Doubly Stochastic Variational Inference for Deep Gaussian Processes

(Gaussian Processes

Given noisy observations D = {x,,y,}>_, with Gaus-
sian likelihood p(y,|fn) = N (yn; fu, 05), and a GP prior
over functions f(x), the complete probabilistic model is:

p(y, £1X) = p(f: XTI, p(yn|f,) where inference over
test locations x* is

fx)|y ~ GP (ket(Kg + 0,1) "'y,
Kf*f* — k’f*f(Kff + U;[)_lkﬂ'*

Limitations:

1. Computation is O(N?). 2. Restricted to Gaussian
functionality. 3. Difficult and time-consuming to design
kernels without underlying knowledge of D.

Our solution: DSVI DGPs.

Sparse (zaussian Processes

The VFE approach [2] introduces pseudo-points u = f(Z)
and forms a lower bound to the marginal likelihood using
the variational distribution ¢(f, u) = p(fju; X, Z)g(u)
ply.f, u)]

q(f, u)

p(}’|f)p(u>] _
— ~FELBO;
q(u)

log p(y) > Ey¢u) |log

= Eq(ﬂu) log

where g(u) = N (u;m,S). Lgrpo can be maximised with
respect to variational parameters {Z, m, S} and kernel hy-
perparameters.

Doubly Stochastic VI for Deep GPs

DSVT [1] introduces pseudo-points {U'}L, for each layer.
The approximate posterior factorises between layers as

q ({Fl, UZ}ZL—1) _ ﬁp (FZ|UZ; Fli- Zz—1> q (Ul) .
B =1

Marginalising U from each layer is analytical and we have
the property that the marginal ¢ (f!) depends only on £,
The lower bound to the log-marginal likelihood simplifies
as

L= f:]qunL) [logp (yn!ﬁfﬂ - ZEL:KL {q (Ul> Ip (Ulﬂ

where ¢ (fF) = [TIi%)' ¢ (£.|m’, 8", £171, Z2"71) df.

The expectation is approximated using Monte
Carlo,  which  recursively draws samples from

ﬁi ~ q (f72|ml, S!: ﬁi‘l, Zl_l) using the reparameteri-
sation trick. Scalability is achieved through minibatching
the data.
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Deep (Gaussian Processes
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Figure: DGP and SGP modelling of the mountain car problem value function, a difficult problem for GPs due to sharp

fluctuations. We see that the first layer functions, f!, are simple and learn to explain different parts of the input space.
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Figure: Regression test log-likelihood results on benchmark UCI datasets. The plots show the mean =+ standard

deviation over 20 splits.

Classification

MNIST SGP 100 SGP 500 DGP2 DGP3 DGP3 ARD DGP2 AEP
Log-likelihood | —0.2807 —0.2623  —0.077/8 —0.0721 —0.0729 —0.1294
Accuracy (%) 92.26 92.88 97.89 97.98 97.99 96.46

Table: MNIST multi-class classification. 30 hidden layer dimensions are used in both methods.

Rectangle | SGP 100 SGP 500 DGP2 DGP3 DGP2 ARD DGP2 AEP
Log-likelihood | —0.6575 —0.6541  —0.4817 —0.4643 —0.4646 —0.4815
Accuracy (%) 72.12 72.87 76.74 77.47 77.51 75.19

Table: Rectangles-Images binary classification.

Image Completion
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Figure: Finished image with the predicted right half.

Model| SGP DGP 2 DGP 3 DGP 4
Metries| 0428 0.597  0.611  0.627

Table: Structural image similarity index averaged over 10k images.

Discussion

DGPs outperform standard GPs on almost all
regression, classification and image completion experi-
ments. DGPs also produce well calibrated uncer-
tainty estimates on classification tasks, whilst we
found that GPs underestimate the accuracy when p is
low and overestimate when p is high.

Unlike DNNs, increasing the depth does not signif-
icantly improve DGPs’ performance. Further-
more, using ARD kernels outperforms the orig-
inal results, and is comparable with state-of-the-art
inference techniques in DGPs (with less computational
cost).

However, this model cannot handle multi-modal data
due to absence of posterior correlations between pseudo-
points and univariate Gaussian assumption.

Future Work

1. Use of convolutional kernels. 2. Application of DGPs
in continual learning, active learning and Bayesian opti-
misation. 3. Modelling correlated outputs using auto-
regressive DGP model. 4. Handling multi-modal data.
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