
Waveform Level Synthesis

Qingyun Dou

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Emmanuel College August 2017

I would like to dedicate this thesis to my loving parents.

Declaration

I, Qingyun Dou of Emmanuel College, being a candidate for the M.Phil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose. This thesis contains 12817 words.

Signed

Date

Qingyun Dou
August 2017

Acknowledgements

I would like to thank Professor Gales for being patient to me, who had almost no experience
with speech synthesis before working on this MPhil project. Thank you for giving me advice,
not only on specific questions, but also on how to think. I would also like to thank other
faculty members for giving great lectures and demonstrated sessions.

Working on with people in the speech group has been a pleasure. I would like to thank
Gilles and Moquan in particular, for their encouragement and advice. Thank you so much
for having discussions with me on sometimes very basic questions.

It has been a great experience to work with the MLSALT cohort through out the year.
People in this cohort are simply amazing! Thanks for working with me and showing me how
talented people can be. You know who I am talking about.

Last but not least, a lot of thanks to my family and friends, including those who are not
geographically close to me this year. Your love means every thing to me! As for those who
are in town, you make Cambridge great again.

Abstract

This thesis investigates waveform-level synthesis models, which directly generate audio
waveforms. In contrast, traditional feature-level synthesis models generate vocoder feature
sequences, which are then converted to waveforms. This type of synthesis is limited by
several factors, including the quality of the vocoder, the fixed-length analysis window and
the lack of expressiveness.

Waveform-level synthesis models is not limited by these factors, as vocoder is not used to
generate waveforms. In this thesis, both unconditional synthesis and conditional synthesis are
investigated. For unconditional waveform-level synthesis, the major challenge is to model a
long history. Two models are investigated: Hierarchical Recurrent Neural Network (HRNN)
and Dilated Convolutional Neural Network (DCNN). HRNN models a long history with a
stack of RNNs, each operating at a different time scale, while DCNN uses stack of CNNs,
each dilated to a different extent. Experiments are performed with HRNN, using both music
and speech data. It is found that the model performs well in both cases, and that the structure
of the network should be designed according to the time scales of different tiers.

For conditional waveform-level synthesis, the major challenge is to incorporate extra
information into the unconditional models. The analysis focuses on adding text information,
which is more complicated and more general than other information such as music style. Two
approaches are investigated: using standard text labels and using text labels generated by a
neural network with attention mechanism. A new conditional synthesis model is developed,
combining HRNN and standard standard text labels. Experiments are performed with both
the new model and a feature-level synthesis model. The results are analyzed in both time-
domain and feature-domain. It is found that the waveform-level synthesis model achieves
performance comparable to the feature-level synthesis model, even with very limited tuning,
and that having multiple tiers is essential to good performance.

Table of contents

List of figures xiii

List of tables xv

1 Introduction 1
1.1 Speech/music synthesis . 1
1.2 Contribution of the thesis . 2
1.3 Organization of the thesis . 2

2 Background 3
2.1 Feature-level synthesis . 3

2.1.1 Standard pipeline . 3
2.1.2 Limitations . 4

2.2 Waveform-level synthesis . 4
2.2.1 Standard pipeline . 4
2.2.2 Advantages and challenges . 5

3 Unconditional synthesis 7
3.1 Target representation . 7

3.1.1 Categorical distribution . 7
3.1.2 Data quantization . 8

3.2 History representation . 9
3.2.1 Hierarchical RNN . 10
3.2.2 Dilated CNN . 14

3.3 Preliminary experiments . 17
3.3.1 Unconditional music synthesis . 17
3.3.2 Unconditional speech synthesis 22

xii Table of contents

4 Conditional (speech) synthesis 27
4.1 Incorporating additional information . 27

4.1.1 Network structure . 27
4.1.2 Text labels . 28

4.2 Combining hierarchical RNN with standard labels 30
4.2.1 Designing network structure . 30
4.2.2 Upsampling labels . 32

4.3 Implementation issues . 33
4.3.1 Data preprocessing . 33
4.3.2 Pretraining . 33
4.3.3 Training speed . 34

5 Experiments 35
5.1 Performance metric . 35
5.2 Experimental setup . 36

5.2.1 Baseline: feature-level synthesis 36
5.2.2 Waveform-level synthesis . 37

5.3 Results and analysis . 38
5.3.1 2-tier conditional hierarchical RNN 38
5.3.2 3-tier conditional hierarchical RNN 43
5.3.3 Baseline feature-level synthesis model 45
5.3.4 Feature-domain analysis . 45

6 Conclusion and future work 49
6.1 Conclusion . 49
6.2 Future work . 50

References 51

Appendix A Recurrent neural network 55
A.1 Basic units . 55

A.1.1 vanilla recurrent unit . 55
A.1.2 GRU . 55
A.1.3 LSTM . 56

List of figures

3.1 example distribution over an individual signal point 8
3.2 effect of µ-law transformation . 9
3.3 example audio . 10
3.4 visualization of a hierarchical RNN with 3 tiers. 11
3.5 visualization of a stack of CNNs [25]. 15
3.6 visualization of a stack of dilated CNNs [25]. 15
3.7 overview of the residual block and the entire architecture [25]. 17
3.8 visualization of an unrolled hierarchical RNN with 2 tiers. 19
3.9 visualization of an unrolled hierarchical RNN with 3 tiers. 20
3.10 learning curves of 2-tier model. 21
3.11 learning curves of 3-tier model. 21
3.12 example of recorded music waveform. 21
3.13 example of music waveform generated from 2-tier model. 21
3.14 example of music waveform generated from 3-tier model. 22
3.15 example of recorded speech waveform. 23
3.16 example of speech waveform generated from 2-tier model. 23
3.17 learning curves of 2-tier model, using parameters similar to the music syn-

thesis case. 23
3.18 learning curves of 2-tier model, using parameters designed for speech synthesis. 23
3.19 costs for linear and mu-law quantization. 24
3.20 costs for different mini sequence lengths. 25
3.21 costs for 2-tier and 3-tier models. 26

4.1 attention-based recurrent sequence generator. 30
4.2 visualization of an unrolled conditional hierarchical RNN with 3 tiers. . . . 31
4.3 visualization of upsampling by linear interpolation. 32

5.1 visualization of the baseline model. 37

xiv List of figures

5.2 visualization of an unrolled conditional hierarchical RNN with 2 tiers. . . . 38
5.3 learning curves of the default 2-tier conditional synthesis model 39
5.4 waveform generated by the default 2-tier conditional synthesis model . . . 39
5.5 waveform of the recorded utterance . 39
5.6 costs for unconditional and conditional synthesis models 40
5.7 waveform generated by the 2-tier unconditional synthesis model 40
5.8 costs for different learning rates . 41
5.9 costs for experiment with pretraining and the experiment without pretraining 42
5.10 costs for 2-tier conditional synthesis models trained with different TBTT

lengths . 43
5.11 waveform generated by the 2-tier conditional synthesis model trained with

longer TBTT . 43
5.12 learning curves of the 3-tier conditional synthesis model 44
5.13 costs for 2-tier and 3-tier conditional synthesis models 44
5.14 waveform generated by the 3-tier conditional synthesis model 44
5.15 waveform generated by the feature-level synthesis model 45
5.16 trajectories of vocoder features . 46
5.17 RMSE for individual dimensions . 47

A.1 vanilla recurrent unit . 55
A.2 GRU . 56
A.3 LSTM . 57

List of tables

3.1 relation of time steps at different tiers . 12
3.2 test NLL in bits for 2-tier and 3-tier models 20

5.1 added RMSE for three types of vocoder features 46
5.2 added variance for three types of vocoder features 47

Chapter 1

Introduction

1.1 Speech/music synthesis

Systems that can generate natural-sounding speech/music are highly valuable. For example,
speech synthesis systems can be applied to give mute people a voice and to read text for blind
people. This thesis studies waveform-level synthesis, which can be applied to both music
and speech. As speech synthesis is generally more complicated and music can be considered
a special type of speech, most analysis takes speech synthesis as example. Depending on
the goal, speech synthesis can be categorized into unconditional [15, 25] speech synthesis
and conditional speech synthesis [22, 25]. For unconditional speech synthesis, except raw
waveform for training no extra information is available. The goal is to generate waveforms
that sound like mumbling. For conditional speech synthesis, extra information such as
speaker identity and the text to be spoken is available. The goal is to generate meaningful
speech corresponding to the given text.

Depending on the approach used, speech synthesis can be categorised into non-parametric
speech synthesis [16, 9, 20] and parametric speech synthesis [27, 31, 29, 14]. Non-parametric
speech synthesis is also known as concatenative speech synthesis; it generates speech by
concatenating units of recorded speech. Parametric speech synthesis is also known as
statistical speech synthesis; it generates speech by optimizing a cost function. Although
non-parametric speech synthesis is generally more natural, it is less flexible and requires a
large corpus to cover the target domain [13]. In contrast, parametric speech synthesis is more
flexible. For example, in parametric speech synthesis speaker identity can be changed by
changing a small part of the system, whereas in non-parametric speech synthesis the entire
system has to be retrained on another corpus.

Parametric speech synthesis comes in two categories: feature-level synthesis [28, 11, 30]
and waveform-level synthesis [25, 22]. In feature-level synthesis, a models generates a

2 Introduction

sequence of vocoder features. A vocoder then converts the sequence of features to a sequence
of audio signal points, forming a waveform [13]. Feature-level synthesis is limited by several
factors, including the quality of the vocoder, the fixed-length shifting analysis window and
the lack of expressiveness caused by deterministic mapping. In contrast, waveform-level
synthesis models not limited by these factors: waveforms are not generated by a vocoder; the
analysis window can have varying lengths; audio signal points are typically generated in a
probabilistic fashion [25, 22].

1.2 Contribution of the thesis

This thesis mainly investigates waveform-level synthesis, and compares it to feature-level
synthesis. For unconditional waveform-level synthesis, the two models [25, 15] achieving
state-of-the-art performance are investigated, namely Hierarchical Recurrent Neural Network
(HRNN) and Dilated Convolutional Neural Network (DCNN). Experiments are performed
with HRNN. In addition to the same music data as in the reference paper [15], the model is
investigated with the Nick speech data.

For conditional synthesis, two approaches of conditioning are investigated: using standard
labels and using labels generated by a neural network with attention mechanism. A new
conditional waveform-level synthesis model is developed, combining HRNN with standard
labels and achieving performance comparable to feature-level synthesis. Experiments are
performed with the new model and a feature-level synthesis model. In addition to analyzing
the results in time-domain as the existing research [25, 22], the generated audio samples are
analyzed in feature-domain.

1.3 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the general process of
feature-level synthesis and waveform-level synthesis. Chapter 3 investigates unconditional
waveform-level synthesis, and presents experimental results for unconditional speech and
music synthesis. Chapter 4 investigates conditional waveform-level synthesis. Chapter 5
presents experimental results for conditional speech synthesis. Chapter 6 concludes the thesis
and presents ideas about future work.

Chapter 2

Background

2.1 Feature-level synthesis

2.1.1 Standard pipeline

The standard pipeline of feature-level synthesis is as follows. In the first step, a sequence
of vocoder features v1:N = {v1, ...,vN} is extracted from a sequence of audio signal points
x1:T = {x1, ...,xT} forming a waveform, and a sequence of text labels l1:N is extracted from
raw text. Vocoder features are typically extracted at 200Hz, i.e. every 5 milliseconds. For
each time step there is a high-dimensional feature vector, which includes mel-cepstrum,
fundamental frequency F0 and aperiodicity. Mel-cepstrum represents vocal tract transfer
function, and aperiodicity represents characteristics of vocal source excitation signals [25].
In the second step, a set of generative models, such as hidden Markov models (HMMs)[27],
feed-forward neural networks (DNNs)[28] and recurrent neural networks (RNNs)[24, 5],
is trained by maximizing the probability of the vocoder features given the text labels as a
function of model parameters. This can be formulated as in equation (2.1), where θ denotes
model parameters. After training, θ will be fixed, and vocoder features can be generated as
shown in equation (2.2). Finally, a vocoder maps the features to a waveform consisting of
audio signal points; this mapping is highly non-linear and is denoted as f (voc).

θ̂ = argmax
θ

p(v1:N |l1:N ,θ) (2.1)

v̂1:N = argmax
v1:N

p(v1:N |l1:N , θ̂) (2.2)

x̂1:T = f (voc)(v̂1:N) (2.3)

4 Background

2.1.2 Limitations

Feature-level synthesis has several limitations. First, instead of raw waveform data, features
are extracted to train the models. This causes some loss of information, which cannot be
recovered by the synthesis model. Second, when extracting features, a fixed-length shifting
window is used. However, speech units such as phones have very different lengths, and can
be much longer or shorter than the window. Moreover, as all audio signal points within a
window share the same feature, the generated waveforms is often overly smooth. Finally, the
features are typically generated and mapped to waveforms in a deterministic fashion, which
makes the generated waveforms less expressive. If two words in a sentence have the same
vocoder features, they will be spoken in exactly the same way, which is odd for a real person.

2.2 Waveform-level synthesis

2.2.1 Standard pipeline

For waveform-level synthesis, waveforms are generated without first generating vocoder
features. To facilitate comparison to feature-level synthesis, waveform-level synthesis can be
formulated as in equations (2.4, 2.5), although in practice some details are different.

θ̂ = argmax
θ

p(x1:T |l1:T ,θ) (2.4)

x̂1:T = argmax
x1:T

p(x1:T |l1:T , θ̂) (2.5)

Typically, to make the model flexible, raw audio data are discretized, and the distribution
of an individual audio signal point is modeled as a categorical distribution. At each time step,
a neural network with a softmax output layer generates a K-dimensional vector yt describing
the distribution, where K denotes the number of categories. 0 ≤ ytk ≤ 1, and ∑

K
k=1 ytk = 1.

To train the neural network, the target audio signal point xt is encoded as a K-dimensional
"one-hot" vector zt

1. To simplify notation, suppose there is only one utterance x1:T , so
the target is z1:T , and the neural network generates y1:T . Typically the training criterion is
cross-entropy and can be formulated as follows, where f (NN)

θ
denotes the neural network and

e1:T denotes its input sequence, which will be introduced with more details in section 2.2.2.

1Note that xt is a scalar, while yt and zt are vectors. In this thesis vectors are denoted by bold lower case
letters, unless otherwise mentioned.

2.2 Waveform-level synthesis 5

Note that in this case where zt is a "one-hot" vector, minimum cross-entropy is equivalent to
maximum likelihood.

y1:T = f (NN)
θ

(e1:T) (2.6)

θ̂ = argmin
θ

E(θ) =−
T

∑
t=1

K

∑
k=1

ztklog(ytk) (2.7)

At synthesis time, the neural network generates the distribution of each audio signal point,
and each the actual value of each signal point is sampled from the distribution. This can be
formulated as follows, where Cat(ŷt) denotes categorical distribution. If the input et includes
previously generated signal points, the neural network will be run in an auto-regressive
fashion. Note that this makes synthesis different from training, because at training time, the
complete sequence of audio signal points x1:T is available and can be used at any time step.

ŷ1:T = f (NN)

θ̂
(e1:T) (2.8)

x̂t ∼Cat(ŷt) (2.9)

2.2.2 Advantages and challenges

Waveform-level synthesis models are free of the the limitations mentioned in the previous
section. As vocoder is not used to generate waveforms, the quality of the audio generated
will not be limited by the quality of the vocoder. In waveform-level synthesis, each audio
signal point xt can have a different context label lt , which solves the over-smoothing problem.
Moreover, waveform-level synthesis models are typically probabilistic as shown in equation
(2.9), hence even the same words might be spoken differently, as a real person would do.

For unconditional waveform-level synthesis, the input at each time step et includes
previous audio signal points xt−L:t−1, where L denotes the length of history. The major
challenge is to model a long history: how yt should depend on xt−L:t−1. In the following
chapters, two models will be investigated: Hierarchical Recurrent Neural Network (HRNN)
and Dilated Convolutional Neural Network (DCNN). HRNN models a long history with
a stack of RNNs, each operating at a different time scale [15], while DCNN uses stack of
CNNs, each dilated to a different extent [25].

For conditional waveform-level synthesis, the input at each time step et can include both
previous audio signal points xt−L:t−1 and extra information lt such as text label. The major
challenge is to incorporate extra information into the unconditional models. The analysis

6 Background

focuses on adding text information, because it is more complicated and more general than
other types of information such as music style and speaker identity. In the following chapters,
two approaches will be investigated: using standard text labels [25] and using text labels
generated by a neural network with attention mechanism [22]. In addition, a new conditional
waveform-level synthesis model will be developed, combining HRNN and standard standard
text labels.

Chapter 3

Unconditional synthesis

3.1 Target representation

In unconditional waveform-level synthesis, audio waveforms are modeled without extra
information. The joint probability of a waveform x1:T = {x1, ...,xT} can be factorized as a
product of conditional probabilities [25], as shown in equation (3.1). To model the distribution
p(xt |x1, ...,xt−1) for an individual audio signal point, there are mainly two approaches. The
first approach is to use a mixture model such as density network [2] and conditional Gaussian
scale mixtures [23]. The second approach is to use a categorical distribution [18].

p(x1:T) =
T

∏
t=1

p(xt |x1, ...,xt−1) (3.1)

3.1.1 Categorical distribution

In this thesis, the approach using categorical distribution is adopted. One reason is that
categorical distribution is generally more flexible than mixture models. Although in theory,
a mixture model can describe any distribution if it has an infinite number of components,
in practice the number of components for a mixture model is limited by the number of
data available. Previous experiments have shown that categorical distribution yields better
performance than Gaussian or Gaussian mixture distribution [25, 15].

Another reason for adopting the second approach is that standard mixture models tend
to result in distributions that are overly smooth for p(xt |x1, ...,xt−1). Given a long history,
the distribution of the next audio signal point is typically very sharp. Figure 3.1 shows an
example distribution peg(xt |x1, ...,xt−1) generated by a well performing synthesis system.
After normalization, each signal point takes a value between -1 and 1. The blue curve shows
the learned distribution, and the orange cross shows the actual position of the next point (its

8 Unconditional synthesis

probability is 1). As analyzed previously, this distribution is sharp and can be better modeled
by a categorical distribution. For this thesis, the categorical distribution used typically has
256 categories, which has been empirically shown sensible [25, 15].

Fig. 3.1 example distribution over an individual signal point

3.1.2 Data quantization

While categorical distribution is discrete, audio is inherently continuous1. To apply categor-
ical distribution to audio signal points, raw audio data should be quantized. The simplest
approach is to directly use linear quantization. An alternative approach is to first apply a
µ-law transformation to the data, as shown in equation (3.2), where µ = 255, and then use
linear quantization. Correspondingly, for the first approach, it can be considered that the
transformation f (xt) = xt is applied before linear quantization.

f (xt) = sign(xt)
ln(1+µ|xt |)

ln(1+µ)
(3.2)

In general, µ-law transformation reduces the dynamic range of audio data, and hence
reduces the quantization error. Figure 3.2 shows the effect of µ-law transformation. Without
loss of generality, it can be assumed that all data are linearly normalized to the range (−1,1).
At the range where xt is close to 0, µ-law transformation will result in higher resolution. A
small change in xt can lead to a big change in f (xt). For audio data, the number of signal
points close to 0 is typically higher than the number of signal points far away from to 0, as
shown in figure 3.3, therefore using µ-law transformation is sensible. In this thesis, both data
quantization approaches are investigated.

1Typically, raw audio is stored as a sequence of 16-bit integer values. At each time step, there are 65536
probabilities, which is significantly more than the number of categories. Hence raw audio data can be considered
continuous.

3.2 History representation 9

Fig. 3.2 effect of µ-law transformation

3.2 History representation

History representation is very important for synthesis systems, because the audio to be
generated depends largely on history (previous input and/or output). Recurrent Neural
Network (RNN) is typically used for history representation [6, 15], and can be formulated as
follows:

p(x1:T) =
T

∏
t=1

p(xt |x1, ...,xt−1) (3.3)

p(xt+1|x1, ...,xt) = f (DNN)(ht) (3.4)

ht = f (RNN)(ht−1,xt) (3.5)

f (DNN) is a feed-forward neural network, and f (RNN) is one of the known RNN memory
cells, such as Gated Recurrent Unit (GRU) [3], Long Short Term Memory Unit (LSTM) [8],
or their variants [15]. The configurations of vanilla recurrent unit, GRU and LSTM are shown
in appendix A.

Compared to vanilla RNNs, RNNs using LSTM or GRU can model longer history.
However, due to the vanishing gradient problem [19], even when using LSTM or GRU,
RNNs can only model history up to a few hundreds time steps. For feature-level synthesis,
a few hundreds time steps can be enough, whereas for waveform-level synthesis, it is far
from enough. Even at a relatively low sample rate of 16kHz, there are on average about 6000
audio signal points for each word [15]. Figure 3.3 shows the waveform corresponding to one

10 Unconditional synthesis

recorded sentence, "we dress to suit the weather of most days", at two time scales. It can
be seen the even for a 30ms range there are hundreds of points. When generating the word
"days", the complete history is enormously long. Even if the complete history is truncated
and only the last word is left, traditional RNNs will not be able to model the history that
is long enough for waveform-level synthesis. To deal with this problem, two models are
proposed, namely HRNN and DCNN. Both models will be investigated in the following
sections.

Fig. 3.3 example audio

3.2.1 Hierarchical RNN

HRNN takes into account the fact that audio signal points contain structures at different time
scales: dependencies exist not only between neighboring signal points, but also between
signal points that are thousands of steps apart [15]. It addresses the challenge of modeling
long history by using a hierarchy of tiers, each operating at a different frequency. Figure 3.4
illustrates the structure of HRNN; a 3-tier model is shown but the configuration can be tuned
to suit different tasks. The lowest tier processes individual audio signal points and operates
on the highest frequency, which is 16000Hz for this thesis. Each higher tier operates on a
longer timescale and hence a lower frequency. Each tier conditions the tier below it, and the
lowest tier outputs waveform-level predictions.

3.2 History representation 11

Fig. 3.4 visualization of a hierarchical RNN with 3 tiers.

Tier(s) operating below waveform-level frequency

Except for the lowest-level tier, all higher-level tiers operate on frequencies below waveform-
level frequency. These tiers are (deep) RNNs operating on non-overlapping frames of several
audio signal points, hence these tiers are sometimes referred to as "frame-level tiers". Each
frame-level tier summarizes the history of its inputs into a conditioning vector for the next
tier downward. Tiers operating below waveform-level frequency can be formulated as shown
in equations (3.6, 3.7, 3.8)2.

2W f and Wq are matrices. In this thesis, by default matrices are denoted by upper case bold letters

12 Unconditional synthesis

et(k) =

{
W f f(k)

t(k)
+ c(k+1)

t(k)
; 1 < k < K

f(k)
t(k)

; k = K
(3.6)

ht(k) = f (RNN)(ht(k)−1,et(k)) (3.7)

c(k)
t(k−1)+q

= Wqht(k);1 ≤ q ≤ r(k) (3.8)

K is the number of tiers and k the tier index. To increase readability, unless necessary the
superscript (k) is not shown. At tier k, each frame f(k)

t(k)
includes FS(k) previous signal points

{xt(k)−FS(k), ...,xt(k)−1}, where FS stands for frame size. The complete history, which has a

growing length, is approximated by a fixed-length history vector h(k)
t(k)

. The RNN makes a

history update at time step t(k) as a function of the previous history h(k)
t(k)−1

and the current

input e(k)
t(k)

, as shown in equation (3.7). For the top tier, k = K, and e(k)
t(k)

is only the current
input frame. For intermediate tiers, 1 < k < K, and it is a linear combination of the current
input frame f(k)

t(k)
and a conditioning vector c(k+1)

t(k)
from the next tier upward.

Note that for each tier, time step t(k) is related to a different frequency. Each time step t(k)

at tier k corresponds to r(k) time steps in tier k−1. In figure 3.4, to increase readability, t(1)

is denoted as t, t(2) denoted as j and t(3) denoted as i. Table 3.1 illustrates how time steps at
different tiers are related, taking the configuration shown in figure 3.4 as example. In this
configuration, FS(3) = 80,FS(2) = 20,r(3) = 4,r(2) = 20.

Table 3.1 relation of time steps at different tiers

time step

tier 3 1
tier 2 1 2 3 4
tier 1 1 | ... | 20 21 | ... | 40 41 | ... | 60 61 | ... | 80

To condition the next tier downward, a history vector should be upsampled. Each
history vector should be upsampled into a series of r(k) conditioning vectors, where r(k)

is the ratio between the frame sizes of the two tiers. If k = 2, r(k) = FS(k); otherwise
r(k) = FS(k)/FS(k−1). By default, this upsampling is realized by a set of r(k) different
linear mappings, although other upsampling methods can also be sensible. The approach
of upsampling with r(k) linear projections is equivalent to to upsampling by adding zeros
and then applying a linear convolution, which is sometimes called “perforated” upsampling
in the context of CNNs. It has been demonstrated to work well [4] and is a fairly common
upsampling technique [15].

3.2 History representation 13

Tier operating at waveform-level frequency

Unlike other tiers, the tier at the lowest level is a feed-forward DNN. This tier operates
at the same frequency as the audio sampling frequency, and is sometimes referred to as
"sample-level tier". This tier can be formulated as shown in equations (3.9, 3.10, 3.11).

e(1)t = W(1)
f f(1)t + c(2)t (3.9)

y(1)t = f (DNN)(e(1)t) (3.10)

xt ∼Cat(yt) (3.11)

At each time step, the input is a linear combination of the conditioning vector from
the second tier and a vector including FS(1) previous audio signal points. With both the
conditioning vector and previous signal points as input, the model considers both long-term
dependency and short-term dependency when making predictions. Previous experiments
have shown that if the prediction of a signal point only depends on the conditioning vector,
i.e. equation (3.9) becomes e(1)t = c(2)t , the performance of the synthesis system will decrease
considerably [15].

The output at each time step is a vector corresponding to a categorical distribution, each
dimension showing the probability of one category. Each audio signal point is sampled from
the corresponding categorical distribution. The reason to use DNN instead of RNN is that
FS(1) is typically small, and a DNN is capable of modeling the dependency among a small
number of signal points. In this thesis the DNN is a Multilayer Perceptron (MLP) with a
softmax output layer.

During training, the DNN is convolved over the sequence of audio signal points, pro-
cessing each window of FS(1) signal points and predicting the next signal point. During
generation, the complete sequence of audio signal points is not available, so the model is
run in an auto-regressive fashion: the sampled output at one time step will be included in the
input at the next time step.

Truncated backpropagation through time

Training RNNs on long sequences can be computationally expensive. To improve the training
speed, Truncated Backpropagation Through Time (TBTT) is used to train HRNNs. Each
long sequence is split into short subsequences, and gradients are only back-propagated
to the beginning of each subsequence. In general, if the subsequence length is increased,

14 Unconditional synthesis

the performance will be improved, but the memory usage and convergence time will also
increase.

It should be noted that although backpropagation is truncated, the history vector ht is
bootstrapped from one subsequence to the next: the last history vector of one subsequence
will be the initial history vector of the following subsequence. As a result, the generated audio
samples exhibit dependency much longer than the length of a subsequence. For example,
Mehri et al. [15] state that their best models are trained on subsequences of length 512, which
corresponds to 32 milliseconds, a small fraction of the length of a single a phoneme of human
speech, but the generated samples exhibit longer word-like structures.

3.2.2 Dilated CNN

Similar to HRNN, DCNN also models the probability of a waveform as a product of condi-
tional probabilities as shown in equation 3.1. A major difference is that there is no recurrent
layer in a dilated CNN, and the long history needed for p(xt |x1, ...,xt−1) is modeled by a
CNN, which has a large receptive field. As there is no recurrent layer, backpropagation does
not need to be truncated, and the training process can be made faster by parallelizing compu-
tations. During training, the true waveform to be generated x1:T = {x1, ...,xT} is available, so
the input at each time step is available and the process of computing p(xt |x1, ...,xt−1) for dif-
ferent time steps can be parallelized. During synthesis, the model runs in an auto-regressive
fashion, but the computations within one time step can still be made in parallel.

Causal convolution

When using CNN to process images, the concept of sequence is usually not important. In
contrast, when using CNN to process audio, which is naturally sequential, the convolutions
should be causal. Figure 3.5 shows a stack of CNN using only causal convolutions. At any
time step t, the computation of p(xt |x1, ...,xt−1) does not depend on any future time step.

In the HRNN case, the complete history {x1, ...,xt−1} is represented by an abstract history
vector ht . When using CNN for history representation, the complete history is truncated, and
the length of the history considered, {xt−HL, ...,xt−1}, is equal to the receptive field of the
CNN. A problem of standard causal convolutions is that the length of history grows linearly
with the depth of the network: HL = NL× (FL−1)+1, where HL denotes history length,
NL denotes number of layers in the network, and FL denotes filter length. To model a long
history, too many layers will required and there will not be enough data to train the network.

3.2 History representation 15

Fig. 3.5 visualization of a stack of CNNs [25].

Dilated convolution

To solve this problem, dilated convolutions can be used. A dilated convolution is a convolution
where the filter is applied over an area larger than its length by skipping input values with a
certain step. This is similar to a convolution with a larger filter derived from the original filter
by dilating it with zeros, but is significantly more efficient [25]. Figure 3.6 shows a stack of
dilated CNNs. Compared to a normal convolution, a dilated convolution allows the network
to model a long history with fewer layers and hence fewer parameters. For a dilated CNN,
the length of history grows exponentially with the depth of the network: HL = FLNL. For
the network in figure 3.6, FL = 2, NL = 4, and HL = 24 = 16. In contrast, for the network
in figure 3.5, FL and NL are the same, but HL is only 5.

In practice, the dilation is doubled for each layer up to a limit and then repeated. For
example: 1,2,4,8,1,2,4,8,... Using an exponentially growing dilation allows the length of
history to grow exponentially with the depth of the network, which founds the basis of dilated
CNN. However, if the dilation is too large, there might be too much loss of information,
and the complete history might be badly approximated. Hence when a limit is reached, the
dilation is reset to 1.

Fig. 3.6 visualization of a stack of dilated CNNs [25].

16 Unconditional synthesis

Gated activation function

When representing a long history by a sequence of previous audio signal points, ideally
different signal points should be given different importance. In general the signal points
representing close history should be considered more important than the ones representing
distant history, although this is not always the case. In speech audio, for example, the
articulation of one word generally depends more on the words close to it in the sentence, but
can also depend on a related word far away in the sentence or even in another sentence.

In DCNN, the gated activation unit [26] can be used. This can be formulated as follows.
∗ denotes a convolution operator, ⊙ denotes an element-wise multiplication operator, σ

denotes a sigmoid function, o1:N denotes the output of a convolutional layer, k denotes the
layer index, f and g denote filter and gate, and W denotes model parameters. It is found that
this gated activation function results in better performance than the rectified linear activation
function [17] for modeling audio data [25].

o1:N = tanh(W (k)
f ∗ x1:T)⊙σ(W (k)

g ∗ x1:T) (3.12)

Gating allows the network to control the importance of the different parts of the output
for each layer, and hence control the importance of different parts of the history. As the
sigmoid function σ outputs a value between 0 and 1, the importance of the output of tanh
is adjusted according to the position of the filter, i.e. which part of the history the filter is
processing. The parameters for gating are all learnable, so the network can automatically
learn which part of the history is more important.

Residual and skip connection

In practice many dilated CNN blocks are stacked to form a deep network, and Stochastic
Gradient Descent (SGD) is used for training. Hence the model can be prone to the vanishing
gradient problem [19]. To speed up convergence and allow training of very deep models,
both residual and parameterized skip connections are used throughout the network, as shown
in figure 3.7.

3.3 Preliminary experiments 17

Fig. 3.7 overview of the residual block and the entire architecture [25].

3.3 Preliminary experiments

Several experiments are performed to investigate the characteristics of unconditional waveform-
level synthesis. Both music and speech have been generated. By default, the synthesis system
uses hierarchical RNN and models the distribution of an individual audio signal point as a
categorical distribution, and linear quantization is applied to quantize raw audio data. The
implementation of hierarchical RNN is based on the open source code from github3. The
code used for this thesis is available on github4 and the audio samples generated in various
experiments are available on the speech group website5.

3.3.1 Unconditional music synthesis

To make sure that the implementation of hierarchical RNN is correct, the first experiment is
aimed at replicating the results of unconditional music synthesis in the reference paper [15].

Experimental setup

As in the reference paper, the dataset used for this experiment is the collection of all 32
Beethoven’s piano sonatas, which are publicly available6, amounting to 10 hours of non-
vocal audio. 88% of the data are used for training, 6% for validation and 6% for test. The

3https://github.com/soroushmehr/sampleRNN_ICLR2017
4https://github.com/qingyundou/sampleRNN_QDOU
5http://mi.eng.cam.ac.uk/raven/babel/MLSALT/
6https://archive.org/

18 Unconditional synthesis

audio waveform data are first concatenated into one very long sequence, and then split into
8-second long sequences. Each batch contains several 8-second long sequences. Inside each
batch, each 8-second long sequence is split into several mini sequences, on which truncated
backpropagation through time is performed. By default the batch size is 128. The data are
quantized into 256 integer values. The sampling rate is always 16kHz.

At training time, Stochastic Gradient Decent (SGD) is used to minimize the Negative Log-
Likelihood (NLL). Gradients are hard-clipped to remain in the range (−1,1). Update rules
from the Adam optimizer [12] with an initial learning rate of 0.001 (β1 = 0.9, β2 = 0.999,
and ε = 1e−8) is used to adjust the parameters. For each system, random search over hyper-
parameter values [1] is conducted. The initial RNN state of all the RNN-based models is
always learnable. Weight normalization [21] is used for all the linear layers to accelerate the
training procedure. Orthogonal weight matrices are used for initializing hidden-to-hidden
connections and other weight matrices are initialized in a similar way to the way proposed
by He et al. [7].

The default synthesis system uses a 2-tier hierarchical RNN. Figure 3.8 shows the
structure of the network. r(2) = 16, FS(1) = FS(2) = 16. Tier 2 is a three-layer deep RNN.
GRU is used and the dimension is 1024 for all layers. The input of tier 2 is previous audio
signal points, and the output is a series of conditioning vectors, as shown in equations
(3.6, 3.7, 3.8). The dimension of conditioning vector is 1024, same as the dimension of
GRU. Tier 1 is a feed-forward DNN, including three fully connected layers with ReLU
activation and a softmax output layer. The dimension is 1024 for the first two fully connected
layers, and is 256 for the other two layers. The input of tier 1 is a linear combination of
embedded previous audio signal points and the conditioning vector from from tier 2, as
shown in equation (3.9). The output of tier 1 is a vector describing the distribution of the
next signal point, as shown in equation (3.10). The batch size is 128 and the mini sequence
used for TBTT has 1024 audio signal points.

3.3 Preliminary experiments 19

Fig. 3.8 visualization of an unrolled hierarchical RNN with 2 tiers.

In addition, a 3-tier hierarchical RNN is trained as in the reference paper[15]. Figure 3.9
shows the structure of the network. r(3) = 2, r(2) = 4, FS(1) = FS(2) = 2, and FS(3) = 8.
Tier 3 and tier 2 are one-layer RNNs, and the dimension is 1024 for both. Tier 1 is the same
as in the above case. The batch size is 128 and the mini sequence used for TBTT has 512
audio signal points.

20 Unconditional synthesis

Fig. 3.9 visualization of an unrolled hierarchical RNN with 3 tiers.

Results and analysis

Table 3.2 shows the test NLL of the 2-tier and 3-tier hierarchical RNNs, obtained in new
experiments. Similar results are reported by Mehri et al. [15], which confirms that the
implementation is correct. Figures 3.10 and 3.11 show the learning curves of the two models.
The costs on training data and validation data are computed at each epoch, and the cost on
test data is computed when a new lowest validation cost is obtained. It can be seen that the
2-tier model has lower NLL. There are many possible reasons. First, the 2-tier model is
deeper; it has three recurrent layers while the 3-tier model only has two. Second, the 2-tier
model has larger frame size; for the 2-tier model FS(1) = FS(2) = 16, while for the 3-tier
model FS(1) = FS(2) = 2. Third, the 2-tier model is trained on longer mini sequences; it uses
1024 audio signal points for TBTT, while the 3-tier model only uses 512 points.

Table 3.2 test NLL in bits for 2-tier and 3-tier models

2-tier model 3-tier model
new experiment 1.066 1.117
reference paper [15] 1.076 1.159

3.3 Preliminary experiments 21

Fig. 3.10 learning curves of 2-tier model. Fig. 3.11 learning curves of 3-tier model.

Figures 3.12, 3.13 and 3.14 show examples of generated and recorded audio waveforms
at two different time scales. It can be seen that in general the generated waveforms are similar
to real waveforms. Both models are capable of capturing trends at different time scales. For
capturing high frequency trends, 2-tier model seems better than 3-tier model. An important
reason is that the 2-tier model has a much larger window size (FS(1) = 16 instead of 2) at the
lowest tier, which operates at the highest frequency.

Fig. 3.12 example of recorded music waveform.

Fig. 3.13 example of music waveform generated from 2-tier model.

22 Unconditional synthesis

Fig. 3.14 example of music waveform generated from 3-tier model.

3.3.2 Unconditional speech synthesis

Experimental setup

Similar experiments are performed with speech data. The dataset is a collection of 2396
utterances from a single speaker. In total there is about four hours’ audio. Data preprocessing
and training are the same as in the experiments above. SGD is used to minimize NLL. The
audio waveform data are first concatenated into one very long sequence, and then split into
8-second long sequences. Each batch contains several 8-second long sequences. Inside each
batch, each 8-second long sequence is split into several mini sequences, on which TBTT
is performed. The data are quantized into 256 integer values. The sampling rate is always
16kHz.

Both 2-tier and 3-tier hierarchical RNNs are used for unconditional speech synthesis. The
network structures are shown in figures 3.8 and 3.9; the actual parameters will be reported in
the following section, as a series of experiments are performed.

Results and analysis

First, the same 2-tier hierarchical RNN as above is used to generate speech, to investigate
if the model works for speech data. The batch size is set to 64 to suit the total length of
speech audio, which is less than half of music audio. All other parameters are the same as
in the music synthesis case. r = 16, FS(1) = FS(2) = 16. The length of the mini sequence,
on which TBTT is performed, is 1024. The training/validation/test split is approximately
88%-6%-6%.

Figures 3.15 and 3.16 show examples of recorded and generated speech waveforms at two
different time scales. It can be seen that in general the generated waveforms are similar to
real waveforms. Trends at different time scales are captured. Figure 3.17 shows the learning
curves of this experiment. The final test NLL is 1.236, which is higher than that of the music

3.3 Preliminary experiments 23

synthesis experiment, 1.066. This indicates that speech is more difficult to model than piano
music.

Fig. 3.15 example of recorded speech waveform.

Fig. 3.16 example of speech waveform generated from 2-tier model.

Fig. 3.17 learning curves of 2-tier model,
using parameters similar to the music syn-
thesis case.

Fig. 3.18 learning curves of 2-tier model,
using parameters designed for speech syn-
thesis.

To compare the waveform-level synthesis system to the baseline synthesis system of the
speech group, in the following experiments, the speech data are split in the same way as the

24 Unconditional synthesis

baseline synthesis system. 2254 utterances are used for training, 70 for validation and 72
for testing. The training/validation/test split is approximately 94%-3%-3%. As there are
fewer data in the validation set and test set than before, the default batch size is reduced to
20. To prepare for conditional speech synthesis, the default parameters are also adjusted.
The length of the mini sequence, on which TBTT is performed, is 800. For the default 2-tier
hierarchical RNN, r = 20, FS(1) = FS(2) = 20. For the default 3-tier hierarchical RNN,
r(3) = 4, r(2) = 20, FS(1) = FS(2) = 20, and FS(3) = 80.

Using the parameters designed for speech synthesis, the default 2-tier hierarchical RNN
is trained, and figure 3.18 shows the learning curves. This experiment will be referred as
the "default unconditional speech synthesis experiment", or the "default experiment" when
"unconditional" is implicit. Comparing to figure 3.17, it can be seen that overfitting is less
obvious. This is because in the new experiment, more data are used for training, and a
smaller batch size is used for SGD, so each gradient update is less likely to reduce the cost
on training data. The lowest validation costs are similar, and the best samples generated have
similar sound quality. This indicates that the parameters used in the default experiment are
well selected. In the following experiments, these parameters will be used by default, and
typically only one parameter will be changed to investigate its impact on performance.

In the default experiment, linear quantization is applied. To investigate the influence of
applying µ-law, the above experiment is repeated with data quantized after µ-law transfor-
mation as shown in equation (3.2). Figure 3.19 compares the two quantization schemes in
terms of training cost and validation cost. It can be seen that applying µ-law results in higher
cost. However, the samples generated still sound similar. Hence in the following experiments
linear quantization is used by default, and µ-law is only used to fine-tune synthesis systems
that have very good performances.

Fig. 3.19 costs for linear and mu-law quantization.

To investigate the influence of the length of mini sequence, on which TBTT is performed,
a 2-tier hierarchical RNN is trained, where the length of mini sequence is 2000 instead

3.3 Preliminary experiments 25

of the default value 800. Figure shows compares different mini sequence lengths in terms
of the resulting training cost and validation cost. It can be seen that the two lengths yield
similar costs. The generated samples are also similar. One reason is that the history vector is
bootstrapped during training and synthesis. It can also be seen that when the mini sequence
is shorter, the convergence is faster. This is because there are more mini sequences for SGD,
and the model parameters are updated more frequently. However, shorter mini sequence
length does not necessarily mean better performance, as noisier SGD is less likely to converge
to a good point. In the following experiments, 800 will still be the default mini sequence
length.

Fig. 3.20 costs for different mini sequence lengths.

To investigate the influence of the number of tiers, a 3-tier hierarchical RNN is trained.
The default parameters are used: r(3) = 4, r(2) = 20, FS(1) = FS(2) = 20, and FS(3) = 80.
The third tier is added on top of the default 2-tier hierarchical RNN, and NR(3), the number
of RNN layers to use for the third tier, is tuned. Figure 3.21 compares different NR(3)s in
terms of the resulting training cost and validation cost. The experiment for NR(3) = 3 was
stopped earlier to save GPU usage, as it was clearly worse than other cases. It can be seen that
NR(3) = 1 yields the lowest cost. The generated samples show the same trend: the NR(3) = 1
model generates samples with the best sound quality. This is because NR(3) = 1 is consistent
with the upsampling rate: r(3) = 4, r(2) = 20. As tier 3 has a less complicated task than tier
2, fewer layers are needed. If the r(k) and FS(k) change, NR(k) should change accordingly.

26 Unconditional synthesis

Fig. 3.21 costs for 2-tier and 3-tier models.

Chapter 4

Conditional (speech) synthesis

4.1 Incorporating additional information

4.1.1 Network structure

With additional information l1:T = {l1...lT}, the conditional distribution of a waveform
x1:T = {x1...xT} can be formulated as in equation (4.1). At each time step, the distribution of
an audio signal point depends on both previous signal points and additional information.

p(x1:T |l1:T) =
T

∏
t=1

p(xt |x1...xt−1, lt) (4.1)

The network structures described in the unconditional synthesis chapter will change
accordingly. For hierarchical RNN, the labels are typically feed into the network at tiers
operation below waveform-level frequency; the reason will be explained in the following
sections. The input at those tiers will be a combination of label on additional information,
previous audio signal points, and conditioning vector from the tier above except for the top
tier. Equation (3.6) will be reformulated as equation (4.2). k denotes tier, Wl denotes the
parameters for incorporating additional information.

et(k) =

{
Wll

(k)
t(k)

+W f f(k)
t(k)

+ c(k+1)
t(k)

; 1 < k < K

Wll
(k)
t(k)

+ f(k)
t(k)

; k = K
(4.2)

For dilated CNN, the input to the network will be a combination of text label and previous
audio signal points. Equation (3.12) will be reformulated as equation (4.3). k denotes

28 Conditional (speech) synthesis

layer index, W (k)
f l and W (k)

gl denotes additional filter and gating parameters for incorporating
additional information.

o1:N = tanh(W (k)
f x ∗ x1:T +W (k)

f l ∗ l1:T)⊙σ(W (k)
gx ∗ x1:T +W (k)

gl ∗ l1:T) (4.3)

4.1.2 Text labels

The additional information can be music style, speaker identification, text labels or other
types of information. This chapter mainly investigates how to incorporate text labels for
conditional speech synthesis, which is generally more complicated than incorporating other
types of information. A major characteristic of text label is that it changes over time. Unlike
speaker identification, which is normally the same throughout an utterance, text label typically
changes at a frequency of 200Hz. Hence incorporating static information such as speaker ID
can be considered a special case of incorporating text information, where the information is
the same at each time step.

Given raw text, the label sequence l1:T can be obtain by various approaches. Two general
approaches are investigated in this thesis. The first approaches is to derive standard text
labels from raw text using traditional methods. This approach yields text labels that are
easy to interpret, but requires linguistic knowledge. The second approach is to train a neural
network to derive text labels for conditioning purpose. In theory, this approach can yield
text labels close to ideal, and no linguistic knowledge is required. However, in practice the
uninterpretable labels make the network difficult to tune.

Standard labels

A standard Text-to-Speech (TTS) system consists of two parts: text analysis and speech
synthesis. The text analysis part takes a word sequence as input and outputs a sequence
of standard labels describing the text. The speech synthesis part takes the label sequence
as input and outputs a speech signal sequence. The standard labels are 601-dimensional
vectors extracted from text and aligned with waveform. Each label corresponds to 80 signal
points, i.e. the frequency of the label is 200Hz. This frequency is much lower than the
frequency of the waveform, which is 16000Hz. Therefore, to be used for waveform level
synthesis, standard labels need to be upsampled. There are various forms of upsampling,
such as repetition and linear interpolation. In this thesis linear interpolation is applied and
will be analyzed in detail in section 4.2.

The high dimensionality of the standard labels can be problematic in training the condi-
tional model, especially when the input of the conditional model is a linear combination of

4.1 Incorporating additional information 29

text label and the input of the unconditional model. For example, for a 2-tier hierarchical
RNN, if the frame size of the second tier is 20, then the dimensionality of text label is
30 times higher. Although in theory the network can adjust the weights for text label and
the weights for previous audio signal points, in practice the network is very likely to be
stuck in a local minimum where information from the text label overwhelms that from the
previous audio signal points. This problem can be solved by various methods, such as
using bottleneck features, using non-linear combination, pretraining the network and careful
initialization. In this thesis pretraining is applied and will be analyzed in detail in section 4.3
about implementation issues.

Labels generated by neural networks

Instead of using standard text labels, neural networks can be trained to map raw text to
labels that can be fed into the unconditional synthesis models. An encoder-decoder neural
networks with attention mechanism is found to work well [15]. The encoder is a bidirectional
RNN that maps text to some intermediate representation w1:N . The decoder is an RNN with
attention mechanism that maps the intermediate representation w1:N = {w1,w2, ...,wN} to
labels l1:T = {l1, l2, ..., lT} that can be used for conditioning. This network is shown in figure
4.1, and can be formulated as follows. t denotes time step; s denotes history generated by
the RNN; g denotes an intermediate vector; a denotes attention weights; f (AT T), f (DNN) and
f (RNN) represent the RNN with attention mechanism.

at = f (AT T)(st−1,at−1,w1:N) (4.4)

gt =
N

∑
n=1

at,nwn (4.5)

lt = f (DNN)(st−1,gt) (4.6)

st = f (RNN)(st−1,gt , lt) (4.7)

30 Conditional (speech) synthesis

Fig. 4.1 attention-based recurrent sequence generator.

4.2 Combining hierarchical RNN with standard labels

This thesis develops a new conditional synthesis model, combining hierarchical RNN and
standard labels. In particular it investigates how to design the structure of hierarchical RNN
and how to upsample standard labels so that they are suitable for conditional synthesis.

4.2.1 Designing network structure

An important characteristic of hierarchical RNN is that it has several tiers, which have
different inputs and are meant to model audio structures at different time scales. Higher tiers
operate on a larger time scale / lower frequency, and lower tiers operate on a smaller time
scale / higher frequency. Feeding the labels into different tiers will lead to very different
results.

The first tier of hierarchical RNN is a feed-forward network, and there is no recurrence.
If labels are only added at this tier, the history of previous labels will not at all be modeled.
The other tiers are all deep RNNs, and can model history up to a certain length. Although in
theory an RNN models the complete history, in practice the history is only modeled up to
a few hundred time steps. If a tier operates on a lower frequency, it will have a larger time
step, and will be more suitable to model audio structure at a larger time scale. Hence adding
labels on a higher tier allows the network to model a longer history of previous labels. On
the other hand, if labels are added to a higher tier, at each time step the current label will
have a smaller impact on the the lowest tier, which makes predictions at waveform-level. As
the labels go through the network, some information might be lost before the lower tiers
are reached. For example two different labels might be mapped to the same conditioning

4.2 Combining hierarchical RNN with standard labels 31

vector after some linear and non-linear mappings. Therefore labels should be added to both
high-level and low-level tiers.

Fig. 4.2 visualization of an unrolled conditional hierarchical RNN with 3 tiers.

Figure 4.2 shows the structure of a conditional hierarchical RNN that is found to work
well. r(3) = 4, r(2) = 20, FS(1) = FS(2) = 20, and FS(3) = 80. Tier 1 is a DNN, and operates
at waveform-level frequency, 16000Hz. Tier 2 is a three-layer RNN; it operates at 800Hz,
and outputs 20 conditioning vectors at each time step. Tier 3 is a one-layer RNN; it operates
at 200Hz, and outputs 4 conditioning vectors at each time step. Labels are added at both tier 2
and tier 3, to model audio structure at different time scales. The recurrent unit is GRU. From
experience, history as long as about 100 time steps will be traced. For tier 2, each time step
corresponds to 1.25ms, so the effective history length is 125ms, which is at phoneme-level.
For tier 3, each time step corresponds to 5ms, so the effective history length is 500ms, which
is at word-level. It takes about 5 days (120 hours) to train this network, so the parameters
are not extensively tuned. In general, using more tiers will lead to better performance, and
the tiers should operate at sufficiently diverse frequencies. For a particular RNN tier, the
number of layers to use should be consistent with the upsampling rate r(k) of that tier. A tier

32 Conditional (speech) synthesis

with higher upsampling rate outputs more conditioning vectors, and should have more layers.
This analysis has been confirmed by the preliminary experimental results in section 3.3.2. In
the network shown in figure 4.2, r(3) = 4 and r(2) = 20, accordingly tier 3 has only one layer
and tier 2 has three layers.

4.2.2 Upsampling labels

Standard labels have a relatively low frequency of 200Hz, and are typically upsampled to be
used for waveform level synthesis. As each label corresponds to 80 audio signal points, to
be added to tier k, the upsampling rate is 80/FS(k). For example, for the network shown in
figure 4.2, at tier 2 the labels are upsampled and the upsampling rate is 80/20 = 4.

There are various forms of upsampling, such as repetition and linear interpolation. In
this thesis linear interpolation is applied. If two neighboring labels are the same, linear
interpolation is the same as repetition. If two neighboring labels are different, applying linear
interpolation assumes that the transition happens evenly. Figure 4.3 illustrates how upsamling
is performed. The upsampling rate is 4; 10 original standard labels are plotted as orange
crosses, and 40 upsampled labels are plotted as blue dots.

Fig. 4.3 visualization of upsampling by linear interpolation.

Each standard label has 601 dimensions; the first 592 dimensions are binary, and the rest
are continuous. Figure 4.3 (a) shows a binary dimension, and figure 4.3 (b) a continuous
dimension. When applying linear interpolation, all dimension are considered continuous.
Although the resulting values for binary dimensions are difficult to interpret, they carry useful
information for the neural network.

4.3 Implementation issues 33

4.3 Implementation issues

While neural networks are powerful for approximating complicated functions, their perfor-
mance is sensitive to factors such normalization [10] and optimization methods used during
training. In this section, several implementation issues are analyzed. The analysis is in the
context of conditional synthesis, but is also useful for other cases where neural networks are
used.

4.3.1 Data preprocessing

In general, data preprocessing includes normalization and dimensionality reduction. Normal-
ization linearly maps the raw data, which probably have a wide dynamic range, to a certain
range that is suitable for the activation function. As gradient-based methods are typically
used to train neural networks, data should be mapped to such a range that the resulting
gradient is unlikely to be too small. For a 3-tier hierarchical RNN, the first tier uses RELU
activation, so the input data is mapped to the range (0,1), which is above zero; the other
tiers use tanh and sigmoid activation, so the input data is mapped to the range (−2,2), which
is zero-centered. For data with more than one dimension, normalization also adjusts the
importance of different dimensions. As label data are 601 dimensional vectors, normalization
is performed separately on each dimension.

Dimensionality reduction can be performed on raw data to both reduce the number of
parameters and improve performance. For high dimensional data, some dimensions might
be more important than others. If all the weights are initialized in the same way, it might
take a long time for SGD to converge to the point where weights for important dimensions
are higher. For a hierarchical RNN, if labels are added to tier 1 and the frame size FS(1) is
low, for example 20, the 601 dimensional labels will probably overwhelm the 20 previous
audio signal points, and result in waveforms that are too smooth. For conditional synthesis,
PCA can be performed on standard labels, and bottleneck features can be used, which are
expected to improve performance.

4.3.2 Pretraining

One problem of using gradient-based method is that convergence to the global minimum of
the cost function is not guaranteed. The more parameters a neural network has, the more
likely it is to be trapped in a local minimum. In some experiments performed for this thesis, it
is found that the conditional synthesis model generates worse samples than the corresponding

34 Conditional (speech) synthesis

unconditional synthesis model. One reason is that the conditional synthesis model has more
parameters and is trapped in a local minimum.

To solve this problem, in this thesis all condition synthesis models are pretrained as
uncondition synthesis models. During pretraining, at first the weights for labels are locked
to zero. At each epoch the model parameters are saved. After several epochs, typically 15,
the parameters resulting in the lowest cost on validation data will be selected as the starting
point for full training, during which the weights for labels are also updated. This technique is
found to be very useful for the conditional speech synthesis experiments.

4.3.3 Training speed

SGD is used to train the models because computing the gradient over all training data can
be too expensive. Each gradient update only considers a random batch of training data, and
there is a trade-off to make. If the batch is too large, the parameters will not be updated
frequently enough; if the batch is too small, the gradient will be too noisy to update the
parameters towards the right direction. For the experiments in this thesis, it is found that if
one gradient update is performed for each utterance in the training data, which is similar to
setting batch size to 1, the training will take more than 10 days. Therefore, the batch size
used for the experiments is typically larger than 20. As part of the SGD method, learning rate
is also important for training speed. In general higher learning rate leads to faster training.
However, this is not always the case, especially when gradient is only computed over a small
set of training data. In this thesis Adam optimization [12] is used to automatically adjust the
learning rate.

Chapter 5

Experiments

5.1 Performance metric

Unlike speech recognition, speech synthesis does not have a simple objective performance
metric such as word error rate. The objective performance metrics are only indicative, and
subjective listening tests are the gold-standard for speech synthesis assessment. For speech,
there are many attributes to assess, such as naturalness, intelligibility and expressiveness.
Hence subjective listening tests are typically limited to a small number of attributes.

For the experiments in this section, several different performance metrics will be used.
First, during training the cost function is evaluated on training, validation and test data at each
epoch. The results are presented as three learning curves. Second, the waveforms generated
are plotted and compared to the waveforms of the corresponding recorded utterances. These
two metrics can be used to tell if one system is considerably better than another. The problem
is that if two waveforms are both similar to the reference waveform, it will be difficult to tell
which one is better. The root-mean-square error (RMSE) between generated and reference
waveforms can be computed, but is sensitive to phase shift. To solve this problem and
to perform deeper analysis, for some experiments vocoder features are extracted from the
waveforms, and RMSE is computed between the feature trajectories. Denote two trajectories
as x1:T = {x1, ...,xT} and y1:T = {y1, ...,yT}, RMSE can be formulated as in equation (5.1).

RMSE =

√
1
T

T

∑
i=1

|yt − xt |2 (5.1)

The vocoder features are 246-dimensional vectors with a 5 millisecond frame, and each
feature vector can be split into 5 streams:

36 Experiments

1. mel-cepstrum: 180-dimensional comprising 60-dimensional STRAIGHT derived mel-
cepstrum parameters, delta and delta-delta parameters;

2. log-F0: 1-dimensional REAPER derived log-transformed F0;

3. delta log-F0: 1-dimensional delta parameters for log-F0;

4. delta-delta log-F0: 1-dimensional delta parameters for delta log-F0;

5. aperiodicity: 63-dimensional comprising 21-dimensional STRAIGHT derived aperiod-
icity parameter, delta and delta-delta parameters.

5.2 Experimental setup

The waveform dataset is a collection of 2396 utterances from a single speaker, same as the
dataset for the unconditional speech synthesis. Data preprocessing is also the same. The label
dataset is a collection of corresponding labels. The labels are aligned with the waveforms,
and each label corresponds to 80 signal points, i.e. the frequency of the label is 200Hz.
Each label is a 601-dimensional vector; the first 592 dimensions are binary and the other
dimensions are continuous. Each dimension is normalized separately.

5.2.1 Baseline: feature-level synthesis

The baseline synthesis model operates at feature-level. At each time step, it takes a 601-
dimensional label vector l as input and outputs a 247-dimensional vocoder feature vector v,
which are then used by a vocoder to generate q sequence of signal points x1:80 forming a
waveform. The mapping from label to vocoder feature is realized by a neural network. As
shown in figure 5.1, it has three GRU-RNN layers, and the dimension of each layer is 1024;
the output layer is a linear layer mapping a 1024-dimensional vector to a 247-dimensional
vector. During training, L2 regularization is applied. The optimizer is Adam [12] and the
learning rate is tuned. Although called a baseline, this system is well tuned and can generate
samples very similar to recorded speech.

5.2 Experimental setup 37

Fig. 5.1 visualization of the baseline model.

5.2.2 Waveform-level synthesis

For waveform-level synthesis models, the training method is the same as in the unconditional
speech synthesis experiments. SGD is used, and gradients are hard-clipped to remain in the
range (−1,1). Update rules from the Adam optimizer [12] with an initial learning rate of
0.001 (β1 = 0.9, β2 = 0.999, and ε = 1e−8) is used.

The default model is a 2-tier conditional hierarchical RNN, as shown in figure 5.2. There
are two tiers, r = 20, FS(1) = FS(2) = 20, and standard labels are added to tier 2. Tier 2 is a
three-layer RNN; GRU is used and the dimension is 1024 for all layers. Tier 1 is four-layer
DNN, including three fully connected layers with ReLU activation and a softmax output
layer; the dimension is 1024 for the first two fully connected layers, and is 256 for the other
two layers. The size of the embedding layer was also 256. The batch size is 20 and the mini
sequence used for TBTT has 800 audio signal points.

In the following experiments, typically only one parameter will be different from the
default model and will be mentioned. Other unmentioned parameters are the same as the
default model. This allows investigation on the impact of that parameter.

38 Experiments

Fig. 5.2 visualization of an unrolled conditional hierarchical RNN with 2 tiers.

5.3 Results and analysis

5.3.1 2-tier conditional hierarchical RNN

First the default 2-tier conditional hierarchical RNN is trained. The model is pretrained for 8
epoches as if it were an unconditional synthesis model. Figure 5.3 shows the learning curves
of this model. Training and validation costs are computed at each epoch; test cost is only
computed when a new lowest validation cost is obtained. It can be seen that the testing curve
converges after about 20 epochs, i.e. 100 hours. Figures 5.4 and 5.5 show the waveforms of
the generated utterance and the corresponding recorded utterance at two different time scales.
It can be seen that the generated waveform is similar to the reference waveform, but lacks
variation.

5.3 Results and analysis 39

Fig. 5.3 learning curves of the default 2-tier conditional synthesis model

Fig. 5.4 waveform generated by the default 2-tier conditional synthesis model

Fig. 5.5 waveform of the recorded utterance

Investigation on the effect of adding labels

The default 2-tier conditional synthesis model can be considered the conditional version of
the 2-tier unconditional synthesis model shown in figure 3.8. Figure 5.6 compares these
two models in terms of costs on training and validation data. The unconditional synthesis

40 Experiments

model has lower training cost and similar validation cost as the conditional synthesis model;
however, this does not mean that it generates waveforms closer to the reference waveforms.
Figure 5.7 shows the waveform generated by the unconditional synthesis model, which
corresponds to the waveform in figures 5.4 and 5.5. It can be seen that the waveform
generated by the conditional synthesis model is much closer to the reference waveform. This
is because the costs shown by the learning curves are indicative of, but not equivalent to, the
quality of generated waveforms. When computing the costs, at each time step a piece of
reference waveform is fed into the network, and the network predicts the signal point for the
next time step. At the next time step the input will again be from the reference waveform;
even if the prediction is severely wrong, no error will be accumulated. In contrast, when
generating, the output at one time step will be the input at the next time step, so error will be
accumulated. For unconditional synthesis, error is accumulated and no correction is available;
this is why at the beginning the waveform in figure 5.7 is relatively similar to the reference
waveform in figure 5.5, but then it is less and less similar. For conditional synthesis, the label
helps correcting previous errors made by the network, hence the waveform in figure 5.4 stays
similar to the reference waveform.

Fig. 5.6 costs for unconditional and conditional synthesis models

Fig. 5.7 waveform generated by the 2-tier unconditional synthesis model

5.3 Results and analysis 41

Investigation on optimization

Another interesting observation from figure 5.6 is there is a big "jump" of training cost
between conditional and unconditional synthesis models at epoch 9. For the conditional
model, the first 8 epochs are pretraining epochs, during which the weights for labels are
locked to 0, and cost of the conditional model is exactly the same as the unconditional model.
At epoch 9, the weights are unlocked, but the cost becomes much higher. There are two
major reasons. First, when pretraining ends, the weights for the 601-dimensional labels are
no longer locked, so the cost function changes. Second, the Adam optimizer used for SGD
is reset when pretraining ends. Intuitively, the Adam optimizer adjusts the learning rate of
SGD by considering the first and second order momenta, which represent the history of
optimization. When pretraining ends, the cost function changes and optimization starts again
from a different point in a higher-dimensional space. To verify the above analysis, different
learning rates are used to train the same conditional synthesis model. Figure 5.8 shows the
training curves of the unconditional model (solid line) and conditional models (dashed lines)
with different learning rates. As expected, when the learning rate is smaller, the "jump" of
training cost between conditional and unconditional models at epoch 9 will also be smaller.

Fig. 5.8 costs for different learning rates

Investigation on pretraining

To investigate the effect of pretraining, a 2-tier conditional hierarchical RNN is built without
pretraining. Figure 5.9 compares the costs on training and validation data for the experiment
with pretraining and the experiment without pretraining. It can be seen that pretraining
significantly reduces the costs on both training and validation data. When played, the
waveforms generated from the experiment with pretraining sound much better than the
experiment without pretraining. As analyzed previously, gradient-based method is prone to

42 Experiments

converging to a bad local minimum, especially when there many parameters. With pretraining,
the conditional model starts from a good point in the parameter space, and is less likely to
converge to a bad point.

Fig. 5.9 costs for experiment with pretraining and the experiment without pretraining

Investigation on the length of TBTT

Truncated backpropagation through time (TBTT) is applied to train hierarchical RNNs more
efficiently. Each long sequence is split into short subsequences, and gradients are only back-
propagated to the beginning of each subsequence. To investigate the influence of the length
of TBTT, a 2-tier conditional hierarchical RNN is trained, and the length of subsequence is
2000, instead of the default value 800. Figure 5.10 shows the training and validation costs
for different TBTT lengths. It can be seen that when TBTT length increases, training cost
increases slightly, and validation cost stays at the same level. As analyzed previously, when
costs are close, the model with lower cost is not necessarily better. Figure 5.11 shows the
waveform of the utterance generated with longer TBTT. Compared to the waveform in figure
5.4, this waveform is slightly more similar to the reference waveform, shown in figure 5.5.
When played, the waveform generated with longer TBTT is more intelligible. In general, if
the subsequence length is increased, the synthesis system performance will be improved, but
the memory usage and convergence time will also increase.

5.3 Results and analysis 43

Fig. 5.10 costs for 2-tier conditional synthesis models trained with different TBTT lengths

Fig. 5.11 waveform generated by the 2-tier conditional synthesis model trained with longer
TBTT

5.3.2 3-tier conditional hierarchical RNN

Investigation on the number of tiers

To investigate the influence of the depth of the network, and to improve the performance
of conditional synthesis, a 3-tier conditional hierarchical RNN is trained. Its structure is
shown in figure 4.2. r(3) = 4, r(2) = 20, FS(1) = FS(2) = 20, and FS(3) = 80. Figure 5.12
shows the learning curves of this model. Again the testing curve converges after about 20
epochs, i.e. 100 hours. Figure 5.9 compares the 3-tier and 2-tier models in terms of costs
on training and validation data. It can be seen that the 3-tier model has slightly higher costs.
When played, the waveforms generated from the 3-tier model sound slightly noisier but are
considerably more intelligible. Figure 5.14 shows the waveform of the utterance generated
from the 3-tier model. Compare to the waveform generated by the 2-tier model, shown in
figure 5.4, this waveform is much more similar to the reference waveform, shown in figure
5.5. As analyzed previously, when there are more tiers, audio structures are modeled at more

44 Experiments

time scales. Tier 2 operates at 800Hz, which is at phoneme-level. Tier 3 operates at 200Hz,
which is at word-level. Adding tier 3 allows the model to capture word-level audio structures.

Fig. 5.12 learning curves of the 3-tier conditional synthesis model

Fig. 5.13 costs for 2-tier and 3-tier conditional synthesis models

Fig. 5.14 waveform generated by the 3-tier conditional synthesis model

5.3 Results and analysis 45

5.3.3 Baseline feature-level synthesis model

To compare waveform-level synthesis and feature-level synthesis, the baseline model shown
in figure 5.1 is also trained. Figures 5.15 shows the waveform of the generated utterance at two
different time scales. As the baseline system automatically cuts the silence at the beginning
and the end, the waveform is padded with zero in figure 5.15 to facilitate comparison. It
can be seen that the generated waveform is similar to the reference waveform in figure
5.5. Comparing the waveforms generated by the 3-tier waveform-level synthesis model
and the feature-level synthesis model, it can be seen that the two models have comparable
performance. However, it should be noted that compared to the feature-level synthesis model,
the waveform-level synthesis model is almost not tuned at all.

Fig. 5.15 waveform generated by the feature-level synthesis model

5.3.4 Feature-domain analysis

Comparing waveforms directly in time-domain can be difficult. If two waveforms are similar
but there is a phase shift, the RMSE can be so high that no similarity is indicated. To solve
this problem, vocoder features are extracted from the reference and generated waveforms,
and RMSE is computed between the feature trajectories. This allows a better comparison
between waveforms, and analysis on synthesis models from more aspects.

In addition to the baseline feature-level synthesis model, three waveform-level synthesis
models are analyzed in feature-domain: the default 3-tier model, the default 2-tier model and
the 2-tier model trained with longer TBTT. Figure 5.16 visualizes feature-domain analysis.
It shows the trajectories of mel-cepstrum (dimension 1), aperiodicity (dimension 1) and
log(F0) extracted from the waveform generated by the 3-tier model, and compares them to
the corresponding trajectories extracted from the reference waveform. Other models are
analyzed in the same fashion. It can be seen that in general all three trajectories follow the
same trends as the references, and most errors are in the silent region at the beginning of the
utterance.

46 Experiments

Fig. 5.16 trajectories of vocoder features

To perform more quantitative analysis, table 5.1 shows the added RMSE for three types
of vocoder features: mel-cepstrum, aperiodicity and log(F0). For the first two types there are
multiple dimensions, and the RMSE for each dimension is added to show a general RMSE
level. Although the scale / energy level for each dimension is different, adding them up is
sensible because the dimensions with higher energy are more important for the quality of
generated speech. When computing RMSE, if two trajectories are not equally long, they
will be synchronized by phase shifting and zero-padding in a way that the resulting RMSE
is minimal. It can be seen that the 3-tier model is generally he best among waveform-level
synthesis models: it has the lowest added RMSE for mel-cepstrum and log(F0), and its
added RMSE for aperiodicity is very close the best value achieved. Comparing the two
2-tier models, it can be seen that training with a long TBTT improves log(F0) but degrades
aperiodicity. Comparing the 3-tier model and the baseline model, it can be seen that the
waveform-level synthesis achieves performance as good as the feature-level synthesis in terms
of mel-cepstrum and log(F0), and it achieves better performance in terms of aperiodicity.

Table 5.1 added RMSE for three types of vocoder features

mel-cepstrum aperiodicity log(F0)
3-tier 6.93 141.66 1.05
2-tier 7.77 137.08 1.86
2-tier, longer TBTT 7.78 149.03 1.34
baseline 7.06 176.89 0.96

A major reason why the 3-tier model performs better than other HRNN-based models
is that it captures audio structures at different frequencies. On top of the 2-tier model
with tiers operating at 16000Hz and 800Hz, the 3-tier model has an extra tier operating
at 200Hz. Figure 5.17 shows the RMSE for each of the 60 dimensions of mel-cepstrum.
Lower dimensions correspond to lower frequency ranges. It can be seen that the 3-tier model

5.3 Results and analysis 47

performs much better at low frequency range, and at high frequency range the 2-tier model is
equally good.

Fig. 5.17 RMSE for individual dimensions

A common problem of parametric speech synthesis is that the feature trajectories are
overly smooth. Table 5.1 shows the added variance for three types of vocoder features; the
variance of the reference trajectories are is also shown for comparison. For log(F0), all
models have similar variance as the reference. For mel-cepstrum, the 2-tier model trained
with longer TBTT performs slightly better than other models, and has a variance very close
the reference variance. For aperiodicity, all the waveform-level synthesis models have much
better performance than the feature-level synthesis model, which is expected as the feature-
level model has much higher added RMSE for aperiodicity. Comparing the 3-tier model
and the baseline model, it can be seen that the waveform-level synthesis model tends to
generate waveforms that are less smooth in feature-domain, except for aperiodicity where
the feature-level synthesis model seems to have a problem.

Table 5.2 added variance for three types of vocoder features

mel-cepstrum aperiodicity log(F0)
reference 7.67 903.60 5.24
3-tier 8.34 899.47 5.45
2-tier 6.46 879.40 5.24
2-tier, longer TBTT 7.71 919.45 5.48
baseline 6.75 1535.94 5.14

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, two unconditional waveform-level synthesis models are investigated, namely
hierarchical RNN and dilated CNN. Detailed analysis is made about how they represent
history and target waveform. Experiments on hierarchical RNN are performed, with both
piano music data used by Mehri et al. [15] and Nick speech data. The experimental results
in section 3.3 indicate that the model works well in both cases, and that the speech data is
more difficult to model than the music data. It is also found that the number of layers in a tier
should be consistent with the upsampling rate of that tier; a deeper network does not always
perform better.

For conditional waveform-level synthesis, two approaches of incorporating text infor-
mation are investigated: using standard text labels and using labels generated by a neural
network with attention mechanism. A new conditional waveform-level synthesis model is
developed, combining hierarchical RNN and standard text labels. The experimental results
in section 5.3 indicate that the new model can achieve performance comparable to traditional
feature-level synthesis models. In terms of RMSE and variance computed in feature-domain,
the 3-tier waveform-level synthesis model performs better than the feature-level synthesis
model. It is found that having multiple tiers in the hierarchy, operating at different time
scales, significantly improves performance. The results also indicate that the RNN-based
model can be well trained with TBTT, which improves training speed; increasing the length
of TBTT does not necessarily improve performance.

50 Conclusion and future work

6.2 Future work

One limitation of the current implementations of waveform-level synthesis models is the
training speed. As the models are all based on giant neural networks, training can be very
slow. For the hierarchical RNN, each epoch takes about 5 hours, when training is performed
on GPU with about 3 hour’s speech data. On average each model requires 20 epochs to be
well trained, so within 3 months at most about 20 models can be trained. An important step
for future work is to parallelize computation in the training process, and potentially also
modify the network structure to improve training speed.

In the current structure of hierarchical RNN, the initial state of RNN h0 is a learnable
constant parameter. While this is much better than random initialization, h0 can be made
a learnable function of the input at the first time step. Moreover, van den Oord et al. [25]
reported that feeding F0 into dilated CNN improves the performance. F0 information is
currently not fed into the conditional hierarchical RNN, and can be incorporated in future
experiments.

In terms of data proprocessing, the raw speech data are separate utterances, and silence
can be relatively long at the beginning and the end. So silence is probably more common than
any other non-silent phone. As generating non-silent phones is usually more important, in
future experiments the silence in the data can be reduced to further improve the performance.

References

[1] Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(Feb):281–305.

[2] Bishop, C. (1994). Mixture density networks: Neural computing research group technical
report ncrg/94/004. Aston University.

[3] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

[4] Dosovitskiy, A., Springenberg, J. T., Tatarchenko, M., and Brox, T. (2017). Learning
to generate chairs, tables and cars with convolutional networks. IEEE transactions on
pattern analysis and machine intelligence, 39(4):692–705.

[5] Fan, Y., Qian, Y., Xie, F.-L., and Soong, F. K. (2014). Tts synthesis with bidirectional
lstm based recurrent neural networks. In Fifteenth Annual Conference of the International
Speech Communication Association.

[6] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

[7] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034.

[8] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

[9] Hunt, A. J. and Black, A. W. (1996). Unit selection in a concatenative speech synthesis
system using a large speech database. In Acoustics, Speech, and Signal Processing, 1996.
ICASSP-96. Conference Proceedings., 1996 IEEE International Conference on, volume 1,
pages 373–376. IEEE.

[10] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456.

[11] Kang, S., Qian, X., and Meng, H. (2013). Multi-distribution deep belief network for
speech synthesis. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 8012–8016. IEEE.

[12] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

52 References

[13] Ling, Z.-H., Kang, S.-Y., Zen, H., Senior, A., Schuster, M., Qian, X.-J., Meng, H. M.,
and Deng, L. (2015). Deep learning for acoustic modeling in parametric speech generation:
A systematic review of existing techniques and future trends. IEEE Signal Processing
Magazine, 32(3):35–52.

[14] Maia, R., Zen, H., and Gales, M. J. (2010). Statistical parametric speech synthesis with
joint estimation of acoustic and excitation model parameters. In SSW, pages 88–93.

[15] Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A., and
Bengio, Y. (2016). Samplernn: An unconditional end-to-end neural audio generation
model. arXiv preprint arXiv:1612.07837.

[16] Moulines, E. and Charpentier, F. (1990). Pitch-synchronous waveform processing
techniques for text-to-speech synthesis using diphones. Speech communication, 9(5-
6):453–467.

[17] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

[18] Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural
networks. arXiv preprint arXiv:1601.06759.

[19] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–1318.

[20] Sagisaka, Y. (1992). Atr v-talk speech synthesis system. Proc. ICSLP, 1992.

[21] Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameteri-
zation to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems, pages 901–909.

[22] Sotelo, J., Mehri, S., Kumar, K., Santos, J. F., Kastner, K., Courville, A., and Bengio, Y.
(2017). Char2wav: End-to-end speech synthesis.

[23] Theis, L. and Bethge, M. (2015). Generative image modeling using spatial lstms. In
Advances in Neural Information Processing Systems, pages 1927–1935.

[24] Tuerk, C. and Robinson, T. (1993). Speech synthesis using artificial neural networks
trained on cepstral coefficients. In EUROSPEECH.

[25] van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016a). Wavenet: A generative
model for raw audio. CoRR abs/1609.03499.

[26] van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al. (2016b).
Conditional image generation with pixelcnn decoders. In Advances in Neural Information
Processing Systems, pages 4790–4798.

[27] Yoshimura, T. (2002). Simultaneous modeling of phonetic and prosodic parameters,
and characteristic conversion for hmm-based text-to-speech systems. PhD diss, Nagoya
Institute of Technology.

References 53

[28] Ze, H., Senior, A., and Schuster, M. (2013). Statistical parametric speech synthesis
using deep neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pages 7962–7966. IEEE.

[29] Zen, H., Braunschweiler, N., Buchholz, S., Gales, M. J., Knill, K., Krstulovic, S.,
and Latorre, J. (2012a). Statistical parametric speech synthesis based on speaker and
language factorization. IEEE transactions on audio, speech, and language processing,
20(6):1713–1724.

[30] Zen, H., Gales, M. J., Nankaku, Y., and Tokuda, K. (2012b). Product of experts
for statistical parametric speech synthesis. IEEE Transactions on Audio, Speech, and
Language Processing, 20(3):794–805.

[31] Zen, H., Tokuda, K., and Black, A. W. (2009). Statistical parametric speech synthesis.
Speech Communication, 51(11):1039–1064.

Appendix A

Recurrent neural network

A.1 Basic units

A.1.1 vanilla recurrent unit

ht = f (W f xt +W rht−1 +b) (A.1)

Fig. A.1 vanilla recurrent unit

A.1.2 GRU

i f = σ(W f
f xt +W r

f ht−1 +b f) (A.2)

io = σ(W f
o xt +W r

o ht−1 +bo) (A.3)

yt = f (W f
y xt +W r

y (i f ⊙ht−1)+by) (A.4)

ht = io ⊙ht−1 +(1− io ⊙ yt) (A.5)

56 Recurrent neural network

Fig. A.2 GRU

A.1.3 LSTM

i f = σ(W f
f xt +W r

f ht−1 +b f +W m
f ct−1) (A.6)

ii = σ(W f
o xt +W r

o ht−1 +bo +W m
i ct−1) (A.7)

io = σ(W f
o xt +W r

o ht−1 +bo +W m
o ct) (A.8)

ct = i f ⊙ ct−1 + ii ⊙ f m(W f
c xt +W r

c ht−1 +bc) (A.9)

ht = io ⊙ f h(ct) (A.10)

A.1 Basic units 57

Fig. A.3 LSTM

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Speech/music synthesis
	1.2 Contribution of the thesis
	1.3 Organization of the thesis

	2 Background
	2.1 Feature-level synthesis
	2.1.1 Standard pipeline
	2.1.2 Limitations

	2.2 Waveform-level synthesis
	2.2.1 Standard pipeline
	2.2.2 Advantages and challenges

	3 Unconditional synthesis
	3.1 Target representation
	3.1.1 Categorical distribution
	3.1.2 Data quantization

	3.2 History representation
	3.2.1 Hierarchical RNN
	3.2.2 Dilated CNN

	3.3 Preliminary experiments
	3.3.1 Unconditional music synthesis
	3.3.2 Unconditional speech synthesis

	4 Conditional (speech) synthesis
	4.1 Incorporating additional information
	4.1.1 Network structure
	4.1.2 Text labels

	4.2 Combining hierarchical RNN with standard labels
	4.2.1 Designing network structure
	4.2.2 Upsampling labels

	4.3 Implementation issues
	4.3.1 Data preprocessing
	4.3.2 Pretraining
	4.3.3 Training speed

	5 Experiments
	5.1 Performance metric
	5.2 Experimental setup
	5.2.1 Baseline: feature-level synthesis
	5.2.2 Waveform-level synthesis

	5.3 Results and analysis
	5.3.1 2-tier conditional hierarchical RNN
	5.3.2 3-tier conditional hierarchical RNN
	5.3.3 Baseline feature-level synthesis model
	5.3.4 Feature-domain analysis

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	References
	Appendix A Recurrent neural network
	A.1 Basic units
	A.1.1 vanilla recurrent unit
	A.1.2 GRU
	A.1.3 LSTM

