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What makes an approximation
“cood"?

(Gaussian processes offer a powerful and probabilis-
tically sound framework for regression tasks, but
incur O(n?) cost of inference. Three desirable prop-
erties of approximations are:

« Computational efficiency,
« Rapid convergence to the full model,
= Sensible estimates prior to convergence.

Variational Features

Given a Gaussian process, f(x), an interdomain
inducing feature (Lazaro-Gredilla and Figueiras-
Vidal, 2010) is a random function of the form:

() = [ g (. 2) (%) dp(x).

Commonly, ¢,(X,z) = d(x — z), in which case
this can be thought of as “pseudodata” Typi-
cally, M < N and inference can be performed
in O(nm?). All parameters in g and i can be op-
timized variationally (Titsias,2009).

Spectral Approximations

The rank M approximation to the covariance ma-
trix that explains the most variance is formed by
choosing the first M eigenvalues. This motivates
choosing g,, to be an eigenfunction of the operator:

:f = [ K(x,X) f(x)dp(x).
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Figure: First Six Eigenfunctions for SE kernel with Gaussian
input measure.

Computational Efficiency

Eigenfunctions of an operator are orthogonal so:

The covariance matrix between features is diago-
nal, reducing the computational cost during hy-
perparameter estimation if trained stochastically:.

Decay of Spectrum

Most of the covariance in the full model is captured
in the first several teatures. This is related to the
decay of the eigenvalues /C.
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Figure: Eigenvalues decay (top) and percent of total variance
explained (bottom). The first few eigenvalues explain most of
the structure of /C if inputs are in fact normally distributed.

Effect of Input Distribution
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Figure: Variational lower bound for models with inputs from
a normal, roughly uniform and multimodal dataset.

Visualizing Convergence

Figure: Plots of M = 5,10, 15 and the full model on a toy dataset.

Upper Bound on Rate of
Convergence
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Figure: Bound on KL-Divergence when we increase M with
other parameters fixed. For a SE kernel with Gaussian inputs,
this convergence is exponential in M.

Modelling More Complex
Distributions

- Eigenvectors of K,, ,, only converge to ¢,, if data
distribution is normal, otherwise suboptimal.

» Rate of convergence depends on spread of data.

« Can be generalized to higher dimensions, but
convergence rate depends on volume enclosed by
input data.

« 'Trainable parameters can only help decrease this
volume if data is constrained to lower
dimensional axis aligned subspace.

« Inducing points do not have this problem as
locations can be optimized.

Future Directions

= Is there a way to use similar ideas in higher
dimensions without M growing exponentially?

« Can estimates on the rate of convergence of the
KL-divergence be sharpened for moderate M7

« What about eigentfunctions of other kernels and
input distributions?



