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Motivation

Figure 1: LVM structure

Latent variable models (LVMs)
are a class of statistical mod-
els that aim to represent the
structure of complex, high-
dimensional data in a compact
manner. Such models can facili-
tate classification tasks, and can
be used for knowledge discovery
[1] or data compression.

Learning Autoencoder Structure

In a variational autoencoder, one aims to jointly learn a data
generating process (pθ(x|z)) and the posterior distribution over
the latent variables (p(z|x)). Using density networks to model
the data likelihood yields expressive models but with intractable
marginal likelihoods and posteriors over the latent variables. Set-
ting the optimisation objective in terms of Kullback-Leibler (KL)
divergences D and a tractable (approximate) posterior qφ(z|x)

log pθ(x)︸ ︷︷ ︸
marg. likelihood

−D[qφ(z|x)||p(z|x)]︸ ︷︷ ︸
approximation error ≥ 0

= Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
expected reconstruction error

−D [qφ(z|x)||p(z)]︸ ︷︷ ︸
regularisation term

(1)

allows optimisation of a lower bound L(θ, φ; x) on the marginal
likelihood pθ(x) equal to the RHS of (1). The approximate poste-
rior is given by qφ(z|x) = N (z;µ(x), σ2(x)) where the mean and
variance are nonlinear functions of φ modeled by a neural network.

The Reparameterisation Trick

Optimising the expectation in the RHS of (1) with respect to φ
involves backpropagating the error term through a layer of samples
of q which is not differentiable (Figure 2, left).

Figure 2: The reparametrisation trick

This is overcome (Figure 2, right) by expressing x as a determinis-
tic function g of an auxiliary variable, ε ∼ p(ε), continuous with
respect to φ, which for Gaussian q is

z = gφ(ε,x) = µ + σ � ε, ε ∼ N (0, I)

MNIST Training Curves

We closely reproduce results on MNIST reported in [2] for the average variational
lower bound L for VAEs with the specified latent space dimensions. We observe that
increasing the number of latent variables from 20 to 200 does not lead to overfitting.
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Figure 3: MNIST data set training and testing L for different latent variable dimensionality

Latent Manifold Visualisation

Figure 4: Left: 2D latent space Right: t-SNE projection of 20D latent space

We observe the effect of the regularisation term in (1) by comparing plots of input
data mapped through the encoder onto the latent space. The 20D latent space shows
better separation than the 2D space due to the additional degrees of freedom whilst
maintaining a valid Gaussian distribution.

Figure 5: Left: Learnt 2D MNIST manifold Right: Learnt 2D Frey face manifold

Mapping a grid of values on the unit square through the inverse Gaussian CDF and
the trained decoder (2D latent space) allows visualisation of the learned manifolds.
These show the ability to change one underlying data property (i.e. rotation) by
varying along a single latent dimension.

Importance Weighted Autoencoder (IWAE)

The term D[qφ(z|x)||p(z|x)] in (1) penalizes low-probability pos-
terior samples. Thus, the VAE posterior is a good approximation
only if the true posterior can be obtained by nonlinear regression.

Figure 6: Left: VAE and IWAE Right: IWAE 1- and 2-stochastic layers

This assumption can be relaxed by sampling low-probability pos-
terior regions using importance sampling, which yields a tighter
Lk on the marginal likelihood [3]:

Lk = Ez1,...,zk∼q(z|x)

log 1
k

k∑
i=1

p(x, zi)
q(zi|x)

 (2)

Conditional VAEs (cVAEs)

Figure 7: Samples generated from the same noise sample but different labels

Conditional VAEs (cVAEs) [4] include additional information (i.e.
labels) at the input and stochastic layers.

Future Work

•Convolutional/recurrent encoder and decoder architectures
•Generalise to colour images
•Different prior distributions over the latent space
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