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Introduction

As compared to standard neural networks,
Bayesian neural networks better quantify the un-
certainty in predictions and are more robust to
over-fitting on small datasets. However, approxi-
mating the posterior over weights in these networks
usually comes at a high computational cost. Gal
and Ghahramani [1] approximate the posterior ef-
ficiently with a Bernoulli variational distribution,
using dropout in the network. We recreate and
extend their experiments with this architecture on
MNIST, focusing on the issues of network certainty
and overfitting.

Dropout Training as Approximate
Variational Inference

Training Bayesian networks amounts to the in-
tractable problem of learning the posterior over
weights in the network, given inputs X and la-
bels Y. Assume a Gaussian prior over weights
with mean 0 and precision matrix λI, and assume
categorical likelihoods. The full posterior for this
network is intractable, but we can use variational
methods to approximate it. Define,

q(Wi) = Mi · (diag[zi,j]Ki
j=1), (1)

zi,j ∼ Bernoulli(pi).
where Wi are the weights in layer i and the Mi are
the parameters we seek to maximize. Taking this
as our variational approximation, maximising the
variational lower bound is equivalent to minimising,

Eω∼q(ω)[E(Y, f (X, ω))]− KL(q(ω)‖p(ω))

≈ 1
N

N∑
n=1

E(yn, f (xn, ω̂n)) + λ

2p
‖ω‖2

2, (2)

ωn ∼ q(ω).

where the approximation is an unbiased Monte
Carlo estimate for the variational lower bound.
This MC integration is equivalent to performing
dropout after every trainable layer with cross en-
tropy loss and `2 weight decay.

Small Data Sets: Overfitting

Figure: From top to bottom, training accuracies on all of
MNIST, 1/4 of MNIST and 1/32 of MNIST

Noisy Digits

Corrupt
Pixels (%)

Example
Image

Softmax (%) Accuracy (%)
Std. MC Std. MC

0 96.58 95.91 96.29 97.62
20 91.12 88.80 93.21 94.07
40 77.86 72.99 77.72 77.55
60 67.43 59.12 40.95 43.95
80 68.33 56.80 17.32 18.53
100 63.44 55.20 9.55 9.68

Table: On noisy data, MC dropout achieves higher levels of
accuracy, but gives lower confidence in its predictions when

compared to standard dropout.

Uncertainty

Figure: Samples from networks using dropout gives good
estimates to posterior probabilities.

Bayesian Inference and MC Dropout

When p = 0.5, the variational distribution q(ω) defines a uniform distribution over the corners of a hyper-
rectangle with a one corner at 0 and the opposite corner at M, where M was optimized in the training
procedure to maximize the sum of the posterior probability assigned to the rectangle’s vertices. Bayesian
inference for a new xn involves averaging the predictions at each corner, i.e.,

ŷn = Eq(ω)[f (xn, ω)]. (3)
This is intractable. Standard dropout uses a biased estimate, interchanging the expectation with f, yielding:

ŷn ≈ f
xn,Eq(ω)[ω]

 = f (xn,
1
p
M).

Geometrically, this means evaluating the network at the center of the optimized hyperrectangle. An alter-
native known as MC dropout is to use a Monte Carlo approximation (3),

ŷn ≈
1
T

T∑
i=1
f (xn, ωt), ωt ∼ q(ω). (4)

Bias and Variance

By adjusting the probability of dropout at test
time, we can control the bias variance trade-off in
the network evaluation.

Figure: Mean and standard deviations for 10 trials plotted
against the number of forward passes for various dropout

probabilities at test time.

Future Experiments

• Impact of different p during training.
•Train on noisier and more complicated data.
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Contact Information

•Git: https://github.com/raj-shah/MLSALT4
•Emails: drb62@cam.ac.uk, si318@cam.ac.uk,
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