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Gaussian Processes
Given noisy observations D = {xn, yn}Nn=1 with Gaus-
sian likelihood p(yn|fn) = N (yn; fn, σ2

y), and a GP prior
over functions f (x), the complete probabilistic model is:
p(y, f |X) = p(f ; X)

∏N
n=1 p(yn|fn) where inference over

test locations x∗ is

f (x∗)|y ∼ GP (kf∗f(Kff + σ2
yI)−1y,

Kf∗f∗ − kf∗f(Kff + σ2
yI)−1kff∗

Limitations:
1. Computation is O(N 3). 2. Restricted to Gaussian
functionality. 3. Difficult and time-consuming to design
kernels without underlying knowledge of D.

Our solution: DSVI DGPs.

Sparse Gaussian Processes
The VFE approach [2] introduces pseudo-points u = f (Z)
and forms a lower bound to the marginal likelihood using
the variational distribution q(f ,u) = p(f |u; X,Z)q(u)

log p(y) ≥ Eq(f ,u)

[
log p(y, f ,u)

q(f ,u)

]
= Eq(f ,u)

[
log p(y|f)p(u)

q(u)

]
= LELBO,

where q(u) = N (u; m,S). LELBO can be maximised with
respect to variational parameters {Z,m,S} and kernel hy-
perparameters.

Doubly Stochastic VI for Deep GPs
DSVI [1] introduces pseudo-points {Ul}Ll=1 for each layer.
The approximate posterior factorises between layers as

q

({
Fl,Ul

}L
l=1

)
=

L∏
l=1

p
(
Fl|Ul; Fl−1,Zl−1

)
q
(
Ul
)
.

Marginalising Ul from each layer is analytical and we have
the property that the marginal q

(
f li
)
depends only on f l−1

i .
The lower bound to the log-marginal likelihood simplifies
as

L =
N∑
n=1

Eq(fLn )

[
log p

(
yn|fLn

)]
−

L∑
l=1

KL
[
q
(
Ul
)
‖p
(
Ul
)]

where q
(
fLn
)

=
∫ ∏L−1

l=1 q
(
f ln|ml,Sl; f l−1

n ,Zl−1) df ln.
The expectation is approximated using Monte
Carlo, which recursively draws samples from
f̂ ln ∼ q

(
f ln|ml,Sl; f̂ l−1

n ,Zl−1
)

using the reparameteri-
sation trick. Scalability is achieved through minibatching
the data.

Deep Gaussian Processes
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Figure: DGP and SGP modelling of the mountain car problem value function, a difficult problem for GPs due to sharp
fluctuations. We see that the first layer functions, f 1, are simple and learn to explain different parts of the input space.

Regression

Figure: Regression test log-likelihood results on benchmark UCI datasets. The plots show the mean ± standard
deviation over 20 splits.

Classification
MNIST SGP 100 SGP 500 DGP2 DGP3 DGP3 ARD DGP2 AEP

Log-likelihood −0.2807 −0.2623 −0.0778 −0.0721 −0.0729 −0.1294
Accuracy (%) 92.26 92.88 97.89 97.98 97.99 96.46

Table: MNIST multi-class classification. 30 hidden layer dimensions are used in both methods.

Rectangle SGP 100 SGP 500 DGP2 DGP3 DGP2 ARD DGP2 AEP
Log-likelihood −0.6575 −0.6541 −0.4817 −0.4643 −0.4646 −0.4815
Accuracy (%) 72.12 72.87 76.74 77.47 77.51 75.19

Table: Rectangles-Images binary classification.

Image Completion

Figure: Finished image with the predicted right half.

Model SGP DGP 2 DGP 3 DGP 4
Metrics 0.428 0.597 0.611 0.627

Table: Structural image similarity index averaged over 10k images.

Discussion
DGPs outperform standard GPs on almost all
regression, classification and image completion experi-
ments. DGPs also produce well calibrated uncer-
tainty estimates on classification tasks, whilst we
found that GPs underestimate the accuracy when p is
low and overestimate when p is high.

Unlike DNNs, increasing the depth does not signif-
icantly improve DGPs’ performance. Further-
more, using ARD kernels outperforms the orig-
inal results, and is comparable with state-of-the-art
inference techniques in DGPs (with less computational
cost).

However, this model cannot handle multi-modal data
due to absence of posterior correlations between pseudo-
points and univariate Gaussian assumption.

Future Work
1. Use of convolutional kernels. 2. Application of DGPs
in continual learning, active learning and Bayesian opti-
misation. 3. Modelling correlated outputs using auto-
regressive DGP model. 4. Handling multi-modal data.
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