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Abstract

This dissertation extends Partitioned Variational Inference (PVI) to support private federated
learning using the concept of differential privacy (DP). Specifically, we describe the con-
struction of two types of Differentially Private Partitioned Variational Inference (DP-PVI)
algorithms: data-point level DP-PVI and data-set level DP-PVI, each of which has its own
advantages and disadvantages. We point out the technical problems in the data-set level
DP-PVI algorithm and provide possible solutions. Next, we apply the data-point level DP-
PVI algorithm to Bayesian multi-dimensional linear regression models. We mainly conduct
experiments on mini-batching and adaptive clipping bounds, investigating how they affect
the performance of data-point level DP-PVI.
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Chapter 1

Introduction

Many critical future applications of machine learning will be in distributed environments.
For example, a cancer research center is organizing several health care providers to jointly
train a machine learning model that can be used to make clinically important predictions.
Each health care provider has data from many patients, but privacy issues and network
bandwidth constraints prevent the cancer research center from centralizing all these data.
This is an example of federated learning, where a number of clients (in this example, health
care providers) interact with a central server (in this example, the cancer research center) to
collaboratively train a shared machine learning model without centralizing all data together
(McMahan et al., 2016; Konečnỳ et al., 2016).

Fig. 1.1 Illustration of the cancer research center example and its potential privacy issues.

Moreover, in the above scenario, it is critical for the prediction system to know where it
is uncertain, and thus when it might be returning inaccurate predictions. Therefore, Bayesian
inference is needed, since it is able to quantify the uncertainty in parameter estimates and
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predictions of a probabilistic model. Dr Turner’s group has developed an approach targeted
to such applications called Partitioned Variational Inference (Bui et al., 2018).

Privacy is still an issue in the above example. Data of patients are highly private and
sensitive, but machine learning models can leak information about patients’ data used for
training. Fredrikson et al. (2014) introduced model inversion attacks: an adversary uses
predictions of a machine learning model to learn information about the training data. They
also showed that when a machine learning model is used to guide medical treatments based
on a patient’s genotype and background, a model inversion attack is able to reveal patient’s
genetic markers. Fredrikson et al. (2015) further showed that by investigating confidence
values associated with predictions of a neural network for face recognition, an adversary can
recover images of people’s faces used for training.

Moreover, even though data about individuals used in training are usually anonymized by
removing identifiable information (e.g. names, ages, genders, etc.) and being labeled by an
anonymous identifier, it is possible to reveal specific individuals using auxiliary information,
i.e. additional, publicly available information (Narayanan and Shmatikov, 2008). They
applied de-anonymization techniques to the Netflix Prize data set, which contains anonymous
movie ratings of 500,000 subscribers of Netflix, and identified the Netflix records of two
known users using the Internet Movie Database (IMDb) as auxiliary information. Gymrek
et al. (2013) also showed that it is possible to recover particular surnames from anonymous
DNA sequence data with the help of free, publicly accessible Internet resources.

Fig. 1.2 Main concepts involved in this project.



3

In the light of the research findings above, machine learning models are able to leak
information about individuals’ data used for training under model inversion attacks, and
those data are even under the risk of being de-anonymized, so improving the data privacy
of machine learning models has become necessary and urgent. Therefore, the goal of my
project is to extend Partitioned Variational Inference to support private federated learning
using the concept of differential privacy. My project lies in the intersection of federated
learning, probabilistic inference, and differential privacy, which is a rising field with limited
previous work.

The rest of this dissertation is structured as follows. In chapter 2, we will cover necessary
background on federated learning and differential privacy. In chapter 3, we will elaborate on
our algorithms constructed by extending Partitioned Variational Inference with differential
privacy techniques. In chapter 4, we will apply the algorithms which we construct in chapter
3 to Bayesian multi-dimensional linear regression models, and provide the results of our
experiments. In chapter 5, we will summarize our conclusions and specify possible future
work.





Chapter 2

Literature Review

In this chapter, we cover necessary background literature on federated learning and then on
differential privacy.

2.1 Federated Learning

Traditional machine learning models require the whole training data set to be stored in a
single machine or distributed among several machines in a homogeneous and balanced way.
Compared to the traditional training pipelines, Bui et al. (2018) pointed out that federated
learning is challenging because:

• data sets can be distributed inhomogeneously and unevenly across the clients (e.g. the
data across client cannot be assumed to be i.i.d.);

• communication between the clients and the central server can be costly and unreliable;

• when making predictions, each client need to access the model instantly rather than
sending data to the central server.

2.1.1 Partitioned Variational Inference

Partitioned Variational Inference (PVI) is an unifying framework which encompasses many
approaches to variational Bayesian methods, and it tackles the aforementioned challenges in
federated learning.

Suppose the training data set D is partitioned into M groups of data points {D1, ...,DM}.
To model this data set, we consider a parametric probabilistic model defined by the prior
p(θ) over parameters θ and the likelihood function p(D|θ) = ∏

M
m=1 p(Dm|θ).
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For many models used in practice, exact Bayesian inference of the posterior distribution
over the parameters p(θ |D) is in general intractable. Thus, we resort to variational inference
(VI), and use a variational distribution q(θ) to approximate the true posterior distribution. In
detail, q(θ) can be expressed as follows:

q(θ) = p(θ)
M

∏
m=1

tm(θ)≈
1
Z

p(θ)
M

∏
m=1

p(Dm|θ) = p(θ |D) (2.1)

where Z is the normalizing constant of the true posterior. In this report, we refer to q(θ) as
the approximate posterior, and tm(θ) as the approximate likelihood, each of which will be
updated by the PVI algorithm to approximate the effect of the likelihood term p(Dm|θ) has
on the posterior. Note that the approximate posterior q(θ) does not include a normalizing
constant. Instead, the PVI algorithm will automatically ensure the approximate posterior in
equation 2.1 is normalized (Bui et al., 2018).

Algorithm 1: Partitioned Variational Inference (PVI)
Input: data partition {D1, ...,DM}, prior p(θ), a tractable family of distributions Q

1 Initialize the approximate likelihoods:

t(0)m (θ) = 1 for all m = 1,2, ...,M (2.2)

2 Initialize the approximate posterior:

q(0)(θ) = p(θ) (2.3)

3 for i = 1,2, ... until convergence do
4 bi = index of the next approximate likelihood to update
5 Compute the new approximate posterior:

q(i)(θ) = argmax
q(θ)∈Q

∫
q(θ) ln

q(i−1)(θ)p(Dbi|θ)
q(θ)t(i−1)

bi
(θ)

dθ (2.4)

6 Update the approximate likelihood:

t(i)bi
(θ) =

q(i)(θ)
q(i−1)(θ)

t(i−1)
bi

(θ) (2.5)

7 end
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Algorithm 1 describes the PVI algorithm in detail, which is a perfect fit for the federated
learning setting. Suppose there are M clients, each of which is allocated a data group Dm.
Each client is responsible for storing and updating its associated approximate likelihood
tm(θ). On the other hand, a central server stores and updates the approximate posterior q(θ),
and also communicates it to the clients.

At each iteration, an idle client receives the current posterior from the server, optimizes
the local free energy (equation 2.4), computes the change in the local approximate likelihood
∆m(θ) = t(new)

m (θ)/ t(old)
m (θ), and sends this quantity to the server. Note that even though the

clients optimize the local free energies, they do not update q(θ) directly. Instead, the server
maintains a queue of approximate likelihood updates, and applies them to the approximate
posterior one by one: q(new)(θ) = q(old)(θ)∆m(θ) (Bui et al., 2018).

The central step in algorithm 1 is equation 2.4, which optimizes the local free energy.
Let’s look into this step in more detail. To begin with, we provide the definition of local free
energy.

Definition 2.1.1 (Local Free Energy). The local free energy at iteration i with index bi is
defined as:

F (i)
bi

(
q(θ)

)
=

∫
q(θ) ln

q(i−1)(θ)p(Dbi|θ)
q(θ)t(i−1)

bi
(θ)

dθ (2.6)

Bui et al. (2018) showed that maximizing the local free energy (equation 2.4) is equivalent
to the following KL optimization:

q(i)(θ) = argmin
q(θ)∈Q

KL
(
q(θ) ∥ p̂(i)bi

(θ)
)

(2.7)

where p̂(i)bi
(θ) is referred to as the tilted distribution and is defined as:

p̂(i)bi
(θ) =

1

Z(i)
bi

q(i−1)(θ)

t(i−1)
bi

(θ)
p(Dbi|θ) (2.8)

=
1

Z(i)
bi

(
p(θ) ∏

m̸=bi

t(i−1)
m (θ)

)
p(Dbi|θ) (2.9)

The tilted distribution can be viewed as a local estimate of the true posterior distribution
for client bi, since it comprises the prior distribution, the true local likelihood for client bi,
and the approximate likelihood terms for all other clients. The local free energy can be
maximized in several ways, such as analytical updates or gradient based methods (Bui et al.,
2018). We will come back to this point in later chapters when we start to look at specific
models.
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Lastly, we briefly compare the PVI algorithm with standard global variational inference,
and point out several key properties of PVI that reveal the relationship to global VI. In
standard variational inference, a global free energy with respect to the entire training data set
is maximized. Here is the definition of global free energy.

Definition 2.1.2 (Global Free Energy). The global free energy with respect to the whole data
set is defined as:

F
(
q(θ)

)
=

∫
q(θ) ln

p(θ)∏
M
m=1 p(Dm|θ)
q(θ)

dθ (2.10)

Maximizing the global free energy above is equivalent to minimizing the KL divergence
between the approximate posterior and the true posterior, KL

(
q(θ) ∥ p(θ |D)

)
(Bishop,

2006).
The following properties (Bui et al., 2018) reveal the connection between PVI and global

variational inference.

Theorem 2.1.1. Let q∗(θ) = p(θ)∏
M
m=1 t∗m(θ) be the approximate posterior at convergence

of the PVI algorithm. We have:

1. The sum of the local free energies is equal to the global free energy:

M

∑
m=1

Fm
(
q∗(θ)

)
= F

(
q∗(θ)

)
(2.11)

2. Optimizing the local free energies optimizes the global free energy

q∗(θ) = argmax
q(θ)∈Q

Fm
(
q(θ)

)
for all m ⇒ q∗(θ) = argmax

q(θ)∈Q
F
(
q(θ)

)
(2.12)

The above properties state that the approximate posterior at convergence of the PVI
algorithm recovers a global variation inference solution (both the optimal q(θ) and the
global free energy at this optimum), so the approximation achieved by PVI is as good as that
achieved by standard global VI (Bui et al., 2018).

2.2 Differential Privacy

Differential privacy (DP) (Dwork et al., 2006; Dwork and Roth, 2014) constitutes a powerful
framework that prevents breaching of data subject privacy from the output of a computation.
It provides a mathematical foundation for privacy, and is able to quantify the level of privacy
guarantees that some methods provide. This quantification is particularly helpful not only
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for algorithm designers, who are interested in investigating the trade-off between statistical
performance and level of privacy guarantees of different algorithms, but also for clients
seeking protection of their data, who are able to compare the level of protection offered by
rival algorithm providers (Dwork and Roth, 2014).

Let’s look into the mathematical details of differential privacy. To begin with, we provide
the definition of differential privacy.

Definition 2.2.1 (ε-Differential Privacy). A randomized algorithm A is said to be ε-differentially
private if for all pairs of data sets (D,D′), which differ in one data point only, and for any
possible subset of outputs S, the following inequality holds:

Pr(A(D) ∈ S)≤ eε Pr(A(D′) ∈ S) (2.13)

Since this definition is symmetric across data sets, for any pair of data sets (D,D′)

differing only in one data point, the inequality in the definition can be rewritten as:

e−ε ≤ Pr(A(D) ∈ S)
Pr(A(D′) ∈ S)

≤ eε (2.14)

This inequality means that when two data sets (D,D′) are similar (i.e. differ in one data
point), the two output probability densities should also be similar (the ratio of two densities
is close to one). In this way, it’s difficult to distinguish between the above two data sets
given outputs

(
A(D),A(D′)

)
, and thus algorithm A provides privacy guarantees to data sets

(D,D′).
The positive privacy parameter ε measures the strength of privacy guarantee with smaller

values corresponding to stronger privacy (Dwork and Roth, 2014). However, there is still
no rigorous method for choosing and interpreting ε . Hsu et al. (2014) proposed a simple
economic model based on estimating the monetary cost of leaking private data, which enables
users of differential privacy to choose the privacy parameter ε in a principled way. According
to their findings, the value of ε usually does not exceed 10, but this value might not be
appropriate for machine learning models.

In practice, differential privacy operates by adding noise to the data-dependent terms
in algorithms and limiting the amount of information that can be taken from a single data
point. In this way, an adversary will be not able to tell whether a particular output of the
algorithm is because of noise or because of the contribution from a specific data point. On
the other hand, a client can also claim that a particular output of the algorithm is because of
noise instead of the contribution from a specific data point, which relates to the concept of
plausible deniability (Dwork and Roth, 2014).
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Differential privacy is immune to post-processing: An adversary, without additional
knowledge (e.g. information about a specific data point, or aggregate information of a
collection of data points) about the private database, cannot compute a function of the output
of a differentially private algorithm and make it less differentially private (Dwork and Roth,
2014). That is, data leak is not possible for a differentially private algorithm if an adversary
only has access to the output of the algorithm, no matter what auxiliary information is
available.

ε-differential privacy defined above, also known as pure DP, is sometimes too inflexible
and a relaxed version called (ε,δ )-differential privacy is often used instead. It is defined as
follows:

Definition 2.2.2 ((ε,δ )-Differential Privacy). A randomized algorithm A is said to be (ε,δ )-
differentially private if for all pairs of data sets (D,D′), which differ in one data point only,
and for any possible subset of outputs S, the following inequality holds:

Pr(A(D) ∈ S)≤ eε Pr(A(D′) ∈ S)+δ (2.15)

Similar to ε , δ is another privacy parameter which measures the strength of privacy
guarantee, with smaller values corresponding to stronger privacy. When δ = 0, an (ε,δ )-
differentially private algorithm is equivalent to a pure ε-differentially private algorithm.
Dwork and Roth (2014) showed that (ε,δ )-DP provides a probabilistic ε-DP guarantee with
probability 1−δ .

Next, we introduce how to make an algorithm differentially private. Before that, we
provide the definition of ℓ2-sensitivity, which is an important quantity for functions operating
on data sets.

Definition 2.2.3 (ℓ2-Sensitivity). The ℓ2-sensitivity of a function, D 7→ f (D)∈Rn, is denoted
as ∆2( f ) and is defined as:

∆2( f ) = max
D,D′

∥ f (D)− f (D′)∥2 (2.16)

where D and D′ differ in one data point only.

For a function with a given ℓ2-sensitivity, the Gaussian mechanism can be used to make
this function (ε,δ )-differentially private (Dwork and Roth, 2014).

Theorem 2.2.1 (Gaussian Mechanism). Let D 7→ f (D)∈Rn be a function with ℓ2-sensitivity
∆2( f ) and ε ∈ (0,1). Adding noise ηi ∼N (0,σ2) to each of the n components of the output
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guarantees f (D)+ηηη to be (ε,δ )-differentially private when the following inequality holds:

σ
2 > 2ln(1.25/δ )∆

2
2( f )/ε

2 (2.17)

In many machine learning models, a particular algorithm is often repeatedly applied to
a data set. For example, gradient descent optimization algorithms repeatedly calculate the
gradient of a loss function over collections of data points, and use this gradient to adjust
model parameters so that the loss is minimized. One of the very useful features of differential
privacy compared to many other privacy formulations is that it is able to compose individual
privacy guarantees provided by repeatedly applying an algorithm to the same data set into
an overall privacy guarantee (note that a privacy guarantee refers to a pair of (ε,δ ) values).
Intuitively, using an algorithm on a data set multiple times will weaken our privacy guarantee
because of the potential of each application to leak more information (Jälkö et al., 2016).

2.2.1 Moments Accountant

When individual privacy guarantees are composed, there are many mechanisms which bound
the values of ε and δ . In particular, Abadi et al. (2016) proposed the moments accountant, an
advanced technique which is able to accumulate the privacy cost by tracking the moments of
the privacy loss, and provide a tighter upper bounds for ε and δ . Here, we walk through the
details of the moments accountant according to the original paper.

Definition 2.2.4 (Privacy Loss). For a stochastic algorithm A, a pair of adjacent data sets
(D,D′) (i.e. differ in one data point only), and some outcome S, the privacy loss at S is
defined as:

c(S;A,D,D′) = ln
Pr[A(D) = S]
Pr[A(D′) = S]

(2.18)

This definition means that if the probabilities of an algorithm outcome are very different
for adjacent data sets, observing this outcome reveals information about the data sets, and
thus the privacy loss c should have large (absolute) value. Since the algorithm in the definition
is stochastic, the privacy loss c is itself a random variable. Note that according to equation
2.14, an (ε,0) privacy guarantee means that the absolute value of the privacy loss random
variable |c| is always less than or equal to ε .

Definition 2.2.5 (λ th Moment of A). For a stochastic algorithm A, a useful quantity is the
maximum value of the log of the moment generating function of the privacy loss:

αA(λ ) = max
D,D′

lnES∼A(D)

[
exp

(
λc(S;A,D,D′)

)]
(2.19)
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Theorem 2.2.2 (Properties of αA(λ )). αA(λ ) has two important properties that are useful
for the moments accountant.

1. Composability: If the stochastic algorithm A consists of a sequence of adaptive steps
M1, ...,Mk, then for any λ :

αA(λ )≤
k

∑
i=1

αMi(λ ) (2.20)

2. Tail bound: For any ε > 0 and λ , the stochastic algorithm A is (ε,δ )-differentially
private for

δ ≤ exp(αA(λ )−λε) (2.21)

For each steps M1, ...,Mk of the algorithm A, the moments accountant method computes
αMi(λ ) for several values of λ , and then applies the composability property to bound the
moments of the algorithm overall αA(λ ). In typical applications of the moments accountant
method, a target value for either ε or δ is first fixed, and then the tail bound property is
used to compute the best possible value of the other privacy parameter (Abadi et al., 2016).
Rewritten from equation 2.21, the following equations are used compute the other privacy
parameter:

δ = min
λ

exp(αA(λ )−λε) (2.22)

ε = min
λ

1
λ
(αA(λ )− lnδ ) (2.23)

Each λ value provides an upper bound on the privacy parameter, and we take the minimum
of ε or δ across all λ values because smaller values of ε and δ are equivalent to stronger
privacy guarantees.

The main challenge that remains is to bound the value αMi(λ ) for each step. In the case
of a Gaussian mechanism with random sampling, it is possible to estimate those moments.
Let D = {xi} and D′ =D∪x′ where x ∈ X . Let f : X →Rn with ∥ f (·)∥2 ≤ ∆. Consider the
following Gaussian mechanism:

A(D) = ∑
i∈I

f (xi)+∆σηηη (2.24)

where ηi ∼N (0,1) for i = 1, ...,n and I is a subset of indices in which each index is chosen
independently with probability q (Abadi et al., 2016).
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Without loss of generality, suppose f (xi) = 000 and f (x′) = ∆ · eee1 where eee1 is a unit vector
representing the first axis of the coordinate system. Then A(D) and A(D′) are distributed
identically except on the first axis. Focusing on this axis, since the probability of choosing x′

is q, the output probability densities of the mechanism are (Abadi et al., 2016):

p(A(D)1 = z)∼ µ0(z) =N (z|0,∆2
σ

2) (2.25)

p(A(D′)1 = z)∼ µ1(z) = q ·N (z|∆,∆2
σ

2)+(1−q) ·N (z|0,∆2
σ

2) (2.26)

Then, by definition of the λ th moment, αA(λ ) can be computed using the following
equations:

αA(λ ) = lnmax(E1,E2) (2.27)

E1 = Ez∼µ0

[(µ0(z)
µ1(z)

)λ

]
(2.28)

E2 = Ez∼µ1

[(µ1(z)
µ0(z)

)λ

]
(2.29)

where E1 and E2 can be computed by numerical integration. Note that computing the values
of ε and δ does not depend on the data used for the mechanism, so they can be computed in
advance given fixed values of ∆, q, and target ε or δ (Abadi et al., 2016).

2.2.2 Differentially Private Stochastic Gradient Descent

Abadi et al. (2016) proposed the differentially private stochastic gradient descent (DP-SGD)
algorithm, which is outlined in algorithm 2. The Gaussian mechanism with random sampling
is applied to stochastic gradient descent (SGD) to minimize some loss function. Specifically,
at each step of the SGD, we compute the gradient for a random subset of data points, clip the
ℓ2 norm of each gradient, add noise to the average of all gradients in order to protect privacy,
and perform the descent step.

The Gaussian mechanism can be successfully applied, because the gradient clipping step
bounds the ℓ2-sensitivity of the gradient function. The clipping bound C is an important
hyperparameter: if the clipping bound is too small, the average clipped gradient may be very
different from the true gradient; if the clipping bound is too large, we will add too much
noise to the average gradient, since the noise scales with σC. Abadi et al. (2016) suggested
that C can be chosen as the median of the norms of the unclipped gradients over the course of
training. Moreover, Abadi et al. (2016) suggested learning rate should be adaptive, starting
at a large value and reducing over time. In addition, regarding the lot size L, larger L will
reduce the relative effect of the added noise, while smaller L will result in less privacy cost.
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Abadi et al. (2016) commented that the best lot size is roughly
√

N where N is the number of
training data points.

Abadi et al. (2016) originally used DP-SGD in deep neural networks, but it can be used
in many other models to create differentially private algorithms. One example is that Jälkö
et al. (2016) used it to perform variational inference for non-conjugate models.

Algorithm 2: Differentially Private Stochastic Gradient Descent (DP-SGD)

Input: data set D = {x1, ...,xN}, loss function L(θθθ) = 1
N ∑iL(θθθ ,xi)

Parameters: learning rate αt , clipping bound C, DP noise scale σ , lot size L, number
of iterations T

1 Initialize θθθ 0 randomly
2 for t = 1, ...,T do
3 Take a random sample Lt with sampling probability q = L/N
4 foreach i ∈ Lt do
5 Compute gradient: gggt(xi) = ∇θθθ t−1L(θθθ t−1,xi)

6 Clip gradient: ḡggt(xi) = gggt(xi)/max(1, ∥gggt(xi)∥2
C )

7 end
8 Add noise: g̃ggt =

1
Lt

[
∑i ḡggt(xi)+σCzzz

]
where zi ∼N (0,1)

9 Descent: θθθ t = θθθ t−1 −αt g̃ggt

10 end
Output: θθθ T and compute the overall privacy cost (ε,δ ) using the moments accountant

We have now covered all the necessary background on federated learning and differential
privacy. In the next chapter, we will extend the Partitioned Variational Inference algorithm
using differential privacy techniques.



Chapter 3

Differentially Private Partitioned
Variational Inference

In this chapter, we first specify the context of the Partitioned Variational Inference setting
that we seek to protect, clarifying all assumptions. Then we elaborate on two types of
Differentially Private Partitioned Variational Inference (DP-PVI) algorithms, namely data-
point level DP-PVI and data-set level DP-PVI.

3.1 Context

Recalling the PVI setting, a number of clients, each of which has a local data shard we
seek to protect, interact with a central parameter server to collaboratively train a shared
machine learning model. An adversary tries to use obtainable information of this machine
learning model to learn private information about the training data. The full context makes
the following assumptions (Sharma, 2019):

• The adversary is able to access the approximate posterior q(θ) stored at the central
server all the time (both during the course of training and after training).

• The adversary is able to intercept messages between the central server and each client.

• The adversary is able to pretend as a client, or force an existing client to leak their
local data and / or add additional data used for training to this client.

• The adversary is able to pretend as the central server, sending messages to each client
and reading incoming messages from each client.
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Fig. 3.1 Full context of the PVI setting that we seek to protect (Sharma, 2019).

3.2 Data-point Level DP-PVI

Data-point level DP-PVI can be constructed simply by applying a differentially private
mechanism to perform the local free energy optimization step (equation 2.4) at each client.
For example, DP-SGD (algorithm 2) can be used by setting the loss function to be the
negative local free energy (Sharma, 2019). Note that since DP-SGD minimizes the loss
function, we use negative local free energy here.

At each client m = 1, ...,M, DP-SGD limits the contribution of each data point in the
local data shard Dm to the update of the approximate posterior q(θ), and adds noise which
scales with the maximum magnitude of this contribution. Therefore, since any external
communications (i.e. the approximate posterior updates) between the client and the parameter
server is privacy preserving, each client is protected with an independent privacy barrier.
Figure 3.2 illustrates the privacy barriers achieved by the data-point level DP-PVI algorithm.
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Data-point level DP-PVI has two main advantages. One is that the clients do not need to
encrypt their outgoing messages or verify the parameter server is trustworthy. The other is
that each client is able to tune its individual privacy settings according to its own local data
set and the level of privacy guarantees it aims (Sharma, 2019).

Fig. 3.2 Privacy barriers achieved by the data-point level DP-PVI algorithm (Sharma, 2019).

3.3 Data-set Level DP-PVI

Recalling the fundamental definition of differential privacy (definition 2.2.1), we can view
each client’s local data shard Dm as one data point in this definition. In this way, data-set
level DP-PVI can be constructed by limiting the contribution of each local data shard to the
update of the approximate posterior q(θ) and then adding corrupting noise.

Suppose that the approximate posterior is parameterized with parameters λλλ and is denoted
as q(θθθ |λλλ ). Note that for now on, we will use vector notations for θθθ and λλλ , since both of
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them usually consist of more than one components for many probabilistic models used in
practice.

Algorithm 3: Data-set Level DP-PVI (Problematic) (Sharma, 2019)

Input: data partition D = {D1, ...,DM}, prior λλλ
(p), learning rate α ∈ [0,1], clipping

bound C, DP noise scale σ

1 Initialize the approximate likelihoods:

t(0)m (θθθ) = 1 for all m = 1,2, ...,M (3.1)

2 Initialize parameters of the approximate posterior:

λλλ
(0) = λλλ

(p) (3.2)

3 for i = 1,2, ... until convergence do
4 for m = 1,2, ...,M do
5 Compute new parameters for this client:

λλλ m = argmax
λλλ

∫
q(θθθ |λλλ ) ln

q(θθθ |λλλ (i−1))p(Dm|θθθ)
q(θθθ |λλλ )t(i−1)

m (θθθ)
dθθθ (3.3)

6 ∆λλλ m = λλλ m −λλλ
(i−1)

7 Clip and corrupt update:

∆̃λλλ m = α ·
[

∆λλλ m

max(1,∥∆λλλ m∥2/C)
+

σC√
M

zzz
]

where zk
iid∼ N (0,1) (3.4)

8 λλλ m = λλλ
(i−1)+ ∆̃λλλ m

9 Update the approximate likelihood:

t(i)m (θθθ) =
q(θθθ |λλλ m)

q(θθθ |λλλ (i−1))
t(i−1)
m (θθθ) (3.5)

10 end
11 Compute new global parameters:

λλλ
(i) = λλλ

(i−1)+
M

∑
m=1

∆̃λλλ m (3.6)

12 Update privacy cost using the moments accountant
13 end
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Sharma (2019) introduced a data-set level DP-PVI algorithm, which is outlined in
algorithm 3. In this algorithm, at each iteration, each client computes a partial update of
the approximate posterior, clips and corrupts this update with noise, and uses this partial
update to refine the local approximate likelihood term. On the other hand, at each iteration,
the central parameter server uses the sum of all partial updates from each client to update
the approximate posterior. Combining equations 3.4 and 3.6, the effective update rule of the
parameter server is the following:

λλλ
(i) = λλλ

(i−1)+α ·

[
M

∑
m=1

∆λλλ m

max(1,∥∆λλλ m∥2/C)

]
+σCzzz where zk

iid∼ N (0,1) (3.7)

However, the above data-set level DP-PVI algorithm has technical problems. At each
iteration, each client has direct access to a proportion of the overall noise σCzzz which is
added, but at the next iteration, each client computes a new update, perfectly deleting the
local approximate likelihood term. Thus, this new update from the client releases information
about the noise, which is a violation to post-processing of differential privacy. In addition, the
privacy accounting method of the above algorithm is problematic. This algorithm distributes
the overall noise of a fixed standard deviation across M clients, and computes the privacy
cost in a way that as M increases, there is no additional privacy cost.

Fig. 3.3 Privacy costs (ε values) for several different numbers of clients.

Figure 3.3 illustrates how the privacy accounting method in algorithm 3 is problematic.
We fix clipping bound C = 1, DP noise scale σ = 1, and target δ = 10−4, and then compute
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the values of ε using the moments accountant. If algorithm 3 is performed, no matter what
the value of M is, the privacy costs will always be the blue curve, which is equivalent to
M = 1. However, the correct privacy costs for M = 2,5,10 are illustrated by the orange,
green, and red curves. Actually, if the number of clients is M, the effective DP noise scale
should be σ = 1/

√
M.

Now, we specify two ways of fixing the technical problems in algorithm 3. The first idea
is to remove the

√
M term in equation 3.4, and it becomes:

∆̃λλλ m = α ·
[

∆λλλ m

max(1,∥∆λλλ m∥2/C)
+σCzzz

]
where zk

iid∼ N (0,1) (3.8)

At the central parameter server, the overall noise added will become
√

M ·σCzzz. This means
that if the number of clients M is large, there will be a lot more noise added in each iteration,
which will affect the performance of the algorithm.

Another idea of fixing the technical problems in algorithm 3 is to let the central server
add noise, which is outlined in algorithm 4. However, algorithm 4 is still problematic because
each client produces a clipped update, and assumes that this update is applied precisely. As a
result, the local approximate likelihood terms are never noisy, and this algorithm results in
pathological random walk behavior.

For a more detailed explanation, we can assume that all clients have the correct local
approximate likelihood terms, but the central server has the wrong value of q(θθθ) due to the
noise added. In this case, each client refines it’s local approximate likelihood, but since this
term is already correct, there is no “restoring-force” pushing q(θθθ) back towards the true
optimum. The lack of “restoring force” can be viewed as that the approximate likelihood
terms and the global approximate posterior become out-of-sync. Since the local approximate
likelihood terms are never noisy, q(θθθ) ̸= p(θθθ)∏

M
m=1 tm(θθθ).

Here, we propose a possible remedy for the pathological random walk behavior. For the
following discussion, assume that each approximate likelihood term is chosen from the same
conjugate exponential family. Therefore, we have:

λλλ q = λλλ p +∑
m

λλλ tm (3.16)

where λλλ q represents the (natural) parameters of the approximate posterior, λλλ p represents
the (natural) parameters of the prior, and λλλ tm represents the (natural) parameters of each
un-normalized approximate likelihood term.

After T iterations of applying noise at the central server, the global approximate posterior
is given by λλλ

(T )
q . Since the approximate likelihood terms are not corrupted by the noise, λλλ

(T )
q
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Algorithm 4: Data-set Level DP-PVI (Central Noise)

Input: data partition D = {D1, ...,DM}, prior λλλ
(p), learning rate α ∈ [0,1], clipping

bound C, DP noise scale σ

1 Initialize the approximate likelihoods:

t(0)m (θθθ) = 1 for all m = 1,2, ...,M (3.9)

2 Initialize parameters of the approximate posterior:

λλλ
(0) = λλλ

(p) (3.10)

3 for i = 1,2, ... until convergence do
4 for m = 1,2, ...,M do
5 Compute new parameters for this client:

λλλ m = argmax
λλλ

∫
q(θθθ |λλλ ) ln

q(θθθ |λλλ (i−1))p(Dm|θθθ)
q(θθθ |λλλ )t(i−1)

m (θθθ)
dθθθ (3.11)

6 ∆λλλ m = λλλ m −λλλ
(i−1)

7 Clip and corrupt update:

∆̃λλλ m = α · ∆λλλ m

max(1,∥∆λλλ m∥2/C)
(3.12)

8 λλλ m = λλλ
(i−1)+ ∆̃λλλ m

9 Update the approximate likelihood:

t(i)m (θθθ) =
q(θθθ |λλλ m)

q(θθθ |λλλ (i−1))
t(i−1)
m (θθθ) (3.13)

10 end
11 Compute global noise:

∆̃λλλ
(i)
s = α ·σCzzz where zk

iid∼ N (0,1) (3.14)

12 Compute new global parameters:

λλλ
(i) = λλλ

(i−1)+
M

∑
m=1

∆̃λλλ m + ∆̃λλλ
(i)
s (3.15)

13 Update privacy cost using the moments accountant
14 end
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can be written as:
λλλ
(T )
q = λλλ p +∑

m
λλλ
(T )
tm + zzz(1)+ · · ·+ zzz(T ) (3.17)

Now, since the approximate likelihood terms stored at the clients are wrong, we can reset
those likelihood terms as follows:

λλλ
(T )
tm =

λλλ
(T )
q −λλλ p

M
(3.18)

where M is the number of clients.
This resetting approach does not violate differential privacy, because the approximate

likelihood terms are set using public knowledge only and the privacy accounting does not
need to be modified. After the resetting takes place, the noise will be incorporated into the
local approximate likelihood terms, and then the clients will be able to restart refining these
likelihoods, hopefully pushing λλλ q back towards the global optimum.

The advantage of this approach is that it essentially reset the random walk noise every
time the local approximate likelihoods are reset. It also has several disadvantages. Firstly, we
need to figure out how to choose the interval between each resetting. Moreover, this approach
is unlikely to work well for inhomogeneous data. Last but not least, it does not completely
remove the pathological random walk behavior.

We have now constructed two types of DP-PVI algorithms. In the next chapter, we will apply
DP-PVI algorithms to specific models and provide the results of our experiments.



Chapter 4

Experiments and Results

In this chapter, we apply DP-PVI algorithms to Bayesian multi-dimensional linear regression
models. Specifically, we focus on the data-point level DP-PVI algorithm, applying DP-SGD
to perform the local free energy optimization step in PVI. We mainly conduct experiments on
mini-batching and adaptive clipping bounds, investigating how they affect the performance
of the data-point level DP-PVI algorithm.

4.1 Preliminaries

4.1.1 Model Definition

We consider the following multi-dimensional linear regression model:

y = θθθ
⊤xxx+ ε where xxx =


1
x1
...

xD

 θθθ =


θ0

θ1
...

θD

 ε
iid∼ N (0,σ2

e ) (4.1)

θθθ are fixed unknown parameters of this probabilistic model, and σe is assumed to be known.
The training data set D is partitioned into M groups of data points {D1, ...,DM}, where each
Dm = {(xxx(n)m ,y(n)m )}Nm

n=1. θθθ has a Gaussian prior:

p(θθθ)∼N (µµµ p,σ
2
p III) (4.2)

The approximate likelihood tm(θθθ) for each client m are un-normalized Gaussian distributions,
and thus the approximate posterior q(θθθ) is also Gaussian. We aim to find a q(θθθ) which is a
good approximation of the posterior distribution p(θθθ |D).
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Exponential family distributions take the following form:

p(xxx|ηηη) = h(xxx)exp
(

ηηη
⊤TTT (xxx)−A(ηηη)

)
(4.3)

where ηηη is the vector of natural parameters and TTT (xxx) is the vector of sufficient statistics. It is
useful to express the multivariate Gaussian distribution as an exponential family distribution
in terms of natural parameters:

N (xxx|µµµ,ΣΣΣ) = 1
(2π)k/2|ΣΣΣ|1/2 exp

[
−1

2
(xxx−µµµ)⊤ΣΣΣ

−1(xxx−µµµ)

]
=

1
(2π)k/2|ΣΣΣ|1/2 exp

[
−1

2
xxx⊤ΣΣΣ

−1xxx+µµµ
⊤

ΣΣΣ
−1xxx− 1

2
µµµ
⊤

ΣΣΣ
−1

µµµ

]
=

1
(2π)k/2 exp

[
−1

2
tr(ΣΣΣ−1xxxxxx⊤)+µµµ

⊤
ΣΣΣ
−1xxx− (

1
2

µµµ
⊤

ΣΣΣ
−1

µµµ +
1
2

ln |ΣΣΣ|)
]

=
1

(2π)k/2 exp
[
−1

2
vec(ΣΣΣ−1)⊤ vec(xxxxxx⊤)+µµµ

⊤
ΣΣΣ
−1xxx− (

1
2

µµµ
⊤

ΣΣΣ
−1

µµµ +
1
2

ln |ΣΣΣ|)
]

(4.4)

where vec(·) is the vectorization operator, which converts a matrix into a column vector by
stacking the columns of the matrix on top of one another. Comparing equation 4.4 to the
form of exponential family distributions, we can get:

ηηη =

[
ΣΣΣ
−1

µµµ

vec(ΣΣΣ−1)

]
(4.5)

TTT (xxx) =

[
xxx

−1
2 vec(xxxxxx⊤)

]
(4.6)

A(ηηη) =
1
2

µµµ
⊤

ΣΣΣ
−1

µµµ +
1
2

ln |ΣΣΣ| (4.7)

h(xxx) =
1

(2π)k/2 (4.8)

Note that ΣΣΣ
−1

µµµ is known as the natural mean, and ΣΣΣ
−1 is known as the precision matrix.

This representation allows the products and quotients of multivariate Gaussian distribu-
tions to be written easily as follows:

N (xxx|ηηη1) ·N (xxx|ηηη2) ∝ N (xxx|ηηη1 +ηηη2) (4.9)

N (xxx|ηηη1)/N (xxx|ηηη2) ∝ N (xxx|ηηη1 −ηηη2) (4.10)
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4.1.2 Analytical Update Equations for PVI

For this multi-dimensional linear regression model, the local free energy maximization
(equation 2.4) and the local approximate likelihood update (equation 2.5) in the PVI algo-
rithm are analytical. Equation 2.7 rewrites the local free energy maximization as the KL
minimization between q(θθθ) and the tilted distribution p̂(i)m (θθθ) where m is the client index.
This KL divergence is minimized when q(θθθ) is exactly equal to p̂(i)m (θθθ).

The tilted distribution can be expressed as follows:

p̂(i)m (θθθ) ∝
q(i−1)(θθθ)

t(i−1)
m (θθθ)

p(Dm|θθθ)

∝ N (θθθ |ηηη(i−1)
q −ηηη

(i−1)
m )︸ ︷︷ ︸

“prior”

p(Dm|θθθ)︸ ︷︷ ︸
likelihood

=N (θθθ |η̃ηη) (4.11)

Since the above equation is equivalent to standard Bayesian linear regression, η̃ηη can be
computed analytically as follows:

η̃ηη = ηηη
(i−1)
q −ηηη

(i−1)
m +


XXX⊤

mYYY m
σ2

e

diag(XXX⊤
mXXXm
σ2

e
)

 (4.12)

where

XXXm =


— xxx(1)m —

...

— xxx(Nm)
m —

 YYY m =


y(1)m

...

y(Nm)
m

 (4.13)

where diag(·) takes a matrix as input and returns a column vector of the diagonal entries of
this matrix. Note that since we perform mean field PVI here, we only keep diagonal entries of
the precision matrices of the prior, the approximate posterior, and the approximate likelihood
terms, so we have this diag(XXX⊤

mXXXm/σ2
e ) operation when computing η̃ηη .

Therefore, the local free energy maximization step is equivalent to setting q(i)(θθθ) =
N (θθθ |η̃ηη) (i.e. ηηη

(i)
q = η̃ηη). Then the local approximate likelihood update (equation 2.5) is

straightforward to compute in terms of natural parameters:

ηηη
(i)
m = ηηη

(i)
q −ηηη

(i−1)
q +ηηη

(i−1)
m (4.14)

Note that since the approximate posterior q(θθθ) must normalize, there is no need to keep track
of the normalizing constants of the approximate likelihood terms.
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4.1.3 Gradient of Local Free Energy

Since data-point level DP-PVI algorithm is constructed by performing the local free energy
optimization step (equation 2.4) in PVI (algorithm 1) using DP-SGD (algorithm 2), we now
derive the gradients of the local free energy (definition 2.1.1) with respect to the mean vector
µµµq and the covariance matrix ΣΣΣq of q(θθθ).

For client m, the local free energy can be expressed as follows:

F (i)
m
(
q(θθθ)

)
=

∫
q(θθθ) ln

q(i−1)(θθθ)p(Dm|θθθ)
q(θθθ)t(i−1)

m (θθθ)
dθθθ

=H[q]+
∫

q(θθθ) ln p(Dm|θθθ)dθθθ +
∫

q(θθθ) ln
(
C ·N (θθθ |ηηη(i−1)

q −ηηη
(i−1)
m )

)
dθθθ

(4.15)

where H[q] is the differential entropy of q and C is some constant (which does not have a
fixed value in the following analysis). The differential entropy for a multivariate Gaussian
distribution has an analytical form (Bishop, 2006):

H[q] =
D+1

2
(1+ ln2π)+

1
2

ln |ΣΣΣq| (4.16)

The second term in equation 4.15 can be written as follows:∫
q(θθθ) ln p(Dm|θθθ)dθθθ

= C − 1
2σ2

e

∫
q(θθθ)

[
(YYY m −XXXmθθθ)⊤(YYY m −XXXmθθθ)

]
dθθθ

= C − 1
2σ2

e

∫
q(θθθ)

[
θθθ
⊤XXX⊤

mXXXmθθθ −2YYY⊤
mXXXmθθθ

]
dθθθ

= C − 1
2σ2

e

∫
q(θθθ)

[
tr(XXX⊤

mXXXmθθθθθθ
⊤)−2YYY⊤

mXXXmθθθ

]
dθθθ

= C − 1
2σ2

e

∫
q(θθθ)

[
vec(XXX⊤

mXXXm)
⊤ vec(θθθθθθ

⊤)−2YYY⊤
mXXXmθθθ

]
dθθθ

= C − 1
2σ2

e

[
vec(XXX⊤

mXXXm)
⊤ vec(ΣΣΣq +µµµqµµµ

⊤
q )−2YYY⊤

mXXXmµµµq

]
= C − 1

2σ2
e

[
vec(XXX⊤

mXXXm)
⊤ vec(ΣΣΣq)+µµµ

⊤
q XXX⊤

mXXXmµµµq −2YYY⊤
mXXXmµµµq

]
(4.17)

where the first and second moments of the Gaussian distribution q(θθθ) have been directly
substituted in.
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Let µ̃µµ and Σ̃ΣΣ denote the mean vector and covariance matrix of N (θθθ |ηηη(i−1)
q −ηηη

(i−1)
m ).

Then the last term in equation 4.15 can be written as follows:∫
q(θθθ) ln

(
C ·N (θθθ |ηηη(i−1)

q −ηηη
(i−1)
m )

)
dθθθ

= C − 1
2

∫
q(θθθ)

[
(θθθ − µ̃µµ)⊤Σ̃ΣΣ

−1
(θθθ − µ̃µµ)

]
dθθθ

= C − 1
2

∫
q(θθθ)

[
θθθ
⊤

Σ̃ΣΣ
−1

θθθ −2µ̃µµ
⊤

Σ̃ΣΣ
−1

θθθ

]
dθθθ

= C − 1
2

∫
q(θθθ)

[
tr(Σ̃ΣΣ−1

θθθθθθ
⊤)−2µ̃µµ

⊤
Σ̃ΣΣ
−1

θθθ

]
dθθθ

= C − 1
2

∫
q(θθθ)

[
vec(Σ̃ΣΣ−1

)⊤ vec(θθθθθθ
⊤)−2µ̃µµ

⊤
Σ̃ΣΣ
−1

θθθ

]
dθθθ

= C − 1
2

[
vec(Σ̃ΣΣ−1

)⊤ vec(ΣΣΣq +µµµqµµµ
⊤
q )−2µ̃µµ

⊤
Σ̃ΣΣ
−1

µµµq

]
= C − 1

2

[
vec(Σ̃ΣΣ−1

)⊤ vec(ΣΣΣq)+µµµ
⊤
q Σ̃ΣΣ

−1
µµµq −2µ̃µµ

⊤
Σ̃ΣΣ
−1

µµµq

]
(4.18)

Combining the above expressions, we can compute the gradients of the local free energy
with respect to mean µµµq and covariance ΣΣΣq of q(θθθ) as follows:

∂F (i)
m
(
q(θθθ)

)
∂ µµµq

=− 1
σ2

e
(XXX⊤

mXXXmµµµq −XXX⊤
mYYY m)− (Σ̃ΣΣ

−1
µµµq − Σ̃ΣΣ

−1
µ̃µµ) (4.19)

∂F (i)
m
(
q(θθθ)

)
∂ΣΣΣq

=
1
2

ΣΣΣ
−1
q − 1

2σ2
e

XXX⊤
mXXXm − 1

2
Σ̃ΣΣ
−1 (4.20)

Note that since we seek to maximize the local free energy, DP-SGD should be performed
using the negative of the above gradients. Moreover, DP-SGD need to clip the gradients of
each data point, so we rewrite the above gradients in terms of each data point in the local
data shard Dm = {(xxx(n)m ,y(n)m )}Nm

n=1 as follows:

gggµµµq

(
xxx(n)m ,y(n)m

)
=

1
σ2

e

(
xxx(n)m xxx(n)⊤m µµµq − xxx(n)m y(n)m

)
+

1
Nm

(
Σ̃ΣΣ
−1

µµµq − Σ̃ΣΣ
−1

µ̃µµ

)
(4.21)

gggΣΣΣq

(
xxx(n)m ,y(n)m

)
=

1
2σ2

e
xxx(n)m xxx(n)⊤m − 1

2Nm

(
ΣΣΣ
−1
q − Σ̃ΣΣ

−1
)

(4.22)

where xxx(n)m is a column vector. These gradients can then be used in DP-SGD.
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4.1.4 Assessing Performance

To assess the performance of a DP-PVI algorithm, we use the KL divergence between the
approximate posterior obtained from the algorithm and the posterior distribution computed
non-privately using the entire combined data set and the exact analytical equations for
Bayesian linear regression i.e. KL

(
q(θθθ) ∥ p(θθθ |D)

)
.

Intuitively, since differential privacy limits the contribution of any one single data point
on the probabilistic model, we may expect that it reduces overfitting, which occurs a training
procedure causes the model to correspond too closely or exactly to a particular set of data,
and improves model generalization, the prediction performance on unseen data (Sharma,
2019). Therefore, the above KL divergence performance metric is not perfect. However,
since we are using a simple linear probabilistic model and the data are also generated from a
linear model, the KL divergence is a suitable performance metric here.

4.1.5 Data Generation

Each input xxx is generated as follows:

xxx =


1
x1
...

xD

 where xd
iid∼ N (0,1) for each d = 1, ...,D (4.23)

Then given fixed values of θθθ and σe, the local data shard at each client is generated using the
model definition 4.1 with the above generated xxx. Note that the data set we use in this project
is homogeneous (i.e. the underlying data distribution for each client is the same).

4.2 Data-point Level DP-PVI

4.2.1 DP-SGD

Recall that data-point level DP-PVI algorithm can be constructed by performing the local
free energy optimization step (equation 2.4) in PVI (algorithm 1) using DP-SGD (algorithm
2). In our implementation, gradient descent is performed on the mean and the log of diagonal
entries of the covariance matrix, in order to ensure that the variances of the marginals remain
positive. Otherwise, large learning rate can cause negative variances, and thus the algorithm
fails.
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(a) Evolution of natural parameters of q(θθθ).

(b) Evolution of the log of KL
(
q(θθθ) ∥ p(θθθ |D)

)
.

(c) Evolution of the privacy parameter ε .

Fig. 4.1 Typical results of the data-point level DP-PVI algorithm implemented using DP-SGD.
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Figure 4.1 illustrates a set of typical results of the data-point level DP-PVI algorithm
implemented using DP-SGD. Here, we are using 5 clients each with a local data shard of 200
data points. The true parameters and hyperparameters are set as follows: θθθ = [−1,2]⊤,σe =

3,µµµ p = 000,σp = 1, learning rate α = 0.1, clipping bound C = 5, DP noise scale σ = 1, lot
size L = 20, and target δ = 10−4. Each client performs 50 iterations of DP-SGD per one
server update, and 500 iterations of server update have been applied.

We can see from figure 4.1a that the natural parameters of the approximate posterior
almost converge after 100 iterations of server update. After that, they slightly oscillate around
due to the DP noise applied. Figure 4.1b shows that the log of the KL divergence between
q(θθθ) and the true posterior is quite low, which reassures us that the performance of this
DP-PVI algorithm is quite good. From figure 4.1c, we can see that the ε value goes above
400 after 500 iterations of server update, which far exceeds the maximum value ε ≈ 10 found
in Hsu et al. (2014). However, q(θθθ) almost converges after 100 iterations of server update,
and the ε value at that point is about 100, which is not particularly bad.

4.2.2 Mini-batching

In this subsection, we investigate the effect of mini-batching (i.e. varying the sampling prob-
ability q = L/N in DP-SGD) on the performance of the data-point level DP-PVI algorithm.
Specifically, we aim to explore how the KL divergence performance metric and the privacy
parameter ε change as q varies.

Since there are many hyperparameters we can tune in this algorithm, we fix θθθ =

[−1,2]⊤,σe = 1,µµµ p = 000,σp = 1, learning rate α = 0.03, DP noise scale σ = 1, and tar-
get δ = 10−4. Since mini-batching of DP-SGD happens locally in each client, without loss of
generality, we use one client with 1000 data points (i.e. N = 1000) here. The client performs
50 iterations of DP-SGD per one server update, and the server can perform a maximum
of 1000 iterations of update. Since the maximum ε value found in literature is ε ≈ 10, the
performance of the algorithm when ε is very large does not have much value, so we stop our
algorithm after ε reaches 100.

Figure 4.2 shows the results of mini-batching for three different clipping bounds. All
three sub-figures exhibit similar behaviors. First of all, the privacy parameter ε has a
very large dependence on the value of sampling probability q. After running effectively
50×100 = 5000 iterations of DP-SGD, the ε value is less than 90 when q = 0.03, and is
even less than 20 when q = 0.01. On the other hand, when q = 0.1, the ε reaches 100 after
about 110 iterations of server update. When q = 1, the situation is even worse: ε reaches
100 after only 2 iterations of server update if we perform 50 iterations of DP-SGD per server
update. Thus, the curves corresponding to q = 1 are generated by running only 1 iteration of
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(a) Log of KL versus ε value for different q values when C = 2.

(b) Log of KL versus ε value for different q values when C = 5.

(c) Log of KL versus ε value for different q values when C = 8.

Fig. 4.2 Results of mini-batching for three different clipping bounds C.
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DP-SGD per server update, and the algorithm usually stops after less than 100 iterations of
server update.

Moreover, when sampling probability q is smaller, the algorithm achieves smaller KL
divergence values, but it is less stable and the parameters of q(θθθ) will oscillate around.
Specifically, when q = 0.01 and q = 0.03, the algorithm achieves better KL values but is very
unstable. On the other hand, when q = 0.1 and q = 1, the algorithm is stable but has worse
performance. This kind of behavior is because larger lot size L (i.e. larger q) will reduce the
relative effect of the added DP noise.

We propose two ways of mitigating the instability when q is small. One is to set the
learning rate to be adaptive, starting at a large value and reducing over time. The other is to
apply a gradient thresholding step which limits the magnitude of each gradient to a set value.

In summary, using a very large sampling probability q is not good because its privacy
cost is too high; using a very small q is also not good because it is extremely unstable. If
any of the two methods proposed above is used, then we can choose a relatively small q to
benefit from lower privacy cost and also ensure stability. Abadi et al. (2016) suggested that
lot size L ≈

√
N is probably the best.

4.3 Adaptive Clipping Bounds

In this subsection, we investigate the idea of adaptive clipping bounds and how it affects the
performance of the data-point level DP-PVI algorithm. To begin with, we explain what a
good value of clipping bound C should be, and why we want to use adaptive clipping bounds.

If the clipping bound is chosen too large, too much noise will be added to the gradient as
the noise scales with σC, and thus the signal-to-noise ratio (SNR) of the DP mechanism is
needlessly small. On the other hand, if the clipping bound is chosen too small, the clipped
gradient may be very different from the true gradient, and thus more iterations are required
for the algorithm to converge, resulting in worse privacy guarantees. Therefore, a good value
of clipping bound should clip some but not all gradients. Abadi et al. (2016) suggested that
C can be chosen as the median of the norms of the unclipped gradients over the course of
training, which seems to be a good value to start with.

There are two main reasons that we want to use adaptive clipping bounds. Firstly,
gradient magnitudes change across the duration of training. When the algorithm approaches
convergence, gradient magnitudes are expected to be relatively small compared to those at
the start. Secondly, unless we already have significant knowledge about the data set, it is
difficult to set an appropriate clipping bound beforehand. In fact, using adaptive clipping
bounds will save us a lot of time in hand tuning this hyperparameter.
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(a) Log of KL versus ε value for adaptive C when q = 1,α = 0.03.

(b) Log of KL versus ε value for adaptive C when q = 0.1,α = 0.03.

(c) Log of KL versus ε value for adaptive C when q = 0.03,α = 0.01.

Fig. 4.3 Results of adaptive clipping bounds for three different settings.
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Here we explore a possible idea of setting adaptive clipping bounds. For each iteration
of DP-SGD, we compute the ℓ2 norms of the unclipped gradients of all data points in this
mini-batch, and set the clipping bound C to be at some target percentile.

We first use a data set to find out which percentile works the best for different sampling
probability q and learning rate α . For our experiments, we fix θθθ = [−1,2]⊤,σe = 1,µµµ p =

000,σp = 1, DP noise scale σ = 1, and target δ = 10−4. Since adaptive clipping of DP-SGD
happens locally in each client, without loss of generality, we use one client with 1000 data
points (i.e. N = 1000) here. The server can perform a maximum of 1000 iterations of
update, and the client performs 100/50/1 iteration(s) of DP-SGD per one server update when
q = 0.03/0.1/1. As what we did before, we stop the algorithm after ε reaches 100.

Figure 4.3 illustrates the results of adaptive clipping bounds for three different settings.
The adaptive clipping bound C is chosen to be 20th, 40th, 60th, and 80th percentile, and is
compared to a fixed value C = 5. All three sub-figures exhibit similar behaviors. First of
all, the privacy guarantees are not affected by the clipping bounds, because in each setting,
the same number of iterations of server update is performed for all five experiments when
ε reaches 100. Moreover, the performance of adaptive clipping bounds seems to be not as
good as that of the fixed clipping bound. In addition, we can observe the pattern that the
performance becomes better when the percentile is larger.

Figure 4.4 shows the case where adaptive clipping bounds are truly useful. In this setting,
sampling probability q = 0.03 and learning rate α = 0.03, so the algorithm will be unstable
and the parameters of the approximate posterior will oscillate around when using a fixed
clipping bound C = 5. Here, adaptive clipping bounds mitigate the instability of the algorithm.
Specifically, larger percentile achieves a little bit smaller values of KL divergence, but smaller
percentile better reduces the instability. Note that the privacy guarantees are still not affected
by the clipping bounds.

Next, we test adaptive clipping bounds on another data set to see whether the percentiles
we have used generalize across data sets. We modify the true parameters of the model, setting
θθθ = [5,−2]⊤,σe = 3. Then we test adaptive clipping bounds on the newly generated data set
using 20th, 40th, and 60th percentile versus the same fixed value C = 5.

Figure 4.5 shows the results of adaptive clipping bounds on this new data set. We can see
that the patterns we observe generalize across different data sets. Adaptive clipping bounds
make the algorithm more stable, and smaller percentile better mitigates the instability while
has slightly worse performance.
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(a) Log of KL versus ε value for C equal to 20th percentile.

(b) Log of KL versus ε value for C equal to 40th percentile.

(c) Log of KL versus ε value for C equal to 60th percentile.

Fig. 4.4 Results of adaptive clipping bounds when q = 0.03,α = 0.03.
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Fig. 4.5 Results of adaptive clipping bounds for a new data set.

We have applied data-point level DP-PVI algorithm to Bayesian multi-dimensional linear
regression models, and have explained all experiments and results. In the next chapter, we
provide our conclusions.



Chapter 5

Conclusions

In this chapter, we provide our conclusions and elaborate on possible future work.
The Partitioned Variational Inference algorithm is extended to support private federated

learning using differential privacy techniques, resulting in two types of DP-PVI algorithms,
namely data-point level DP-PVI and data-set level DP-PVI. Data-point level DP-PVI makes
fewer assumptions about the credibility of external parties (e.g. the central server, other
clients) and enables each client to tune its individual privacy settings. On the other hand,
data-set level DP-PVI is the natural scheme to apply when each local data shard corresponds
to the data of a single user, but this algorithm has technical problems that need to be fixed in
future work.

Data-point level DP-PVI algorithm is applied to Bayesian multi-dimensional linear
regression models to assess its performance. In general, the algorithm converges and the KL
divergence performance metric shows it works well, but the privacy guarantee achieved is
not very ideal. In addition, experiments on mini-batching show that the sampling probability
q should be chosen wisely. The privacy cost is too high for large values of q, while the
algorithm is unstable for small values of q. Lastly, using adaptive clipping bounds makes
the algorithm more stable, and the metric of setting those clipping bounds generalize across
different data sets.

5.1 Future Work

The first piece of work that can be done in the future is to solve the technical problems in
algorithm 3. Letting the central server add noise seems to be a promising approach, but we
will need to find a way that completely remove its pathological random walk behavior.

Performance of the DP-PVI algorithms largely depends on the hyperparameter settings,
but it is not clear how to choose the optimal hyperparameter setting. In fact, it takes a lot of
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time to hand tune all those hyperparameters. In addition, the optimal hyperparameter setting
for a specific data set often does not generalize to other data sets. In this project, we have
explored the idea of adaptive clipping bounds. For other important hyperparameters like
learning rate and DP noise scale, we can also investigate how to make them adaptive in the
future. If more hyperparameters are adaptive, the problem of tuning hyperparameters will be
alleviated.

Now we have only applied the DP-PVI algorithms to linear models, so another possible
direction of future work is to test the algorithms on non-linear models such as Bayesian
neural networks. In addition, we have only conducted experiments using homogeneous data.
Intuitively, the performance of the DP-PVI algorithms will be worse on inhomogeneous data,
so it is worth investigating whether the DP-PVI algorithms perform well on inhomogeneous
data.

Last but not least, we can move from our current differential privacy techniques to Rényi
DP (Mironov, 2017) in the future.
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