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Abstract

Recent advances in deep generative models give us new perspective on modeling high-

dimensional, nonlinear data distributions. Especially the GAN training can successfully

produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum

likelihood learning and instead adopts an two-player game approach. This new training

behaves very differently compared to ML learning. There are still many remaining problem

of GAN training. In this thesis, we gives a comprehensive review of recently published

methods or analysis on GAN training, especially the Wasserstein GAN and FlowGAN model.

We also discuss the limitation of the later model and use this as the motivation to propose

a novel generator architecture using mixture models. Furthermore, we also modify the

discriminator architecture using similar ideas to allow ’personalized’ guidance. We refer the

generator mixture model as Mixflow and mixture of discriminators as ’personalized GAN’

(PGAN). In experiment chapter, we demonstrate their performance advantages using toy

examples compared to single flow model. In the end, we test their performance on MNIST

dataset and the Mixflow model not only achieves the best log likelihood but also produce

reasonable images compared to state-of-art DCGAN generation.
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Chapter 1

Introduction

1.1 Motivation

In the context of Deep Learning, the goal is to discover and approximate the complex, high-

dimensional and intractable probabilistic distributions. The striking success has been mainly

based on the discriminative models which maps the real data to label. The generative
model has less impact due to the difficulty of approximating complex distributions.

The Generative Adversarial Network(GAN) (Goodfellow et al., 2014) sidesteps these difficul-

ties and adopts a two-player game approach that implicitly change the generator distribution

towards targeting distribution. However, this model setup suffers from well-known prob-

lems. First, the original GAN is notoriously difficult to train stably, like the vanishing
gradient problem. In addition, the GAN tends to only fits parts of the distribution called

mode-dropping problem. Last but not least, due to the implicit property of the generator, it is

difficult to explicitly evaluate the sample log likelihood, thus leaving the ’gap’ between the

implicit model and explicit generator likelihood.

The objective of this project is to review the current published methods on GAN and try to

propose an improvements towards one of the above problems.

1.2 Contribution

First, we will give comprehensive a review of some of the popular methods on GAN and

how they handle the proposed problems. Then based on the review (especially FlowGAN
method (Grover et al., 2017)), we will propose a novel network using mixtures models and
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CNN that will further improve the capacity and performance of FlowGAN. Last but not least,

we will also conduct some toy experiments to illustrate the properties of GAN training and

compare the difference of maximum likelihood training and GAN training.

1.3 Thesis Layout

In Chapter 2, we will first give a detailed introduction to the Original GAN model and

discuss its limitations. Then, Wasserstein GAN, a major improvement, will be explained. In

the end, we will discuss the variations of GAN that can be categorized into three major classes.

In Chapter 3, a detailed review of Normalizing Flow will be given and how they are

used in ML training. Then, the limitations of Flow will be discussed.

In Chapter 4, we will first propose the novel generator architecture that can be used for

both ML and GAN training. Then followed by a discriminator mixture model, it allows for

’personalized’ guidance for generator component. The combined discriminator and generator

mixture is called PGAN.

In Chapter 5, we will conducts some experiments to show the new architecture will in-

deed increase the performance compared to the original FlowGAN model. We also test

the log likelihood and generation quality for MNIST data set, which shows our model can

both achieve high likelihood and reasonable generation quality compared to state-of-art

DCGAN(Radford et al., 2015).

In the last chapter, we will talk about the possible future work and give a conclusion of the

thesis.



Chapter 2

Generative Adversarial Network

2.1 Background

The goal of deep learning is to discover the rich, complex distributions encountered in

the real life. The major success has been mainly based on the discriminative model. The

unsupervised learning, especially the generative models, are less successful. The main

difficulty is to approximate high dimensional, non-linear distributions during maximum

likelihood training. This requires the tractability and high capacity of the model. Normally,

these two properties are in opposite directions.

The Generative Adversarial Networks(Goodfellow et al., 2014) uses a completely dif-

ferent training approaches. This allows us to use a model with high modeling power and not

need to worry about explicit likelihood. Specifically, the model has a discriminator and a

generator. The discriminator will determine whether the samples are ’real’ or ’fake’. The

generator will use this information to improve generation quality. The competition (like

Figure 2.1.) will drive both ’players’ to improve their performance. It has been shown that

the equilibrium in this game is when the generated samples are indistinguishable from the

real samples and discriminator cannot do a better job than a random guess.

This training algorithm sidesteps the use of likelihood and any approximate inference tech-

niques (e.g. MCMC, variational inference, etc.). Thus, we can use the universal function
approximator, i.e. Multi-layer perceptron (MLP) or Convolution Neural Network (CNN) as

our discriminator and generator.
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Fig. 2.1 The Original GAN model structure

2.2 Original GAN

Assume we have our discriminator D(·;θd) and generator G(·;θg) parametrized by θd

and θg respectively. We also have true data distribution pd defined on space XXX and base
distribution pz defined on space ZZZ. The generator G(·,θg) defines mapping between space

ZZZ and XXX , zzz �−→ xxx where xxx ∈XXX and zzz ∈ ZZZ. The generator also implicitly define the generator
distribution pg through the push pg = G#(pz).

We want to maximize the probability of assigning correct labels for both real data and

generated data. In addition, we also want to train G(·,θg) simultaneously to minimize the

probability of assigning generated data with the ’fake’ label. Thus, the objective function is

defined as

min
θg

max
θd

V (D,G) = Exxx∼pd [logD(xxx)]+Ezzz∼pz [log(1−D(G(zzz)))] (2.1)

In fact, we can treat the generator G(·,θg) as the decoder which maps from the latent space

ZZZ to data space XXX in the context of Autoencoder. This setup can be generalized to different

variations on GAN which will be discussed later.

We can derive this objective through a probabilistic framework.

Proposition 1. For fixed generator G, the objective function is equivalent to maximize the
log likelihood of assigning correct labels to binary labeled data.

Proof. Assume we have data distribution p(xxx) defined on a space XXX with label information

y ∈ {0,1}. We have a classifier that will assign labels to the input data xxx, which is defined as

p(y|xxx).
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Thus, to maximize the log likelihood of assigning correct labels,

max
θd

Exxx∼p(xxx)[log p(y|xxx)]

=max[Ex∼p(xxx|y=1)[log p(y = 1|xxx)]+Ex∼p(xxx|y=0)[log p(y = 0|xxx)]]
(2.2)

Thus, if we define p(xxx|y = 0) = G#(pz), we will recover the original objective function.

In the original GAN paper(Goodfellow et al., 2014), they proved the convergence of this min-

imax training procedure. The sketch of the proof is first we fix the generator, we can derive

the optimal discriminator D∗(xxx) to be
pd(xxx)

pd(xxx)+pg(xxx)
. Then, by using this optimal discriminator,

we can show that the minimum of the objective is achieved if and only if G#(pz) = pd . The

detailed proof are in the Appendix 1.

From the Theorem 4 in Appendix 1, we show that minimizing the training objective for

generator is equivalent to minimizing the Jensen-Shannon distance (JSD) (defined in the

proof) between pd and pg. There are some good properties of JSD compared to the traditional

KL divergence.

• KL divergence KL(p||q) is not symmetric by definition, which means KL(p||q) �=
KL(q||p), whereas the JSD(p||q) is symmetric.

• For minimizing KL(p||q) = ∫
XXX p(xxx) log( p(xxx)

q(xxx) )dxxx, this is equivalent to maximizing the

log likelihood q(xxx) (Proof is trivial, just use Monte Carlo approximation to KL(p||q)).

From the definition of KL(p||q), if xxx is from the high probability region of p(xxx) and

low probability region of q(xxx), then, the KL(p||q) will quickly expand to infinity.

On the other hand, if q(xxx) > p(xxx), the KL term will tends to be small. Thus, if we

minimize KL(p||q), the model will tends to cover the whole support of p(xxx) rather

than generating realistic images. The situation is reversed if we minimize KL(q||p).

• Based on the previous point, the KL divergence is not always defined by definintion.

• The JSD is always defined. In addition, JSD can be treated as a symmetric middle

ground to the two KL divergence. From (Theis et al., 2015), it is conjectured the reason

of success in GAN at producing real-look images is due to the switch from the ML

training.

The training algorithm for GAN is introduced in Algorithm 1.

The algorithm basically trains a measure represented by D(·) to estimate the Jensen-Shannon
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Algorithm 1 Original GAN Training Algorithm

1: for training iterations do
2: for discriminator steps do
3: Sample batches of m samples zzz ∼ pz(zzz)
4: Sample batches of m samples real data xxx ∼ pd(xxx)
5: Maximize and update the discriminator parameters using gradient descent opti-

mization:

max
D

1

m

m

∑
i=1

[log(D(xxxi)+ log(1−D(G(zzzi)))] (2.3)

6: end for
7: Sample batches of m samples zzz ∼ pz(zzz)
8: Minimize and update the generator:

min
G

1

m

m

∑
i=1

log(1−D(G(zzzi))) (2.4)

9: end for

distance between pd and pg, then we try to reduce the JSD by updating the generator

until convergence. However, in practice, the generated images will be rejected with high

confidence by the discriminator at first, therefore, log(1−D(G(zzz))) will saturates and won’t

provide useful gradient. Instead, we can maximize log(D(G(zzz))) which will end with the

same stationary point but provides a better gradients.

2.2.1 Theoretical Limitation

This original GAN architecture is known for its unstable training and often suffers from

’mode-dropping’ problem. To be specific, the ’mode-dropping’ means the generator dis-

tribution is highly concentrated on parts of targeting distribution and loses the generation

diversity. Especially, it is counter-intuitive that the better we train the discriminator, the

worse the generator will be due to vanishing gradients. This is claimed to be due to saturation

of log(1−D(G(zzz))) according to (Goodfellow et al., 2014), however, even we replace it with

log(D(G(zzz))) as suggested, this still happens.

The instability of training is theoretically investigated in (Arjovsky and Bottou, 2017).

In this subsection, we will omit the formal detailed proofs, instead, an overview of the ideas

will be presented.

First, we explain why the GAN training suffers from vanishing gradient problem. Lemma



2.2 Original GAN 7

1 in (Arjovsky and Bottou, 2017) proves that the generator distribution is only supported

by a union of low dimensional manifold if G(·) is well-behaved neural net. The intuition is

that the generator distribution is defined as pg = G#(pz), thus, the support of pg should be

contained in space ZZZ where the dimension is much smaller than XXX .

If the distribution is supported by low dimensional manifold, then it is not absolutely
continuous. The absolute continuous indicates that if a set A has a Lebesgue measure 0,

then the measure μ(A) = 0, in our context, measure μ is probability measure. So, based on

the definition, if the distribution is supported by low dimensional manifold, then the Lebesgue

measure of the manifold is 0 however, the probability of the manifold is not zero obviously.

Now we introduce two key concepts where the vanishing gradients theorem (Theorem 2.1

(Arjovsky and Bottou, 2017)) is based on.

Definition 1. Normal Topology Space: The topology space is normal if any two closed
disjoint sets have open disjoint neighborhoods.

Lemma 1. Urysohn’s lemma: A topological space is normal if and only if any two closed
disjoint subsets can be separated by a continuous function.

Thus, in Theorem 2.1 (Assume the supports are disjoint), it first show that the supports of

pd and pg contains open disjoint neighborhoods and the space is normal. Then Urysohn’s

lemma states there exists a continuous function that perfectly separate them and have accuracy

1 (or 0) under the support of pd (or pg). Thus, the gradient of the discriminator w.r.t input is 0.

Then Theorem 2.2 further generalize that if the support of pd and pg are not perfectly

aligned, then by similar methods, it can be shown that there exists a perfect discriminator that

separates the support. Thus, overall, this explains the vanishing gradient problem of GAN

training. Further, Theorem 2.4 shows if the discriminator is closed to optimal discriminator,

then the gradient will be very small. Thus, these theorems theoretically explain the reason

why the better the discriminator, the worse the gradients for generator.

If the alternative training objective Ezzz∼pz [− log(D(G(zzz)))] is used, Theorem 2.5 shows

that with optimal discriminator and fixed generator parameter θ0, then

Ezzz∼pz [−∇θ log(D∗(Gθ (zzz)))|θ=θ0
] = ∇θ [KL(pg||pd)−2JSD(pg||pd)]|θ=θ0

(2.5)

Thus, based on the properties of KL divergence, this is not equivalent to maximum likelihood,

which will encourage the generator to generate ’real-look’ images but won’t assign high
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cost if pg does not cover the whole pd . In addition, due to the symmetrical property of

JSD, so it won’t alter this behavior. Thus, we will see mode-dropping of GAN. In addition,

Theorem 2.6 shows that with imperfect discriminator (different by ε), then the distribution

of the gradient Ezzz∼pz [−∇θ log(D(Gθ (zzz)))] is actually a Cauchy distribution. However, the

Cauchy distribution does not have finite moments of order greater than or equal to one.

Therefore, this means it will have infinite expectation and variance, causing the instability of

training.

Based on the theorems stated above, the main assumptions are that the generator distributions

has low dimensional supports. So one simple way to break this assumption proposed by

Arjovsky and Bottou (2017) is to add absolutely continuous noise to the input of the

discriminator. In fact, the generator will be like the decoder in VAE (Kingma and Welling,

2013). Luckily, there is more elegant alternative measure called Wasserstein metric.

2.3 Wasserstein GAN

In this section, we will first introduce some basics about Wasserstein distance, followed by a

new algorithm proposed by Arjovsky et al. (2017), called Wasserstein GAN (WGAN). Then,

we will discuss some variants based on the WGAN.

The Wasserstein distance is also called Earth Mover’s distance(EMD). The intuition comes

from a simple idea: How to move things to a desired shape and location with minimum

energy consumption. In terms of probability distributions, if we regard each distribution as a

heap of earth and we want to transform them into another heap with minimum effort as shown

in Figure 2.2. This distance is often be used as a distance measure between distributions.

Fig. 2.2 EMD for two discrete distributions

This metric has been widely used in computer vision. For example, it has been used for

image and texture retrieval (Rubner et al., 2000).
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2.3.1 Primal Form

Based on the intuition of EMD, we can easily formulate the equation. We first define the

transporting plan which is equivalent to the joint distribution of two probabilities. This states

how we distribute amount of earth xxx in domain YYY, and vice versa. For valid plan, we need

constraints to ensure it produce the correct marginal probability.

∫
XXX

γ(xxx,yyy)dxxx = pθ (yyy)∫
YYY

γ(xxx,yyy)dyyy = pr(xxx)
(2.6)

Therefore, the EMD can be defined as a constrained optimization problem:

EMD(pr, pθ ) = inf
γ∈Π

E(x,y)∼γ(xxx,yyy)[||xxx−yyy||γ(xxx,yyy)]

s.t. constraints (2.6)

(2.7)

where Π represents the set containing all possible joint distributions and || · || is the distance

measure between two points (e.g. Euclidean distance). With samples (xxx,yyy) from distribution

with finite support, we often denote ΓΓΓ = γ(xxx,yyy) and DDD = ||xxx−yyy|| where ΓΓΓ,DDD ∈ R
l×l . Thus,

equation 2.7 can be written as

EMD(pr, pθ ) = inf
γ∈Π

<DDD,ΓΓΓ >F (2.8)

where < ·, · >F means the sum of element-wise product. This formulation will be useful

in primal-form WGAN (Sinkhorn Autodiff) with finite support distributions. However, in

some problems, we only care about the distances rather than the transporting plan. Thus,

there is a well-known dual formulation of the EMD called Kantorovich-Rubinstein duality.

Before we dive into this dual form EMD, we first show that the primal form EMD can

be formulated as Linear Programming if distributions have finite supports (like sampled

empirical distribution).

Assume we flatten the distance matrix DDD as vector ccc, thus, we have a corresponding flattened

joint probability vector xxx, then the objective function will be cccTxxx. Similarly, we can construct

the constraints through matrix AAA containing 0 or 1 which will pick particular joint probability

and sum them to the desired marginalized probability. The corresponding marginalized
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probabilities are stored in vector bbb. Thus, overall, the linear programming formulation:

min
xxx

cccTxxx

s.t. AxAxAx = bbb

xxx ≥ 0

(2.9)

2.3.2 Dual Form

Based on the linear programming formulation and duality theorem, there exists a dual for-

mulation where its optimal value defines the bound of the primal optimal value (in our

formulation it is the lower bound if both solutions are bounded and feasible). However, we

can show that this formulation has zero duality gap, thus, this indicates strong duality.

Theorem 1. There exists a strong duality formulation to the original linear programming
(2.9). The formulation is maxyyy [bbbTyyy] such that AAATyyy ≤ ccc.

Proof. Refer to Appendix.

Thus, we can define the strong duality formulation

max
yyy

bbbTyyy

s.t. AAATyyy ≤ ccc
(2.10)

Then, we assume

yyy =

[
fff
ggg

]
(2.11)

By formulation of ccc and AAA and we regard fff and ggg as functions evaluated at xxx, thus, the

constraints can be summarized as

f (xxxi)+g(xxx j)≤DDDi, j (2.12)

If i=j, then we have g(xxxi)≤− f (xxxi). Thus, the maximum is achieved if g =− f . Thus, the

objective function is changed to

max
f

Exxx∼pr [ f (xxx)]−Exxx∼pθ [ f (xxx)] (2.13)
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As for the constraints, we have

f (xxxi)− f (xxx j)≤DDDi, j

f (xxxi)− f (xxx j)≥−DDDi, j
(2.14)

If we use Euclidean distance as distance measure, then this indicates the maximum and

minimum slope are 1 and -1. Thus, this indicates || f ||L ≤ 1, in other words, Lipschitz

continuity with constraints 1. Therefore, the Kantorovich-Rubinstein duality is formulated as

Definition 2. Kantorovich-Rubinstein duality: The Wasserstein distance between two distri-
butions pr and pθ can be defined as

max
f :|| f ||L≤1

Exxx∼pr [ f (xxx)]−Exxx∼pθ [ f (xxx)] (2.15)

Now, we introduce the Wasserstein GAN objective based on this duality formulation:

min
G(·)

max
f (·):|| f ||L≤1

Exxx∼pd [ f (xxx)]−Ezzz∼pz [ f (G(zzz))] (2.16)

However, the implementation is not trivial due to the Lipschitz continuity constraints.

2.3.3 Lipschitz Constraints

In the WGAN paper (Arjovsky et al., 2017), they propose a simple way to deal with the

Lipschitz constraints. First, we can easily see that if we replace || f ||L ≤ 1 with || f ||L ≤ K,

then the EMD will be multiplied by constant K (this is equivalent to multiplying K to the

distance matrix DDD and from the primal form EMD, the optimal distance will also be multiplied

by K). Therefor, first we assume the discriminator function f is parameterized by www, then we

define a compact parameter space WWW such that the elements in the set FFF = { fwww}www∈WWW are all

K-Lipschitz continuous. Thus, the problem is changed to

max
www∈WWW

Exxx∼pd [ fwww(xxx)]−Ezzz∼pz [ fwww(G(zzz))] (2.17)

To actually solve above problem, we need to choose a powerful function approximator.

Typically, a deep neural network with weights www are chosen. To make sure elements in

FFF are the K-Lipschitz function, we can clip the weight within a small fixed range, say
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WWW = [−0.01,0.01]l after each updates. The intuition behind this is if the weights are small

enough, then the gradients with respect to input will also be small. However, this is not a

good solution because it severally damages the modeling power of the neural nets and often

requires a careful tuning of the range. In the end of this section, we will demonstrate these

phenomenon using toy examples.

The algorithm of this WGAN-WeightClipping(WGAN-WC) are described in the following.

Algorithm 2 WGAN-WC, Clipping parameter: c=0.01,learning rate:

l=0.00005,Discriminator iteration: nc=5,batch size: m=64

1: while Not converge do
2: for t = 0 . . . ,nc do
3: Sample {xxx(i)}m

i=1 ∼ pd from real data

4: Sample {zzz(i)}m
i=1 ∼ pz from noise distribution

5: Using RMSProp with learning rate lr to update weight www based on objective
1
m ∑m

i=1 fwww(xxx(i))− 1
m ∑m

i=1 fwww(Gθ (zzz(i)))
6: Clip weight www with range [−c,c]
7: end for
8: Sample {zzz(i)}m

i=1 ∼ pz
9: Update generator using RMSProp with learning rate lr based on objective

− 1
m ∑m

i=1 fwww(Gθ (zzz(i)))
10: end while

There exists another way proposed by Gulrajani et al. (2017) to satisfy this constrains. The

intuition is to add an additional term to the objective function as a regularizer such that it

will penalize the objective if any gradient of the discriminator is away from 1.

They showed that the optimal discriminator have gradient 1 at almost everywhere under

distribution pd and pg. To be precise,

Lemma 2. pr and pg are two distributions defined on compact metric space XXX, then there
exists a 1-Lipschitz function f ∗ which is the solution of dual form EMD. Let π is the optimal
coupling of the primal form EMD, then if f ∗ is differentiable and xtxtxt = txxx+(1− t)yyy with
0 ≤ t ≤ 1,

P(xxx,yyy)∼π [∇ f ∗(xxxt) =
yyy−xxxt

||yyy−xxxt || ] = 1 (2.18)

Proof. Sketch of the proof: Based on the fundamental Theorem 5.10 of Villani (2008), it

shows that

| f ∗(xxxt)− f ∗(xxx)|= t|yyy−xxx| (2.19)
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Then define

v =
yyy−xxxt

||yyy−xxxt || =
yyy−xxx

||yyy−xxx|| (2.20)

Thus, by definition of derivative and equation 2.19, we can show

∂
∂v

f ∗(xxxt) = 1 (2.21)

Thus, we use Pythagoras theorem and definition of Lipschitz constraints, they show

1 ≤ ||∇ f ∗(xxxt)||2

= | ∂
∂v

f ∗(xxxt)|2 + |∇ f ∗(xxxt)− v
∂
∂v

f ∗(xxxt)|2

= 1+ |∇ f ∗(xxxt)− v|2
≤ 1

(2.22)

Thus, ∇ f ∗(xxxt) = v

Therefore, based on this Lemma, the new objective function is

L = Exxx∼pd [ f (xxx)]−Ezzz∼pz [ f (G(zzz))]−λEx̂xx∼px̂ [(||∇x̂xx f (x̂xx)||2 −1)2] (2.23)

The first two terms are WGAN loss function without constraints and the third term are the

regularizer. x̂xx are the interpolated points between true data xxx and generated sample G(zzz). In

limit of the high λ , the optimal discriminator under this objective will be still optimal under

true dual EMD. Therefore, in the non-parametric limits (enough capacity of discriminator,

infinite training samples, infinite training epoch), the optimal cost recovered by this objective

will be true EMD between pr and pg. We call this method WGAN-GP. The algorithm is

described below.

Algorithm 3 WGAN-GP,λ = 10, nc=5, lr = 0.0001, β1 = 0.5,β2 = 0.9

1: while Not converge do
2: for t = 1, . . . ,nc do
3: Sample {xxx(i)}m

i=1 ∼ pd , {zzz(i)}m
i=1 ∼ pz and {ε(i)}m

i=1 ∼U [0,1]

4: x̂xx(i) = ε(i)xxx(i) + (1− ε(i))G(zzz(i))) for i = 1, . . . ,m
5: L = 1

m ∑m
i=1 fwww(xxx(i))− fwww(G(zzz(i)))+λ (||∇x̂xx(i) fwww(x̂xx(i))||2 −1)2

6: Update www using Adam(L, lr,β1,β2)
7: end for
8: Sample {zzz(i)}m

i=1 ∼ pz

9: Update G(·) using Adam( 1
m ∑m

i=1− fwww(G(zzz(i))), lr,β1,β2)
10: end while
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Now we do some simple toy examples to demonstrate the difference of the two meth-

ods. The first example is to show that WGAN-WC severally damages the modeling power

and tends to over-simplify the true EMD surfaces, whereas the WGAN-GP behaves much

better. The toy examples are sampled from 7 component GMM and the generator is fixed

by adding noise to the true data followed by a random shuffle. Figure 2.3 shows the dis-

criminator value surface learned by two different methods. From the this plot, the value

(a) WGAN-GP (b) WGAN-WC

Fig. 2.3 The learned discriminator value surface. The true samples are drawn from 7-

component GMM and fake samples are generated by adding Gaussian noise with μ = 0 and

σ = 0.1 to the true data.

surface learned by WGAN-WC over-simplify the actual data distribution. In other words, the

weight clipping tends to stop the neural network to learn the actual EMD surface, instead, it

encourages it to learn a over-smoothed surface. WGAN-WC cannot capture the high moment

features of the data. On the other hand, WGAN-GP method successfully capture all correct

modes of the data with reasonable smoothness. This example shows that the weight-clipping

method strongly discourage the discriminator to learn complicated surface. The reason for

this behavior can be seen in the next experiment.

The second experiment is to show the weights distributions for the same toy examples.

Figure 2.4 shows the distributions of the learned weights through a histogram. We can

see that the WGAN-WC method tries to push the weights to the limits to capture the data

structure. Thus, if we restrict our weight within a small range, then the modeling power of
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(a) WGAN-GP (b) WGAN-WC

Fig. 2.4 The weights distribution of the two methods. The training data are the same as

before. The generator is also fixed by adding noise to true data.

neural nets are hindered. On the contrast, the WGAN-GP does not directly put a constraints

on the weights, instead, it put restrictions on the smoothness of the neural net. Thus, most of

the weights are concentrated on the low value and few of them are in the high range. So the

modeling power is reasonably reserved and it can capture more complicated data features.

The above algorithms are based on the dual form Wasserstein distance and the assump-

tion is that the distance measure between points is Euclidean distance. This limits the

possibilities of using other alternative distance measures. In the next section, we will intro-

duce the primal-form based WGAN using entropy regularized linear programming (Cuturi,

2013) called Sinkhorn Algorithm (Genevay et al., 2017).

2.3.4 Primal form based WGAN

In subsection 2.3.1, the equation 2.9 defines the primal-form EMD. In primal form, choice

of distance measure is not restricted and we don’t need to worry about Lipschitz continuity.

Thus, this gives us more design freedom. In addition, the LP formulation is a convex opti-

mization with a unique optimum that gives the true EMD between two distributions under

finite supports. However, the LP formulation is known to be computationally expensive

for high dimensional data. In addition, the solution of LP is the optimal vertices in a high

dimensional convex polytope. Thus, it won’t be very smooth. This will cause problems for
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the update in generator.

These potential difficulties are the primary reason that the dual EMD is adopted in the

original WGAN. However, a new approximation method for optimal transport problem has

been proposed by Cuturi (2013) intended to solve the above problems. The intuitive idea

is to use entropy regularization in LP to enforce smoothness of the solution and reduce the

search space. The regularized problem is strongly convex.

Apart from the method mentioned above, there is another way proposed by Bousquet et al.

(2017) to solve the primal-from EMD by introducing a encoder network and a regularizer to

enforce similarity between aggregated posterior and prior distribution . In fact, this method

is very similar to the Autoencoder training with a regularizer. The objective function is

inf
Q(zzz|xxx)

Exxx∼pdEzzz∼Q(zzz|xxx)[c(xxx,G(zzz))]+λD(Q(zzz)||ZZZ)) (2.24)

where Q(zzz|xxx) is the encoder network, c(·, ·) is the distance measure and D(·, ·) is the distance

measure between distributions. The first term is the reconstruction loss in the Autoencoder

objective function (e.g. c(·, ·) is l2 norm). The second term is the penalty to ensure aggregated

posterior is like the prior. This forces the Q(zzz|xxx) to be true posterior. Because the Q(zzz|xxx)
are implicit model defined by MLP, so information-based metric is hard to use. Analogous

to regularizer used in Adversarial Autoencoder (Makhzani et al., 2015), the loss D(·||·) are

replaced to GAN loss. In this thesis, we will not explore this methods in details, though, this

methods provides a unifying framework for GAN, Adversarial Autoencoder and Adversarial

Variational Bayes (Mescheder et al., 2017). In addition, it also gives us another reason to

use primal form GAN: they showed if the true optimum f ∗ in dual form WGAN is not

reached exactly, the effect on the gradient in the dual formulation can be arbitrarily large

(Proposition 3 (Bousquet et al., 2017)).

Now, we will focus on the entropy regularized primal EMD. Before we dive into the Sinkhorn

algorithm, we need to slightly change the LP formulation. From the section 2.3.1, one of

the constraints of LP is AAAxxx = bbb where vector bbb contains marginal likelihood of pd and pg.

However, for distributions with continuous infinite support, we do not know these two proba-

bilities. Thus, we can use the idea of Mini-batch sampling loss. To be specific, the EMD

loss W (pd, pg) is replaced by W ( p̂d, p̂g), where p̂d = 1
m ∑m

i=1 δxxxi and p̂g =
1
m ∑m

i=1 δG(zzzi). The

distance vector ccc is defined by taking the distance measure c(·, ·) on all possible pairs of

sampled data. Therefore, the constraints is changed to AxAxAx = 1
m1112m where 111n = [1,1, . . . ,1]T
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with n elements. Thus, the LP formulation for empirical distribution p̂d and p̂g is

min
xxx

cccTxxx

s.t. AxAxAx =
1

m
1112m

xxx ≥ 0

(2.25)

Solving the above LP problem is both numerically unstable and expensive. So the entropy

regularization LP is introduced by Cuturi (2013). First, we define a probability simplex

Σd = {xxx ∈R
d : xxxT111d = 1}, thus p̂d, p̂g ∈ Σd . Then we further define a transportation polytope

for p̂d and p̂g called U( p̂d, p̂g):

U( p̂d, p̂g) = {P ∈ R
d×d|P111d = p̂d,PT111d = p̂g} (2.26)

From the basic information theoretical inequality (Cover and Thomas, 2012), we have

∀ p̂d, p̂g ∈ Σd, ∀P ∈U( p̂d, p̂g), h(P)≤ h(p̂d)+h(p̂g) (2.27)

This inequality indicates the entropy of joint probability table P is less than the independence

table h(p̂d p̂T
g ) (Good et al., 1963). Now define a subset Uα(p̂d, p̂g)⊂U(p̂d, p̂g):

Uα( p̂d, p̂g) = {P ∈U(p̂d, p̂g)|KL(P|| p̂d p̂T
g )≤ α} (2.28)

Due the the convexity of entropy, this subset is also convex. This subset can be interpreted as

a set of tables P in U(p̂d, p̂g) which have sufficient entropy with respect to h(p̂d) and h(p̂g).

We can see if the table P only contains independent joint probabilities, then the KL term is

zero and the search space is reduced to a ’single point’ in the polytope U( p̂d, p̂g). Therefore,

the α controls the size of the search space. When it is large enough, the subset Uα(p̂d, p̂g) =

U(p̂d, p̂g) (like figure 2.5 ) According to the max-entropy principle, the objective function

with an entropic constraint will look for the most smooth solution P∗ given level of the

cost. The intuition is that for a given empirical distribution p̂d and p̂g, finding plausible

transporting plan P with low cost (plausibility is measured by h(P)) is more robust and

informative than the extreme plan with very low cost. This alleviates the smoothness problem.

Next, we show that the solution to the above entropy regularized LP formulation can be

found by Sinkhorn-Knopp fixed point algorithm.

Theorem 2. Sinkhorn-Knopp Theorem: For a square matrix AAA with strictly positive ele-
ments, there exists a strictly positive diagonal matrix DDD1 and DDD2 such that DDD1AAADDD2 is doubly
stochastic.
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Fig. 2.5 The schematic view of the entropy regularization LP

Theorem 3. For a pair of empirical distributions p̂d, p̂g, distance matrix MMM ∈ M = {MMM ∈
R

d×d : ∀i ≤ d,mii = 0;∀i, j,k ≤ d,mi j ≤ mik + mk j} and α , there exist a λ such that
Sinkhorn distance dM,α( p̂d, p̂g) = dλ

M(p̂d, p̂g). And there is a unique optimum solution
Pλ to dλ

M(p̂d, p̂g) which is in the form uie−λmi jv j. u and v are two non-negative vector
uniquely defined up to multiplicative factor.

Proof. Refer to the appendix.

Thus, based on the theorem, we can use a iterative procedure to approximate the solution

Pλ called Sinkhorn-Knopp fixed point algorithm. Then with the optimal transportation

matrix, we can evaluate the EMD between p̂d and p̂g. With the re-parametrization trick

introduced by Kingma and Welling (2013), we can update the generator by reducing the

EMD. The proposed algorithm for Generative models called Sinkhorn Autodiff formally

proposed by Genevay et al. (2017). The flow diagram of Sinkhorn Autodiff is shown in

Figure 2.6.

For simplicity, we denote λ as 1
ε , this is because as λ increases the entropy of solution h(P)

decreases, this represents increasing α . Therefore, ε in some sense represents the ’error’

between true EMD and Sinkhorn EMD.

The detailed algorithm for Sinkhorn Autodiff are shown in Algorithm 4. The � repre-

sents the element-wise product, ·
· represents the component-wise division and 111n is the n
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Fig. 2.6 Flow diagram of Sinkhorn Autodiff algorithm with mini-batch noise {zzz(i)}m
i=1 and

real data sample {xxx(i)}n
i=1. The θ are the parameters of generator and the optimizer for θ are

normally chosen to be Adam.

Algorithm 4 Sinkhorn Autodiff

Input: Noise {zzz( j)}m
j=1, error ε , Sinkhorn iteration L, distance measure c(·)

1: for k = 1,2, . . . do
2: Sample mini-batch {yyy( j)}m

j=1 using yyy( j) = G(zzz( j)).
3: Sample read data {xxx(i)}n

i=1

4: ∀(i, j), Ci, j = c(xxx(i),yyy( j)) and Ki, j = exp(−Ci, j
ε )

5: v0 =
1
n111n

6: for l = 1, . . . ,L do
7: ul =

1
n111n

Kvl−1
and vl =

1
n111n

KT ul
8: end for
9: E=< (K �C)v,u >

10: Update Generator using Adam(E,θ )

11: end for

dimensional vector with elements 1.

2.4 Related work and variations

Apart from the methods mentioned above, there are large number of variations of GAN.

These methods can be roughly categorized into three different areas. We will focus on the
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first two area, i.e. Network Architecture and Autoencoder-based GAN, especially the

FlowGAN method.

2.4.1 Network Architecture

In the original GAN, the discriminator and generator are chosen to be MLP.Instead, fully

connected CNN can also be used as proposed by Radford et al. (2015). They use the

same training objective as the original GAN and propose some practical suggestions on the

network topologies. This method is called DCGAN which achieves very good results on

generating sharp and realistic images and is also a strong candidate for unsupervised learning.

The unsupervised learning capacity of GAN is further investigated and improved by Chen

et al. (2016). A new method called InfoGAN is proposed to learn disentangled representa-

tions in a completely unsupervised manner. The network architecture are based on DCGAN

and conditional GAN (Mirza and Osindero, 2014) but an additional mutual information

between generator output and input is added to the objective function. Thus, the generator

will try to both generate realistic images and also be highly relevant to the latent code inputed

to the generator. Further improvement to this method is proposed just before this thesis using

a semi-supervised training to improve the convergence and synthetic image quality (Spurr

et al., 2017).

Apart from the unsupervised learning, another problem of the original GAN has also been

investigated. Specifically, the evaluation of original GAN training is tricky and is mainly

assessed by generation quality. Apart from human judgment, inception score and MODE

score Che et al. (2016) can be also used. However, these are indirect methods to assess

training quality. Therefore, a new generator structure called FlowGAN (Grover et al., 2017)

is proposed which allows for explicit likelihood evaluation of generator output. The generator

is chosen to be Normalizing Flow. One useful property of normalizing flow is that the output

density can be explicitly evaluated using change of variable rule. The details of normalizing

flow will be introduced in Chapter 3.

One of the problems of GAN is mode-dropping, which means the generated images are only

from part of the distribution. This means the generator distribution will highly concentrate

on high probability areas of targeting distribution. We will show this behavior using toy

examples in experiment chapter. In fact recent work in approximate inference suggests that

the GAN training obtains much worse likelihood than the MLE (Wu et al., 2016) and the

generation quality and log likelihood are largely uncorrelated (Theis et al., 2015). Thus, with
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the exact likelihood evaluation of flow, FlowGAN proposes a alternative objective function

which combines WGAN and MLE objective. Therefore, ideally, a middle ground between

realistic image and reasonable likelihood can be obtained. The objective function is

min
G(·)

max
f (·)

Exxx∼pd [ f (xxx)]−Ezzz∼pz [ f (G(zzz))]−λ1Ex̂xx∼px̂ [(||∇x̂xx f (x̂xx)||2 −1)2]−λ2Exxx∼pd [log pG(xxx)]

(2.29)

The λ1 and λ2 controls the weight of gradient penalty and ML term. With high λ2, it will

recover the MLE solution. In the experiment section, we will demonstrate some basic

property of FlowGAN using toy examples.

2.4.2 Autoencoder-based GAN

Another research direction tries to combine VAE (Kingma and Welling, 2013) and GAN

training together. Some of the well-known work is to regard the generator as the decoder and

then introduce another encoder network. In the context of VAE, the objective function can

be split into a reconstruction error which will penalize if the reconstructed images x̂xx where

xxx → zzz → x̂xx are different from the real image xxx and a regularizer penalizing the difference

between aggregated posterior Exxx[q(zzz|xxx)] and p(zzz).

The VAE uses KL as the distance measure between q(zzz) and p(zzz). The Adversarial Autoen-

coder (AAE) (Makhzani et al., 2015) uses GAN training as alternative to drive q(zzz) to be like

p(zzz). This Auto-encoder based GAN can alleviate the mode-dropping problem. Intuitively, if

mode-dropping happens, then the decoder can only generate limited variety of images, thus,

the encoder will only map these images to limited latent vectors, which will induce large

penalty to the objective function to avoid mode-dropping

In fact, a recent proposed method called CycleGAN (Zhu et al., 2017) achieve excellent

results in unpaired image-to-image translation. The assumption is the cycle-consistency of

the image, which means the decoder and encoder are consistent to each other. This consis-

tency means the cycle translation of each image domain should remain similar to the original

domain, i.e. F(G(xxx)) should remain same as xxx where G(·) and F(·) are translations of XXX →YYY
and YYY →XXX respectively. This loss is exactly the same as the reconstruction error in the VAE

and Adversarial Autoencoder (if l2 norm is used as distance measure in CycleGAN). The

objective function of CycleGAN consists of two cycle-consistency loss and two GAN loss

(equivalent to regularizer in Adversarial Autoencoder) between translated image domain and

target domain. This objective function is the sum of two Adversarial Autoencoder objectives

in two domains.
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The AAE method is also closely related to the Wasserstein GAN. Specifically, the VE-

GAN (Bousquet et al., 2017) shows that the primal form Wasserstein GAN with l2 distance

measure and GAN loss regularizer is equivalent to objective function of AAE up to multi-

plicative constant.

The additional ML term in FlowGAN model can also be interpreted in this Autoencoder-

based GAN framework. The additional ML term behaves like the regularizer to make sure

q(zzz) is similar to p(zzz). Due to the bijective mapping property of normalizing flow, this is

equivalent to maximizing the log likelihood.

2.4.3 Alternative distances

Another popular variations of GAN is to design alternative distance measures between distri-

butions. For example, Wasserstein GAN can fall into this category. Apart from Wasserstein

distance, there are many alternative distance. For example, relaxed Wasserstein distance

which uses Bregman divergence as a distance measure between points. This methods shows

faster convergence if the Bregman divergence is chosen to be KL.

Another distance alternative to Wasserstein is called Cramer distance (Bellemare et al.,

2017). They showed that Wasserstein distance is biased for sampled gradients whereas

Cramer distance is unbiased. There are still many other objective functions alternative to the

one we mentioned in this thesis like MMD GAN (Li et al., 2017), McGAN (Mroueh et al.,

2017), etc. We will not give details about these distances because they are irrelevant to the

following materials.



Chapter 3

Normalizing Flow

In this section, we will give a short introduction on a model which we will later be used

as generator called normalizing flow. Specifically, we will focus on a specific flow called

Nonlinear Independent Component Estimation (NICE) proposed by Dinh et al. (2014),

where ancestral sampling and likelihood evaluation are easy. At the end of this chapter, we

will discuss one limitation of NICE and use this as the motivation for the novel improvement

which can greatly enhance its performance.

3.0.1 Introduction

To model complicated data structures, one of the choices is to use neural network. However,

the implicit property of neural network makes it hard to evaluate the probability of its output.

In fact, the Lemma 1 in Arjovsky and Bottou (2017) showed that the distribution of the

output from MLP is supported by joint of low dimensional manifolds, thus it is not absolute
continuous According to Radon–Nikodym theorem, it does not have a proper density.

One alternative candidate uses the principle of normalizing flow (Tabak and Turner, 2013;

Tabak et al., 2010) and is essentially a sequence of bijective mappings which will map the

random variable from simple distribution to incrementally complicated one. The key idea is

bijective mapping which will allow us to compute the likelihood using change of variable

rule. For example, for a bijective mapping xxx = g(zzz) and zzz ∼ pz, the likelihood of mapped

variable is

px(xxx) = pz(zzz)|det
∂g
∂zzz

|−1 (3.1)
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The above equation is directly from Jacobian property of invertible functions. Thus with a

sequence mapping, the log probability is defined as

xxxK = fK ◦ fK−1 ◦ . . .◦ f1(zzz)

log px(xxxK) = log pz(zzz)−
K

∑
k=1

log |det
∂gk

∂xxxk−1
|

(3.2)

In fact, this transformation allows us to evaluate the log probability without explicitly know-

ing transformed variable xxxK . This is often referred as law of the unconscious statistician

(LOTUS). Thus, there are two kinds of normalizing flows. The first kinds of flows allows us

to explicitly sample from the transformed distribution such as NICE and Real-NVP (Dinh

et al., 2016). Another type of flow only allows us to evaluate the log probability whereas

sampling from transformed distribution is difficult. These type of flows are normally used in

variational inference such as planar flow and rotation flow (Rezende and Mohamed, 2015).

As in the context of GAN, we need the samples from the transformed distribution, thus, only

the first type of flow is considered.

The evaluation of Jacobian determinant is computationally expensive, normally O(n3). There-

fore, the challenge is to design flexible flows with simple Jacobian structures. One solution

is to design the flow with lower triangular Jacobian matrix. Especially, in the next section,

we will show by using special structures, the determinant of Jacobian is 1.

3.0.2 Nonlinear Independent Component Estimation (NICE)

In this section, we will give details about a specific flow called NICE. The core idea of NICE

is to split the variables into two blocks (zzz1,zzz2) called (plain, key) pair. The transformation

will retain the original key value and encode the plain by an special invertible function

e(plain,m(key)) and m is an arbitrary complex function called coupling function. The model

structure is shown in Figure 3.1.

The computations described above are grouped in one layer called coupling layer. For-

mally, let zzz ∈ R
D and a partition [I1, I2] on [1,D]. The function m(·) is defined on R

d where

d = |I1|. We can also define a special invertible mapping with respect to the first argument

given the second e(zzzI2
,m(zzzI1

)). It is defined on R
D−d ×R

d → R
D−d . We call this function
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Fig. 3.1 The computational structure of the coupling layer

e(·, ·) as coupling law. Thus inside the coupling layer, the transformation is defined as

xxxI1
= zzzI1

xxxI2
= e(zzzI2

,m(zzzI1
))

(3.3)

Therefore, the Jacobian of this transformation can be easily evaluated as

∂xxx
∂zzz

=

⎡
⎣ ∂xxxI1

∂zzzI1

∂xxxI1
∂zzzI2

∂xxxI2
∂zzzI1

∂xxxI2
∂zzzI2

⎤
⎦=

[
IIId 000

∂xxxI2
∂zzzI1

∂xxxI2
∂zzzI2

]
(3.4)

Therefore, the Jacobian matrix is a lower triangle matrix with its determinant det ∂xxx
∂zzz =

∂xxxI2
∂zzzI2

.

The ancestral sampling is also trivial.

zzzI1
= xxxI1

zzzI2
= e−1(xxxI2

,m(xxxI1
))

(3.5)

Due to the fact that we do not need to evaluate the inverse of function m(·), thus, we can use

arbitrary differentiable function m(·) such as MLP or CNN.

We can choose the coupling law as simple addition. This is called additive coupling
layers. The transformation is

xxxI2
= zzzI2

+m(zzzI1
)

zzzI2
= xxxI2

−m(xxxI1
)

(3.6)
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Therefore, as defined in equation 3.4, the diagonal elements of Jacobian for additive coupling

layer are 1, thus, the det ∂xxx
∂zzz = 1.

The above procedure defines single coupling layer, in fact, we can stack single layer on top

of each other to form a multi-layer structure. This is identical as applying a sequence of

invertible mappings to the initial random variables. Each coupling layer has a unit Jacobian

determinant, therefore, the multi-layer structure will still have the same determinant value.

This represents the constant volume in each of transformation. To address this, we can

explicitly introduce a diagonal scaling matrix SSS. Each output dimension xi will become Siixi.

This term controls the ’importance’ of each dimension just like the eignspectrum of PCA.

The important dimensions are the manifolds learned by algorithm. The overall log likelihood

of NICE is

log(px(xxx)) =
D

∑
i=1

log(pz( fi(xi)))+ log(|Sii|) (3.7)

Notice that the transformation is from real data xxx to latent variable zzz where zzz has simple

distributions. f (xxx) = g−1(xxx) is the inverse mapping. This formulation is in opposite direction

as the one we introduced above, but due to the simplicity of ancestral sampling and likelihood

evaluation, transformation from other direction is trivial. Based on the objective function and

simplicity of based distribution pz, this will encourage the Sii to be small while the log(Sii)

will prevent Sii to reach 0. Thus, the larger the Sii is, the less important the corresponding

dimension is.

In the following chapters, for single flow, the default number of coupling layer is 4 and the

choice for function m(·) is MLP with ReLu activation function or CNN with fully connected

network. The default coupling law is additive coupling.

3.0.3 Limitations

Although the normalizing flow has achieved excellent results on modeling complicated data

distributions, there are still some limitations on this model. In this section, we will focus one

particular problem, that is, normalizing flow is difficult to model distributions with separated

mode structures.

To be precise, the distribution from normalizing flow is generated by using a sequence

of invertible mappings on the base distributions. In the context of distribution with separated

mode and Gaussian base distribution, the flow has to separate part of the Gaussian distribution

to account for the different modes. However, due to the continuous of base distribution, they
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tends to generated a ’bridge’ between the modes. In other words, the normalizing flow cannot

output clean separations with few coupling layers. Figure 3.2 shows a simple demonstration

with 2-component GMM, we can clearly see a bridge between modes. If more coupling

layers are used, the situation can be alleviated but it also requires more data for stable training

and may suffer from vanishing gradient if the layer is too deep. In fact, later in the experiment

section, we will demonstrate more complicated examples and even with deep coupling layers,

it is still difficult for the flow to capture correct structures.

(a) 2 Coupling Layer (b) 4 Coupling Layer

Fig. 3.2 Simple GMM example to demonstrate the limitation of normalizing flow. Although

the bridging effect is less severe for 4 coupling layers, but the contour surface is less smooth

and is quite different from the true 2-component GMM surface.





Chapter 4

Mixture Flow Model

In this chapter, we will present a novel improvement to the existing normalizing flow model

which achieves much better results. In addition, we also gives the objective function and

training procedure of this model for GAN and GAN+ML training. In the end, based on

the mixture of generator, we will give new GAN structure which allows the ’personalized’

discriminator to guide each flow component.

4.1 Motivation

Based on the previous chapter, we give a brief introduction to a specific normalizing flow

called NICE. In the end of that chapter, we discuss the potential limitation when modeling

the distributions with separated modes. In fact, we can try to increase the modeling capacity

of NICE to solve this issue. The most simple solution is to increase the number of coupling

layers, capacity of function m(·). However, this approach often requires more training data

and potentially suffers from vanishing gradient problem.

Another alternative approach is to use the idea of mixture models. The most well-known

and simple example is GMM. In fact, this idea in the context of GAN is not brand-new, the

MIX+GAN model proposed by Arora et al. (2017) uses a mixture of generators and discrimi-

nators. The weight term are leaned through GAN training objective via back-propagation.

Empirically, this model shows an improvement compared to single generator and discrimina-

tor. DeLiGAN (Gurumurthy et al., 2017) also uses the idea of mixture model which can learn

much faster with limited number of data. Our approach exploits the third mixture model

options by exploiting the maximum likelihood training. The difference between our model

with the MIX+GAN and DeLiGAN will be discussed in the related work section.
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4.2 Mixture of Flow

Assume we have real data xxx ∈ R
D defined in the space XXX and latent noise zzz ∈ R

D defined in

space ZZZ. Due to the bijective property of flow, the dimension of latent noise and real data

have to be the same. We can also define a bijective mapping gi(·) : ZZZ →XXX where i ∈ [1,T ]
and T is the total number of component in the mixture model. Similarly, the inverse mapping

fi(·) : XXX → ZZZ Thus, each bijective mapping gi(·) can be interpreted as a NICE model with

additive coupling law and multiple coupling layers. Thus, we can explicitly evaluate the log

likelihood of ith component:

log p(xxx|c = i) =
D

∑
d=1

log(pz( fi(xxx)))+ log(|Si,dd|) (4.1)

Therefore, the overall log likelihood is defined as

log(p(xxx)) = log(
T

∑
i=1

p(c = ic = ic = i)p(xxx|c = i)) (4.2)

Each NICE component can have similar model topologies but each has their own training

parameters.

This mixture models will increase the modeling capacity compared to single flow and

ideally, it can greatly alleviate the ’bridging effect’ discussed in the single flow model.

4.2.1 ML Training Procedure

Due to the explicit likelihood evaluation, we can train the model using maximum likelihood.

First, we give a Expectation-Maximization based training algorithm and then an alternative

gradient-based training is given which can later be used in GAN+ML training.

Asssume the component weights are parametrized by θ and NICE is parameterized by

φ . The formulation of the training is

max
θ ,φ

log(p(xxx)) (4.3)
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Therefore, if we introduce a density q(c|xxx) and use Jensen inequality, we have

log(p(xxx)) = log(
T

∑
i=1

p(c = i)p(xxx|c = i))

= log(
T

∑
i=1

q(c = 1|xxx) p(xxx,c = i)
q(c = i|xxx) )

≥
T

∑
i=1

q(c = i|xxx) log(
p(xxx,c = i)
q(c = i|xxx) )

=
T

∑
i=1

q(c = i|xxx) log(
p(c = i|xxx)p(xxx)

q(c = i|xxx) )

= log(p(xxx))−KL(q(c = i|xxx)||p(c = i|xxx))

(4.4)

Thus, we can see when q(c = i|xxx) equals to the true posterior p(c = i|xxx), the equality holds.

Thus, in the expectation step at time t, we can let

qt(c = i|xxx) = pφt−1
(xxx|c = i)pθt−1

(c = i)

∑T
i=1 pt−1(xxx,c = i)

= pt−1(c = i|xxx) (4.5)

This can be explicitly evaluated, therefore, in the maximization step,

max
θ ,φ

T

∑
i=1

qt(c = i|xxx) log(
p(c = i)p(xxx|c = i)

qt(c = i|xxx) ) (4.6)

Analogues to the GMM EM algorithm, at time t with N training data points, the maximized

component weight

p(c = i) =
1

N

N

∑
n=1

qt(c = i|xxxn) (4.7)

The maximization of p(xxx|c = i) are achieved by using gradient descent optimizer like Adam.

Notice that at the beginning of the training, there will be huge oscillations in the updated

value p(c = i) due to the hard assignment and sensitivity to initialization. Therefore, we can

achieve a more stable training by allowing the model to learn without changing component

weight for certain number of iterations called Cstart . Further, we can modify the update rule

using

pt(c = i) = pt−1(c = i)+λc(pt(c = i)− pt−1(c = i)) (4.8)

Thus, if λc = 1, it will recover the true EM updates.
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Alternative to this EM approach, we can also train Mixflow by purely gradient based

optimizer. The maximization of NICE component p(xxx|c = i) is done through gradient

optimization. As for the component weight, we can parametrize them using a softmax
function.

p(c = i) =
exp(θi)

∑T
t=1 exp(θt)

(4.9)

Therefore, by updating θi we will guarantee the sum-to-one constraints of prior weight.

Therefore the algorithm for maximum likelihood training of Mixflow is given below.

Algorithm 5 Mixflow ML training

Input: Training data xxx, component learning rate λφ ,weight learning rate λc, Cstart , epoch L,

component number T, training data number N, EM training flag EM_flag

1: for l = 1 . . . ,L do
2: Sample {xxx}N

n=1 ∼ px
3: Evaluate qt(c = i|xxxn) for n = 1, . . . ,N and i = 1, . . . ,T
4: if flag_EM=True then
5: Update pφ (xxx|c = i) using Adam(β1 = 0.5,β2 = 0.9) according to equation 4.6

for i = 1, . . . ,T
6: Update component weight according to equation 4.8 if l >Cstart
7: else
8: Update both p(xxx|c = i) and p(c = i) using Adam(β1 = 0.5,β2 = 0.9) with soft-

max parametrization

9: end if
10: end for

4.2.2 GAN+ML Training Procedure

We can also incorporate the GAN training with this model analogous to the FlowGAN
(Grover et al., 2017) method. In the following, we assume the ML training is done using

softmax parametrization and GAN objective is Wasserstein loss. Then the objective function

is

min
gi(·),p(c)

max
f (·)

Exxx∼px [ f (xxx)]−Ezzz∼pzEc[ f (gc(zzz))]−GP−λmlExxx∼px [log(
T

∑
i=1

p(c = i)p(xxx|c = i))]

(4.10)

f (·) and gi(·) are the discriminator and ith generator respectively, λml is the weight for the

ML term and GP is the gradient penalty term used in WGAN. The minimization of gi(·) can

be done using re-parametrization and back-propagation. The learning algorithm is presented

below.
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Algorithm 6 Mixflow GAN+ML Training

Input: Discriminator Training iteration nc,learning rate for discriminator, generator and

component c (lcritic, lgen, lc), epoch L, component number T, Cstart , λml and λgp
1: for epoch= 1, . . . ,L do
2: Sample {xxx}N

n=1 ∼ px
3: Sample {zzz}N

n=1 ∼ pz and {c}N
n=1 ∼ pc

4: Calculate the gradient penalty term as Algorithm 3

5: Maximize f (·) with objective 1
N ∑N

n=1 f (xxxn)− f (gc(zzzn))−GP using Adam

6: Minimize gc(·) with objective − 1
N ∑N

n=1 f (gc(zzzn)) −
λml
N ∑N

n=1 log(∑T
i=1 p(c = i)p(xxxn|c = i)) using Adam optimizer and algorithm 5

for all c = 1, . . . ,T
7: Update component prior p(c = i) by maximizing the objective

1
N ∑N

n=1 log(∑T
i=1 p(c = i)p(xxxn|c = i))

8: end for

4.2.3 Entropic Regularization

During the experiment with Mixflow GAN+ML training, we observe that the model will

collapse to few dominant component even with large Cstart and small λc. Thus, to encourage

the model to use more component, we can manually add a entropy regularization term which

will penalize the objective if component are away from uniform distribution. This idea is

also used in MIX+GAN (Arora et al., 2017) to regularize the generator and discriminator.

The regularization is

ER =− 1

T

T

∑
i=1

log(p(c = i)) (4.11)

Adding this term to the objective may damage the ML learning because the component

weight is now learned to maximize ML term and regularization. However, adding this should

improve the generation quality because the dominant component obtained through ML tends

to generate blurred images even with the GAN training. Due to the time limits, we did not do

enough experiments on the effect of entropic regularization but preliminary results are given.

4.3 Mixture of Discriminator

In the above section, we discuss the ML and GAN+ML training with single discriminator.

However, it has to be powerful enough to capture the high dimensional data structure. This

may take several training epochs. Thus, we will introduce the ’personalized’ discriminators

for each generator and give individualized guidance.



34 Mixture Flow Model

One simple approach is to pair each generator with its own discriminator. Thus, in the

context of GAN training, the WGAN loss will be

max
fi

Exxx∼px [ fδ (x)(xxx)]−Ezzz∼pzEc[ fc(gc(zzz))]−λEx̂xx∼px̂ [(||∇x̂xx fδ (x̂xx)(x̂xx)||2 −1)2]

δ (xxx) = argmaxi p(xxx|c = i)
(4.12)

Hard component assignment will result into a discontinued discriminator value surface which

should be avoided to maintain the smoothness and training stability.

Thus, instead of using deterministic assignment, we can use posterior probability to smooth

the discriminator value surface. Thus, instead of using fδ (x)(·), we propose the following

discriminator

f (xxx) =
T

∑
i=1

p(c = i|xxx) fi(xxx) (4.13)

Thus, in the limiting case, this will recover the hard component assignment. In the following,

we assume each discriminator fi is parametrized by ω and fmix represents the posterior-

smoothed mixture of discriminators.

We call this model Personalized GAN (PGAN). The objective function for PGAN with

GAN+ML training is analogous to Mixflow GAN (equation 4.10) with the only difference of

replacing f (·) with fmix(·).

Note that the definition of mixture of discriminators involves part of the generator through

the posterior component, and the sole purpose of posterior probability is to assign the weights

to each discriminator components. Thus this term should not be involved in updating the

generator or discriminator. Therefore, we need to treat the posterior term as a constant during

the update and it should not contribute to the gradients. The training algorithm is identical

to Mixflow GAN+ML training (algorithm 6) with only difference of using fmix instead.

4.3.1 Weight Sharing

If the single discriminator is replaced by mixture models, then we significantly increase the

model complexity and number of training parameters. Even we reduce the topology of each

discriminator, the training is still unstable due to the scarcity of the data especially high

dimensional data like images. Therefore, to alleviate this problem, we can share parts of the

model parameters across the components and only allow high level weights to be trained

individually.
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For example, if each component is a fully connected CNN, then we could share the CNN

parameters across all components and only train the top-level fully connected MLP for each

component. Therefore, this will significantly reduce the number of training parameters. In

fact, this makes sense because CNN only extracts the features and these features can be used

as the representations for later tasks. Thus, we do not need to train individual feature extractor.

Due to the time limits and hyper-parameter tuning, we did not do any experiments of PGAN

on MNIST. However, the toy examples should illustrate some properties and advantages of

PGAN.

4.4 Related Work

As mentioned in the motivation section, MIX+GAN and DeLiGAN adopt the idea of mixture

model to improve the performance of GAN.

To be specific, the MIX+GAN uses the MLP/CNN as the discriminator component and

generator component. Each of the component are weighted by a prior term which are similar

to what we introduced in Mixflow model. However, the difference between our model and

MIX+GAN is

• MIX+GAN still uses the neural network based generator which will not give a tractable

density, in other words, the training is still entirely based on GAN training and may

produce good quality image but poor likelihood. Our Mixflow model allow us to

train the model with both GAN and ML training which tends to produce reasonable

images with much better likelihood. In addition, the PGAN model allows for individual

discriminator to guide specific generator whereas the MIX+GAN does not have this

property. The sole purpose of discriminator mixture in MIX+GAN is to increase the

modeling power.

• The prior weight in MIX+GAN are trained under the GAN loss function which is still

lack of understanding how the mixture model behaves in such training procedure. On

the other hand, the Mixflow model updates its prior weight purely on ML training

which has been extensively researched.

The DeLiGAn model uses a mixture of latent space rather than the model structure. To be

precise, they parametrize the latent space by a GMM model. They uses the re-parametrization

trick (Kingma and Welling, 2013) to translate a stardard Gaussian noise to specific GMM
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component with uniform weights. The DeLiGAN achieves better results in terms of diversity

with limited amount of data.



Chapter 5

Experiments

In this section, we will conduct some experiments to demonstrate the properties of models

and compare the training methods. The chapter are divided into two parts, the first part is

focused on toy examples including GMM samples and modified Swiss Roll data. Notice

for swiss roll dataset, we only have the generating process rather than the data density, thus,

we cannot compare the learned likelihood with ground truth. For each data set, we will

compare 6 different setups including

• ML Single Flow

• ML Mixflow

• GAN Single Flow

• GAN+ML Single Flow

• GAN+ML Mixflow

• GAN+ML PGAN (only toy examples)

First, we will compare the flow and Mixflow models using ML. Then, we will show the

difference between GAN and GAN+ML to demonstrate some basic properties of these

training methods. We will also show the results on Mixflow GAN+ML training and compare

it with the PGAN model. In the second part, we will conduct experiments on MNIST data

set. The evaluation is based on visual quality of generated images and learned negative log

likelihood.
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5.1 Toy Examples

5.1.1 GMM

We will conduct experiment on GMM toy data, this example intends to demonstrate the

advantages of Mixflow model when modeling distributions with separated modes compared

to single flow. We also show mode-dropping happens during GAN training.

Data Set The training data are generated by 2D GMM with 6 Gaussian compo-

nents and uniform weight. The mean of components are positioned at points which equally

separate the circle with radius 5. Each Gaussian component has a diagonal convariance
matrix with diagonal elements 0.1. The batch size of training data is 300.

Model Topology The generator used is NICE and mixture of NICE. The cou-

pling law of them is additive coupling. For single flow, it has 4 coupling layers and the

function m(·) is a 5 layer-MLP with 100 node per layer. For Mixflow and PGAN, the default

number of components is 6 and each flow has 2 coupling layers. Function m(·) is 3-layer

MLP with 50 node per layer. The activation function for both single flow and Mixflow is

ReLu. The discriminator are chosen to be 5-layer MLP with 100 node per layer and ReLu

activation function. For PGAN, each discriminator component is a 3-layers MLP with 50

node per layer. The activation function is the same as single discriminator.

Hyper-parameters The training epoch is 5000. We set β1 = 0.5 and β2 = 0.9 for

Adam optimizer. The learning rate for NICE is 0.005. For GAN and GAN+ML training, the

gradient penalty weight λgp = 0.1 and ML weight λml = 1. The learning rate for discrimina-

tor is 0.002 and for each epoch, we train discriminator 5 times before we update the generator.

The learning rate for component weight is 0.005 and we use softmax parametrization for

weight.

Figure 5.1 shows the generation quality and contour comparison between single flow and

Mixflow with ML training.

We can clearly see even with deep coupling layers, the single flow model still contains

the ’bridge’ between different modes. The generation quality is not very good especially for

components at 0o and 225o anti-clockwise. In addition, the contour learned by single flow

contains sharp changes and it does not resemble the true GMM contour. On the other hand,

the samples generated by Mixflow almost perfectly cover the true GMM samples and each
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(a) Single Flow ML training (b) Mixflow ML training

Fig. 5.1 The contour and generated samples for single flow and Mixflow with ML training.

For Mixflow model, we plot generated samples for each components. The contour is the log

likelihood value.

components capture one mode of the GMM distribution. As for the contour, the Mixflow

model looks much more like the true GMM contour. This can also be verified by checking

the training curve (Figure 5.2).

Fig. 5.2 The negative log likelihood plot for single flow and Mixflow with ML training. The

curve are obtained by averaging 5 runs and ±1 std.
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We can see from the training curve, the Mixflow obtains lower NLL much faster than

single flow and the value is very close to the ground truth with smaller variance. These

two plots confirms that the Mixflow model indeed performs better when distributions have

separated modes.

Now we compare the difference between GAN training and GAN+ML training. For single

flow, Figure 5.3 shows the generated samples and contour plots for both training methods.

(a) Single Flow GAN training (b) Single Flow GAN+ML training

Fig. 5.3 The contour and sample generation for GAN and GAN+ML training.

We can observe that pure GAN training will highly push the generated sample towards

the high density region. This may produce the good quality samples but the diversity is not

encouraged. This explains why model-dropping often happens during GAN training and why

it tends to produce poor likelihood. In addition, the contour learned by GAN also contains

sharp changes and does not look like GMM contour. With the extra ML term included,

the generation diversity is much better than pure GAN training. The contour learned by

GAN+ML still contain large changes. Figure 5.4 shows the training curve of GAN+ML

with single flow model.

From the training curve, we can see by adding extra ML term, the training curve of GAN+ML

is very similar to pure ML training. In fact, from results in Table 5.1, the log likelihood is

much better for GAN+ML training.
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Fig. 5.4 The training curve of GAN+ML with single flow. The red line is the discriminator

loss.

Now we show the sample generation for Mixflow model with GAN+ML training and

training curve comparison with Mixflow ML training (figure 5.5).

(a) (b)

Fig. 5.5 (a)The training curve comparison between GAN+ML and ML training with Mixflow

model. The curve is obtained by averaging 5 runs. (b)Contour and sample generation plots

for Mixflow model with GAN+ML learning

We can see the GAN+ML training obtains similar training curve as pure ML training and this

is much better than both single flow ML or GAN+ML training. As for the generation quality,

we can see it achieves similar quality as Mixflow ML training but the contour surface has
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sharp changes due to the GAN training. The PGAN model produces similar results as the

Mixflow GAN+ML training, thus, we won’t put the plot for PGAN (refer to Appendix B).

In order to compare the performance between PGAN and Mixflow GAN+ML, we will

slightly change the hyper-parameters to increase the difficulty. Change λml = 0.01 to reduce

the importance of ML learning and batch size is changed to 100. Figure 5.6 shows the

generation quality comparison.

(a) (b)

Fig. 5.6 (a) The sample generation of Mixflow with GAN+ML training. (b) Same plot with

PGAN model.

We can see that the generation quality of PGAN is better than Mixflow GAN+ML. The pos-

sible reason is that the personalized discriminator can provide individual guidance even with

scarce training data and little help from ML learning. On the other hand, single discriminator

need more training data and helps from ML learning to successfully capture the entire data

structure, thus, without these, the discriminator tends to produce inaccurate guidance to the

generator component and results into generation artifacts.

Table 5.1 shows the results obtained on GMM toy examples.

Therefore, this tables shows that the Mixflow and PGAN model achieves the lowest NLL

compared to others. In addition, it shows that the pure GAN training will generate much

worse likelihood compared to GAN+ML training.
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Training Method NLL Discriminator Loss Dominant component

MLE Single Flow 968.70 - 1

GAN Single Flow 1.25e7 -2.43 1

GAN+ML Single Flow 1127.5 -1.99 1

MLE MixFlow 742.85 - 6

GAN+ML MixFlow 742.45 0.0044 6

PGAN 743.61 0.0132 6

Table 5.1 The results for GMM toy examples. The NLL and Discriminator loss is obtained by

averaging the last 500 epochs. The ground true NLL is 723.35. Note: due to the difference

in discriminator topology between PGAN and other models, the PGAN discriminator loss

cannot be directly compared

Note: Appendix B contains more completed plots for GMM toy examples.

5.1.2 Swiss Roll

For this toy examples, we uses modified swiss roll as the training data. We choose this

because spirals is difficult for simple normalizing flow to model and it does not contain

explicitly separated modes like GMM. Thus, this gives us the opportunity to test other

advantages of Mixflow model.

Data Set The training data is the swiss roll data with more spirals to increase

the difficulty. The batch size is 300 by default.

Model Topology The model topology is identical to the one used for GMM exam-

ples.

Hyper-parameters Identical to GMM examples.

Figure 5.7 shows the ML training comparisons on generated samples.

We can clearly observe that the ML training of singe flow fails to capture the structure

of swiss roll and instead it tries to cover the whole area. On the other hand, Mixflow ML

learning can successfully capture most of the data structure except for some area with sparse

data. One interesting observation is that for most of the component, they can successfully

find their own ’modes’ even though the data does not have explicit modes. In the swiss

roll data, each component will try to model part of the spiral. However, there is still some
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(a) (b)

Fig. 5.7 (a)The generated samples and contour plots for single flow with ML learning. (b)The

same plot for Mixflow with ML learning

artifacts such as ’gray’ component, it will try to connect between arcs, this is probably due

to the initialization, for example, if the this component is initialized at position between the

arcs, then it will try to model both parts simultaneously.

Figure 5.8 shows the comparison between GAN training and GAN+ML training for single

flow.

Similarly, for GAN training, it also fails to capture the data structures and produces sharp

changes in contour plots. We can guess the GAN training wants to ’stretch’ the flow to

specific part of the spirals, thus, it can generates realistic samples but severe mode dropping

will happen. This observation is consistent with the GMM GAN training. GAN+ML train-

ing generates samples resembling the ML training samples. However, for the contour of

GAN+ML, we can still observe the ’stretch’ induced by GAN training.

Now we will show the Mixflow GAN+ML training results in Figure 5.9.

The GAN+ML training achieves similar generation quality as ML training but achieves

slightly worse log likelihood. One interesting observation is that the contour of GAN+ML is

more contractive than pure ML learning (figure 5.7), this contractive behavior is because the

GAN training will focus on the high density regions, thus it will try to contract the generator
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(a) (b)

Fig. 5.8 (a)The generated samples and contour plots for single flow with GAN training.

(b)The same plot for single flow with GAN+ML learning

(a) (b)

Fig. 5.9 (a)The training curve comparison between Mixflow ML and Mixflow GAN+ML

training. (b)The sample generation and contour plot for Mixflow GAN+ML

density and discourage the coverage. Thus the ML learning and GAN learning can establish

a middle point between coverage and contraction in order to produce good images with high

likelihood.

Similarly, we compare the performances between Mixflow GAN+ML and PGAN. Analogous

to GMM toy examples, we will change the hyper-parameter settings, the λml is changed to
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0.1 and training epoch is 3000. Both models obtain the similar log likelihood with similar

convergence speed (see Appendix B). However, Figure 5.10 shows the generated samples

for both models.

(a) (b)

Fig. 5.10 (a) Sample Generation of Mixflow GAN+ML training (b) PGAN sample generation.

Note that for PGAN, component 4 has very small weight after training, thus, we did not plot

the samples generated by that component.

Even with similar likelihood, the sample generation quality of PGAN is much better than

Mixflow. This can be explained by the discriminator contour surface shown in Figure 5.11.

We can observe that the single discriminator fails to capture the swiss roll data structure.

Thus, it will not provides very useful guidance for generator. On the other hand, PGAN

captures more features than single discriminator. For example, it puts the high values on

lower left corner where the generation quality is not very good.

Table 5.2 shows the NLL and discriminator loss for the above models.
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(a) (b)

Fig. 5.11 (a) The discriminator value surface learned by single discriminator (b) Contour

learned by posterior smoothed mixture of discriminators

Training Method NLL Discriminator Loss Dominant component

MLE Single Flow 2039.68 - 1

GAN Single Flow 2.74e6 -4.18 1

GAN+ML Single Flow 3075.47 -9.65 1

MLE MixFlow 1828.72 - 6

GAN+ML MixFlow 1992.65 -1.47 5

PGAN 1989.34 -0.95 6

Table 5.2 The results for Swiss roll toy examples. The NLL and Discriminator loss is obtained

by averaging the last 500 epochs. There is no ground truth for NLL. The PGAN discriminator

loss cannot be directly compared to the rest of the models.
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5.1.3 Conclusion

In above sections, we conduct some experiments and comparisons on toy examples. Based

on the results, we can safely make the following points for low dimensional data.

• Single Flow is difficult to model distributions with separated modes or complicated

distributions no matter ML, GAN or GAN+ML training are used.

• Mixflow models achieves much better log likelihood, generation quality and conver-

gence speed compared to single flow for both ML or GAN+ML training.

• Pure GAN training tends to concentrate the generator distribution to the high density

regions, thus, it will produce high quality samples but poor log likelihood. This is also

called the mode-dropping. With the extra ML term, the generator will tends to find a

middle ground between the high generation quality and distribution coverage.

• PGAN model can generated higher quality samples compared to Mixflow GAN+ML

training with fewer training epochs. This advantage comes from the individual guidance

of mixture of discriminators. From the contour plots of discriminator value surface,

we can observe the PGAN captures more complicated data structures than single

discriminator.

5.2 MNIST

In this section, we will focus on the model performance on MNIST data set. Due to the time

limits, we did not do experiments on the PGAN model. The comparison are based on visual

quality of sample generation and learned NLL.

Data Set The MNIST data set contains 55000 training images, 10000 test images

and 5000 validation points. Each images is 28×28 = 784 dimensional vector with the value

between 0 and 1. The batch size for training these models are 200.

Model Topology All the flow models uses logistic distribution as the base distri-

bution. Single flow uses 4 coupling layers and additive coupling law. For Mixflow model, the

default number of component is 10 and each component has 3 coupling layers and additive

couping law. The m(·) function is chosen to be ReLu MLP or CNN. For MLP, single flow has

5 layer and 1000 node per layer which is identical to the settings in (Dinh et al., 2014). For

Mixflow, the MLP has 3 layers and 200 node per layer. For CNN, the single flow has 2-layer
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fully connected network with 1000 and 7×7×64 = 3136 node, followed by a convolutional

layer with 4×4 filter size and 64 feature maps, then the output layer is another convolutional

layer with 1 feature map and same filter size. The intermediate convolutional layer has batch

normalization and ReLu activation function. For Mixflow, the CNN has same structure as

single flow but with 300 and 7×7 = 784 nodes for fully connected network and 16 feature

maps for intermediate CNN layer.

Hyper-parameter The training epoch is 100000. The learning rate of genera-

tor is 0.0005 and 0.0001 for discriminator. For Mixflow, the learning rate of component

weight is 0.01. The Adam optimizer has the same settings as the toy example. The gradient

penalty weight is set to 10 and ML weight is 0.001 to roughly balance the ML learning and

GAN learning. The entropic regularization weight is set to 1 and only applied to Mixflow

GAN+ML learning. The rest of the settings is the same as the toy examples.

Pre-Training Pre-training is used for all GAN or GAN+ML method. For sin-

gle flow, it will be pre-trained by all MNIST data for 1000 epochs using ML learning. For

Mixflow, each component will be trained using specific digit data for 1000 epochs.

Table 5.3 shows the learned NLL of these models using MLP as coupling function m(·).

Model Training NLL Test NLL Discriminator Loss Major Component

Single Flow ML -2034.46 -1910.31 - 1

Single Flow GAN 3144.79 3431.66 2.21 1

Single Flow GAN+ML -1741.21 -1650.53 1.91 1

Mixflow ML -3021.35 -2984.03 - 4

Mixflow GAN+ML -2812.34 -2728.74 -2.15 7

Table 5.3 The results are obtained using the average of last 5000 training epochs. The results

obtained in my experiment for single flow is different from Grover et al. (2017). But the

ML results are similar to original NICE paper(Dinh et al., 2014). The reason still need to be

investigated. The Major components are the number of component with weight larger than

0.9

Figure 5.12 shows the MNIST generation for the above models. Note that this generation

does not conditioned on any label information, thus, we have no control on the digits it

generates, thus we can only compare the overall generation quality. More generated MNIST

digits can be found in Appendix B.

We can observe that the image from ML is blurred and difficult to distinguish. This is
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Fig. 5.12 The images are generated using the above models. The digits are randomly selected

from the batch. The coupling function is MLP.

because the ML learning tends to cover the whole distributions. Thus, the image will be noisy

and blurry. If GAN training is involved, the images is much sharper due to the ’contraction’ in

the distribution. We can observe this through the better image quality. However, if only GAN

training is used, the poor log likelihood is obtained due to the property of GAN discussed in

toy examples. If extra ML term is included, the image quality does not suffer, instead, it may

achieve better generation quality (third row and last row compared to second row. For clear

comparison, refer to Appendix B for more generated images.) and reasonable log likelihood.

If we compare the single flow and Mixflow model, we can see the Mixflow ML learn-

ing indeed achieves lower likelihood than single flow as expected. But the generation quality

is not significant better than single flow. This may due to the property of ML learning as

discussed above. If we include the GAN training, we can see Mixflow GAN+ML model

achieves slightly better quality than single flow GAN+ML and GAN especially for some

digits like 1,7 (Figure 5.13).

Another interesting observation is if we inspect the prior weight of each components, we will

notice that the 8th component is the most dominant one. This is expected, because the digit 8

has the most complicated structures and can be easily transformed to other digits like 0, 6,

5,etc. In fact, in figure 5.12, the last row are generated by component [6,0,0,1,4,7,8,6], this

mean at least, 8th component are also responsible for generating digit 0.

The generated image quality can be significantly improved if we change the coupling function

to CNN (in original NICE paper (Dinh et al., 2014) and FlowGAN paper (Grover et al., 2017),
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(a) (b)

Fig. 5.13 (a)Single Flow GAN+ML training (b) Mixflow GAN+ML training.

they only mentioned the MLP not CNN). Due to the time limits, we only test the single

flow GAN+ML and Mixflow GAN+ML. We also compare their generation quality with

state-of-art DCGAN generation. Table 5.4 shows the results obtained using CNN coupling

function. Figure 5.14 shows the generation comparison between True data, DCGAN, Single

Model Training NLL Test NLL Discriminator Loss Major Component

Single Flow GAN+ML -2628.08 -1756.98 0.92 1

Mixflow GAN+ML -3245.61 -2695.74 0.67 7

Table 5.4 The results are obtained using the average of last 5000 training epochs. The Major

components are number of component with component weight larger than 0.9

Flow GAN+ML and Mixflow GAN+ML.

We can see from the generated images, the Mixflow GAN+ML and single Flow GAN+ML

achieves reasonable image quality compared to real MNIST or DCGAN. In addition, these

model can give explicit log likelihood evaluation which can be used for many other tasks like

image inpainting.

5.2.1 Conclusion

In this section, we conduct the experiments on MNIST data set. It shows that using Mixflow

can achieve better likelihood than single flow which is consistent with the observation in
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(a) Real MNIST data (b) DCGAN MNIST

(c) Single Flow GAN+ML (d) Mixflow GAN+ML

Fig. 5.14 MNIST generation using CNN based network.

toy examples. As for the generation quality, the Mixflow does not significantly outperform

the single flow model, however, the Mixflow with pre-training allow each component to

learn specific digits. For some digits, it can generate clearly better images. In fact, based on

the dominant component number of Mixflow ML, we guess although MNIST has 10 digits,

the actual separated mode is much smaller than 10. The manifold of different digits may

be connected with reasonable probability in the high dimensional space. Thus, even with

pre-training, some of the generator components are merged together like 8 and 0.

The generation quality can be significantly improved if CNN coupling function is used.

By comparison to DCGAN and real images, the model proposed in this thesis can produce

reasonable images with high likelihood. This GAN+ML training method establish a middle
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ground between high image quality and good likelihood, which should be further investigated

to see its performance in other tasks.





Chapter 6

Future Work and Conclusion

6.1 Future Work

In the experiment chapter, we have obtained some preliminary results on toy examples and

MNIST data set. However, there are still many things left to be investigated.

6.1.1 PGAN

The initial attempt of PGAN on MNIST dataset is not very successful. The possible reason

is because the scarcity of training data for each discriminator component. Thus, the unstable

training of discriminator results in the inaccurate gradients for generator. One way to alleviate

this issue is to share the CNN structure and parameters across all discriminator components.

The only trainable weights are the fully connected network. Thus, we can obtain a more

stable training.

In addition, as discussed in Chapter 4, the reason we use posterior smoothing is to avoid the

sharp changes in discriminator value surface. However, in high dimensional spaces, this may

still happen even with posterior smoothing. Thus, we can use ’Tempering’ to further smooth

the boundary. In other words, we can divided the posterior logits by a ’temperature’ and put

them through the sofrmax function. This may further increase the training stability.

6.1.2 Entropic Regularization

We introduce the idea of entropic regularization in Chapter 4. This extra term is to avoid the

collapsing of the component weights. In the experiment section ,we only implement this
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idea on Mixflow GAN+ML training. Thus the actual influence of this term still lacks of

understanding. Therefore, further experiment should be conducted to investigate its influence

towards log likelihood, GAN loss and image generation quality.

6.1.3 Flow with Convolution Structure

In this thesis, we use NICE throughout the whole experiments. However, this flow does not

have a convolutional structure, therefore, it won’t perform well on more complicated dataset

like CIFAR-10, LSUN, etc. Another normalizing flow called Real-NVP (Dinh et al., 2016)

mimics the convolutional structure and it is more suitable for this kind of task.

Similarly, we can use CNN as the coupling function instead of ReLu MLP. Thus, we can

test our model on more data set to obtain convincing evidence that the new model performs

better than previous methods.

6.1.4 Quantitative Metric

In the experiment section, the assessment of generation quality is through human. This does

not give us a quantitative measure on generation quality and is strongly biased if the number

of examiners is not enough. Thus, we prefer to use the quantitative measure about image

quality. One suggestion is MODE score (Che et al., 2016) for MNIST data set. This can be

calculated as

exp(Exxx∼pg [KL(p(y|xxx||p∗(y)))]−KL(p∗(y)||p(y))) (6.1)

where xxx is the generated image and p(y|xxx) is the pre-trained classifier, p∗(y) is the distribution

of the true label and p(y) is the label distribution of generated data.

For CIFAR-10, LSUN dataset, we can use the inception score calculated as

exp(Exxx∼pg [KL(p(y|xxx)||p(y))]) (6.2)

Thus, we can compare the generation quality in a more consistent way.

6.1.5 Component Number

In the above experiment, we know the roughly correct number of components. However

when the component number is much smaller/larger than this, the behavior of the Mixflow

model is not fully investigated in this thesis. Thus, more experiment should be conducted to
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test its performance.

In addition, we could also investigate the possibility of using the ideas from infinite mixture
model and Dirichlet Process, thus, we may be able to determine how many component we

should use based on the data. In fact, this idea has been implemented for VAE (Abbasnejad

et al., 2016) to perform semi-supervised learning.

6.1.6 Primal form WGAN

We use dual form Wasserstein distance for Mixflow GAN+ML and PGAN training. In fact,

our Mixflow model can be easily adapted to primal form WGAN. We can test if the distance

measure influences our model performance. Unfortunately, the PGAN method are based on

the idea of personalized discriminator, thus, it cannot be used for primal form WGAN.

6.2 Conclusion

In this thesis, we give a comprehensive review of Generative adversarial network and its

related variants. The focus is on different types of Wasserstein GAN which is more stable to

train compared to original GAN. Particularly, we introduce the dual and primal form WGAN.

In the end of the review, we give brief introduction to the recently published GAN variants

and their relationship with the Wasserstein metric.

Then we introduce a different type of generator called normalizing flow which has been used

in FlowGAN model. Based on the review of normalizing flow and simple toy examples, we

argue that the normalizing flow, particularly NICE, is difficult to model distributions with

separated modes. Thus, we propose a novel generator structures using the idea from mixture

models, called Mixflow, which has better performance than single flow according to toy

examples. Furthermore, for GAN training, we also propose a personalized discriminator to

guide each generator component. The toy examples shows the PGAN method obtains better

generation quality compared to Mixflow GAN+ML when model is crippled.

The final MNIST dataset shows that not only our proposed model achieved the best log

likelihood but it also produces more reasonable generation quality compared to single flow

training. This opens the door for tasks when both generation quality and good log likelihood

are required.





References

Ehsan Abbasnejad, Anthony Dick, and Anton van den Hengel. Infinite variational autoen-
coder for semi-supervised learning. arXiv preprint arXiv:1611.07800, 2016.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein
gradients. arXiv preprint arXiv:1705.10743, 2017.

Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard
Schoelkopf. From optimal transport to generative modeling: the vegan cookbook. arXiv
preprint arXiv:1705.07642, 2017.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode regularized
generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. In Advances in Neural Information Processing Systems, pages 2172–
2180, 2016.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons,
2012.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in neural information processing systems, pages 2292–2300, 2013.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Sinkhorn-autodiff: Tractable wasserstein
learning of generative models. arXiv preprint arXiv:1706.00292, 2017.



60 References

Irving J Good et al. Maximum entropy for hypothesis formulation, especially for multidi-
mensional contingency tables. The Annals of Mathematical Statistics, 34(3):911–934,
1963.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Bridging implicit and prescribed
learning in generative models. arXiv preprint arXiv:1705.08868, 2017.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Swaminathan Gurumurthy, Ravi Kiran Sarvadevabhatla, and Venkatesh Babu Radhakrishnan.
Deligan: Generative adversarial networks for diverse and limited data. arXiv preprint
arXiv:1706.02071, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd
gan: Towards deeper understanding of moment matching network. arXiv preprint
arXiv:1705.08584, 2017.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes:
Unifying variational autoencoders and generative adversarial networks. arXiv preprint
arXiv:1701.04722, 2017.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Youssef Mroueh, Tom Sercu, and Vaibhava Goel. Mcgan: Mean and covariance feature
matching gan. arXiv preprint arXiv:1702.08398, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

A. Spurr, E. Aksan, and O. Hilliges. Guiding InfoGAN with Semi-Supervision. ArXiv
e-prints, July 2017.

EG Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.



References 61

Esteban G Tabak, Eric Vanden-Eijnden, et al. Density estimation by dual ascent of the
log-likelihood. Communications in Mathematical Sciences, 8(1):217–233, 2010.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of
generative models. arXiv preprint arXiv:1511.01844, 2015.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative
analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593,
2017.





Appendix A

Theoretical Proof

Original GAN

Proposition 2. For fixed generator G(·), the optimal discriminator D∗(xxx) achieved using
objective function 2.1 is pd(xxx)

pd(xxx)+pg(xxx)
.

Proof. The training objective for discriminator D(·) is to maximize

V (G,D) =
∫

XXX
pd(xxx) log(D(xxx))dxxx+

∫
ZZZ

pz(zzz) log(1−D(G(zzz)))dzzz

=
∫

XXX
pd(xxx) log(D(xxx))+ pg(xxx) log(1−D(xxx))dxxx

(A.1)

Thus, based on the Euler–Lagrange equation and calculus of variations, for any (pd, pg) ∈
(0,1]2, the maximum in the range of [0,1] is achieved by

D∗(xxx) =
pd(xxx)

pd(xxx)+ pg(xxx)

Theorem 4. The global minimum achieved by the training objective equation 2.1 is achieved
if and only if pg = pd and the minimum value is − log4 and it is equivalent to minimizing
the Jensen-Shannon divergence between pg and pd.
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Proof. Assume the discriminator is trained to be at its optimum D∗ = pd
pd+pg

. Then, the

training objective becomes

min
pg

Exxx∼pd [log(D∗(xxx))]+Exxx∼pg [log(1−D∗(xxx))]

=min
pg

Exxx∼pd [log(
pd(xxx)

pd(xxx)+ pg(xxx)
)]+Exxx∼pg [log(

pg(xxx)
pd(xxx)+ pg(xxx)

)]

=min
pg

Exxx∼pd [log(
pd(xxx)

pd(xxx)+pg(xxx)
2

)]+Exxx∼pg [log(
pg(xxx)

pd(xxx)+pg(xxx)
2

)]− log4

=min
pg

KL(pd|| pd + pg

2
)+KL(pg|| pd + pg

2
)− log4

=− log4+2∗ JSD(pd||pg)

(A.2)

Thus, the minimizing training objective for generator with optimal discriminator is equivalent

to minimize the Jensen-Shannon distance. The minimum is achieved if and only if pd = pg

and the minimum is 0. Thus, the overall minimum for the training objective is − log4

Wasserstein GAN

Proof. Proof of Theorem 1: Assume we the primal optimal solution is obtained by cccTxxx∗ = z∗

such that AAAxxx∗ = bbb. Then we construct the following matrix:

ÂAA =

[
AAA

−cccT

]
, b̂bbε =

[
bbb

−z∗+ ε

]
, ŷyy =

[
yyy
α

]
(A.3)

If ε = 0, then

ÂAAxxx∗ = b̂bb0 (A.4)

This indicates matrix ÂAA span the vector b̂bb0, or in other words, the b̂bb0 are inside the convex

cone made by column vector of ÂAA. If ε > 0, then there is no such xxx that

ÂAAxxx = b̂bbε (A.5)

because max −cccTxxx =−z∗ <−z∗+ε . This represents ÂAA cannot span the vector b̂bbε . Therefore,

it is not inside the convex cone defined by ÂAA. Thus, by Farkas’ lemma, there exists a yyy and α
such that

ÂAA
T

ŷyy ≤ 0, b̂εbεbε
T

ŷyy > 0 (A.6)
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in other words,

AAATyyy ≤ αccc, bbbTyyy > z∗ − ε (A.7)

without loss of generality, we can set α = 1. We can also show that

bbbTyyy = xxx∗TAAATyyy ≤ xxx∗Tccc = zzz∗ (A.8)

Thus, we establish the bound of bbbTyyy:

z∗ − ε < bbbTyyy ≤ z∗ (A.9)

Therefore, if we maximize the objective function bbbTyyy with constraints AAATyyy < ccc, we can get

arbitrarily close to z∗, especially with ε = 0, the b̂bb0 lies on the boundary of convex cone

defined by ÂAA and the solution of yyy = xxx∗

Proof. Theorem 3: By the theory of Lagrange Multiplier, the original optimization with

equality constraints can be reformulated to unconstrained problem with Lagrange Multiplier

λ ∈ [0,∞] such that the optimum for the original problem will corresponds to the stationary

points in the new problem. In addition, due to the convexity of the constraints, the problem

is convex optimization defined on the convex set Uα( p̂d, p̂g), thus there is only one unique

optimum Pλ and it is the stationary point.

We define

dλ
M( p̂d, p̂g) =< Pλ ,M >, where Pλ = argminP∈U(p̂d ,p̂g) < P,M >− 1

λ
h(P) (A.10)

By duality theory, for a given α , there exists a λ that dM,α(p̂d, p̂g) = dλ
M(p̂d, p̂g). The

objective function with Lagrange Multiplier λ ,γ,β is

L (P,γ,β ,λ ) = ∑
i j

1

λ
pi j log(pi j)+ pi jmi j + γT (P111d − r)+β T (PT111d − c) (A.11)

Thus, based on the analysis, the optimum is achieved if ∂L
∂ pi j

= 0 Thus,

pλ
i j = exp(−1

2
−λγi)exp(−λmi j)exp(−1

2
−λβ j) (A.12)
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Thus, based on the Sinkhorn-Knopp Theorem, there exists a diagonal matrix diag(vvv) and

diag(vvv)(unique due to convexity in this settings) such that

∃uuu,vvv > 000d : Pλ = diag(uuu)exp(−λM)diag(vvv) (A.13)

Proof complete.



Appendix B

Experiment Results

B.1 Toy Examples

B.1.1 GMM

Fig. B.1 The Single Flow GAN training curve for GMM examples
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(a) (b)

Fig. B.2 (a) Training Curve comparison between PGAN and Mixflow GAN+ML. The results

are obtained by averaging 5 runs and ±1 std. (b) The generated sampled obtained by PGAN.

Fig. B.3 The training likelihood comparison of Mixflow and PGAN when model is crippled
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(a) (b)

Fig. B.4 (a) The discriminator value surface learned by Mixflow GAN+ML training. (b) The

discriminator value surface of PGAN. We observe the more complicated structure obtained

by PGAN method as expected.
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B.1.2 Swiss Roll

Fig. B.5 The training curve and GAN loss of single flow GAN training

(a) (b)

Fig. B.6 (a) The training curve comparison between PGAN and Mixflow GAN+ML. The

results are obtained by averaging 5 runs and ±1 std. (b) The sample generation of PGAN

methods
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Fig. B.7 The training curve of PGAN and Mixflow GAN+ML when model is crippled.
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B.2 MNIST

B.2.1 ReLu MLP Coupling function

Fig. B.8 The generated image from single flow model with ML learning

Fig. B.9 The generated image from Mixflow model with ML learning
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Fig. B.10 The generated image from Single flow model with pure GAN learning

Fig. B.11 The generated image from Single flow model with GAN+ML learning
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Fig. B.12 The generated image from Mixflow model with GAN+ML learning
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B.2.2 CNN Coupling function

Fig. B.13 The generated image from single flow model with GAN+ML learning using CNN

coupling function

Fig. B.14 The generated image from Mixflow model with GAN+ML learning using CNN

coupling function
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Fig. B.15 The generated image using DCGAN model


