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What makes an approximation
“good"?

Gaussian processes offer a powerful and probabilis-
tically sound framework for regression tasks, but
incurO(n3) cost of inference. Three desirable prop-
erties of approximations are:
•Computational efficiency,
•Rapid convergence to the full model,
•Sensible estimates prior to convergence.

Variational Features

Given a Gaussian process, f (x), an interdomain
inducing feature (Lázaro-Gredilla and Figueiras-
Vidal, 2010) is a random function of the form:

um(z) :=
∫

Ω
gm(x, z)f (x)dµ(x).

Commonly, gm(x, z) = δ(x − z), in which case
this can be thought of as “pseudodata”. Typi-
cally, M � N and inference can be performed
in O(nm2). All parameters in g and µ can be op-
timized variationally (Titsias,2009).

Spectral Approximations

The rank M approximation to the covariance ma-
trix that explains the most variance is formed by
choosing the first M eigenvalues. This motivates
choosing gm to be an eigenfunction of the operator:

K : f →
∫

Ω
K(x,x′)f (x)dµ(x).

Figure: First Six Eigenfunctions for SE kernel with Gaussian
input measure.

Computational Efficiency

Eigenfunctions of an operator are orthogonal so:
〈Kφm, φn〉 = λm〈φm, φn〉 = λmδm,n.

The covariance matrix between features is diago-
nal, reducing the computational cost during hy-
perparameter estimation if trained stochastically.

Decay of Spectrum

Most of the covariance in the full model is captured
in the first several features. This is related to the
decay of the eigenvalues K.

Figure: Eigenvalues decay (top) and percent of total variance
explained (bottom). The first few eigenvalues explain most of
the structure of K if inputs are in fact normally distributed.

Effect of Input Distribution

Figure: Variational lower bound for models with inputs from
a normal, roughly uniform and multimodal dataset.

Visualizing Convergence

Figure: Plots of M = 5, 10, 15 and the full model on a toy dataset.

Upper Bound on Rate of
Convergence

Figure: Bound on KL-Divergence when we increase M with
other parameters fixed. For a SE kernel with Gaussian inputs,
this convergence is exponential in M.

Modelling More Complex
Distributions

•Eigenvectors of Kn,n only converge to φm if data
distribution is normal, otherwise suboptimal.

•Rate of convergence depends on spread of data.
•Can be generalized to higher dimensions, but
convergence rate depends on volume enclosed by
input data.

•Trainable parameters can only help decrease this
volume if data is constrained to lower
dimensional axis aligned subspace.

• Inducing points do not have this problem as
locations can be optimized.

Future Directions

• Is there a way to use similar ideas in higher
dimensions without M growing exponentially?

•Can estimates on the rate of convergence of the
KL-divergence be sharpened for moderate M?

•What about eigenfunctions of other kernels and
input distributions?


