
Better Batch Optimizer

Yui Chun Leung

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Wolfson College August 2019

I would like to dedicate this dissertation to my loving parents . . .

Declaration

I, Yui Chun Leung of Wolfson College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report ’Better Batch Optimizer’ and the
work described in it are my own work, unaided except as may be specified below, and the
report does not contain material that has already been used to any substantial extent for a
comparable purpose.

MATLAB is the software used to develop codes for my work. The codes and notes from
github directory cambridge-mlg/minimize are the primary starting points for the project.
The report uses the template ’PhD Thesis Template for Cambridge University Engineering
Department (CUED) v2.3.1’ from Cambridge University Engineering Department.

This dissertation contains 14,145 words excluding bibliography, photographs, diagrams
and declarations including appendices, bibliography, footnotes, figure captions, tables and
equations.

Yui Chun Leung
August 2019

Acknowledgements

I would like to thank my supervisors Carl Edward Rasmussen and Manon Kok for help and
guidance. Without their knowledge of Bayesian Optimization, I would not be able to draft
my algorithm design. Learning from and Working with them have been an enjoyable and
and intellectually stimulating experience for me.

A shout out goes out to the MLMI 2018-2019 cohort as well which has been very sup-
portive and taught me much about sharing ideas and having fun together. I would never
forget how we worked and struggled together in the MPhil room.

Abstract
BFGS [1] is one of the algorithms which can solve non-linear unconstrainted multivariate

optimization problems. It firstly finds the search direction with the steepest gradient descent
and performs line search along that direction to find the optimal step size minimizing the
objective function with the satisfaction of strong Wolfe Condition. But due to its problematic
termination criteria, the algorithm can stop prematurely under noisy search region.

We built a probabilistic line search algorithm by combining the smoothing quintic spline
model with Bayesian optimization. Experiments showed that our algorithm can improve
the accuracy of predicted step-size value from the line search algorithm but there were
implementations problems causing a long processing time.

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Contribution . 2
1.3 Dissertation Organization . 2

2 Background 5
2.1 BFGS . 5
2.2 Line Searches . 6
2.3 Challenges . 6
2.4 Polynomial Regression . 7
2.5 Spline model . 8

2.5.1 Natural Cubic Spline . 8
2.5.2 Natural Quintic Spline . 9
2.5.3 Smoothing Spline . 9

2.6 Bayesian Optimization . 11
2.6.1 Gaussian Process . 11
2.6.2 Sampling new point by Expected Improvement 18

3 Algorithm Design 21
3.1 Related Works . 21
3.2 Outline . 22
3.3 Step-samples generation . 25
3.4 Scaling factor . 25
3.5 Prediction . 27
3.6 Selection, Shift, Zoom and Retain . 28

iv Contents

3.7 Range of stepsize . 32

4 Experiments 35
4.1 One Dimensional Quadratic Problem . 36
4.2 One Dimensional x4 Problem . 41
4.3 Rosenbrock Function Problem . 46
4.4 Sigmoid Optimization Problem . 48
4.5 Sinc Function . 51

5 Conclusion 57

Bibliography 59

Appendix A pseudocode 61
A.1 BFGS . 62
A.2 Line Search . 63
A.3 zoom . 63

Appendix B Smoothing Spline 65

Appendix C Numerical Considerations 71

Appendix D Negative log marginal likelihood 79

Appendix E Hyperparameter restimation 81

List of Figures

2.1 BFGS transforms the n-D problem into the 1-D line search problem. [1]
denotes pk as search direction, xk as the starting vector and x∗ as the optimal
step-size . 5

2.2 Differences between original curve, natural cubic spline and smoothing cubic
spline. 11

2.3 Prediction difference between the cubic spline and the quintic spline. 14
2.4 Examples of expected improvement [2] predicted by 2 points. 19
2.5 Examples of expected improvement predicted by 3 points. 20

3.1 The example of rescaling the entries and their projected gradients. 26
3.2 How to initialize τ2 and optimize it for the quintic spline model. 27
3.3 The new evaluation point is usually the location with the highest utility. . . 28
3.4 The example of zoom. 29
3.5 The example of the new starting subset leading to extrapolation for the next

iteration. 30
3.6 The example of retaining data for the next iteration i. 31
3.7 Evolution of the potential interval [κ,κ + ∆] over iteration i for an one

dimensional quadratic problem with σ2 = 0.01. 33

4.1 Evolution of the potential interval [κ,κ +∆] over iteration i for the one
dimensional quadratic problem with σ2 = 0.01 and different starting point. 38

4.2 Evolution of the potential interval [κ,κ + ∆] over iteration i in the one
dimensional x4 problem with σ2 = 0. 41

4.3 Evolution of the potential interval [κ,κ + ∆] over iteration i in the one
dimensional x4 problem with σ2 = 0 and different start settings. 44

4.4 Evolution of the potential interval [κ,κ +∆] over iteration i in the rosenbrock
problem with σ2 = 0.1. 46

vi List of Figures

4.5 Evolution of the potential interval [κ,κ +∆] over iteration in the sigmoid
problem with σ2 = 0.0004. 49

4.6 Evolution of the potential interval [κ,κ+∆] over iteration in the sinc problem
with σ2 = 0. 52

4.7 Evolution of the potential interval [κ,κ+∆] over iteration in the sinc problem
with σ2 = 0. 54

List of Tables

4.1 Evolution of the signal variance changed over iteration in the search range
[κ,κ +δ∆] from Figure 3.7. 36

4.2 Influence of the function noise variance towards the performance. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 36

4.3 Influence of the retained data towards performance metrics. Settings were:
ρ2 = 0,δ = 5,σ2 = 0.01, rescale=True,spline=quintic. 37

4.4 Influence of the range factor towards performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,N = 3, rescale=True,spline=quintic. 37

4.5 Influence of the rescale mode towards performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,δ = 5,N = 4,spline=quintic. 37

4.6 The influence of the spline model towards various performance metrics.
Settings were: ρ2 = 0,σ2 = 0.01,δ = 5,N = 4, rescale=True. 38

4.7 Evolution of the signal variance over iteration i in the search range [κ,κ+δ∆]

from Figure 4.1. 39
4.8 Influence of the noise variance towards various performance metrics. Settings

were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 39
4.9 Influence of the number of retained data towards various performance metrics.

Settings were: ρ2 = 0,δ = 5,σ2 = 0.01, rescale=True,spline=quintic. . . . 40
4.10 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,N = 3, rescale=True,spline=quintic. 40
4.11 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,δ = 5,N = 4,spline=quintic. 40
4.12 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,δ = 5,N = 4, rescale=True. 41
4.13 Evolution of the signal variance over iteration in the search range [κ,κ +δ∆]

from Figure 4.2. 42

viii List of Tables

4.14 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 42

4.15 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0.1, rescale=True,spline=quintic. 42
4.16 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,N = 3, rescale=True,spline=quintic. 43
4.17 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,δ = 5,N = 4,spline=quintic. 43
4.18 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,δ = 5,N = 4, rescale=True. 43
4.19 Evolution of the signal variance over iteration i in the search range [κ,κ+δ∆]

from Figure 4.3. 44
4.20 Influence of the noise variance towards various performance metrics. Settings

were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 44
4.21 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0.1, rescale=True,spline=quintic. 45
4.22 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,N = 3, rescale=True,spline=quintic. 45
4.23 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,δ = 5,N = 4,spline=quintic. 45
4.24 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.1,δ = 5,N = 4, rescale=True. 46
4.25 Evolution of the signal variance over iteration in the search range [κ,κ +δ∆]

from Figure 4.4. 47
4.26 Influence of the noise variance towards various performance metrics. Settings

were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 47
4.27 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0.01, rescale=True,spline=quintic. 47
4.28 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,N = 3, rescale=True,spline=quintic. 48
4.29 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,δ = 5,N = 3,spline=quintic. 48
4.30 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.01,δ = 6,N = 3, rescale=True. 48
4.31 Evolution of the signal variance over iteration in the search range [κ,κ +δ∆]

from Figure 4.5. 49

List of Tables ix

4.32 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 50

4.33 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0.0001, rescale=True,spline=quintic. 50
4.34 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.0001,N = 3, rescale=True,spline=quintic. 50
4.35 Influence of the retain condition towards various performance metrics. Set-

tings were: ρ2 = 0,δ = 4,N = 3,σ2 = 0.0001, rescale=True,spline=quintic. 51
4.36 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.0001,δ = 4,N = 3,spline=quintic. 51
4.37 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0.0001,δ = 4,N = 3, rescale=True. 51
4.38 Evolution of the signal variance over iteration in the search range [κ,κ +δ∆]

from Figure 4.6. 52
4.39 Influence of the noise variance towards various performance metrics. Settings

were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 53
4.40 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0, rescale=True,spline=quintic. 53
4.41 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,N = 3, rescale=True,spline=quintic. 53
4.42 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,δ = 5,N = 4,spline=quintic. 54
4.43 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,δ = 5,N = 4, rescale=True. 54
4.44 Evolution of the signal variance over iteration in the search range [κ,κ +δ∆]

from Figure 4.7. 55
4.45 Influence of the noise variance towards various performance metrics. Settings

were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic. 55
4.46 Influence of N towards various performance metrics. Settings were: ρ2 =

0,δ = 5,σ2 = 0, rescale=True,spline=quintic. 55
4.47 Influence of the range factor towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,N = 3, rescale=True,spline=quintic. 56
4.48 Influence of the rescale mode towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,δ = 5,N = 4,spline=quintic. 56
4.49 Influence of the spline model towards various performance metrics. Settings

were: ρ2 = 0,σ2 = 0,δ = 5,N = 4, rescale=True. 56

Chapter 1

Introduction

1.1 Motivation

Numerical optimization of continuous multivariate objectives is a standard requirement in
most numerate fields (including machine learning). It is useful to find optimal solution on
different kinds of optimization problems, such as finding solutions for minimizing manufac-
turing cost and optimizing the hyperparameters settings in the deep neural network.
In recent years, a great success of the deep neural network has influenced and transformed
many industries in the world. Its robust performance has not been possible without the batch
optimizer behind the architecture, for example, Stochastic Gradient Descent (SGD) [3] and
Adaptive Moment Estimation (Adam) [4], in order to find out the optimal weight settings to
minimize the cost function. However, the parameters settings behind most of the state-of-art
optimizers require manual specification by developers or teams, which is not efficient be-
cause it requires many testings on the algorithm with different settings. These algorithms
and designs can be viewed as an optimization of a black-box objective function which is
sometimes unknown and expensive to evaluate. And the input are the hyperparameters, and
the objective function value is the output performance such as accuracy [5].
Bayesian Optimization, with the use of Gaussian Process [6] and Expected Improvement
[2], is a sample-efficient method for global optimization for such black-box functions using
probabilistic methods and is gaining great popularity to improve the performance of machine
learning algorithms [7][8][9]. A recent study [10] has shown that one of the important
parameters in SGD, the learning rate, can be specified automatically by Bayesian Optimiza-
tion method. Their method involves modelling an univariate objective (the loss function in
the neural network) as a stochastic process and employing a probabilistic line search (an
extension of the line search algorithm [1]) to find the optimal settings.
On other hand, BFGS [1] is an algorithm which is built directly upon the line search method.

2 Introduction

It relies on a number of idealized assumptions including noise-free observations, which are
seldom realistic in practice because the observations can be influenced by the stochastic
noise. This causes it to slow down or stop prematurely, thus failing to deliver a better solution
in the application. To develop a better batch optimizer, we can scale down the project into
developing a better line search algorithm which resembles the approach of the probabilistic
line search and can improve the performance of the BFGS algorithm.
In comparison to the probabilistic line search [10] with the commonly-used smoothing cubic
spline model [11] which implicitly assumes the second derivative of the objective is not
continuously differentiable, a different implementation of the probabilistic line search with
the smoothing quintic spline which does not have that implicit assumption is adopted to
improve the performance of BFGS in this project. This approach should also solve the
problems caused by the noisy observations to BFGS.

1.2 Dissertation Contribution

In this dissertation, we have a review of theories behind Bayesian Optimization, including
Gaussian Process, Expected Improvement, spline models and their variations. Based on the
theories, we design a probabilistic line search algorithm which is capable to improve the
accuracy of the prediction from the line search and the performance of BFGS.
We incorporate the theory of quintic spline, which is not commonly used in the field, into
the stochastic process, and develop a relevant set of codes for it. The work also has in-
cluded a discussion about the stopping criteria of the expected improvement which is seldom
mentioned in other research works, and the proposed algorithm is tested with different
optimization problems in this paper. Although the expected performance is not observed due
to implementation problems, we carry out a detailed analysis on the experimental results
and point out the potential design problems. The improvements which can be made are also
presented in the future work.
The codes developed are uploaded to the github directory and can be reused in the future
work if other researchers would like to modify the state-of-art optimization algorithm with
the probabilistic line search and the quintic spline instead of the cubic spline.

1.3 Dissertation Organization

The rest of this dissertation is organised as follows. Chapter 2 briefly introduces the back-
ground knowledge for BFGS algorithm, Line search algorithm, Polynomial regression, Spline

1.3 Dissertation Organization 3

model and Bayesian Optimization. Chapter 3 presents the algorithm design of probabilistic
line search based on the theories mentioned in Chapter 2. The performances of the algorithm
with various parameters settings on different optimization problems are discussed in chapter
4. Chapter 5 gives the conclusion and suggests the future work.

Chapter 2

Background

2.1 BFGS

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [1] (Appendix A.1) is an iterative
method for solving continuously-differentiable unconstrainted non-linear multivariate opti-
mization problems.
Consider, with access to the objective function f (s) ∈ R as a function of multiple in-
puts denoted by a vector s ∈ RD and a starting vector se, it firstly computes the gradient
∇ f (se) ∈ RD to find the search direction te with the steepest descent. Along that search
direction, with access to the objective function φ(x) = f (se + xte) and the projected gradi-
ent φ ′(x) = te ·∇ f (se + xte), the multivariate optimization problem turns into an univariate
problem of step-size x. The algorithm performs line searches [1] (Appendix A.2) to find the
optimal step-size xe which can minimize the objective function along that direction.

Figure 2.1 BFGS transforms the n-D problem into the 1-D line search problem. [1] denotes
pk as search direction, xk as the starting vector and x∗ as the optimal step-size

There are a set of conditions, named the strong Wolfe Conditions, which are required to
satisfy during this process. These strong Wolfe Conditions include the sufficient decrease

6 Background

condition (eq.2.1) and the curvature condition (eq.2.2), which ensures the sufficient iterative
improvement.

φ(x)≤ φ(0)+ c1xφ
′(0) (2.1)

|φ ′(x)| ≥ c2|φ ′(0)| (2.2)

where c1 = 0.05 and c2 = 0.8 are the constants chosen by the designer of the line search and
satisfy the condition 0≤ c1 ≤ c2 ≤ 1.
The search then repeats the process with the new starting vector s′e = se + xete until it is
terminated by the stopping criteria.
The main idea of this algorithm is to transform D-dimensional problem into several one-
dimensional line search problems which have less tuning parameters. So, it requires less
computation power.

2.2 Line Searches

The line search [12] is a method to optimize one-dimensional problem φ(x) by exploring
the positive univariate domain of step-size x ∈ R+ until an acceptable step-size x′ = xe is
reached.
The main idea of the algorithm is to collect the scalar function values and the projected
gradient values of location x j to predict the optimal solution x∗ ≈ xe.
Most line searches begin with an initial extrapolation to find the maximum search range xr

which violates strong Wolfe conditions to localize one of the possible local minima. Mutliple
repetitive interpolations with various entries x ∈ [0,xr], their objective and gradient values
in the interval [0,xr] then follow to narrow down the search interval [xr,min,xr,max] iteratively
(Appendix A.3) until the acceptable entry x′ ∈ [xr,min,xr,max] satisfying the conditions is
found.

2.3 Challenges

There are three main issues in the line search algorithm.
Firstly, its limited capability of explorations affects its effectiveness of finding an optimal
solution. Consider the algorithm usually takes the first step which violates the strong Wolfe
Conditions to define the maximum search range x1 = xr, this search interval can be defined
improperly when the objective and gradient values are noisy. Especially when the maximum
range is defined mistakenly as xr < x∗,the line search should not be able to find x∗ because it
cannot extrapolate out of the interval once the interval is decided. To make the search more

2.4 Polynomial Regression 7

accurate, the search can be defined as wide as possible randomly, i.e. xr >> x∗, but it may
slow down the search process. Thus, it is difficult for the algorithm to define the best range
which can affect the performance.
Secondly, the algorithm is sensitive to the stochastic noise which can terminate the search
prematurely due to the wrong satisfaction of the strong Wolfe Condition.
Thirdly, the interpolation with polynomial regression or natural cubic spline has a limited
capability to model the observations effectively. More specifically, it does not take the noise
or the deviation in the observations into account so the prediction can be problematic.
Apart from the issues, when developing a rock-stable production-ready implementation,
it is challenging to ensure the accuracy and the precision of the predictions. So that the
performance of the algorithm is not susceptible to different initializations and it should not
have different predicted values with great deviation. Also, the processing time is an essential
criteria which determines the robustness of the algorithm because a single line search takes
less than a second, the modified model should not add more than a second of processing time
and finding the better solution should not require infinite processing time.
Before encountering those challenges, we firstly analyze the problems behind the line search
algorithm by discussing the disadvantages of the traditional interpolation methods, including
the polynomial regression and the natural spline model. Next, we introduce the more
advanced methods, such as the smoothing spline model and the Bayesian Optimization,
which are useful for the construction of the modified model to resolve the issues and satisfy
the criteria mentioned above.

2.4 Polynomial Regression

To interpolate the search region, one of the commonly used method is the polynomial
regression model. The noisy objective function y can be modelled as nth degree polynomial
as follows [13],

y = β0 +β1x+β2x2 + · · ·+βnxn + ε (2.3)

where β = {βi}n
i=0 are the unknown parameters, ε ∼N (0,σ2) and σ2 is the function noise

variance.
By stacking the entries and their observations from x,y to X,Y respectively, the polynomial
regression coefficients can be computed with the least squared analysis by,

β = (X⊤X)−1X⊤y (2.4)

8 Background

But the textbook [11] proves mathematically that, Inputting the uniformly-spaced data into
the polynomial regression model can lead to bad prediction when the number of data and the
order of polynomial increase, which is problematic since the line search relies on evaluating
the function many times to find the optimal solution.

2.5 Spline model

To overcome the problem from the polynomial regression, the spline model [11] is introduced.
Given a set of entries {x j}n

j=0 and their observations, a piecewise N-th order of polynomial
g is fit within an interval of two consecutive entries [x j′,x j′+1], where j′ ∈ [0,n− 1]. The
solution should satisfy the boundary conditions stating that the function value of g and its
first (N−1)th derivatives must be continuous. As the number of constraints is not enough
for solving all the unknowns in the spline model, there are two extra conditions added stating
that, the (N−1)th derivatives of the polynomial with the entries of x0 and xn should equal to
zero. And this spline model is named the natural spline.

2.5.1 Natural Cubic Spline

A cubic spline is a spline constructed of piecewise third-order polynomials. With a set of
n+1 observation points (y0, ...yn), the i-th piece of the natural cubic spline has the following
form [14][15],

gi(t) = ai +bit + cit2 +dit3 (2.5)

where t is a parameter t ∈ [0,1], i = 0, ...n−1 and ai,bi,ci,di are the unknown coefficients
of the natural cubic spline. The function has the following properties,

1. gi(t) is a third degree polynomial in each interval.

2. gi(t) and its first two derivatives are continuous, for example, gi(0) = gi−1(i) = yi, i =
1,2, ...,n−1.

3. g′′0(0) = g′′n−1(1) = 0

2.5 Spline model 9

These should give sufficient constraints to solve for the unknowns give by,

ai = yi

bi = Di = g′i(0)

ci = 3(yi+1− yi)−2Di−Di+1

di = 2(yi− yi+1)+Di +Di+1

2.5.2 Natural Quintic Spline

A quintic spline is a spline constructed of piecewise fifth-order polynomials. Simiar to the
formulation of natural cubic spline, the natural quintic splines are of the form

gi(t) = yi +bit + cit2 +dit3 + eit4 + fit5 (2.6)

where t is a parameter t ∈ [0,1], i = 0, ...n−1 and ai,bi,ci,di,ei, fi are the unknown coeffi-
cients of the natural quintic spline. The function has the following properties,

1. gi(t) is a fifth degree polynomial in each interval.

2. gi(t) and its first four derivatives, upto and including g′′′′i (t) are continuous.

3. g′′′0 (0) = g′′′n−1(1) = g′′′′0 (0) = g′′′′n−1(1) = 0

which are enough to solve the unknowns.
The difference between natural cubic and quintic splines is the constraints they have. In
theory, the natural quintic splines are capable to model more structured data with more
constraints, while the natural cubic splines can model data with higher flexibility.
However, the natural splines have the problem of overfitting under least squared estimation
when the data is noisy even though they perform better than the polynomial regression.

2.5.3 Smoothing Spline

The overfitting problem in the natural spline can be resolved by adding a regularized term
(or smoothing term) which integrates the m-th derivative of the spline model. This model is
named as the smoothing spline.
The whole process of fitting data with smoothing spline is described as finding the function

10 Background

which minimizes the following,

1
n

n

∑
i=1

(g(xi)− y(xi))
2 +λ

∫
∞

−∞

(g(m)(x))2dx (2.7)

where g is the smoothing spline function, g(m) is the m-th derivative of the smoothing spline
function, xi ∈ (0,1) the entry, n is the number of entries and λ smoothing parameter which
can affect how much deviation (observation noise) the smoothing spline should model.
The solution of the smoothing spline is a polynomial of degree m−1 for x ∈ [−∞,0]∪ [1,∞]

and a piecewise of degree 2m− 1 with 2m− 2 continuous derivatives for the interval of
x ∈ (0,1). The settings of m = 2 correspond to cubic spline and m = 3 corresponds to quintic
spline.
The smoothing term can be regarded as integrating the white noise in the m-th derivative of
the objective. So it implies that, the cubic spline implicitly assumes the 2nd derivative is not
continuously differentiable and the quintic spline implicitly assumes the 3rd derivative is
not continuously differentiable. In theory, the quintic spline should be able to retain more
structured information from the objective.
The same solution can be obtained by using Bayesian inference of g(x) with an uninformative
prior, which is further discussed in the next chapter, as follows,

gprior(x) = f (x)+
m−1

∑
j=0

β jx j =
∫ 1

0

(x−u)m−1
+

(m−1)!
Z(u)du+

m−1

∑
j=0

β jx j (2.8)

where the first term f (x) is the (m− 1)-fold integrated random walk, Z(u) is a Gaussian
white noise process with covariance δ (u−u′), the second term is a polynomial of degree
m−1 with uninformative prior β j ∼N (0,σ2

β
),σβ → ∞.

2.6 Bayesian Optimization 11

Figure 2.2 Differences between original curve, natural cubic spline and smoothing cubic
spline.

With comparison of the natural spline with the smoothing spline, Figure 2.2 shows that fitting
noisy data with the natural cubic spline model can cause overfitting and is more susceptible
to noise, causing the bad predictive curve. But with the smoothing cubic spline, it can
give a better prediction on how the data-generating curve looks like, thus improving the
performance of line searches.

2.6 Bayesian Optimization

2.6.1 Gaussian Process

The objective function can be modelled as a Gaussian Process by the following equation,

f (x)∼ G P(0,k(x,x′)) (2.9)

with a mean function of 0 and covariance function of k(x,x′).
The noisy observation value y (with objective noise variance σ2) can be modelled as,

y(x)∼N (0,k(x,x′)+σ
2) (2.10)

12 Background

By minimizing the negative log-marginal likelihood (nlml) with respect to the hyperparame-
ters (e.g. σ2), the best settings of the hyperparameters can be computed to fit the data with
the model which can give the predictive distribution of the noise-free data f∗.
The predictive distribution is given by,[

y
f∗

]
∼N

(
0,

k(x,x)+σ2 k(x,x∗)
k(x∗,x) k(x∗,x∗)

)
(2.11)

So,

f∗|y,x,x∗ ∼N (µ∗,cov∗) , where

µ∗ = k(x∗,x)[k(x,x)+σ
2]−1y

cov∗ = k(x∗,x∗)− k(x∗,x)[k(x,x)+σ
2]−1k(x,x∗) (2.12)

By stacking the entries x,x∗ and their observations y, f∗, it can be rewritten as,

f∗|y,X,X∗ ∼N (µ∗,cov∗) , where

µ∗ = K(X∗,X)[K(X,X)+σ
2I]−1y

cov∗ = K(X∗,X∗)−K(X∗,X)[K(X,X)+σ
2I]−1K(X,X∗) (2.13)

where we denote K∗f = K(X∗,X) and Ky = K(X,X)+σ2I = Kf +σ2I.
To express the prior information, the use of explicit basis functions is a way to specify a
non-zero mean over the Gaussian process. This can be accomplished by specifying a few
fixed basis functions, whose coefficients β , to be inferred from the data. Consider [6]

g(x) = f (x)+h(x)⊤β (2.14)

where f (x) is a zero mean G P , h(x) = (1,x, ...) is a set of fixed basis functions and
β ∼N (b,B) are additional parameters (as mentioned in Section 2.5.3). Therefore, we
obtain another G P ,

g(x)∼ G P(h(x)⊤b,k(x,x′)+h(x)⊤Bh(x′)) (2.15)

2.6 Bayesian Optimization 13

With the uninformative prior limit of B→ 0, it is assumed that β can take any settings in an
uniform distribution (N ∼ U), the predictive distribution becomes [6],

µx⋆|y,X = K∗f K−1
y

(
y−H⊤β

)
+H⊤∗ β

σ
2

x⋆|y,X = Kf (x⋆,x⋆)−K∗f K−1
y (K∗f)

⊤+R⊤A−1R (2.16)

where H = H(X) is the stacked vector of the basis functions h, H∗ = H(X∗), β̄ = A−1HK−1
f y,

R = H∗−HK−1
y K∗f and A = HK−1

y H⊤.
Another important step to model the objective as the stochastic process is choosing the
covariance function. It is assumed that the prediction should not be stationary and uniform
over the positive univariate domain x. This means that, the local minima should not occur
everywhere and the pattern of the covariance function should not be repetitive over the
positive univariate domain. Therefore, the stationary covariance function, such as the squared
exponetial, can not be used. It is also assumed that the local minima should be located in the
interval where the data exists, the observations outside that interval diverge. This allows the
algorithm to interpolate within the confident interval where the data exists, and extrapolate
outside the interval due to uncertainty.
As the smoothing spline model (Subsection 2.5.3) has different solutions for the region within
and outside the data interval and its formulation is related to the uninformative prior described
by equations 2.14, 2.15 and 2.16, the characteristics of the smoothing spline covariance
function are well-suited to the application.
Another advantage of using this covariance function over others is that it has only one
hyperparameter to be estimated, which is shown later in this chapter. This can reduce the
computation power and the processing time to make the algorithm more robust.
Given we proceed with the smoothing spline covariance function, as our algorithm relies
on both the objective and gradient information to find the optimal solution, the projected
gradient value should also be modelled as a Gaussian Process. Therefore, the Gaussian
process can then be written as,[

f
f ′

]
∼ G P

(
0,

[
k k∂

∂ k ∂ k∂

])
(2.17)

where ∂ i
k∂ j

= ∂ i+ jk(x,x′)
∂xi∂x′ j . This equation is an extent of equation 2.9.

Another reason of choosing the spline model is that the deviations (noises) of the objective
values and projected gradient values can be modelled by the basis functions. There are two
spline models used in this paper, such as cubic spline and quintic spline mentioned before.

14 Background

The main difference between these two spline models is that the quintic spline uses the
quadratic basis function to model the objective and gradient values’ deviations, while the
cubic spline uses the linear basis function.

Figure 2.3 Prediction difference between the cubic spline and the quintic spline.

Refer to Figure 2.3, it can be observed that the uncertainty bar denoted by the grey shaded
area of the quintic spline is thinner than that of the cubic spline. This shows the quintic spline
can model more prior from the data.
Smoothing cubic spline covariance has the form of,

k = θ
2 (1/3min(x,x′)3 +1/2|x−x′|min(x,x′)2)

)
k∂ = θ

2/2((x−x′)min(x,x′)+xx′)
∂ k = θ

2/2((x′−x)min(x,x′)+xx′)
∂ k∂ = θ

2 min(x,x′) (2.18)

2.6 Bayesian Optimization 15

Smoothing quintic spline covariance has the form of,

k = θ
2/4(1/5min(x,x′)5 +1/2|x−x′|min(x,x′)4 +1/3(x−x′)2 min(x,x′)3)

k∂ = θ
2/4(2/3(x′−x)min(x,x′)4 +1/2(x2−x′2)min(x,x′)2 +1/2(xx′)2)

∂ k = θ
2/4(2/3(x−x′)min(x,x′)4 +1/2(x′2−x2)min(x,x′)2 +1/2(xx′)2)

∂ k∂ = θ
2(1/3min(x,x′)3 +1/2|x−x′|min(x,x′)) (2.19)

where θ 2 is the signal variance, and we denote the covariance function as follows,

Kf = Kspline =

[
k k∂

∂ k ∂ k∂

]
(2.20)

These equations for the smoothing spline covariances can be derived from equation 2.7. The
detailed derivations can be seen from Appendix B.
The algorithm can access only noisy objective and projected gradient values yx,y′x at location
x, with Gaussian likelihood given the Gaussian process f ,[

yx

y′x

]
∼N

([
fx

f ′x

]
,

[
σ2 0
0 ρ2

])
(2.21)

where σ2 is the function value noise variance and ρ2 the gradient value noise variance.
Given a set of evaluations (x,y,y′)(training set of vectors, with elements xi,yxi,y

′
xi

and
1≤ i≤ T , where T is the number of entries), the vector of observations can be modelled as
follows,

Y =

[
y
y′

]
∼N

([
f
f ′

]
,

[
σ2I 0

0 ρ2I

])

∼N

(
0,Kf +

[
σ2I 0

0 ρ2I

])
∼N (0,Kf +Σnoise) (2.22)

Similar to equation 2.15, another Gaussian process can be obtained,[
g(x)
g′(x)

]
∼ G P

(
H⊤b,Kf +H⊤BH

)

16 Background

where H = [h(x),h′(x)]⊤ and we denote the new covariance function as follows,

K = Kf +HBH⊤ (2.23)

where its inverse is denoted as Z. It can lead to the same predictive distribution Y mentioned
by equation 2.16 with the limit of uninformative prior.
Consider Ky = Kf+Σnoise, there is a problem to evaluate K−1

y because the line search always
starts from the location x1 = 0 and ρ2 = 0 causing zero walls due to min(x,x′) in the
covariance function, and thus zero determinant. The expressions of A−1 and Z cannot be
evaluated properly as the result.

Ky =


σ2 0 0 0
0′ > 0 0′ > 0
0 0 0 0
0′ > 0 0′ > 0

 (2.24)

where 0 = 01×T−1 is the zero matrix and > 0 => 0T−1×T−1 is the non zero matrix.
To solve these numerical problems, we have rearranged the positions of zero elements in the
matrices, and provided the new forms of K−1

y ,A,A−1,Z,Y and H. The details are mentioned
in Appendix C.
The negative log marginal likelihood (nlml) is rewritten as (derived from Appendix D),

− log p(Y|X) =
1
2

Y⊤K−1Y+
1
2

log |K|+ n
2

log2π

=
1
2

Y⊤ZY+
1
2
(log |Ky|+ log |B|+ log |A|)+ n

2
log2π

≈ 1
2

Y⊤ZY+
n
2

log2π +
1
2
|K22|

+
1
2



if cubic spline,

log[(σ2a+1)(ρ2c+1)−ρ2σ2b2]

if quintic spline,

log[(σ2a+1)((ρ2c+1) f −ρ2e2)

+σ2ρ2b(2ed−b f)−σ2d2(ρ2c+1)]

(2.25)

where a,b,c,d,e, f are the coefficients mentioned in Appendix D.
To fit the Gaussian Process model needs the best settings of hyperparameters which should
minimize the negative log marginal likelihood.
From equations 2.18, 2.19 and 2.25, there are three hyperparameters (θ 2,σ2,ρ2) required to

2.6 Bayesian Optimization 17

be optimized. In this paper, we assume that the observations from the projected gradients are
noise-free, i.e. ρ2→ 0 because the objective is more susceptible to noise than the projected
gradient in the real-life problem, and this can further simplify the optimization problem as
a problem of τ2 by defining the function value noise to signal variance ratio as τ2 = σ2

θ 2

described in the details of Appendix E.
As seen from Appendix E, to estimate the hyperparameters, an analytic solution for θ 2 is
derived as a function of τ2. And τ2 is optimized by Newton Optimization.
The closed form solution for θ 2 is given by,

θ̂
2 =

1
Tr(Z̄yK̄y)

Y⊤Z̄yY (2.26)

where

Tr(Z̄yK̄y) =

 2n−2 if cubic spline

2n−3 if quintic spline

Z̄y = K̄−1
y − K̄−1

y H⊤(HK̄−1
y H⊤)−1HK̄−1

y

K̄y = Kf + τ
2F

F = Σnoise, when ρ
2→ 0

As the hyperparameters must be positive, they are mapped into the log-scale before applying
Newton Optimization over τ2.

τ
2 = exp2τ̄ (2.27)

θ
2 = exp2θ̄ (2.28)

The Newton Optimization of τ2 is given by the following equation,

τ̄[t +1] = τ̄[t]−H−1g (2.29)

where H and g are the Hessian and gradient respectively. The negative sign can be replaced
by the positive sign as the backup optimization process.
The gradient is given by,

− ∂

∂ τ̄
log p(Y|X) =

1
2

Tr
(
(Z− zz′)

∂K
∂ τ̄

)
(2.30)

18 Background

where Z = K−1, z = ZY and B = Z− zz′.
The Hessian is given by,

− ∂ 2

∂θ 2 log p(Y|X) =
1
2

∂

∂θ
Tr
(

B
∂K
∂θ

)
=

1
2

Tr
(

∂K
∂ τ̄

Z
∂K
∂ τ̄

(2zz⊤−Z)
)
+

1
2

∂ 2θ̂ 2

∂ τ̄2 Tr(BK̄y)

+2τ
2 ∂ θ̂ 2

∂ τ̄
Tr(BF)+2τ

2
θ̂

2 Tr(BF) (2.31)

where ∂ K̄y
∂ τ̄

= 2τ2F, ∂ 2K̄y
∂ τ̄2 = 4τ2F,

∂K
∂ τ̄

= θ̂
2 ∂ K̄y

∂ τ̄
+

∂ θ̂ 2

∂ τ̄
K̄y

∂ θ̂ 2

∂ τ̄
=− 1

Tr(Z̄yK̄y)
Y⊤Z̄y

∂ K̄y

∂ τ̄
Z̄yY

∂ 2θ̂ 2

∂ τ̄2 =
2

Tr(Z̄yK̄y)
Y⊤Z̄y

∂ K̄y

∂ τ̄
Z̄y

∂ K̄y

∂ τ̄
Z̄yY

− 1
Tr(Z̄yK̄y)

Y⊤Z̄y
∂ K̄y

∂ τ̄
Z̄yY

2.6.2 Sampling new point by Expected Improvement

From the previous part, the predictive distribution over the search region is computed.
To improve the prediction, the next evaluation point within the region of interest is required
so that the algorithm can have a better understanding about the landscape of the search
region. It is not a random sampling process like the one in line search but is governed by the
Bayesian Optimization.
Consider the prior and the data have induced a posterior over functions (i.e. the predictive
distribution), to avoid evaluating the expensive objective repeatedly and randomly, the concept
of the acquisition function (u(x), or sometimes called the utility) acting as a replacement of
the objective is introduced. To select the new potential point requires finding the entry which
maximizes the utility as follows,

x j+1 = argmax
x

u(x) (2.32)

The utility u is defined to take the mean and the covariance of the predictive distribution
into account, and has to make a decision that can balance the trade-off between exploration

2.6 Bayesian Optimization 19

and exploitation so that the algorithm can either investigate the uncertain region or find the
optimized point (in our case, the minimum point).
There are several choices for the acquisition function. One is the probability of improvement
[16] which is given by,

uPI(x) =
1
2

(
1+ erf

η−µ√
2V(x)

)
(2.33)

where η = mini=1,...,T{µ(xi)}, µ is the predictive mean and V = σ2
X∗|Y,X is the predictive

covariance.
Another option is the expected improvement [2], the proper formulation is stated as follows,
The utility [10] is given by,

uEI(x) = Ep(ft |y,y′)[min{0,η− f (t)}]

=
η−µ(x)

2

(
1+ erf

η−µ(x)√
2V(x)

)

+

√
V(x)
2π

exp
(
−(η−µ(x))2

2V(x)

)
(2.34)

The complete derivation is shown by [5]. Many research studies [7][10] have shown and
suggested that the expected improvement is the better option than the probability of improve-
ment, so the project proceeds with the expected improvement as the acquisition function
(utility). Below is the example of using the expected improvement to improve the prediction.

Figure 2.4 Examples of expected improvement [2] predicted by 2 points.

20 Background

From Figure 2.4, given two points (with the red dots as the objectives and the green bars as
the projected gradients), the prediction (the red curve is the true mean and the black one is
the predictive mean, the grey region is the uncertainty) is made as shown in the top subplot.
It gives the corresponding utility which peaks at the region far away from the existing points
as seen from the bottom subplot. Investing the new point in that region can result in an
extrapolation step which is similar to that in the original line search algorithm from Appendix
A.2.

Figure 2.5 Examples of expected improvement predicted by 3 points.

Immediately after investing the new point, the new prediction and its utility are made as
shown in Figure 2.5. Both the profiles of the prediction and the utility are changed. With the
smaller predictive error (the grey area) within the search region, the algorithm can now look
for the entry with the lowest predictive mean to find the local minimum.

Therefore, with the predictive distribution, the new evaluation point with the highest utility
can be computed, sampled and added into the training data, to improve the prediction in
the next iteration as seen from Figures 2.4 and 2.5. The decision made by the expected
improvement can provide both interpolation and extrapolation steps.

Chapter 3

Algorithm Design

3.1 Related Works

There is a discussion about how to terminate the probabilistic line search algorithm. In the
design of line search algorithm, it terminates if the acceptable step-size satisfying the strong
Wolfe Condition is found. But this comes with the problem of early stopping due to the noisy
observations.
The research study [10] which models the observations as the stochastic process suggests that
the Wolfe Conditions can be expressed in a probabilistic way, which triggers termination if
the Wolfe probability is greater than a threshold. Their implementation does have a promising
performance.
On other hand, there are some research studies [5][17][18][19][20] suggesting that the
expected improvement may have a convergence property but most of them only work with
certain assumptions, such as noise-free observations or kernels (covariance functions) in
Hilbert space. Despite the popular use of the expected improvement, only a few research
studies have considered the stopping criteria for it. There is one research [5] suggesting a
possible termination criteria. Based on the observations that the utility value decreases with
the number of evaluation points and iterations, they terminate the expected improvement
when the new evaluated point has the utility lower than the threshold 0.5. The settings of
their algorithm perform better than the benchmark settings both in computation complexity
and accuracy. Therefore, It is worthwhile to investigate the stopping criteria of the expected
improvement.
After some tests on the decisions made by the expected improvement, it is observed that
it always begin with an extrapolation step to the region far away from where the existing
entries locate because of the high uncertainty, and performs multiple interpolation steps
within the search range. And most of the interpolation steps fall into the region nearby the

22 Algorithm Design

local minimum point, which is regarded as the potential interval. If it is assumed that the
bounds of this potential interval can converge to a termination point after a finite number of
iterations, it is possible to replace the properties of the Wolfe Conditions with those of the
expected improvement. It is because the expected improvement built upon the stochastic
model has already taken the observations (function values for sufficient decrease condition
and projected gradients for curvature condition) into account to determine where to invest
the new point, for example, the extrapolation due to high uncertainty can replace that due
to violation of the Wolfe Conditions and the interpolation due to low predictive mean can
ensure the iterative improvement guaranteed by the Wolfe Conditions. The only difference is
that, the line search uses the Wolfe Condition to localize the interval and select a termination
point from it, meanwhile, my algorithm uses the expected improvement to narrow down the
potential interval until it converges to a termination point.
This assumption of replacing the Wolfe Conditions with the expected improvement can
be appealing because the early stopping due to the satisfaction of Wolfe Conditions, the
additional calculation of the probabilistic Wolfe Conditions, which might potentially reduce
the processing time, and the parameter settings c1,c2 can be avoided.

3.2 Outline

The design for the probabilistic line search is proposed here. It is assumed that the expected
improvement can lead to the convergence of the potential interval [xmin,xmax] = [κ,κ +∆]

where the ideal step-size x′e is located, so that the bounds are assumed to converge to a
termination point which approximates the ideal step-size. κ is denoted as the lower bound of
the potential interval and ∆ is the width of the potential interval.
So the termination criteria of the probabilistic line search is not any extent of the strong
Wolfe Conditions or their variations, but instead the width of the potential interval ∆ when it
is lower than an argument tolerance 1×10−3. This termination criteria resembles one of the
stopping criteria which terminates BFGS when the change of the two consecutive starting
vectors is too small |se+1− se| < 1× 10−8. Undoubtedly, this stopping criteria is weaker
than that from BFGS because 10−3 >> 10−8 but more restrictive than the Wolfe Conditions
because the bounds have to converge to a termination point.
It is interesting to investigate how optimization algorithm can operate without Wolfe Condi-
tions but with Bayesian Optimization.
The stopping criteria is given by,

xmax− xmin = ∆≤ 10−3 (3.1)

3.2 Outline 23

Let’s consider, BFGS begins with the inputs of function f and the starting vector s1. A while
loop with a counter variable e, named epoch, is initialized to execute gradient descent and
line searches repetitively until it is terminated by the stopping criteria.
For each epoch e (starting from 1), BFGS takes the starting point se(=1) (which is a step-size
of 0, i.e. xe

n=1 = 0), computes the search direction te and outputs the acceptable step-size
xe

n=2 = xe. n denotes the indexing of initial data (i.e. the total number of initial entries is
N = 2 so n is either 1 or 2).
Our algorithm then inherits those 2 starting entries (xe

1 and xe
2), the starting vector se and

search direction te, and initializes another while loop with a counter variable i. It is assumed
that the 2 starting entries are the bounds of the potential interval in each iteration i, i.e.
[xe

1,x
e
2] = [xei

1 ,x
ei
2] = [xmin,xmax]. One may argue this assumption may restrict exploration.

But since those two starting entries are renewed in each iteration i by a selection scheme,
which is described later, such that they can be different from the previous entries and
not within the previous potential interval, the algorithm is able to extrapolate as well, i.e.
xe,i+1

1:2 /∈ [xe,i
1 ,xe,i

2] and |xe,i+1
1 − xe,i+1

2 |> |xe,i
1 − xe,i

2 |.
Within this while loop i, there is another while loop with a counter variable j which will
reset to 0 for each iteration of i. Based on the Bayesian Optimization, each iteration j of the
while loop can sample a new evaluation point xei

N+ j from the search range [κ,κ +δ∆] (δ is
the range factor) and its observations yei

N+ j,y
′ei
N+ j. This loop terminates if the new evaluated

point is too close to one existing point, which may indicate the region where those two close
points are located is the new potential interval.
Thus, in each new iteration i+ 1, the bounds of the potential interval [κ,κ +∆] are re-
estimated. The process repeats until the width of the potential interval satisfies the condition
from 3.1. At the end of the probabilistic line search algorithm, it should be able to output the
better predicted value of the step-size x′e =

1
2(2κ +∆).

The new optimal step-size should ensure that BFGS can start with a better starting vector
se+1 = se + x′ete for the next epoch e+1 to improve its performance.
The pseudocode (Algorithm 1) is the outline of my algorithm. The rest of the chapter will
focus on explaining the rationales behind each important step of the algorithm.

24 Algorithm Design

Algorithm 1 Probabilistic Line Search
1: Input: se, te,xe

1,x
e
2, f ,∇ f .

2: Default Settings: Spline = Quintic, rescale = on, δ = 5 and N = 4
3: Initialize ∆ = 10, i = 0,κ = 0, se,xe

1,x
e
2→ se1,xe1

1 ,xe1
2

4: while ∆ > 0.001 do i = i+1, j = 0
5: if i > 1 then Inherit stepsamples: T,B,C←sei,tei,xei

1:N ,y
ei
1:N ,y

′ei
1:N

6: end if
7: Store location data. orgls,stepls← xei

1:N

8: while true do j = j+1
9: if i = 1 and j = 1 then Initialize stepsamples: T,B,C←sei,tei,xei

1:2, f ,∇ f

10: end if
11: if j=1 then a = xei

2

12: else Add new stepsamples: T,B←sei,tei,T,xei
N+ j, f ,∇ f

13: end if
14: rescale: T′,B′,C′,orgls′,stepls′,scale←T,B,C,orgls,stepls

15: predict: µ,cov← T′,C′

16: α̂
max←−− u← EI(µ,cov)

17: selection: stepls′←α←T′,C′,u,a,scale,δ

18: if min|orgls′− α̂|< a×scale
δ

then
19: Cluster two close data x

′e,i+1
1:2 ←stepls’ and sort them in ascending order

20: unscale: T,C,xe,i+1
1:2 ←T′,C′,scale,x

′e,i+1
1:2

21: Update the potential interval κ=κ+xe,i+1
1 ,se,i+1=se,i+xe,i+1

1 te, ∆=xe,i+1
2 −xe,i+1

1

22: Remain N more data T→xe,i+1
3:N+2

23: shift: xe,i+1
1:N+2=xe,i+1

1:N+2−xe,i+1
1

24: return xei
1:N ,y

ei
1:N ,y

′ei
1:N(dummy:N+2→N) and break

25: end if
26: orgls′,x′ei

N+ j←α̂

27: unscale: T,B,C,orgls,stepls,xei
N+ j←T′,B′,C′,orgls′,stepls′,scale,x

′ei
N+ j

28: end while
29: end while
30: Output: x′e=

1
2 (2κ+∆).

There are some parameters that can affect the performance of the probabilistic line search
algorithm, including δ and N. δ is the search factor which determines the maximum search
range for each i-th iteration (i.e. δ × xei

2) and the minimum separation tolerance between two
location datapoints (i.e. xei

2 /δ) which trigger termination of the j loop. N is the maximum

3.3 Step-samples generation 25

number of data (except the trigger datapoints) can be remained from the previous iteration i.
This parameter is also used to alter the retain range defined in the later section, which allows
us to check which region most of the retain data comes from. Different rescale modes and
various kind of splines should alter the performance of the algorithm.
The following sections are the notes-worthy details in the algorithm.

3.3 Step-samples generation

For each j-th iteration, a new evaluation point xei
N+ j is added. The noisy observations,

including the objective value yei
j and the projected gradient value y

′ei
j , are necessary for the

prediction. Assume that the noise is Gaussian-distributed, they are given by,

yei
N+ j = f (sei + xei

N+ jte)+ ε
ei
N+ j = φ(xei

N+ j)+ ε
ei
N+ j (3.2)

y
′ei
N+ j = te ·∇ f (sei + xei

N+ jte)+ν
ei
N+ j = φ

′(xei
N+ j)+ν

ei
N+ j (3.3)

, where εei
N+ j ∼ σ2N (0,I) and νei

N+ j ∼ ρ2N (0,I).
The collection of all xei

N+ j,y
ei
N+ j,y

′ei
N+ j is named as the train data T.

The collection of the curve entries and their noise-free observations is sampled directly
from the function and named as the curve data C. Its location xei

∗ j is ranged from xei
1 = 0 to

δxei
2 (or δ∆). The curve data is important because its location entries can be used to form

Kf(x,x∗),Kf(x∗,x∗),H∗ and its observations are for plotting purpose. The slope bar data B
is also generated to show the gradient information of the train data in the diagram as follows,
set ϑ = 0.02 (which controls how wide the slope bar is),

yei
N+ j = φ

′ei
N+ jx

ei
N+ j +ξ

ei
N+ j

ξ
ei
N+ j = yei

N+ j−φ
′ei
N+ jx

ei
N+ j

(xei
N+ j,low,x

ei
N+ j,high) = xei

N+ j +(−ϑ ,ϑ)

(yei
N+ j,low,y

ei
N+ j,high) = ξ

ei
N+ j +φ

′ei
N+ j(x

ei
N+ j,low,x

ei
N+ j,high)

where ξ is the intercept of the linear equation. This part corresponds to lines 5, 9 and 12 of
Algorithm 1.

3.4 Scaling factor

Since the stepsize sample always is greater than 0, if it is in the range of (0,1), the elements
of covariance matrix become very small due to the 3rd power of cubic spline and 5th power

26 Algorithm Design

of quintic spline, causing badly-scaled matrix.
To solve the following problem, every entry is re-scaled by the 2nd smallest location since
the smallest location is always 0. As the location is scaled, the slope (projected gradient) also
has to be re-scaled as follows,

xei
N+ j←

γ

xei
2

xei
N+ j

y
′ei
N+ j←

xei
2
γ

y
′ei
N+ j (3.4)

, where γ =


√

3 if cubic spline√
20
3 if quintic spline

Therefore, from Figure 3.1, the location entries and their projected gradients are rescaled.

Figure 3.1 The example of rescaling the entries and their projected gradients.

The γ factor is obtained from the squared-root-ratio of the smallest coefficients between k and
∂ k∂ from equations 2.18 and 2.19. It is used to eliminate the coefficients in the covariance
functions so the location of the 2nd smallest entry can be rescaled to the value greater than 1.
The scale γ

xei
2

can be re-used for un-scaling. It is important to carefully apply re-scaling and
un-scaling since mixing up rescaled or unscaled data can cause poor prediction.
This part corresponds to lines 14, 20 and 27 of Algorithm 1.

3.5 Prediction 27

3.5 Prediction

Before computing the predictive distribution, the settings of hyperparameters (i.e. θ 2,τ2) are
required.
Consider, the algorithm is initialized by only 2 location data (i.e. xe1

1 ,xe1
2) with 4 known

observations (i.e. ye1
1 ,ye1

2 ,y
′e1
1 ,y

′e1
2), they are not enough to solve the unknowns of the

quintic spline model but enough for those of the cubic spline because of 2 extra unknowns
(coefficients) from linear basis function of cubic spline and 3 extra unknowns from quadratic
function of quintic spline.
Therefore, Newton Optimization (equation 2.29) is only applied to solve τ2 when there are 3
location data (6 knowns) for quintic spline and 2 for cubic spline. To compute the preliminary
settings, τ2 is set to 1 so that the value of θ 2 and nlml can be computed from equations 2.26
and 2.25.
We set the default setting of the function noise to signal variance ratio as τ2 = 1 implying the
prior assumptions as it is not possible to estimate hyperparameters uniquely.
Once there are enough observations to infer the unknowns, a while loop is set up to improve
τ2 by Newton Optimization, and compute its corresponding θ 2 and nlml. The loop terminates
until a particular setting of τ2 results in a lower nlml value or the counter of the loop exceeds
the threshold. If there is no better solution found after the loop, this might be due to the
bad estimate estimate of the Hessian sign so another loop is set up to improve it by Newton
Optimiation with the positive sign as a backup plan. But the reasons leading to bad Hessian
has to be investigated in the future work.

Figure 3.2 How to initialize τ2 and optimize it for the quintic spline model.

From Figure 3.2, the left bottom subplot shows that the nlml profile is flat (i.e. ∼ 2) when
there are only 2 entries subjected to the prediction from the left top subplot, as not enough
information is available to solve the unknowns of the quintic spline. Once a new evaluated

28 Algorithm Design

point is added at the right top subplot, the nlml profile from the right bottom subplot is no
longer flat, so that a new setting of τ2 can be optimized. But the Newton Optimization does
not work properly with the negative sign, then the backup plan is activated with positive sign
to solve the problem.
With the settings of hyperparameters, the predictive distribution can be computed from
equation 2.16 to fit the model with the data. This part refers to line 15 of Algorithm 1.

3.6 Selection, Shift, Zoom and Retain

As the predictive distribution is given, the utility of each location can be computed (i.e. line
16 of Algorithm 1). The algorithm usually selects the location with the highest utility as the
new evaluation point (lines 16 and 26 of Algorithm 1) to improve the prediction for the next
iteration j+1 as seen from Figure 3.3.

Figure 3.3 The new evaluation point is usually the location with the highest utility.

Figure 3.3 shows the predictive distributions at the top subplots and the utilities of their
corresponding distributions above at the bottom subplots. The blue shaded region denotes the
trigger regions [−xei

2
δ
,+

xei
2
δ
] where the new evaluated points should not locate, or otherwise,

it triggers a set of shifting, zooming and retaining actions which are discussed later in this
section.
The left bottom subplot shows that the utility peaks at the left hand side of the plot, so the
algorithm invests a new point right there leading to the better predictive distribution with
thinner uncertainty at the left hand side of the right top subplot.

3.6 Selection, Shift, Zoom and Retain 29

Figure 3.4 The example of zoom.

If the new evaluated point is close to one of the existing point (i.e. within the blue shaded
region) by the following unscaled condition (refers to line 18 of Algorithm 1),

|xei
−(N+ j+1)− xei

N+ j+1|<
xei

2
δ

where xei
N+ j+1 is the new evaluated point and xei

−(N+ j+1) is the existing evaluated points except
the new one for iteration j + 1, adding this new location entry may cause bad condition
number for the matrix in a long run. But the theory of expected improvement implies that the
region around this new evaluated point has a potential to explore.
Therefore, when a new evaluation point xei

N+ j+1 is close to the existing point xei
N+ j, the

algorithm is designed to automatically terminate the while loop j, collect xei
N+ j as the first

entry of the starting subset (xe,i+1
1 ,xe,i+1

2), re-sample another point which has the highest
utility but is located on the margin of or outside the blue shaded region as the second entry
and then collect N previous points within the new retain range (refers to lines 17, 19 and 22
of Algorithm 1). The reason of not choosing xei

N+ j+1 and xei
N+ j directly as the new starting

subset is that, if they are equivalent, the algorithm cannot make the prediction based on one
datum, or if they are very close, the algorithm may converge too quickly since ∆→ 0.
In most of the cases, the utility is continuous across the search range so the second entry
of the starting subset is either xei

N+ j + xei
2 /δ or xei

N+ j− xei
2 /δ as shown in Figure 3.4 which

illustrates that the first two entries of the new starting subset are those two red crosses in the
bottom subplot as the utility peaks within the blue shaded region.

30 Algorithm Design

There is another advantage of choosing xei
N+ j and another location (which is outside the blue

region and has the highest utility) as the new starting subset. If the algorithm has already
investigated the search region [0,δxei

2] thoroughly, there are multiple blue shaded regions
across the search region. When the algorithm determines to extrapolate, the second entry for
the starting subset should be selected from the non-blue region, then it is more likely to be
far away from the first entry, resulting in a larger width of search interval ∆ = |xe,i+1

1 −xe,i+1
2 |

to extrapolate which can possibly lead to a better sub-optimal solution.
Therefore, these two entries are clustered to update the potential interval, the new interval
width ∆ and lower bound κ .

Figure 3.5 The example of the new starting subset leading to extrapolation for the next
iteration.

From Figure 3.5, the algorithm invests two points at the right end region. So one point is
sampled from the right end. Another is sampled according to the rule that it should be outside
the trigger region and have the highest utility. The algorithm then takes the red cross on the
left side of the bottom subplot as the second entry. The two starting entries are far away
from each other. They are sorted in the ascending order, the smallest entry becomes the
new starting point, the gap difference between two entries becomes the new width of the
potential interval. The algorithm shifts to this potential interval [κ,κ +∆] for the next search
in iteration i+1. The whole process corresponds to lines 19-24 of Algorithm 1.

3.6 Selection, Shift, Zoom and Retain 31

Figure 3.6 The example of retaining data for the next iteration i.

To avoid the search process to be very random between consecutive iterations of the while loop
i, some data must be retained from the previous iterations. N datapoints are selected randomly
to form part of the new starting subset xe,i+1

3:N+2 if they satisfy the following conditions,

xe,i+1
3:N+2 ̸= xe,i+1

1:2 (3.5)

and
xe,i+1

3:N+2 ∈ xe,i+1
1 +(δ −N,δ)(xe,i+1

2 − xe,i+1
1) (3.6)

where δ is the range factor, N is the maximum number of data remained (except the first two
entries which trigger the termination of the while loop j) and δ ≥ N.
This retaining region is defined as the region behind the smallest location entry (i.e. xe,i+1

1)
of the starting subset as shown in Figure 3.6 (the green shaded area). The reason of choosing
(δ −N)∆ as the lower limit is to observe which retaining region behind the smallest location
entry is the most informative one for the next iteration. With the lower value of N, the lower
bound of the retaining area is shifted to the right.
There is another condition can be tested to replace the condition xe,i+1

3:N+2 ∈ xe,i+1
1 +(δ −

N,δ)(xe,i+1
2 − xe,i+1

1). It is given by,

xe,i+1
3:N+2 ∈ xe,i+1

1 +(0,N)(xe,i+1
2 − xe,i+1

1) (3.7)

32 Algorithm Design

So reversely, the lower limit remains unchanged, but the upper limit is increased with N.
This retaining process refers to line 22 of Algorithm 1.
From Figure 3.6, the top subplot shows the utility of the prediction, and the algorithm
determines to cluster that two points with red crosses at the left hand side of the top subplot
as the first two starting entries. The left bottom subplot shows the region (green shaded area)
which retains the data when N = 3. The right bottom subplot shows the retain region when
N = 5. These examples indicate that N affects both the number of data remained and the
retain region range. Both of them determine to retain one point in the second blue shaded
region. If N = 0 or 1, then that point is not retained because it is not within the defined retain
range.

3.7 Range of stepsize

Each iteration of the while loop i generates at least two new entries xe,i+1
1 ,xe,i+1

2 (xe,i+1
1 <

xe,i+1
2 and |xe,i+1

1 − xe,i+1
2 | < xei

2 /δ). Consider the probabilistic line search is initialized by
se1, te,xe1

1,2, it should iterate with the updates of the new starting vector se,i+1, the lower bound
κ and the potential interval width ∆,

se,i+1 = se,i + xe,i+1
1 te (3.8)

κ = κ + xe,i+1
1 (3.9)

∆ = xe,i+1
2 − xe,i+1

1 (3.10)

Therefore, the potential interval of the stepsize can be given by,

(x′e,min,x
′
e,max) = ∑

i
(xe,i

1 ,xe,i
2) = (κ,κ +∆) (3.11)

The potential interval width should decrease over iterations, if i→ ∞, ∆→ 0.
All the entries of the starting subset xe,i+1

1:2+N are also shifted accordingly. This corresponds to
lines 21, 23 and 24 of Algorithm 1.
As illustrated in Figure 3.7 below, the area of blue shaded region is decreasing over iterations
i until its (xmin,xmax) width is less than or equal to 0.001. Therefore, the following algorithm
should give an approximation of where the optimal step-size is located.

3.7 Range of stepsize 33

Figure 3.7 Evolution of the potential interval [κ,κ +∆] over iteration i for an one dimensional
quadratic problem with σ2 = 0.01.

Based on this algorithm design, several detailed experiments were conducted to evaluate its
performance in the next Chapter.

Chapter 4

Experiments

Experiments were conducted on the algorithm to assess its abilities to interpolate, extrapolate
and terminate in different optimization problems. Since the algorithm was still in the
development stage, the following experiments focused on identifying the potential design
problems, characteristics, strengths and weaknesses of the algorithm. Thus, the algorithm
had not been merged with the line search and BFGS to run in various optimization problems.
The default settings of the algorithm were, the derivative noise-to-signal ratio was set to
ρ2 = 0, it used the smoothing quintic spline with rescaling, the range factor was set to δ = 5
and the maximum number of retained data was set to N = 4.
There were few performance metrics designed for this experiment to assess the performance
of the algorithm. One was the average precision measured by variance (var) to compare how
deviate the 100 predictions were.

var =
∑

100
l (x′e− x′el)

2

N
(4.1)

, where x′el is the predicted step-size for the l-th loop. The lower the predictions variance is,
the higher the precision the predictions have.
Next was the average accuracy measured by the difference between the optimal step-size
and the average predicted step-size (avg) over 100 iterations in the loop l. The smaller the
difference is, the higher the accuracy of the predictions is.
Other useful metrics were, the average processing time (t) measured how long each loop took,
the success rate (SR) within 100 predictions (it counted how many runs were able to output a
predicted value and was useful to measure how often the bugs occurred when running the
algorithm), and the within rate (WR) within 100 predictions (it counted how many times the
predicted step-size was within a certain range, which was particularly useful if there were
multiple local minima within the search range).

36 Experiments

There were multiple settings can be altered during the experiments, including the spline
polynomials (either cubic or quintic), the rescale on-off settings, the range factor δ , the
maximum number N of retained entries after each iteration i and the function noise variance
of the generated data σ2, to identify which can give the best performance.
The followings were the optimization problems had been experimented on.

4.1 One Dimensional Quadratic Problem

f (x) = 3x2
1 + x2

2 +55x2
3 +2x2

4 + x2
5 (4.2)

These experiments were to test whether my algorithm can find the optimal solution for a
simple convex optimization problem (without multiple local minima and wide flat region).

i-th 1 2 3 4-5
θ 2 7.77×10−1 1.59×10−3 1.00×10−6 0

Table 4.1 Evolution of the signal variance changed over iteration in the search range [κ,κ +
δ∆] from Figure 3.7.

The search was begun with se = [0.8561,4.6657,−0.0115,−2.0839,3.6095]′, xe = 0.3840,
te = [0.2064,0.1797,0.0114,0.4667,0.1391]′, the ideal step-size was 0.1315. As seen from
Figure 3.7, the algorithm was able to interpolate to improve the original step-size. The
prediction was x′e = 0.135 which was better than the original one xe = 0.384. In this run, the
function noise variance was set to 0.01 which became more dominant than the signal variance
starting from the second iteration in Table 4.1. But the algorithm was able to converge in the
high function noise to signal variance region.
Some experiments were run to examine how different parameters settings may affect the
performance.

σ2 avg var SR t (s)
0.001 0.139 4.81×10−5 92 5.10
0.01 0.152 5.05×10−4 91 5.79
0.1 0.224 7.78×10−3 97 6.43

Table 4.2 Influence of the function noise variance towards the performance. Settings were:
ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

When the function noise variance was decreased, the average predicted value became closer
to 0.1315. The accuracy and the precision got improved. The success rate and the processing

4.1 One Dimensional Quadratic Problem 37

time were also increased with the noise variance. This indicated that the algorithm took
more time to process the noisy observations, and the lower noise variance may cause more
precision error in the calculations so the success rate decreased.

N avg var (10−4) SR t (s)
0 0.153 5.66 97 7.73
1 0.151 4.52 97 6.52
2 0.152 5.65 93 5.95
3 0.157 7.37 94 6.10
4 0.152 5.05 91 5.79
5 0.152 6.62 89 5.93

Table 4.3 Influence of the retained data towards performance metrics. Settings were: ρ2 =
0,δ = 5,σ2 = 0.01, rescale=True,spline=quintic.

Table 4.3 showed that the parameter N did not affect the precision and the average prediction
at all. But taking no data from the previous iteration took more time to process. A larger
value of N can reduce the success rate, maybe because when xei

3:N+2 were too close to xei
1:2, the

algorithm failed to make the prediction. This was quite counter-intuitive because investing
points in the new potential interval should give more information.

δ avg var (10−4) SR t (s)
4 0.156 3.84 92 6.95
5 0.157 7.37 94 6.10
6 0.149 4.20 95 7.03

Table 4.4 Influence of the range factor towards performance metrics. Settings were: ρ2 =
0,σ2 = 0.01,N = 3, rescale=True,spline=quintic.

The success rate increased with the range factor δ as observed from Table 4.4. But the effect
was not significant, and no other trend was observed.

mode avg var SR t (s)
on 0.152 5.05×10−4 91 5.79
off 0.132 7.38×10−13 100 4.40

Table 4.5 Influence of the rescale mode towards performance metrics. Settings were: ρ2 =
0,σ2 = 0.01,δ = 5,N = 4,spline=quintic.

38 Experiments

The algorithm without rescaling mode showed a better general performance than that with
rescaling.
But theoretically, the algorithm with rescaling should perform equally or better than that
without rescaling. This might indicate that the scaling was implemented incorrectly.

spline avg var (10−4) SR t (s)
quintic 0.152 5.05 91 5.79
cubic 0.146 4.68 95 6.96

Table 4.6 The influence of the spline model towards various performance metrics. Settings
were: ρ2 = 0,σ2 = 0.01,δ = 5,N = 4, rescale=True.

The quintic spline was shown to perform better in processing time but worse in other
performance metrics than the cubic spline, which was out of the expectation because we
assume that the quintic spline should perform better than the cubic spline in all metrics due
to the theory of the smoothing spline.

Figure 4.1 Evolution of the potential interval [κ,κ+∆] over iteration i for the one dimensional
quadratic problem with σ2 = 0.01 and different starting point.

Another experiment was conducted by shifting the starting point further away, i.e. se =

se−10te, as shown in Figure 4.1. When the starting point was further away from the ideal

4.1 One Dimensional Quadratic Problem 39

step-size, the algorithm was able to extrapolate until it reached the region of interest. Given
that the new ideal step-size x∗e was 10.132 and the initial step was xe = 0.384, the prediction
x′e was 10.14. This showed the algorithm design can allow multiple extrapolations during the
search.

i-th 1 2 3 4 5 6-7
θ 2 5.55×101 3.56×102 5.84×10−2 7.74×10−4 1.00×10−6 0

Table 4.7 Evolution of the signal variance over iteration i in the search range [κ,κ + δ∆]
from Figure 4.1.

From Table 4.7, the increase of signal variance from iteration 1 to 2 showed the potential
interval width became wider, leading to a big step shown in the second iteration subplot of
Figure 4.1.
Some experiments were run to examine how different parameters settings may affect the
performance in this shifted settings.

σ2 avg var SR t (s)
0.001 10.137 4.38×10−5 92 15.8
0.01 10.152 3.95×10−4 95 13.0
0.1 3.750 9.28×100 100 7.82

Table 4.8 Influence of the noise variance towards various performance metrics. Settings were:
ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

For σ2 = 0.1, the algorithm was not able to extrapolate back to the region of interest.
Similarly to Table 4.2, the smaller value of noise variance made the average prediction closer
to the ideal prediction, and increased the accuracy and precision of the prediction. The
success rate increased with the function noise variance. But the processing time decreased
with the changes of noise variance probably due to premature stopping.

40 Experiments

N avg var (10−4) SR t (s)
0 10.153 3.39 95 14.2
1 10.149 3.63 93 13.2
2 10.154 4.45 93 13.2
3 10.152 3.53 95 13.2
4 10.152 3.95 95 13.0
5 10.156 4.54 95 11.8

Table 4.9 Influence of the number of retained data towards various performance metrics.
Settings were: ρ2 = 0,δ = 5,σ2 = 0.01, rescale=True,spline=quintic.

No obvious trend was seen from Table 4.9. But without retaining data, the algorithm took
longer time to process. The reason of the parameter N not affecting the performance is that,
the number of data existing in the new search range is always is always 0 or less than N.
So, this might indicate that the retain region used to cluster the data was wrong or defined
incorrectly.

δ avg var (10−4) SR t (s)
4 10.155 4.01 93 16.9
5 10.152 3.53 95 13.2
6 10.150 4.11 94 11.6

Table 4.10 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,N = 3, rescale=True,spline=quintic.

The greater range factor δ resulted in the better average prediction which was closer to the
ideal value, and the less processing time. This was reasonable because the wider search range
allowed the algorithm to discover the minimum point quicker.

mode avg var SR t (s)
on 10.152 3.95×10−4 95 13.0
off 9.10 1.19×10−8 59 7.12

Table 4.11 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,δ = 5,N = 4,spline=quintic.

The algorithm without rescaling had a lower success rate and worse prediction than the
one with rescaling. The experiments begun to show the problem for the algorithm without

4.2 One Dimensional x4 Problem 41

rescaling. But the precision and the processing time of the algorithm without was better that
those with probably due to premature termination.

spline avg var (10−4) SR t (s)
quintic 10.152 3.95 95 13.0
cubic 10.146 4.70 96 12.0

Table 4.12 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,δ = 5,N = 4, rescale=True.

When compared Table 4.12 with Table 4.6, cubic spline was shown to have better processing
time, success rate and accuracy than quinctic spline.

4.2 One Dimensional x4 Problem

f (x) = (x−1)4 (4.3)

This optimization problem was to assess how the algorithm performed in a wide flat region
(0,2).

Figure 4.2 Evolution of the potential interval [κ,κ +∆] over iteration i in the one dimensional
x4 problem with σ2 = 0.

42 Experiments

i 1-2 3 4
θ 2 >1.00×104 8.46×10−1 8.80×10−5

i 5 6 7-9
θ 2 2.43×10−3 2.17×10−4 0

Table 4.13 Evolution of the signal variance over iteration in the search range [κ,κ + δ∆]
from Figure 4.2.

The experiment was firstly conducted by initializing the search with a point close to the ideal
step-size (x∗e = 6), i.e. se = −5, te = 1,xe = 0.2. The algorithm was able to move to and
zoom into the region of interest to find the acceptable solution. The prediction x′e from Figure
4.2 was 6.03.
Other experiments to test various parameters settings were also conducted.

σ2 avg var SR t (s)
0.001 5.80 1.74×10−4 100 11.3
0.1 5.79 9.05×10−3 98 10.6
1 3.86 4.97×100 100 8.80

Table 4.14 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

Table 4.14 showed the greater the noise level was, the further the prediction was away from
the ideal step-size and the less precise the prediction was. Low noise variance resulted in
longer processing time. These indicated that the extrapolation capability was better and the
processing time was longer if the noise level was smaller.

N avg var SR t (s)
0 5.80 1.05×10−2 98 10.8
1 5.80 6.88×10−3 98 10.8
2 5.81 1.15×10−2 98 10.9
3 5.81 1.35×10−2 100 11.0
4 5.79 9.05×10−3 98 10.6
5 6.09 3.73×10−2 100 11.7

Table 4.15 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0.1, rescale=True,spline=quintic.

4.2 One Dimensional x4 Problem 43

With the settings of N = 5, the performance of the algorithm became better. This might
indicate the data from region [xei

1 ,x
ei
2] was useful to the prediction for the next iteration.

δ avg var (10−2) SR t (s)
4 6.15 2.87 100 13.8
5 5.81 1.35 100 11.0
6 6.12 1.29 99 9.61

Table 4.16 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,N = 3, rescale=True,spline=quintic.

The precision and the processing time were improved with the range factor. These revealed
that the greater factor boosted the performance of extrapolation.

mode avg var SR t (s)
on 5.79 9.05×10−3 98 10.6
off

� � � �
Table 4.17 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,δ = 5,N = 4,spline=quintic.

The algorithm without rescaling was not able to converge and terminate. So it can be
concluded that the algorithm without rescaling does not work in some cases.

spline avg var SR t (s)
quintic 5.79 9,05e-3 98 10.6
cubic 4.10 1.31e-1 100 13.6

Table 4.18 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,δ = 5,N = 4, rescale=True.

The quintic spline was shown to have better general performance metrices than the cu-
bic spline, including higher accuracy, precision and processing time, which satisfied the
theoretical expectation stating that the quintic spline should perform better than the cubic
spline.
If the search was initialized with a starting point further away from the ideal step-size and a
slightly larger step, i.e. se =−105, te = 2,xe = 1,the algorithm was still able to extrapolate
back to the region of interest, and then interpolate to find the acceptable step-size. The ideal
step-size in this case was x∗e = 53, the prediction made was x′e = 53.25.

44 Experiments

Figure 4.3 Evolution of the potential interval [κ,κ +∆] over iteration i in the one dimensional
x4 problem with σ2 = 0 and different start settings.

i 1-10 11 12 13 14
θ 2 >1.00×101 1.16×10−2 1.21×10−4 3.61×10−6 1.37×10−7

Table 4.19 Evolution of the signal variance over iteration i in the search range [κ,κ +δ∆]
from Figure 4.3.

The algorithm with different parameters settings was tested below.

σ2 avg var SR t (s)
0.001 52.7 4.79×10−10 100 22.2
0.1 51.9 1.12×10−4 100 22.6
1 50.8 2.28×10−3 100 22.9

Table 4.20 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

4.2 One Dimensional x4 Problem 45

As seen before, the predicted value and its precision was improved with the decrease of the
function noise variance. Conversely, the processing time increased with the function noise
variance.

N avg var SR t (s)
0 53.2 7.46×10−4 100 21.8
1 53.1 1.08×10−2 100 25.8
2 53.1 8.05×10−3 100 21.6
3 53.1 8.61×10−3 100 20.5
4 53.3 1.12×10−4 100 22.6
5 54.6 1.98×100 72 22.5

Table 4.21 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0.1, rescale=True,spline=quintic.

For the setting of N = 5, the performance of the algorithm was reduced significantly in terms
of success rate, predicted value and its precision.

δ avg var SR t (s)
4 53.1 7.20×10−3 100 17.8
5 53.1 8.61×10−3 100 20.5
6 54.8 2.34×10−12 100 14.2

Table 4.22 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,N = 3, rescale=True,spline=quintic.

No specific trend was observed from Table 4.22 about tuning the range factor. But the
maximum setting of range factor resulted in the shorter processing time and better precision
again, but it had the bad accuracy.

mode avg var SR t (s)
on 53.3 1.12×10−4 100 22.6
off 53.3 0 1 10.6

Table 4.23 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,δ = 5,N = 4,spline=quintic.

In general, the algorithm without rescaling was performing poorly in the x4 optimization
problem, only 1% of runs were successful when the search was begun with the far-away

46 Experiments

starting point, and none of the runs were successful when the search was initialized with the
closer starting point.

spline avg var SR t (s)
quintic 53.3 1.12×10−4 100 22.6
cubic 51.9 3.88×10−2 100 60.2

Table 4.24 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.1,δ = 5,N = 4, rescale=True.

The quintic spline had better performances in predicted value, precision and processing time
than the cubic spline.

4.3 Rosenbrock Function Problem

f (x) =
N−1

∑
i+1

[100(xi+1− xi)
2 +(1− xi)

2] (4.4)

The algorithm was tested with this standard optimization problem (rosenbrock function). The
search was initialized with se = [1.0594,1.1099,1.2323,1.5156,2.2731]′,xe = 1.8915 and
te = [−0.0154,−0.0196,−0.0435,−0.1036,−0.2902]′. The ideal stepsize x∗e was 1.8915.

Figure 4.4 Evolution of the potential interval [κ,κ +∆] over iteration i in the rosenbrock
problem with σ2 = 0.1.

4.3 Rosenbrock Function Problem 47

i-th 1-2 3 4 6-7
θ 2 >1.00×102 6.66×10−3 4.00×10−6 0

Table 4.25 Evolution of the signal variance over iteration in the search range [κ,κ + δ∆]
from Figure 4.4.

Figure 4.4 showed that the algorithm was able to interpolate towards the region of interest.
The predicted value x′e was 1.89.
Various experiments were run with different parameters settings as follows.

σ2 avg var SR t (s)
0.0001 1.89 2.69×10−5 100 6.35
0.001 1.90 1.93×10−4 100 8.51
0.01 1.94 1.93×10−3 98 8.94

Table 4.26 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

When the function noise variance was lower, the algorithm can perform better in terms of
predicted value, precision of the predicted values and the processing time.

N avg var SR t (s)
0 1.94 1.25×10−3 100 10.3
1 1.94 1.59×10−3 100 8.43
2 1.94 1.52×10−3 100 8.57
3 1.94 1.11×10−3 100 8.54
4 1.94 1.93×10−3 98 8.94
5 1.97 1.57×10−1 100 8.85

Table 4.27 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0.01, rescale=True,spline=quintic.

The setting of N = 5 caused the predicted value less accurate and precise, while the setting
without remain data N = 0 increased the processing time. This may indicate that N = 1 was
already the best setting in this case.

48 Experiments

δ avg var (10−3) SR t (s)
4 1.95 2.67 100 9.24
5 1.94 1.11 100 8.54
6 1.93 1.27 100 8.93

Table 4.28 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,N = 3, rescale=True,spline=quintic.

The accuracy of the prediction increased with the range factor.

mode avg var SR t (s)
on 1.94 1.93×10−3 98 8.94
off 1.90 1.40×10−4 99 4.98

Table 4.29 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,δ = 5,N = 3,spline=quintic.

The algorithm had better general performances without rescaling.

spline avg var SR t (s)
quintic 1.94 1.93×10−3 98 8.94
cubic 2.02 2.69×10−2 100 16.5

Table 4.30 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.01,δ = 6,N = 3, rescale=True.

The cubic spline performed badly in this optimization problem, except the success rate.

4.4 Sigmoid Optimization Problem

f (x) =
e−2x

1+ e−2x (4.5)

This optimization problem was to test whether the algorithm can extrapolate out of one flat
region, move to next lower flat region and continue searching, to find the better sub-optimal
solution.
The experiment was initialized with se =−5, te = 1 and xe = 0.5. When training with the
noisy observations, the algorithm was able to reach the region [5,∞] and slowed down after
reaching a lower plateau in the 4-th iteration since the function noise variance became more
dominant than the signal variance as illustrated in the Figure 4.5 and Table 4.31.

4.4 Sigmoid Optimization Problem 49

Figure 4.5 Evolution of the potential interval [κ,κ +∆] over iteration in the sigmoid problem
with σ2 = 0.0004.

i 1 2 3 4
θ 2 1.83×10−5 1.32×10−1 1.44×10−2 9.19×10−10

i 5 6 7 8
θ 2 4.36×10−12 2.13×10−13 7.90×10−15 3.13×10−16

Table 4.31 Evolution of the signal variance over iteration in the search range [κ,κ + δ∆]
from Figure 4.5.

In this set of experiments, the within rate (WR) was introduced to count the number of
loops that can successfully predict the step-size greater than 5. With this new performance
metric, the algorithm with different parameters settings were tested. The difference between
conditions equations 3.6 and 3.7 for retaining data was also tested to assess how they affect
the extrapolation capability.

50 Experiments

σ2 avg var SR WR(>5) t (s)
0 11.8 0 100 100 15.3

0.0001 9.10 8.32×100 100 83 11.1
0.0004 5.42 1.40×101 100 31 7.94
0.001 3.83 5.08×100 100 12 7.11

Table 4.32 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

The within rate and the processing time decreased with the function noise variance. The
precision reached the minimum when σ2 = 0.0004 because the average prediction stuck at
the cliff x′e = 5, causing the predicted value can either be 0 or 1.

N avg var SR WR(>5) t (s)
0 8.75 9.09 100 80 11.0
1 9.29 7.28 100 86 11.3
2 8.96 8.25 100 83 11.1
3 8.86 8.86 100 82 10.9
4 9.10 8.32 100 83 11.1
5 9.42 30.8 100 84 11.5

Table 4.33 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0.0001, rescale=True,spline=quintic.

No particular trend was observed from Table 4.33. The setting of N = 5 had the worst
precision. This might indicate there was not any retained data for every iteration i because
the retain region was defined incorrectly. The algorithm was abandoning too much data
whenever the potential interval was shifting towards the right and the previous data in the
new negative domain was abandoned.

δ avg var SR WR(>5) t (s)
4 5.06 8.17 100 45 9.79
5 8.86 8.86 100 82 10.9
6 9.77 4.67×10−3 99 99 8.09

Table 4.34 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.0001,N = 3, rescale=True,spline=quintic.

4.5 Sinc Function 51

The algorithm was able to extrapolate further away with the greater value of range factor δ

so the setting of N = 6 had achieved the best performances.

cond avg var SR WR(>5) t (s)
upper (new: Equation 3.7) 4.60 8.08 100 36 9.45

lower (Equation 3.6) 5.06 8.17 100 45 9.79
Table 4.35 Influence of the retain condition towards various performance metrics. Settings
were: ρ2 = 0,δ = 4,N = 3,σ2 = 0.0001, rescale=True,spline=quintic.

With the new condition to retain the data, the within-rate greater than 5 was dropped.
This indicated that, retaining data from the region closer to xei

1 +δ (xei
2 − xei

1) improved the
prediction for the next iteration more than those closer to xei

1 because it can avoid the initial
extrapolation for each iteration.

mode avg var SR WR(>5) t (s)
off � � � � �

on 5.06 8.17 100 45 9.79
Table 4.36 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.0001,δ = 4,N = 3,spline=quintic.

The algorithm was not able to operate without rescaling.

spline avg var SR WR(>5) t (s)
C 6.92 3.08 97 87 10.9
Q 5.06 8.17 100 45 9.79

Table 4.37 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0.0001,δ = 4,N = 3, rescale=True.

The cubic spline had better general performance than the quintic spline. It extrapolated
further away, had higher within-rate and precision. But the quintic spline had higher success
rate and shorter processing time.

4.5 Sinc Function

f (x) =−sin(x)
x

(4.6)

52 Experiments

My algorithm was subjected to this optimization problem to assess how it performed when
there were many local minima within the search region.

Figure 4.6 Evolution of the potential interval [κ,κ +∆] over iteration in the sinc problem
with σ2 = 0.

i 1 2 3 4 5
θ 2 >1.00×100 1.35×10−1 1.97×10−2 4.20×10−5 7.22×10−8

Table 4.38 Evolution of the signal variance over iteration in the search range [κ,κ + δ∆]
from Figure 4.6.

The first search was initialized with se =−1, te = 1 and xe = 0.5. The global minimum was
in x∗e = 1. From the Figure 4.6, the algorithm was able to converge into the closest minimum
so the predicted value x′e was 1.00.
Some experiments were conducted to test how different parameters settings affect the perfor-
mance.

4.5 Sinc Function 53

σ2 avg var SR WR(0,2) t (s)
0 1.01 0 100 100 5.27

0.0001 1.00 1×10−5 100 100 6.83
0.01 1.04 4×10−3 100 100 6.93

Table 4.39 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

The higher the function noise variance was, the more the processing time was required and
the lower precision the prediction had. But their predicted values were able to converge to
the optimal value x∗e = 1.

N avg var SR WR(0,2) t (s)
0 1.01 0 100 100 5.22
1 1.01 0 100 100 5.24
2 1.01 0 100 100 5.26
3 1.01 0 100 100 5.28
4 1.01 0 100 100 5.27
5 1.39 8.67 89 87 13.2

Table 4.40 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0, rescale=True,spline=quintic.

Only the setting with the most remain entries (N = 5) had the worst general performance,
other settings were having similar performance. This may indicate that the retained data from
region (xei

1 ,x
ei
2) did not improve the prediction for the next iteration. This might be because

those data did not improve the prediction for extrapolation.

δ avg var SR WR(0,2) t (s)
4 0.999 0 100 100 3.79
5 1.01 0 100 100 5.28
6 1.00 0 100 100 6.79

Table 4.41 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,N = 3, rescale=True,spline=quintic.

The greater the search factor δ was, the longer the processing time needed for the search.

54 Experiments

mode avg var SR WR(0,2) t (s)
off 0.996 0 100 100 2.97
on 1.01 0 100 100 5.27

Table 4.42 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,δ = 5,N = 4,spline=quintic.

The algorithm without rescaling had a better predicted value and processing time than that
with rescaling. But the accuracy difference was not large.

spline avg var SR WR(0,2) t (s)
C 1.01 0 100 100 6.54
Q 1.01 0 100 100 5.27

Table 4.43 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,δ = 5,N = 4, rescale=True.

The processing time of the algorithm with quintic spline was shorter than that with cubic
spline.

Figure 4.7 Evolution of the potential interval [κ,κ +∆] over iteration in the sinc problem
with σ2 = 0.

4.5 Sinc Function 55

i 1 2 3 4
θ 2 4.63×10−4 6.98×10−2 1.99×10−1 1.20×10−2

i 5 6 7 �

θ 2 1.31×10−5 5.37×10−6 2.21×10−6
�

Table 4.44 Evolution of the signal variance over iteration in the search range [κ,κ + δ∆]
from Figure 4.7.

In the second case studies, the experiments were initialized with the settings of se =−43, te =
1 and xe = 3. Unexpectedly, the algorithm was able to reach the global minimum x∗e = 43 far
away from the starting point se =−43.

σ2 avg var SR WR(42,44) t (s)
0 43.0 0 100 100 8.90

0.0001 45.9 7.04×101 100 89 12.0
0.01 45.5 3.99×103 98 40 14.4

Table 4.45 Influence of the noise variance towards various performance metrics. Settings
were: ρ2 = 0,δ = 5,N = 4, rescale=True,spline=quintic.

Without noisy observations, the algorithm was more able to converge towards the global
minimum, and took less processing time and had a better within-rate. The precision and the
within rate were decreased and the processing time was increased with the noise level.

N avg var SR WR(42,44) t (s)
0 43.0 0 100 100 8.91
1 43.0 0 100 100 8.92
2 43.0 0 100 100 8.91
3 43.0 0 100 100 8.91
4 43.0 0 100 100 8.90
5 43.0 0 100 100 8.88

Table 4.46 Influence of N towards various performance metrics. Settings were: ρ2 = 0,δ =
5,σ2 = 0, rescale=True,spline=quintic.

The performance remained unchanged with different settings of retain number N, which
revealed that the number of data was always 0.

56 Experiments

δ avg var SR WR(42,44) t (s)
4 22.6 0 100 0 11.8
5 43.0 0 100 100 8.91
6

� � � � �
Table 4.47 Influence of the range factor towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,N = 3, rescale=True,spline=quintic.

With δ = 4, the algorithm was not able to reach the global minimum. With δ = 6, it was
not able to operate, which indicated that there was an unexpected bug in the algorithm. The
algorithm with δ = 5 was having the best general performance among others.

mode avg var SR WR(42,44) t (s)
off 43.5 0 100 100 21.1
on 43.0 0 100 100 8.90

Table 4.48 Influence of the rescale mode towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,δ = 5,N = 4,spline=quintic.

The algorithms with and without rescaling were able to reach the global minimum. But the
one with rescaling had a better prediction and shorter processing time.

spline avg var SR WR(42,44) t (s)
C 50.9 0 100 0 11.8
Q 43.0 0 100 100 8.90

Table 4.49 Influence of the spline model towards various performance metrics. Settings were:
ρ2 = 0,σ2 = 0,δ = 5,N = 4, rescale=True.

The quintic spline was having better general performance metrices than the cubic spline. The
algorithm with cubic spline had extend the search range further away from both the starting
point and the global minimum, and was not able to find the global minimum.

Chapter 5

Conclusion

From the experimental results, it can be concluded that the algorithm was able to interpolate,
extrapolate and terminate automatically. Although the probabilistic line search algorithm was
able to improve the accuracy of the prediction, the processing time of this implementation
was not acceptable as it took more than 5 seconds to run.
When increasing the function value noise variance, the accuracy and precision of the pre-
diction were decreased. Changing the maximum number of retained data did not affect the
performance at all, except N was set to 5 which sometimes worsened the performance. This
might imply there was actually no extra data (except the new starting entries) retained after
each iteration i, so that the performance of N = 0 was the same as that of N > 0. Sometimes
when the range factor was increased, it improved the accuracy. The algorithm with rescaling
was more stable than that without. When comparing the quintic spline with the cubic spline,
it was found that the quintic spline did successfully out-performe the cubic-spline in most of
the cases, but sometimes the cubic spline can still have better performance.
The fact that the processing time of the algorithm dealing with different problems was long
may imply that there were some design problems. First of all, whenever the potential interval
was redefined each iteration in the while loop i, some previous data which were in the positive
domain in the previous iteration were redefined to enter the negative domain in the next
iteration and got abandoned. This caused the algorithm to re-sample new data from the
objective, which increased the processing time. And the region where the retained data
should exist was defined incorrectly as well, so there were either no or small number of data
retained.
Although the experiments had proved that the algorithm was able to terminate with expected
improvement, the convergence rate was still too slow, compared to the state-of-art optimizers
which took only less than a second. Narrowing down the potential interval until it converged
to a termination point was a long process because the algorithm had to re-estimate the bounds

58 Conclusion

repetitively, On the other hand, choosing a termination point using the Wolfe conditions and
their variations did not require the potential interval width to converge and be small than a
threshold (argument tolerance).
Moreover, the rescaling was not done properly, which was indicated by the fact that some-
times the algorithm without rescaling can outperform that with.
There were also some numerical problems while running the algorithm. Sometimes the
covariance of the predictive distribution may lead to the complex number and made the
algorithm fail to compute the expected improvement, which stopped to suggest the new
evaluation point.
During the experiments, the Newton Optimization with negative sign always failed to re-
estimate the new hyperparameters settings with more than 2 entries, which were not expected.
This is not good since the better re-estimation can allow the algorithm to terminate earlier
when the predicted τ2 was less than a threshold. The good settings of hyperparameters are
also helpful to avoid the overfitting of the data, and predict the optimal solution.
In this circumstance, the algorithm was designed to use the backup plan with the positive
sign of Newton Optimization, which was given as follows,

τ̄[t +1] = τ̄[t]+H−1g (5.1)

It was found that the Newton Optimization was more likely to compute a lower nlml with
the equation above. This might be due to the fact that under certain conditions, the Hessian
was evaluated badly, causing an opposite sign. So changing negative to positive might
work. But simply backing up with an opposite sign casually did not analyze why the
original version of Newton Optimization did not work, more investigations are necessary
to examine the conditions leading to the malfunctioning Newton Optimization in the future.
Some researchers [21] suggested that to encounter the ill-conditioned Hessian and gradient
problem, the equation should be rewritten as

θ ← θ +g(H +λ I)−1V

This implementation is also worthwhile to investigate.
After these experiments, the probabilistic termination criteria for the strong Wolfe conditions
suggested by some research studies [10] should be considered. It is necessary to retain data
in a more efficient strategy to reduce the resampling.
For the future work, it is also possible to model the second derivative of the objective as a
stochastic process. Our algorithm should be integrated with BFGS and standard line search
to test with various optimization problems to assess its performance.

Bibliography

[1] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA: Springer,
second ed., 2006.

[2] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning,”

[3] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in in
COMPSTAT, 2010.

[4] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International
Conference for Learning Representations, San Diego, 2015.

[5] V. Nguyen, S. Gupta, S. Rana, C. Li, and S. Venkatesh, “Regret for expected improve-
ment over the best-observed value and stopping condition,” in Proceedings of the Ninth
Asian Conference on Machine Learning, pp. 279–294, 2017.

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005.

[7] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of ma-
chine learning algorithms,” in Advances in Neural Information Processing Systems 25
(F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), pp. 2951–2959,
Curran Associates, Inc., 2012.

[8] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human
out of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104,
pp. 148–175, 2016.

[9] S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh, “High dimensional Bayesian
optimization with elastic Gaussian process,” in Proceedings of the 34th International
Conference on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Pro-
ceedings of Machine Learning Research, (International Convention Centre, Sydney,
Australia), pp. 2883–2891, PMLR, 06–11 Aug 2017.

[10] M. Mahsereci and P. Hennig, “Probabilistic line searches for stochastic optimization,”
in Advances in Neural Information Processing Systems 28 (C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 181–189, Curran Associates, Inc.,
2015.

60 Bibliography

[11] C. De Boor, A practical guide to splines; rev. ed. Applied mathematical sciences, Berlin:
Springer, 2001.

[12] J. J. Moré and D. J. Thuente, “Line search algorithms with guaranteed sufficient
decrease,” ACM Trans. Math. Softw., vol. 20, pp. 286–307, Sept. 1994.

[13] E. Ostertagová, “Modelling using polynomial regression,” Procedia Engineering,
vol. 48, pp. 500 – 506, 2012. Modelling of Mechanical and Mechatronics Systems.

[14] E. W. Weisstein, “Cubic spline.” Last visited on 7/8/2019.

[15] R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in
Computer Graphics &Amp; Geometric Modeling. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1987.

[16] K. HJ., A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve
in the Presence of Noise. ASME, 1964.

[17] E. Vazquez and J. Bect, “Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions,” Journal of Statistical Planning and
Inference, vol. 140, pp. 3088–3095, 11 2010.

[18] A. D. Bull, “Convergence rates of efficient global optimization algorithms,” J. Mach.
Learn. Res., vol. 12, pp. 2879–2904, Nov. 2011.

[19] Z. Wang and N. de Freitas, “Theoretical analysis of bayesian optimisation with unknown
gaussian process hyper-parameters,” 06 2014.

[20] I. O. Ryzhov, “On the Convergence Rates of Expected Improvement Methods,” Opera-
tions Research, vol. 64, pp. 1515–1528, December 2016.

[21] Y. N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio, “Identify-
ing and attacking the saddle point problem in high-dimensional non-convex optimiza-
tion,” CoRR, vol. abs/1406.2572, 2014.

62 pseudocode

Appendix A

pseudocode

A.1 BFGS

Algorithm 2 BFGS
1: Initialize starting point x0, Hessian H0 = I
2: Set convergence ε = 1×10−4, k← 0
3: while ∥∇ fk∥> ε do
4: Compute search direction dk, dk =−H−1

k ∇ f (xk)

5: Compute step-size αk via line search, αk = argminα f (xk +αdk)

6: Update xk+1 = xk +αkdk, sk = αkdk

7: Update qk = ∇ f (xk+1)−∇ f (xk).

8: Compute Hk+1 by, Hk+1 = Hk +
qkqT

k
qT

k sk
− HksksT

k HT
k

sT
k Hksk

9: Check sufficient decrease condition via,

B1 = f (xk+1)≤ f (xk)+ c1αkdT
k ∇ fk

10: Check curvature condition via,

B2 = ∥dT
k ∇ fk+1∥ ≤ c2∥dT

k ∇ fk∥

11: if B1 and B2 then
12: Store the progress in the memory via,
13: M← xk+1, k← k+1
14: else
15: return M
16: end if
17: end while

A.2 Line Search 63

A.2 Line Search

Algorithm 3 Line Search
1: Set α0← 0, choose α1 > 0 and αmax, i← 1
2: while True do
3: Evaluate φ(αi)

4: if φ(αi)> φ(0)+ c1αiφ
′(0) or [φ(αi)≥ φ(αi−1)and i > 1] then

5: α∗← zoom(αi−1,αi) and stop
6: end if
7: Evaluate φ ′(αi)

8: if |φ ′(αi)| ≤ −c2φ ′(0) then set α∗← αi and stop
9: end if

10: if φ ′(αi)≥ 0 then set α∗← zoom(αi,αi−1) and stop
11: end if
12: Choose αi+1 ∈ (αi,αmax), i← i+1
13: end while

A.3 zoom

Algorithm 4 zoom
1: while True do
2: Interpolate (using quadratic,cubic,or bisection) to find a trial step length α j between

αlow and αhigh

3: Evaluate φ(α j)

4: if φ(α j)> φ(0)+ c1α jφ
′(0) or φ(α j)≥ φ(αlow) then

5: αhigh← α j

6: else
7: Evaluate φ ′(α j)

8: if |φ ′(α j)| ≤ −c2φ ′(0) then Set α∗← α j and stop
9: end if

10: if φ ′(α j)(αhigh−αlow)≥ 0 then αhigh← αlow

11: end if
12: αlow← α j

13: end if
14: end while

Appendix B

Smoothing Spline

To fit the data with the smoothing splines involves finding the function g(x) which minimizes,

1
n

n

∑
i=1

(g(xi)− y(xi))
2 +λ

∫
∞

−∞

(g(m)(x))2dx

where we assume that each location xi ∈ x, x ∈ (0,c) and c is the maximum entry. Therefore,
the solution is a polynomial of degree m− 1 for x ∈ [−∞,0] and [c,∞] and a piecewise
polynomial of degree 2m−1 with 2m−2 continuous derivatives for x ∈ (0,c).
When m= 2, the solution is a smoothing cubic spline; when m= 3, the solution is a smoothing
quintic spline.
The same solution can be obtained by using Bayesian inference of g(x) with a prior from eq
2.14.

g(x) = f (x)+h(x)⊤β

= f (x)+
m−1

∑
j=0

β jxi

where β j ∼N (b,B) with B→ ∞ (uninformative prior about a polynomial of degree m−1)
and f (x) is given by (m-1)-fold integrated random walk,

f (x) =
∫ c

0

(x−u)m−1
+

(m−1)!
Z(u)du

where Z(u) is a Gaussian white noise process with covariance δ (u−u′).
If consider eq 2.15 and the covariance of h(x)⊤Bh(x′) is given by (h(x)⊤β)(h(x)⊤β)⊤, then

66 Smoothing Spline

k(x,x′) = f (x) f (x′)⊤ so,

k(x,x′) =
θ 2

((m−1)!)2

∫ c

0
(x−u)m−1

+ (x′−u)m−1
+ du

To integrate the integral above , the condition u > x,x′ must be fulfilled. If x > x′, c→ x′;
if x < x′, c→ x. By ignoring the max function max(0, ·) = (·)+, the covariance function
becomes,

k(x,x′) =
θ 2

((m−1)!)2

∫ c

0
(x−u)m−1(x′−u)m−1du

=
θ 2

((m−1)!)2

∫ min(x,x′)

0
(x−u)m−1(x′−u)m−1du

For cubic spline m = 2,

k(x,x′) = θ
2
∫ min(x,x′)

0
(x−u)(x′−u)du

= θ
2
∫ min(x,x′)

0
(x−u)(x′−u)du

= θ
2
∫ min(x,x′)

0
(xx′+u2− (x+ x′)u)du

= θ
2(xx′min(x,x′)+1/3min(x,x′)3

−1/2(x+ x′)min(x,x′)2)

If x > x′, then

k(x,x′) = θ
2(1/3min(x,x′)3 +min(x,x′)

(xx′− xx′/2− x′2/2))

= θ
2(1/3min(x,x′)3 +1/2min(x,x′)x′(x− x′))

Conversely,
k(x,x′) = θ

2(1/3min(x,x′)3 +1/2min(x,x′)x(x′− x))

So, in general,

k(x,x′) = θ
2(1/3min(x,x′)3 +1/2|x− x′|min(x,x′)2)

67

With ∂ i
k∂ j

= ∂ i+ jk
∂xi∂x′ j , the remaining covariance functions can be derived.

For x > x′, setting θ 2 = 1

k = 1/3x′3 +1/2(x− x′)x′2

k∂ = x′2 + x′x−3/2x′2 = x′x−1/2x′2

= 1/2(2x′x− x′2)
∂ k∂ = x′

For x < x′,

k = 1/3x3 +1/2(x′− x)x2

k∂ = 1/2x2

∂ k∂ = x

So, in general,

k∂ = 1/2((x− x′)min(x,x′)+ xx′)
∂ k = 1/2((x′− x)min(x,x′)+ xx′)

∂ k∂ = min(x,x′)

Similarly for quintic spline m = 3, setting θ 2 = 4 to ignore the factor,

k(x,x′) = θ
2/4

∫ min(x,x′)

0
(x−u)2(x′−u)2du

=
∫ min(x,x′)

0
(x2 +u2−2ux)(x′2 +u2−2ux′)du

=
∫ min(x,x′)

0
(x2x′2 +u4 +(x2 + x′2)u2

−2u3(x+ x′)−2uxx′(x+ x′)+4u2xx′)du

= x2x′2 min(x,x′)+1/5min(x,x′)5

+1/3(x2 + x′2 +4xx′)min(x,x′)3

−1/2(x+ x′)min(x,x′)4− xx′(x+ x′)min(x,x′)2

= 1/5min(x,x′)5 +1/3(x− x′)2 min(x,x′)3

+2xx′min(x,x′)3 + x2x′2 min(x,x′)

−1/2(x+ x′)min(x,x′)4− xx′(x+ x′)min(x,x′)2

68 Smoothing Spline

If x > x′, the last 4 terms become,

2xx′4 + x2x′3−1/2xx′4−1/2x′5− x2x′3− xx′4

= 1/2xx′4−1/2x′5

If x < x′, the last 4 terms become,

2x4x′+ x3x′2−1/2x5−1/2x′x4− x4x′− x3x′2

= 1/2x4x′−1/2x5

In general, the last 4 terms are summarized as,

2xx′min(x,x′)3 + x2x′2 min(x,x′)

−1/2(x+ x′)min(x,x′)4− xx′(x+ x′)min(x,x′)2

= 1/2|x− x′|min(x,x′)4

Thus, the covariance k is given by,

k = θ
2/4(1/5min(x,x′)5 +1/2|x− x′|min(x,x′)4

+1/3(x− x′)2 min(x,x′)3)

For x > x′, setting θ 2 = 4, other covariance matrices are,

k = 1/5x′5 +1/2xx′4−1/2x′5 +1/3x2x′3 +1/3x′5

−2/3xx′4

= 1/30x′5−1/6xx′4 +1/3x2x′3

k∂ = 1/6x′4−2/3xx′3 + x2x′2

= 2/3(x′− x)x′3−1/2x′4 + x2x′2

= 2/3(x′− x)x′3 +1/2x2x′2 +1/2x2x′2−1/2x′4

= 2/3(x′− x)x′3 +1/2(x2− x′2)x′2 +1/2x2x′2

∂ k∂ =−2/3x′3 +2xx′2 = 1/3x′3− x′3 +2xx′2

= 1/3x′3 +1/2(4x−2x′)x′2

= 1/3x′3 +(x− x′)x′2 + xx′2

69

For x < x′,

k = 1/5x5 +1/2x′x4−1/2x5 +1/3x5 +1/3x′2x3

−2/3x4x′

= 1/30x5−1/6x4x′+1/3x3x′2

k∂ = 2/3x3x′−1/6x4

= 2/3(x′− x)x3 +2/3x4−1/6x4

= 2/3(x′− x)x3 +1/2x4

= 2/3(x′− x)x3 +1/2x4−1/2x′2x2 +1/2x′2x2

= 2/3(x′− x)x3 +1/2(x2− x′2)x2 +1/2x′2x2

∂ k∂ = 2x2x′−2/3x3 = 1/3x3 +2x2x′− x3

= 1/3x3 +1/2(4x′−2x)x2

= 1/3x3 +(x′− x)x2 + x′x2

Therefore,

k∂ = θ
2/4(2/3(x′− x)min(x,x′)3 +1/2x2x′2

+1/2(x2− x′2)min(x,x′)2)

∂ k = θ
2/4(2/3(x− x′)min(x,x′)3 +1/2x2x′2

+1/2(x′2− x2)min(x,x′)2)

∂ k∂ = θ
2(1/3min(x,x′)3 +1/2|x− x′|min(x,x′)2)

Alternatively,

∂ k∂ = θ
2(1/3min(x,x′)3 + |x− x′|min(x,x′)2)

+max(x,x′)min(x,x′)2

Appendix C

Numerical Considerations

To encounter this problem, we have to re-arrange Ky as follows,

Ky =

[
K11

K22

]

where the empty elements are zeros and,

K11 =

[
σ2 0
0 ρ2

]

K22 = Kspline
22 +Σ22

Kspline
22 =

[
kT−1×T−1 k∂

T−1×T−1
∂ kT−1×T−1

∂ k∂
T−1×T−1

]

Σ22 =

[
σ2IT−1×T−1 0′×0

0′×0 ρ2IT−1×T−1

]
All other matrices also have to be re-arranged, including the feature vector H and the
observation vector Y.
Firstly, for the feature vector, since we also have to consider the gradient of the basis function.
For cubic spline,

H =

[
11×T 0
xT

1:T 11×T

]
−→

[
1 0 11×T−1 01×T−1

x1 1 xT
2:T 11×T−1

]
=
[

H(x1) H(x2:T)
]

72 Numerical Considerations

Since x1 = 0,

H(x1) =

[
1 0
x1 1

]
= I

and

H(x2:T) =

[
11×T−1 01×T−1

xT
2:T 11×T−1

]
For quintic spline,

H =

 11×T 0
xT

1:T 11×T

(x2
1:T)

T 2x1:T

−→
 1 0 11×T−1 01×T−1

x1 1 xT
2:T 11×T−1

x2
1 2x1 (x2

2:T)
T 2xT

2:T

=
[

H(x1) H(x2:T)
]

Since x1 = 0,

H(x1) =

 1 0
x1 1
x2

1 0

=

 1 0
0 1
0 0


and

H(x2:T) =

 11×T−1 01×T−1

xT
2:T 11×T−1

(x2
2:T)

T 2xT
2:T


The observation vector is also modified,

Y =

[
y(x1:T)

y′(x1:T)

]
→


y(x1)

y′(x1)

y(x2:T)

y′(x2:T)

=

[
Y(x1)

Y(x2:T)

]

Some important scalars and matrices (q, β̄ ,Q,A−1,W,Z) are derived as follows, Cubic
Spline: Given H1 = I, A = HK−1

y H⊤

A = K−1
11 +H2K−1

22 H⊤2 =

(
a+σ−2 b

b c+ρ−2

)
det(A) = (a+σ

−2)(c+ρ
−2)−b2 =

1
σ2ρ2 ((σ

2a+1)(ρ2c+1)−σ
2
ρ

2b2)

73

A−1 =
σ2ρ2(

(σ2a+1)(ρ2c+1)
−σ2ρ2b2

)(c+ρ−2 −b
−b a+σ−2

)

=
1(

(σ2a+1)(ρ2c+1)
−σ2ρ2b2

)
σ2(ρ2c

+1) −σ2ρ2b

−σ2ρ2b
ρ2(σ2a

+1)

= qQ

β̄ = A−1HK−1y = qQHK−1y = qQ
(

H1 H2

)(K−1
11 0
0 K−1

22

)(
Y1

Y2

)

= qQ
(

H1 H2

)(K−1
11 Y1

K−1
22 Y2

)
= qQH1K−1

11︸ ︷︷ ︸
W

Y1 +qQH2K−1
22 Y2

= qWY1 +qQH2K−1
22 Y2

W = QH1K−1
11 =

(
σ2(ρ2c+1) −σ2ρ2b
−σ2ρ2b ρ2(σ2a+1)

)(
σ−2 0

0 ρ−2

)

=

(
ρ2c+1 −σ2b
−ρ2b σ2a+1

)
Z = K−1−K−1H⊤A−1HK−1 = K−1−qK−1H⊤QHK−1

= K−1−q

(
K−1

11 0
0 K−1

22

)(
H⊤1
H⊤2

)
Q
(

H1 H2

)(K−1
11 0
0 K−1

22

)

= K−1−q

(
K−1

11 H⊤1
K−1

22 H⊤2

)
Q
(

H1K−1
11 H2K−1

22

)
=

(
K−1

11 0
0 K−1

22

)
−

(
qK−1

11 H⊤1 QH1K−1
11 qK−1

11 H⊤1 QH2K−1
22

qK−1
22 H⊤2 QH1K−1

11 qK−1
22 H⊤2 QH2K−1

22

)

=

(
K−1

11 −qK−1
11 QK−1

11 −qW⊤H2K−1
22

−qK−1
22 H⊤2 W K−1

22 −qK−1
22 H⊤2 QH2K−1

22

)

Z11 = K−1
11 −qK−1

11 QK−1
11 = K−1

11 −qK−1
11 W = q

(
Z11a Z11b

Z11b Z11c

)

K−1
11 W =

(
σ−2 0

0 ρ−2

)(
ρ2c+1 −σ2b
−ρ2b σa +1

)

=

(
σ−2(ρ2c+1) −b

−b ρ−2(σ2a+1)

)

74 Numerical Considerations

K−1
11 = q

(
K−1

11a 0
0 K−1

11c

)
K−1

11a = σ
−2(σ2a+1)(ρ2c+1)−ρ

2b2

K−1
11c = ρ

−2(σ2a+1)(ρ2c+1)−σ
2b2

Z11a = σ
−2(σ2a+1)(ρ2c+1)−ρ

2b2−σ
−2(ρ2c+1)

=���
σ
−2 (��σ

2 a��+1��−1)(ρ2c+1)−ρ
2b2

= a(ρ2c+1)−ρ
2b2

Z11b = 0−b = b

Z11c = ρ
−2(σ2a+1)(ρ2c+1)−σ

2b2−ρ
−2(σ2a+1)

=�
��ρ
−2 (σ2a+1)(��ρ

2c��+1��−1)−σ
2b2

= c(σ2a+1)−σ
2b2

Quintic Spline: Given

A = HK−1
y H⊤ =

 a+σ−2 b d
b c+ρ−2 e
d e f



det(A) = (a+σ
−2) [(c+ρ

−2) f − e2]︸ ︷︷ ︸
â

+b(de−b f)︸ ︷︷ ︸
b

+d [be− (c+ρ
−2)d]︸ ︷︷ ︸

d̂

A−1 =
1

det(A)

â b̂ d̂
b̂ ĉ ê
d̂ ê f̂

= qQ,where

â = (c+ρ
−2) f − e2 b̂ = ed−b f

ĉ = (a+σ
−2) f −d2 d̂ = be− (c+ρ

−2)d

ê = bd− e(a+σ
−2) f̂ = (a+σ

−2)(c+ρ
−2)−b2

75

By multiplying with σ2ρ2, the expression of q, Q can be obtained.

q−1 = σ
2
ρ

2 det(A)

= (σ2a+1)[(ρ2c+1) f −ρ
2e2]+σ

2
ρ

2b(de−b f)

+σ
2d[ρ2be− (ρ2c+1)d]

Q11 = σ
2[(ρ2c+1) f −ρ

2e2] = σ
2ā

Q12 = σ
2
ρ

2(ed−b f) = σ
2
ρ

2b̄

Q13 = σ
2[ρ2be− (ρ2c+1)d] = σ

2d̄

Q22 = ρ
2[(σ2a+1) f −σ

2d2] = ρ
2c̄

Q23 = ρ
2[σ2bd− e(σ2a+1)] = ρ

2ē

Q33 = (σ2a+1)(ρ2c+1)−σ
2
ρ

2b2 = f̄

q = [(σ2a+1)ā+σ
2
ρ

2bb̄+σ
2dd̄]−1

Q =

 σ2ā σ2ρ2b̄ σ2d̄
σ2ρ2b̄ ρ2c̄ ρ2ē
σ2d̄ ρ2ē f̄


W = QH1K−1

11 = Q

1 0
0 1
0 0

(σ−2 0
0 ρ−2

)

=

 σ2ā σ2ρ2b̄ σ2d̄
σ2ρ2b̄ ρ2c̄ ρ2ē
σ2d̄ ρ2ē f̄


σ−2 0

0 ρ−2

0 0

=

 ā σ2b̄
ρ2b̄ c̄
d̄ ē


Z11 = K−1

11 −qK−1
11 H⊤1 QH1K−1

11

= K−1
11 −qK−1

11 H⊤1 W

= K−1
11 −q

(
σ−2 0

0 ρ−2

)(
1 0 0
0 1 0

)
W

= K−1
11 −q

(
σ−2 0 0

0 ρ−2 0

) ā σ2b̄
ρ2b̄ c̄
d̄ ē


= K−1

11 −q

(
σ−2ā b̄

b̄ ρ−2c̄

)
K−1

11a = σ
−2[(σ2a+1)ā+σ

2
ρ

2bb̄+σ
2dd̄]

= σ
−2(σ2a+1)ā+ρ

2bb̄+dd̄

76 Numerical Considerations

K−1
11c = ρ

−2[(σ2a+1)ā+σ
2
ρ

2bb̄+σ
2dd̄]

= ρ
−2(σ2a+1)ā+σ

2bb̄+ρ
−2

σ
2dd̄

Z11a = σ
−2(σ2a+1)ā+ρ

2bb̄+dd̄−σ
−2ā

=�
��

σ
−2 (��σ

2 a��+1��−1)ā+ρ
2bb̄+dd̄ = aā+ρ

2bb̄+dd̄

Z11b =−b̄

Z11c = ρ
−2(σ2a+1)ā+σ

2bb̄+ρ
−2

σ
2dd̄−ρ

−2c̄

= ρ
−2[(σ2a+1)[(ρ2c+1) f −ρ

2e2]+σ
2d[ρ2be

− (ρ2c+1)d]− (σ2a+1) f +σ
2d2]+σ

2bb̄

= ρ
−2[(σ2a+1)[(ρ2c��+1) f −ρ

2e2
�
�− f]

+σ
2d[ρ2be− (ρ2c��+1)d��−d]+σ

2bb̄

=�
��ρ
−2

�
�ρ2[(σ2a+1)(c f − e2)+σ

2d(be− cd)]+σ
2bb̄

= (σ2a+1)(c f − e2)+σ
2d(be− cd)+σ

2bb̄

Notes: a,b and c are calculated by H2K−1
22 H⊤2 for cubic spline, and a,b,c,d,e, and f are for

quintic spline.
To compute the mean and covariance of the predictive distribution, we need to further
consider K∗ and H∗. It is important to note that K∗ and H∗ are not in the same form of K
and H.
For cubic spline, the feature vector H∗ of the prediction location x∗ is given by,

H∗ =

[
11×N

xT
1:T

]

The forms are different because we would like to predict the objective values only, but not
also the gradient values.
The covariance function K∗ should be in the form of,

K∗ = Ky(x∗,X) =

[
K1∗

K2∗

]

where

K1∗ =

[
k

∂ k

]⊤
(x∗1,x1)=(0,0)

; [K1∗] = [1×2]

77

,

K2∗ =

[
k

∂ k

]⊤
(x∗2:N ,x2:T)

; [K1∗] = [N−1×2T −2]

and N is the number of prediction location.
For quintic spline, the feature vector H∗ of the prediction location x∗ is given by,

H∗ =

 11×N

xT
1:T

(x2
1:T)

T



Appendix D

Negative log marginal likelihood

The negative log marginal likelihood is given by,

− log p(y|X) =
1
2

y⊤K−1y+
1
2

log |K|+ n
2

log2π

Given that the covariance function which includes spline model, basis function and noise
is denoted as K = θ 2Kf +σ2F+HBH⊤ = θ 2K̄y +HBH⊤ = Ky +HBH⊤, K̄y = Kf + τ2F,
Z = K−1, and consider the non-informative limit gives B→ ∞ and B−1→ 0,

Z = K−1 = (Ky +HBH⊤)−1

= K−1
y −K−1

y H⊤(B−1 +HK−1
y H⊤)−1HK−1

y

= K−1
y −K−1

y H⊤(HK−1
y H⊤)−1HK−1

y

= K−1
y −K−1

y H⊤A−1HK−1
y

The second term can be rewritten as,

1
2

log |K|= 1
2

log |Ky +HBH⊤|

=
1
2

log |Ky(I+K−1
y HBH⊤)|

=
1
2

log |Ky(I+K−1
y HBH⊤)|

≈ 1
2

log |KyBHK−1
y H⊤)|

=
1
2
(log |Ky|+ log |B|+ log |A|)

80 Negative log marginal likelihood

For cubic spline, the determinant is given by,

|A|= (a+σ
−2)(c+ρ

−2)−b2

|K11|= σ
2
ρ

2

Consider ρ → 0, it is still difficult to compute log |Ky| and log |A| individually, to deal with
this, we can rewrite them as,

log |Ky|+ log |A|= log |K22|+ log |A||K11|
= log |K22|+ log[(a+σ

−2)(c+ρ
−2)−b2]σ2

ρ
2

= log |K22|+ log[(σ2a+1)(ρ2c+1)−ρ
2
σ

2b2]

For the quintic spline, the determinant is given by,

|A| = (a+σ
−2)
(
(c+ρ

−2) f − e2)−b2 f +2bde

−d2(c+ρ
−2)

|K11|= σ
2
ρ

2

Consider ρ → 0, it is still difficult to compute log |Ky| and log |A| individually, to deal with
this, we can rewrite them as,

log |K11A| = log[(σ2a+1)((ρ2c+1) f −ρ
2e2)

+σ
2
ρ

2b(2ed−b f)−σ
2d2(ρ2c+1)]

and Z = (θ 2K̄y +HBH⊤)−1 = 1
θ 2 Z̄y,

Z =
1

θ 2 Z̄y = K−1
y −K−1

y H⊤A−1HK−1
y

=
1

θ 2 K̄−1
y −

1
θ 2 K̄−1

y H⊤(H
1

θ 2 K̄−1
y H⊤)−1H

1
θ 2 K̄−1

y

=
1

θ 2 K̄−1
y −

1
θ 2 K̄−1

y H⊤(HK̄−1
y H⊤)−1HK̄−1

y

Therefore,
Z̄y = K̄−1

y − K̄−1
y H⊤(HK̄−1

y H⊤)−1HK̄−1
y

Appendix E

Hyperparameter restimation

The negative log marginal likelihood is approximately given by,

− log p(y|X) =
1
2

y⊤K−1y+
1
2

log |K|

Given that a random independent variable θ , ∂

∂θ
ln |X|=Tr(X−1 ∂X

∂θ
) and ∂

∂θ
X−1 =X−1 ∂X

∂θ
X−1,

− ∂

∂θ
log p(y|X) =

∂

∂θ
(
1
2

y⊤K−1y+
1
2

ln |K|)

=−1
2

y⊤K−1 ∂K
∂θ

K−1y︸ ︷︷ ︸
scalar

+
1
2

Tr(K−1 ∂K
∂θ

) =−1
2

Tr(y⊤K−1 ∂K
∂θ

K−1y)+
1
2

Tr(K−1 ∂K
∂θ

)

=−1
2

Tr(K−1yy⊤K−1 ∂K
∂θ

)+
1
2

Tr(K−1 ∂K
∂θ

) =
1
2

Tr((K−1−K−1yy⊤K−1)
∂K
∂θ

)

=
1
2

Tr(B
∂K
∂θ

)

where B = K−1−K−1yy⊤K−1 = Z− zz⊤ and z = Zy. Therefore,

− ∂

∂θ
log p(y|X) =

1
2

Tr(B
∂K
∂θ

)

There are several hyperparameters in this optimization problem, i.e. signal variance θ 2, func-
tion value noise variance σ2, derivative noise variance ρ2, function noise to signal variance
τ2 = σ2

θ 2 and derivative noise to signal variance ζ 2 = ρ2

θ 2 . To avoid all the hyperparameters to

82 Hyperparameter restimation

be complex and ensure they are positive, they can be re-defined in the log-scale,

θ
2 = exp2θ̄ σ

2 = exp2σ̄ ρ
2 = exp2ρ̄

τ
2 = exp2τ̄ ζ

2 = exp2ζ̄

Here are some useful expressions for later derivations,

∂K
∂ θ̄

=
∂

∂ θ̄
(exp(2θ̄)K̄y +HBH⊤) = 2exp(2θ̄)K̄y = 2θ

2K̄y

∂ K̄y

∂ τ̄
=

∂

∂ τ̄
(Kf + τ

2F) =
∂

∂ τ̄
(Kf + exp(2τ̄)F) = 2exp(2τ̄)F = 2τ

2F

∂ 2K̄y

∂ τ̄2 =
∂

∂ τ̄
(2exp(2τ̄)F) = 4exp(2τ̄)F = 4τ

2F

∂ K̄−1
y

∂ τ̄
=−K̄−1

y
∂ K̄y

∂ τ̄
K̄−1

y =−2τ
2K̄−1

y FK̄−1
y

∂K
∂ τ̄

=
∂

∂ τ̄
(θ̂ 2K̄y) =

∂ θ̂ 2

∂ τ̄
K̄y + θ̂

2 ∂ K̄y

∂ τ̄

∂ 2K
∂ τ̄2 = 2

∂ θ̂ 2

∂ τ̄

∂ K̄y

∂ τ̄
+

∂ 2θ̂ 2

∂ τ̄2 K̄y + θ̂
2 ∂ 2K̄y

∂ τ̄2

∂Z
∂ τ̄

=
∂K−1

∂ τ̄
=−K−1 ∂K

∂ τ̄
K−1 =−Z

∂K
∂ τ̄

Z

Let C = HK̄−1
y H⊤,

∂

∂ τ̄
C−1 =−C−1 ∂C

∂ τ̄
C−1 =−C−1H

∂ K̄−1
y

∂ τ̄
H⊤C−1

= C−1HK̄−1
y

∂ K̄y

∂ τ̄
H⊤K̄−1

y C−1 = 2τ
2C−1HK̄−1

y FH⊤K̄−1
y C−1

To prove ∂ Z̄y
∂ τ̄

=−Z̄y
∂ K̄y
∂ τ̄

Z̄y =−2τ2Z̄yFZ̄y,

∂ Z̄y

∂ τ̄
=

∂

∂ τ̄
(K̄−1

y − K̄−1
y H⊤(HK̄−1

y H⊤)−1HK̄−1
y) =

∂

∂ τ̄
(K̄−1

y − K̄−1
y H⊤C−1HK̄−1

y)

=
∂

∂ τ̄
K̄−1

y −
∂

∂ τ̄
(K̄−1

y)H⊤C−1HK̄−1
y − K̄−1

y H⊤
∂C−1

∂ τ̄
HK̄−1

y − K̄−1
y H⊤C−1H

∂

∂ τ̄
K̄−1

y

=−2τ
2K̄−1

y FK̄−1
y −2τ

2K̄−1
y FK̄−1

y H⊤C−1HK̄−1
y

−2τ
2K̄−1

y H⊤C−1HK̄−1
y FK̄−1

y −2τ
2K̄−1

y H⊤C−1HK̄−1
y FH⊤K̄−1

y C−1HK̄−1
y

=−2τ
2(K̄−1

y F(K̄−1
y − K̄−1

y H⊤C−1HK̄−1
y)− K̄−1

y H⊤C−1HK̄−1
y F(K̄−1

y − K̄−1
y H⊤C−1HK̄−1

y))

=−2τ
2(K̄−1

y FZ̄y− K̄−1
y H⊤C−1HK̄−1

y FZ̄y) =−2τ
2(K̄−1

y − K̄−1
y H⊤C−1HK̄−1

y)FZ̄y = R.H.S

83

A closed form solution in terms of τ2 and ζ 2 can be defined for θ 2.

− ∂

∂ θ̄
log p(y|X) =

1
2

Tr((Z−Zyy⊤Z)
∂K
∂ θ̄

) =
1
2

Tr((
1

θ 2 Z̄y−
1

θ 4 Z̄yyy⊤Z̄y)2θ
2K̄y)

= Tr((Z̄y−
1

θ 2 Z̄yyy⊤Z̄y)K̄y) = Tr(Z̄yK̄y−
1

θ 2 Z̄yyy⊤Z̄yK̄y)

= Tr(Z̄yK̄y−
1

θ 2 y⊤Z̄yK̄yZ̄yy︸ ︷︷ ︸
scalar

) = 0

Therefore, θ 2 = 1
Tr(Z̄yK̄y)

y⊤Z̄yK̄yZ̄yy.

Further consider the form of Z̄yK̄yZ̄y,

(K̄−1
y − K̄−1

y H⊤(HK̄−1
y H⊤)−1HK̄−1

y)K̄yZ̄y = (I− K̄−1
y H⊤(HK̄−1

y H⊤)−1H)Z̄y

= Z̄y− K̄−1
y H⊤(HK̄−1

y H⊤)−1HZ̄y

= Z̄y− K̄−1
y H⊤(HK̄−1

y H⊤)−1H(K̄−1
y −K̄−1

y H⊤(HK̄−1
y H⊤)−1HK̄−1

y)

= Z̄y− K̄−1
y H⊤(HK̄−1

y H⊤)−1HK̄−1
y

+ K̄−1
y H⊤

((((((((((((
(HK̄−1

y H⊤)−1HK̄−1
y H⊤ (HK̄−1

y H⊤)−1HK̄−1
y)

= Z̄y−
((((((((((((((

K̄−1
y H⊤(HK̄−1

y H⊤)−1HK̄−1
y +

((((((((((((((

K̄−1
y H⊤(HK̄−1

y H⊤)−1HK̄−1
y = Z̄y

Finally,

θ̂
2 =

1
Tr(Z̄yK̄y)

y⊤Z̄yy

Newton Optimization is utilized to optimize the log-scale of τ2 so the gradient g=− ∂

∂ τ̄
log p(y|X)

and the Hessian H =− ∂ 2

∂ τ̄2 log p(y|X) are required to improve the hyperparameter iteratively,

τ̄[t +1] = τ̄[t]−H−1g

As derived before, the gradient is given by,

− ∂

∂ τ̄
log p(y|X) =

1
2

Tr(B
∂K
∂ τ̄

)

The derivative ∂K
∂ τ̄

is given by,

∂K
∂ τ̄

=
∂

∂ τ̄
(θ̂ 2K̄y +HBH⊤) =

∂

∂ τ̄
(θ̂ 2K̄y) =

∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

y⊤Z̄yyK̄y)

84 Hyperparameter restimation

According to the product rule of differentiation, there are three derivatives required, i.e.
∂

∂ τ̄
(1

Tr(Z̄yK̄y)
), ∂

∂ τ̄
Z̄y and ∂

∂ τ̄
K̄y, to give the whole proper expression.

Firstly,

∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

) =− 1
Tr(Z̄yK̄y)2 Tr(

∂

∂ τ̄
(Z̄yK̄y))

Consider,

∂

∂ τ̄
(Z̄yK̄y) =

∂

∂ τ̄
Z̄yK̄y + Z̄y

∂

∂ τ̄
K̄y =−2τ

2Z̄yFZ̄yK̄y +2τ
2Z̄yF

= 2τ
2Z̄yF(I− Z̄yK̄y) = 2τ

2Z̄yF(I− I+ K̄−1
y H⊤C−1H) = 2τ

2Z̄yFK̄−1
y H⊤C−1H

so,

Tr(
∂

∂ τ̄
(Z̄yK̄y)) = 2τ

2 Tr(Z̄yFK̄−1
y H⊤C−1H) = 2τ

2 Tr(K̄−1
y H⊤C−1HZ̄yF)

= 2τ
2 Tr(K̄−1

y H⊤C−1H(K̄−1
y − K̄−1

y H⊤C−1HK̄−1
y)F) = 0

Then,

∂K
∂ τ̄

=
∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

y⊤Z̄yyK̄y)

=
∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

)y⊤Z̄yyK̄y +
1

Tr(Z̄yK̄y)
y⊤

∂ Z̄y

∂ τ̄
yK̄y +

1
Tr(Z̄yK̄y)

y⊤Z̄yy
∂ K̄y

∂ τ̄

=
2τ2

Tr(Z̄yK̄y)
y⊤(−Z̄yFZ̄yyK̄y + Z̄yyF) =

2τ2

Tr(Z̄yK̄y)
(y⊤Z̄yyF−y⊤Z̄yFZ̄yyK̄y)

= 2τ
2
θ̂

2F− 2τ2

Tr(Z̄yK̄y)
y⊤Z̄yFZ̄yyK̄y

Finally,

− ∂

∂ τ̄
log p(y|X) =

1
2

Tr(B
∂K
∂ τ̄

) = θ̂
2
τ

2 Tr(BF)− τ2

Tr(Z̄yK̄y)
y⊤Z̄yFZ̄yyTr(BK̄y)

For the Hessian,

− ∂ 2

∂ τ̄2 log p(y|X) =
1
2

∂

∂ τ̄
Tr(B

∂K
∂ τ̄

) =
1
2

Tr
∂

∂ τ̄
(B

∂K
∂ τ̄

) =
1
2

Tr(
∂B
∂ τ̄

∂K
∂ τ̄

+B
∂ 2K
∂ τ̄2)

85

Consider,

∂B
∂ τ̄

=
∂

∂ τ̄
(Z−Zyy⊤Z) =

∂Z
∂ τ̄
− ∂Z

∂ τ̄
yy⊤Z−Zyy⊤

∂Z
∂ τ̄

= Z
∂K
∂ τ̄

Z+Z
∂K
∂ τ̄

Zyy⊤Z+Zyy⊤Z
∂K
∂ τ̄

Z

So the first trace part can be re-written as,

1
2

Tr(
∂B
∂ τ̄

∂K
∂ τ̄

) =
1
2

Tr((−Z
∂K
∂ τ̄

Z+Z
∂K
∂ τ̄

zz⊤+ zz⊤
∂K
∂ τ̄

Z)
∂K
∂ τ̄

)

=
1
2

Tr(−Z
∂K
∂ τ̄

Z
∂K
∂ τ̄

+2Z
∂K
∂ τ̄

zz⊤
∂K
∂ τ̄

) =
1
2

TrZ
∂K
∂ τ̄

(−Z+2zz⊤)
∂K
∂ τ̄

=−1
2

TrZ
∂K
∂ τ̄

(Z−2zz⊤)
∂K
∂ τ̄

=−1
2

TrZ
∂K
∂ τ̄

(B− zz⊤)
∂K
∂ τ̄

The second trace part is given by,

1
2

Tr(B
∂ 2K
∂ τ̄2) =

1
2

Tr(B(2
∂ θ̂ 2

∂ τ̄

∂ K̄y

∂ τ̄
+

∂ 2θ̂ 2

∂ τ̄2 K̄y + θ̂
2 ∂ 2K̄y

∂ τ̄2))

Consider,

∂ θ̂ 2

∂ τ̄
=

∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

y⊤Z̄yy) =
��������∂

∂ τ̄
(

1
Tr(Z̄yK̄y)

)y⊤Z̄yy+
1

Tr(Z̄yK̄y)
y⊤

∂ Z̄y

∂ τ̄
y

=
−1

Tr(Z̄yK̄y)
y⊤Z̄y

∂ K̄y

∂ τ̄
Z̄yy

∂ 2θ̂ 2

∂ τ̄2 =
∂

∂ τ̄
(
−1

Tr(Z̄yK̄y)
y⊤Z̄y

∂ K̄y

∂ τ̄
Z̄yy)

=
��������∂

∂ τ̄
(
−1

Tr(Z̄yK̄y)
)y⊤Z̄y

∂ K̄y

∂ τ̄
Z̄yy+

−1
Tr(Z̄yK̄y)

y⊤
∂

∂ τ̄
(Z̄y

∂ K̄y

∂ τ̄
Z̄y)y

=
−1

Tr(Z̄yK̄y)
y⊤(

∂ Z̄y

∂ τ̄

∂ K̄y

∂ τ̄
Z̄y + Z̄y

∂ K̄y

∂ τ̄

∂ Z̄y

∂ τ̄
+ Z̄y

∂ 2K̄y

∂ τ̄2 Z̄y)y

=
−1

Tr(Z̄yK̄y)
y⊤(−Z̄y

∂ K̄y

∂ τ̄
Z̄y

∂ K̄y

∂ τ̄
Z̄y−Z̄y

∂ K̄y

∂ τ̄
Z̄y

∂ K̄y

∂ τ̄
Z̄y + Z̄y

∂ 2K̄y

∂ τ̄2 Z̄y)y

=
1

Tr(Z̄yK̄y)
y⊤Z̄y(2

∂ K̄y

∂ τ̄
Z̄y

∂ K̄y

∂ τ̄
−

∂ 2K̄y

∂ τ̄2)Z̄yy

86 Hyperparameter restimation

Finally,

1
2

Tr(B
∂ 2K
∂ τ̄2) =

1
2

Tr(B(2
∂ θ̂ 2

∂ τ̄

∂ K̄y

∂ τ̄
+

∂ 2θ̂ 2

∂ τ̄2 K̄y + θ̂
2 ∂ 2K̄y

∂ τ̄2))

= 2τ
2 ∂ θ̂ 2

∂ τ̄
Tr(BF)+

1
2

∂ 2θ̂ 2

∂ τ̄2 Tr(BK̄y)+2θ̂
2
τ

2 Tr(BF)

= 2τ
2(θ̂ 2 +

∂ θ̂ 2

∂ τ̄
)Tr(BF)+

1
2

∂ 2θ̂ 2

∂ τ̄2 Tr(BK̄y)

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Dissertation Contribution
	1.3 Dissertation Organization

	2 Background
	2.1 BFGS
	2.2 Line Searches
	2.3 Challenges
	2.4 Polynomial Regression
	2.5 Spline model
	2.5.1 Natural Cubic Spline
	2.5.2 Natural Quintic Spline
	2.5.3 Smoothing Spline

	2.6 Bayesian Optimization
	2.6.1 Gaussian Process
	2.6.2 Sampling new point by Expected Improvement

	3 Algorithm Design
	3.1 Related Works
	3.2 Outline
	3.3 Step-samples generation
	3.4 Scaling factor
	3.5 Prediction
	3.6 Selection, Shift, Zoom and Retain
	3.7 Range of stepsize

	4 Experiments
	4.1 One Dimensional Quadratic Problem
	4.2 One Dimensional x4 Problem
	4.3 Rosenbrock Function Problem
	4.4 Sigmoid Optimization Problem
	4.5 Sinc Function

	5 Conclusion
	Bibliography
	Appendix A pseudocode
	A.1 BFGS
	A.2 Line Search
	A.3 zoom

	Appendix B Smoothing Spline
	Appendix C Numerical Considerations
	Appendix D Negative log marginal likelihood
	Appendix E Hyperparameter restimation

