016/11/02/085118.full.pdf
https://www.biorxiv.org/content/early/2016/11/02/085118.full.pdf
https://www.biorxiv.org/content/early/2016/11/02/085118
https://www.biorxiv.org/content/early/2016/11/02/085118
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1705.09367
http://arxiv.org/abs/1705.09367
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/1501.01348
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1702.08658

	Introduction
	Motivation
	Contributions
	Thesis outline

	Background
	Multi-Layer Perceptron
	Convolutional Neural Networks
	Upsampling using transposed convolution

	Generative latent variable models
	Disentangled latent space

	Auto-encoding variational bayes
	Variational Auto Encoder
	-VAE

	Generative Adverserial Networks
	Stable GAN training
	infoGAN

	Related Work

	The dataset and preprocessing steps
	Fixing the size of the images
	Normalising pixel values
	Normalising pixel values for the first channel
	Normalising pixel values for second channel

	Cell Filtering
	Model architecture
	Results and discussion

	Discriminative Model
	Model architecture
	Results and discussion
	Results training on the first channel
	Results training on the second channel
	Results training on both channels
	Comparison and discussion

	Generative Modelling
	Model Architectures
	InfoGAN - Results and discussion
	Training on first channel
	Training on second channel
	Training on both channels
	Discussion and comparison

	-VAE - Results and discussion
	Training on first channel
	Training on second channel
	Training on both channels
	Discussion and comparison

	-VAE and InfoGAN - Comparison

	Summary and Conclusions

