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Abstract

Despite the recent successes in machine learning, there remain many open challenges.
Arguably one of the most important and interesting open research problems is that of data
efficiency. Supervised machine learning models, and especially deep neural networks, are
notoriously data hungry, often requiring millions of labeled examples to achieve desired
performance. However, labeled data is often expensive or difficult to obtain, hindering
advances in interesting and important domains.

What avenues might we pursue to increase the data efficiency of machine learning
models? One approach is semi-supervised learning. In contrast to labeled data, unlabeled
data is often easy and inexpensive to obtain. Semi-supervised learning is concerned with
leveraging unlabeled data to improve performance in supervised tasks. Another approach
is active learning: in the presence of a labeling mechanism (oracle), how can we choose
examples to be labeled in a way that maximizes the gain in performance? In this thesis we
are concerned with developing models that enable us to improve data efficiency of powerful
models by jointly pursuing both of these approaches.

Deep generative models parameterized by neural networks have emerged recently as
powerful and flexible tools for unsupervised learning. They are especially useful for modeling
high-dimensional and complex data. We propose a deep generative model with a discrimi-
native component. By including the discriminative component in the model, after training
is complete the model is used for classification rather than variational approximations. The
model further includes stochastic inputs of arbitrary dimension for increased flexibility and
expressiveness. We leverage the stochastic layer to learn representations of the data which
naturally accommodate semi-supervised learning. We develop an efficient Gibbs sampling
procedure to marginalize the stochastic inputs while inferring labels. We extend the model to
include uncertainty in the weights, allowing us to explicitly capture model uncertainty, and
demonstrate how this allows us to use the model for active learning as well as semi-supervised
learning.
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Chapter 1

Introduction

1.1 Data-Efficient Machine Learning

Recent trends and approaches in Machine Learning have enabled large models to scale
to complex and high dimensional tasks such as computer vision, speech recognition, and
reinforcement learning, achieving excellent results. Deep learning has played an integral
part in these recent advances. However, despite the numerous successes of machine learning,
drawbacks still exist. The majority of learning systems today rely on enormous amounts of
(typically labeled) data to reliably perform their designated tasks. This is especially true for
deep neural networks, which often require millions of labeled examples to achieve desired
performance.

The requirement for massive labeled datasets is unsatisfactory from both modeling
and practical perspectives. From a modeling perspective, we desire that our models learn
efficiently from data in a way that maximizes the gain from each labeled example. The need
for large quantities of labeled data indicates a flaw in our models rather than a theoretical
limitation, as evidenced by the ability of humans to learn rich concepts from few examples.
From a practical point of view, labeling data can often be an expensive or laborious process,
and the requirement for vast amounts of labeled data bottlenecks the use of machine learning
in many fields. Data-efficient machine learning is concerned with improving the ability of
models to learn from fewer examples or, conversely construct larger, more complex models
with the same amounts of data.

The probabilistic (also referred to as the Bayesian) approach to learning provides a
rich and rigorous framework for developing models and inference algorithms grounded in
probability theory, as well as many promising avenues for significant advances in learning
capabilities. By accounting for uncertainty and marginalizing model parameters probabilistic
learning elegantly sidesteps the overfitting phenomenon and better generalizes to unseen
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(a) Standard VAE (b) Conditional VAE (c) BNN - stochastic inputs

Fig. 1.1 Graphical model depictions for VAE and BNN based models.

data in the presence of smaller training sets. Further, as the output of probabilistic models is
typically in the form of a predictive distribution, they naturally accommodate more complex
learning tasks such as semi-supervised and active learning. This thesis is concerned with
the development of deep probabilistic models that are capable of performing joint semi-
supervised and active learning.

1.2 Deep Generative Models

Deep generative models (DGMs) provide a rich and flexible family for modeling complex
high dimensional data via the use of latent variables. Recently, advances in procedures for
training DGMs such as stochastic backpropagation [52] and the reparametrization trick [31]
have made training these models feasible and efficient. DGMs are particularly powerful when
neural networks are introduced to parameterize the distributions and inference (recognition)
networks, leading to the Variational Autoencoder (VAE; Figure 1.1a) [31, 52].

The ability to efficiently train these types of models has lead to a plethora of interesting
advances, increasing the flexibility of posterior approximations and expressiveness of the
models [5, 61, 38, 51]. An important extension to standard VAEs is the conditional VAE
[30], which incorporates labels into the generative model of the inputs (Figure 1.1b), and
thus extends the VAE to classification tasks.

One major drawback of the use of VAEs in supervised tasks is that after training the
generative model is discarded and the recognition network is typically used for classification
[30, 38]. This is unsatisfactory from a modeling perspective as the recognition network is
introduced as a tool for performing approximate inference of model parameters, and yet in
practice the model (the object we were originally concerned with) is not used at all. A related
challenge is that while in theory Bayesian treatment of the network weights is straightforward,
in practice this is challenging and seldom performed.
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Closely related to deep generative models are Bayesian neural networks (BNNs) [41, 46].
BNNs extend standard neural networks and express model uncertainty via uncertainty in
the learned weights. Beyond introducing a probabilistic interpretation of neural networks,
this leads to increased robustness and opens the door to tasks requiring uncertainty such
as active learning [65] and Bayesian optimization [57]. Blundell et al. [4] extend ideas
from stochastic variational inference [23, 48] to an efficient inference procedure for BNNs.
Further, Depeweg et al. [10] show how neural network learning can be extended to general
α-divergence minimization [20] and provide empirical evidence of the benefit in introducing
stochastic inputs (Figure 1.1c). However the stochastic inputs are constrained to be of low
(typically one) dimension.

We develop a deep generative model with a discriminative BNN at its core that naturally
accommodates semi-supervised learning. Our intent is that after training is complete, the
model is used for classification rather than a variational approximation. We introduce two
recognition networks and demonstrate how they can be learned to improve training and
prediction, as well as allow efficient posterior inference of arbitrary-dimensional stochastic
inputs at prediction time. Finally, we show how training of the discriminative component
can be extended to Bayesian learning, and demonstrate how this can be leveraged for active
learning.

The rest of this thesis is structured as follows. In Chapter 2 we review the core material
relevant to our work. In Chapter 3 we review recent literature in applying deep learning to
semi-supervised and active learning tasks. Following this, in Chapter 4 we introduce our
proposed model, and algorithms and procedures for efficient training and prediction. In
Chapter 5 we detail the experiments carried out and their results. Finally, in Chapter 6 we
discuss our findings, conclude, and propose avenues for future research.

1.3 Thesis Contributions

The primary contribution of this thesis is the proposal and development of a deep generative
model for joint semi-supervised and active learning. Further, we show how the model can be
trained using standard point estimates (SSLPE), as well as approximate Bayesian training
using variational inference (SSLAPD). These contributions are covered largely in Chapter 4.
We then show proof of concepts and feasibility of the model on a toy dataset in Chapter 5, as
well as preliminary results from MNIST experimentation.

A secondary contribution of this thesis is an investigation into the practical issues of
training complex DGMs. In practice it is often difficult to train large DGMs, and considerably
more so using approximate Bayesian inference procedures. In Chapter 5 we include a dis-
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cussion of a number of implementation details we found especially important for successful
training, as well as the proposal of an adaptation of batch normalization [26] so as to exhibit
significant improvements in variational training of Bayesian neural networks.

Finally, in Chapter 6 we discuss important avenues of future research within this frame-
work, namely scaling to larger, more complex datasets such as MNIST. Work in this direction
has begun, but only preliminary results are included in this document. Regardless, scaling up
of complex Bayesian DGMs to large datasets is an important challenge in the larger field of
Bayesian deep learning.



Chapter 2

Background

In this chapter we introduce and review key ideas and literature this thesis draws upon. We
begin with a review of semi-supervised and active learning (Sections 2.1, 2.2). Following
this we briefly discuss important concepts in latent variable models and deep learning in
Sections 2.3, 2.4. Core ideas of variational inference are reviewed in Section 2.5, leading to
the Variational Autoencoder (VAE) [31] (Section 2.6.1). Finally, in Section 2.6.2 we review
recent advances in training BNNs, leading to Bayesian backpropagation [4] and the use of
stochastic inputs [10].

2.1 Semi-supervised Learning

In the semi-supervised learning (SSL) setting we consider the problem of regression or
classification when a (typically small) subset of the training data is labeled. The goal is to
make use of the unlabeled data to improve performance in the supervised task.

SSL is appealing and applicable in a wide range of settings. In many cases such as
language modeling, image processing and classification, or speech analysis, unlabeled data
is abundant, while labeled data is expensive or difficult to obtain.

Arguably the most straightforward method for SSL is self-training, where a model boot-
straps the labeled data with unlabeled examples which it has classified with high confidence
[53], iterating on this procedure until some stopping condition is met. However, this method
tends to reinforce prediction errors and is therefore error prone.

Other approaches to SSL include transductive SVMs [28] and graph-based methods [65].
Transductive SVMs learn a max-margin classifier [55] while encouraging the margin to be
far from unlabeled data points [28]. However, this approach has difficulty in dealing with
large amounts of unlabeled examples [30]. In contrast, Zhu et al. [65] model the data as a
weighted graph where examples are vertices, with similarity measures weighting the edges.
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Learning and labeling the unsupervised examples is then formulated in terms of a Gaussian
random field, and minimum-energy states can be identified efficiently with message passing
or belief propagation [64, 62].

Probabilistic modeling provides an appealing alternative to these by modeling the density
and structure of the data. This is similar in principle to using the unlabeled data to learn a
useful representation of the data which can be used for the supervised task [30, 49]. However,
the question then becomes how to incorporate knowledge of the supervised task into the
learned density/representation? Many representations of the data exist, and ideally we would
like to guide the model towards a representation that is useful for the supervised task at
hand. Often, this approach uses unsupervised learning as a pre-training process before the
supervised training is carried out, which does not achieve the goal of incorporating knowledge
regarding the task into the learned representation.

Recently, the use of neural networks has been proposed for semi-supervised learning
[30, 49, 37]. Rasmus et al. [49] extend the unsupervised ladder network [50] to be trained
with both a supervised and unsupervised objective function. This allows joint training of a
network with labeled and unlabeled data, achieving state of the art performance on a number
of benchmarks.

Similarly, Kingma et al. [30] develop a deep generative model that incorporates both a
supervised and unsupervised lower bound. Here too, the model can be trained simultaneously
on labeled and unlabeled data, incorporating information from both to learn the latent
representation. These approaches are promising in that they represent a principled approach
to combining the supervised and unsupervised tasks, while making use of the labeled data to
guide the model towards useful representations of the data. These (and related) approaches
will be discussed in more detail in Chapter 3.

2.2 Active Learning

Active learning (AL) is a setting in which we have a (typically small) labeled training set
Dtrain = {xi,yi}ntrain

i=1 for a supervised task. In addition, we have a pool of unlabeled examples
Dpool = {x j}

npool
j=1 and an oracle which can be queried to label examples from Dpool. Our goal

is to enable the model to query the oracle in an efficient manner that, ideally, is optimal in
some regard [6, 56].

AL is appealing in that data labeling can often be an expensive and laborious process.
For data-hungry models such as deep neural networks, a vast amount of labeled data is often
required to achieve desirable performance. AL can potentially increase data-efficiency by
enabling a user to initially train a model with a relatively small dataset, and then leverage the
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trained model to select training examples to be labeled from a pool. If properly designed,
intelligent selection of labeled examples should significantly decrease the number of labeled
examples necessary to achieve the desired performance [6, 15].

To query the oracle, an acquisition function α is typically introduced, such that:

x∗ = argmax
x∈Dpool

α(x;θ ,Dtrain), (2.1)

where x∗ is the new example to be labeled by the oracle, and θ are the model parameters.
Thus, the model iteratively queries a new example x∗, observes the associated label y∗ (thus
moving x∗ from Dpool to Dtrain), and updates the parameters θ based on the new observation.
Crucial to the success of AL is the choice of α which dictates the querying strategy. A
number of candidate functions exist in the literature and are reviewed below.

2.2.1 Acquisition Functions

A straightforward approach in the case of regression is to select x∗ that maximizes the
predictive variance from Dpool. This is an intuitive selection, and is based on the goal of
decreasing overall model uncertainty. However, this strategy can select points that do not
necessarily contribute to model uncertainty in other regions. Further, many tasks of interest
in ML are classification, in which case this straightforward approach is not suitable [12].
A number of acquisition functions capturing different notions of uncertainty have been
proposed in the literature and are discussed below.

Variation Ratios

Variation ratios is given as [12]:

αVarRatios(x;θ) = 1−max
y∈Y

pθ (y|x), (2.2)

where max
y

pθ (y|x) represents the mode of the predictive distribution (parameterized by

θ ). Variation ratios therefore measures the dispersion of the distribution. It measures how
confident the model is in its distribution, and by maximizing αVarRatios(x;θ) over the pool set
we are labeling the example the model is least certain about.

Predictive Entropy

In contrast to variation ratios, predictive entropy takes an information theoretic approach
[40]. It can be computed as:
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αEntropy(x;θ) = H (y|x)
=− ∑

y∈Y
pθ (y|x) log pθ (y|x). (2.3)

Predictive entropy measures the average information content in the predictive distribution.
By maximizing the αEntropy(x;θ) we are labeling the example in Dpool whose predictive
distribution under the model contains the least information.

Parameters-Prediction Mutual Information

Finally, rather than measure the information content of the predictive distribution, another
approach is to maximize the decrease in the expected entropy of the parameter posterior
distribution [40]. This is equivalent to the mutual information between the posterior distribu-
tion over the parameters p(θ |Dtrain) and the predictive distribution pθ (y|x) [25], and can be
expressed as:

αMI(x;θ) = H (θ |Dtrain)−Ey∼p(y|x,Dtrain)

[
H (θ |x,y,Dtrain)

]
= H (y|x,Dtrain)−Eθ∼p(θ |Dtrain)

[
H (y|x,θ)

] (2.4)

Mutual information as posed above (referred to in Houlsby et al. [25] as BALD) describes
a slightly different measure of uncertainty then predictive entropy. Maximizing αMI(x;θ)

selects examples from Dpool for which the model is uncertain on average, but can produce
weight settings from p(θ |Dtrain) that generate unjustifiably certain predictions [12].

Finally, it is important to note that for the general case computing the acquisition functions
as described above is intractable. In Section 3.2.1 we discuss how variational distributions in
BNNs can be used to approximate these functions.

2.3 Generative and Latent Variable Models

A fundamental distinction in ML is between generative and discriminative models [2, 44].
Broadly speaking, a discriminative model directly learns a model for a conditional distribution
of interest, e.g., p(y|x,θ), where y is a target variable and x are the inputs. In contrast, a
generative model learns the joint distribution p(y,x), and is so called as it can generate
samples from the data distribution [2].
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Another core and powerful concept in probabilistic modeling is the incorporation of
latent variables z in models to account for unobserved factors affecting the observed data x in
the modeled domain. A latent variable model (LVM) is of the form:

p(z) = fz(z;θz)

pθ (x|z) = fx(x;z,θx)
(2.5)

where fz, fx are valid distributions, and θ = {θz,θx} parameterizes the generative process.
When designing a LVM, we would like z to incorporate some higher level or interesting
features of x.

In general, we are interested in inference of the model parameters θ given observed data
(this can be point estimation or Bayesian inference), as well posterior inference for the latent
variables p(z|x). We would like to do this in a general case where fx is as flexible as possible.

Inference in these models can be challenging. One classic approach is the Expectation-
Maximization (EM) [8] algorithm. However, the EM algorithm requires p(z|x) to be tractable,
which is true only for the very simplest of LVMs (e.g., linear-Gaussian models [54]). For
complex models, more powerful and general approaches for approximate inference are
required. One such approach is variational Bayesian (VB) learning [62], described below.
In this thesis we are mainly concerned with complex, latent variable, generative models
parameterized by deep neural networks and learned with variational Bayesian procedures.

2.4 Neural Networks and Deep Learning

Deep learning (DL) is a sub-field of machine learning concerned with models that automati-
cally learn useful representations of data geared towards specific tasks [16]. DL has lead to
significant advances in performance across a range of important AI tasks such as computer
vision [33, 60], speech recognition [21, 9], and reinforcement learning and control [42, 43].

In this work we leverage neural networks to parameterize distributions in generative
models. We use simple, deep feed-forward networks (also known as multi-layer perceptrons
(MLPs)) to model probabilistic distributions, mapping from inputs x to parameters of interest.

A MLP consists of layers l = 1, ...,L, where each layer contains nl neurons (as depicted
in Figure 2.1 for a two hidden layer MLP with four inputs). Every neuron represents a single
computational unit with some (typically nonlinear) differentiable activation function g. Thus,
if al is the output of the layer l, every neuron outputs:

al+1 = g(wT
l+1al +bl), (2.6)
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Fig. 2.1 Deep (two hidden layer) feedforward network mapping from inputs x to the parame-
ters of a distribution for z.

where wl,bl are the weights and biases associated with layer l, respectively. In this work we
use rectified linear units (RELUs) [45], such that the output of layer l +1 is:

al+1 = max(0,wT
l al +bl), (2.7)

where {wl,bl}L
l=1 are the trainable parameters of the network. Treating each layer in the

network as a simple nonlinear function fl(al−1) as in Eq. (2.6), the final output of the network
can be written as:

NN(x) = fL(...( f1(x))). (2.8)

An objective function (typically likelihood based) is specified and training the network
consists of finding an optimal set of weights θ (e.g., in the supervised learning case):

θ
∗ = argmax

θ

N

∑
i=1

log p(yi|xi,θ). (2.9)

Despite the fact that this is a non-convex optimization problem [16], training is typically
performed with a stochastic gradient optimization procedure [11, 29]. Deep neural networks
are high capacity models that can approximate any function given enough neurons [24].
Further, given differentiable activation functions and objectives, they are trainable end-to-end
with gradient based optimizers [16]. This makes them suitable for many tasks requiring
structured mappings from one set of variables to another.

2.4.1 Bayesian Neural Networks

Bayesian neural networks (BNNs) are an extension of neural networks that explicitly model
uncertainty via uncertainty in the model weights [41, 46]. In this setting we first define a prior
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p(W ) on the weights (and biases), and in inference are interested in the posterior distribution
over the weights:

p(W |D) =
p(D |W )p(W )

p(D)
, (2.10)

where D is the observed data. As is standard in Bayesian settings, prediction for a new
data-point x∗ (e.g., in the supervised case D = {(xi,yi)}N

i=1) is given as:

p(y∗|x∗,D) =
∫
W

p(y∗|x∗,W )p(W |D)dW. (2.11)

Bayesian inference for neural networks is advantageous as it encourages robustness to
overfitting, as standard neural networks are prone to do (especially in small data regimes).
Further, explicitly modeling uncertainty in the network weights enables one to use BNNs for
tasks that require probabilistic outputs such as active learning [15] or Bayesian optimization
[57].

Unfortunately both posterior inference and prediction are intractable for general neural
networks, and approximations must be used. Laplace’s approximation and MCMC sam-
pling methods have been proposed [41, 46], but can under-fit and are not scalable to large
data/models, respectively. Below we review recently proposed methods for stochastic varia-
tional inference [17, 48, 4] which is both a scalable and powerful method for approximate
inference in BNNs.

2.5 Variational Bayesian Learning

Variational Bayesian (VB) learning (or variational inference - VI) is an approach for per-
forming approximate inference in models with intractable posterior distributions [62]. The
general idea behind VI is to posit a family of tractable distributions (q), and then find the
distribution within that family “closest" to the true posterior [62, 3]. One major benefit of VI
is that it substitutes the problem of integration (or sampling as in the case of MCMC) with
one of optimization, allowing it to scale easily to larger datasets and models [3].

In the VI methodology, we first derive a variational lower bound (ELBO) for the (log)
marginal likelihood of the observed data x by introducing the approximate distribution family
qφ (z). The approximation is parameterized by the variational parameters φ . log pθ (x) can
then be expressed as [62]:
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log pθ (x) = log
∫
Z

pθ (x,z)
qφ (z)
qφ (z)

dz (2.12)

≥
∫
Z

qφ (z)
(

log pθ (x,z)− logqφ (z)
)

(2.13)

= Eqφ (z)

[
log pθ (x,z)− logqφ (z)

]
=∆ L (θ ,φ ;x), (2.14)

here we have used Jensen’s inequality in Eq. (2.13) to derive the lower bound. Another form
of deriving the lower-bound is as follows. We begin by noting that:

log pθ (x) = log
pθ (x,z)
pθ (z|x)

, (2.15)

due to a simple rearranging of Bayes’ theorem. Introducing and taking expectation w.r.t. the
approximation qφ (z) on both sides of Eq. (2.15) yields:

log pθ (x) =
∫

qφ (z)
(

log
pθ (x,z)
qφ (z)

+ log
qφ (z)

pθ (z|x)

)
dz

= Eqφ (z)

[
log pθ (x,z)− logqφ (z)

]
︸ ︷︷ ︸

variational lower-bound

+Dkl

(
qφ (z)∥pθ (z|x)

)
,

(2.16)

where Dkl is the Kullback-Leibler (KL) divergence [34]. This derivation of the ELBO
(which is a lower bound due to the non-negativity of the KL-divergence) demonstrates that
maximizing the ELBO w.r.t. the variational parameters φ is equivalent to minimizing the
KL divergence between the approximation and true posterior distribution (as log pθ (x) is
constant for a given model). Thus, the measure of “closeness” used to determine the optimal
approximate distribution in q is the KL-divergence [62, 3]. The ELBO is often expressed as:

L (θ ,φ ;x) = Eqφ (z)
[

log pθ (x|z)
]
−Dkl

(
qφ (z)∥pθ (z)

)
. (2.17)

For certain choices of qφ (z), pθ (z) the second term in the RHS of Eq. (2.17) is tractable. By
maximizing the ELBO w.r.t. φ (an optimization problem) we identify the approximation
that is closest to the true posterior. The complicating term in optimizing the ELBO is the
expectation w.r.t. the approximate distribution.

Traditional approaches to VB (such as mean-field approximations [62, 63]) suffer from
a few drawbacks. First, often it is necessary that expectations w.r.t. qφ (z|x) are tractable,
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restricting the complexity of the approximations, tpyically to factorized and simple parametric
forms. The quality of the trained model is directly related to the quality of the approximation,
which we can formalize as KL

(
qφ (z)∥pθ (z|x)

)
.

Second, traditional approaches suffer in terms of both statistical and computational
efficiency. VB requires introducing separate variational parameters φi for every data point xi.
This implies that the number of parameters grows (at least) linearly with N, which from a
statistical point of view is undesirable. Computationally, for any new data point x∗, inference
must be rerun to infer q(z∗) which can be computationally demanding.

2.5.1 Inference Networks and Mont-Carlo Approximation

An elegant solution to the above problems is to introduce an inference network as the
approximation qφ (z|x). In this setting we train a powerful parameteric model (e.g., a neural
network) to map from x to the posterior distribution over z. For a network with enough
capacity and an appropriate training procedure, the approximation approaches the true
posterior exactly [7, 5].

Further, the introduction of the inference network amortizes the inference procedure: φ is
now of fixed dimension and shared across all x such that it is constant w.r.t. N. For a neural
network parameterization of qφ (z|x), latent inference for a new example simply requires a
forward pass through the network.

The idea of inference networks was first introduced two decades ago with the proposal
of the Helmholtz machine [7]. In that work, the “wake-sleep” algorithm [22] was used to
iteratively optimize θ and φ . However, this approach was limited in that joint optimization
was only possible in an iterative scheme, the two objective functions (for the recognition
network and the generative process) did not correspond to maximizing the marginal likelihood
of the data [31], and a number mean-field approximations were required for inference.
Regardless, the Helmholtz machine is an important work that laid the foundations for the
models discussed below.

Ideally, we would like to perform joint training of the model parameters θ and variational
parameters φ . In the more general case, a naive approach to optimizing the ELBO in
Eq. (2.17) is to approximate it via Monte Carlo sampling (for generality assume the KL-
divergence is also intractable):

L (θ ,φ ;x)≈ 1
L

L

∑
l=1

log pθ (x|zl)−
(

logqφ (zl|x)− log pθ (zl)
)

(2.18)
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where zl ∼ qφ (z|x). However, this estimator will be differentiable only w.r.t. θ , whereas we
need to optimize φ as well. In light of this, we might first take the derivative of Eq. (2.17)
w.r.t. φ , and derive an unbiased MC estimate of the derivative [47]:

∇φEqφ
[log pθ (x|z)]≈

1
L

L

∑
l=1

log pθ (x|z)∇φ logqφ (zl|x) (2.19)

with zl ∼ qφ (z|x) as before. However, Paisley et al. [47] observe that this gradient estimator
exhibits high variance, and in practice the learning procedure does not converge.

2.5.2 Stochastic Backpropagation and the Reparametrisation Trick

The solution proposed by Kingma and Welling [31], Rezende et al. [52] is a simple reparam-
eterisation of z such that the estimator in Eq. (2.18) becomes differentiable w.r.t. φ as well as
θ . The key observation is that the problematic operation is sampling z. The solution then is
to introduce an auxiliary variable ε:

ε ∼ p(ε); z̃ = gφ (ε,x) (2.20)

such that z̃∼ qφ (z|x). In this case, a general estimator can be rewritten as:

Eqφ (z|x) [ fθ (z)] = Ep(ε)
[

fθ (gφ (ε,x))
]
≈ 1

L

L

∑
l=1

fθ (gφ (ε
l,x)) (2.21)

with ε l ∼ p(ε). This estimator is unbiased, and all that is required is that gφ (ε,x) be
differentiable, and the ability to sample from p(ε). Substituting Eq. (2.20) into Eq. (2.18)
yields the stochastic gradient variational Bayes estimator (SGVB; [31]):

L̃SGV B

(
θ ,φ ;x(i)

)
=∆

1
L

L

∑
l=1

log pθ

(
x(i),z(i,l)

)
− logqφ

(
z(i,l)|x(i)

)
where z(i,l) = gφ

(
ε
(l),x(i)

)
and ε

(l) ∼ p(ε)

(2.22)

and leads to the Auto-Encoding Variational Bayes (AEVB, also known as stochastic back-
propagation [52]) algorithm as detailed in Algorithm 1.
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Algorithm 1 Mini-batch Auto-Encoding Variational Bayes
1: θθθ ,,,φφφ ← Initial values
2: repeat
3: XXXm← Random minibatch of size m from XXX
4: εεε l ∼ p(εεε) for l ∈ 1, ...,L
5: ggg← ∇(θθθ ,,,φφφ)L̃ SGV B

(
θθθ ,φφφ ;XXX (m)

)
6: θθθ ,,,φφφ ← parameter updates with ggg
7: until Convergence of both (θθθ ,,,φφφ)

8: Return: (θθθ ,,,φφφ)

The SGVB estimator naturally lends itself to minibatch updates, allowing optimization
through the use of stochastic optimizers such as Adagrad [11] or Adam [29], yielding an
efficient algorithm for learning in a very general class of LVMs.

A requirement of the AEVB algorithm is that there exist a function gφ (ε,x) such that
z̃∼ qφ (z|x). In practice, for most parametric distributions there is such a function [31]. A
typical case is:

qφ (z|x) = N (z; µφ (x),σ2
φ (x)), (2.23)

where µφ ,σ
2
φ

are functions mapping from x to the disrtibution parameters. In this case it is
straightforward to show that:

p(ε) = N (ε;0,1); gφ (ε,x) = µφ (x)+σ
2
φ (x)⊗ ε, (2.24)

satisfy these conditions, where ⊗ is the elementwise product operation.

2.6 Variational Learning of Deep Models

In this section we review two recently proposed models leveraging the ideas discussed in
the previous sections. The models parameterize distributions with deep neural networks,
and leverage stochastic backpropagation for efficient approximate inference despite the
intractability of the posterior distribution.

2.6.1 The Variational Autoencoder

The Variational Autoencoder (VAE) is an unsupervised learning model for observable data x.
A latent variable z is introduced, defining the following probabilistic model:
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p(z) = N (z;0,1)

p(x|z) = fθ (x;z)

where fθ is a valid distribution (typically chosen to be Normal or Bernoulli for continuous
and binary data respectively). θ parameterizes DNNs mapping from z to the parameters of
the distribution of x. Finally, an inference network is introduced:

qφ (z|x) = N
(

z; µφ (x),σ2
φ (x)

)
, (2.25)

with µφ ,σ
2
φ

are DNNs mapping from x to the posterior distribution parameters of z. A
schematic representation of VAEs if shown in Figure 2.2.1 The use of an inference network
allows efficient and flexible inference and importantly, amortizes posterior inference. The
model and inference network can then be jointly trained as detailed in Section 2.5.2.

The latent space Z is typically of significantly lower dimension than X , and can be
thought of as a lossy encoding of the observed data.

Fig. 2.2 Schematic representation of a VAE. The encoder qφ (z|x) stochastically encodes x
into the latent space, and the decoder pθ (x|z) stochastically maps latent representations back
into data space.

Since VAEs are generative models, it is straightforward to use them to generate samples
from the domain using simple ancestral sampling [31, 5]. Further, the continuous latent

1Figure borrowed from http://blog.fastforwardlabs.com/2016/08/22/under-the-hood-of-the-variational-
autoencoder-in.html.
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space represents a low-dimensional manifold that can learn important characteristics of the
data [31, 5, 52, 61]. These capabilities are demonstrated in Figure 2.3, which were generated
using our own implementation of a VAE2 trained on MNIST [35] (mainly for verifying the
correctness of the implementation).

(a) (b)

Fig. 2.3 (a) Samples from our implementation of a VAE trained on MNIST with a 10-
dimensional latent space. (b) Visualizing the latent manifold learned using a two-dimensional
latent space on the MNIST dataset. Samples were drawn by linearly spacing the 2d unit hyper-
cube, and passing all values through the inverse CDF of the standard normal distribution
before decoding.

2.6.2 BNNs with Stochastic Backpropagation

Closely related to VAEs is the idea of training BNNs using variational inference and repa-
rameterization. The BNN model can be detailed as follows:

p(w) = N (w;0,1)

p(y|x,w) = fθ (y;x,w),

2https://github.com/Gordonjo/generativeSSL/blob/master/VAEexp.py
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where w are the weights of the neural network parameterizing the distribution of the labels
y. Here, x is considered a deterministic observed value and therefore does not appear as
part of the generative process (hence BNNs are not proper generative models). Further, note
that here we have specified a standard multivariate Gaussian prior for w, but other, more
complex priors can be used [4]. For a specific prior p(w), it is straightforward to show that
the variational lower-bound can be expressed and approximated as:

L (w;x,y) = Eqφ (w)

[
log pθ (y|x,w)− logqφ (w)+ log p(w)

]
≈ 1

L

L

∑
l=1

log pθ (y|x,wl)− logqφ (wl)+ log p(wl)

(2.26)

where wl ∼ qφ (w). Since w is shared across all examples, an inference network is not
necessary, and a simple Gaussian distribution can be used:

qφ (w) = N
(

w; µφ ,Diag(σ2
φ )
)

(2.27)

The reparameterization trick is then applied to w such that:

L (w;x,y)≈ 1
L

L

∑
l=1

log pθ (y|x,gφ (ε
l))− logqφ (gφ (ε

l))+ log p(gφ (ε
l))

with ε
l ∼ p(ε)

(2.28)

The lower bound L is treated as a standard objective function, and can be optimized
efficiently using standard gradient descent optimizers. Once trained, prediction for a new
data-point x∗ is performed by integrating out the weights, and can be approximated using
MC integration by taking samples from qφ (w):

p(y∗|x∗,D) =
∫

w
p(y∗|x∗,w)p(w|D)dw

≈
∫

w
p(y∗|x∗,w)qφ (w)dw

≈ 1
L

L

∑
l=1

p(y∗|x∗,wl), with wl ∼ qφ (w).

(2.29)
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In Blundell et al. [4] the authors choose to approximate the KL-divergence via MC
sampling, thus allowing them to introduce priors and approximations without being restricted
to tractable forms of the KL-divergence.

Finally, in Depeweg et al. [10] BNNs are extended to include stochastic inputs. The
graphical model representation of this can be seen in Figure 2.4.

Fig. 2.4 BNN with stochastic inputs.

Depeweg et al. [10] Show that adding the stochastic inputs increases flexibility of the
network, and allows it to model heteroskedasticity and multi-modal data. However, the
stochastic inputs are limited to be independent of the observed inputs x (conditioned on the
outputs), and are thus restricted to simple posteriors and low dimensions. Further, Depeweg
et al. [10] demonstrate how one may use black-box α-divergence minimization [20] to train
a BNN with stochastic inputs, generalizing the procedure proposed in Blundell et al. [4] to
the entire family of α-divergences rather than just VI and the KL-divergence.





Chapter 3

Related Work

In the previous chapter we discussed general ideas in ML that that constitute the background
work for this thesis. In this chapter we discuss recent literature closely related to the ideas
presented in this document in more detail. In Section 3.1 we discuss advances in using DGMs
for semi-supervised learning, and in Section 3.2 we discuss the use of Bayesian training in
the deep learning framework for active learning.

3.1 Deep Generative Models for semi-supervised Learning

Arguably the most interesting extension of DGMs is for semi-supervised learning. From a
high-level perspective, VAEs are able to learn and model underlying structure in the data.
This property lends itself naturally to the idea of leveraging the learned structure from
unlabeled data to improve performance on supervised tasks.

This idea was first formalized in Kingma et al. [30], where two approaches were proposed
to carry this out. The first (M1) simply trains a standard VAE on the unlabeled data, and then
encodes the labeled data into the latent space where a classifier is trained. The intuition here
being that the latent representation might distill important information in the data relevant to
classification. A similar pipeline is followed for new test data.

The second (M2) approach proposed extending the VAE model to include labels, as
depicted in Figure 3.1. The generative model for this can be described as:

p(z) = N (z;0, I) , p(y) = Cat(y|πy) , (3.1)

p(x|z,y) = fθ (x;y,z), (3.2)
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Fig. 3.1 Graphical model representation of M2.

where fθ (x;y,z) is a valid likelihood function parameterized by neural networks with inputs
z,y (Gaussian or Bernoulli for continuous or binary data respectively).

Separate lower bounds can be developed for the labeled and unlabeled cases with the
model. For the labeled case the approximate inference network qφ (z|x,y) is introduced. The
ELBO can then be expressed as:

L l(x,y;θ ,φ) = Eqφ (z|x,y)

[
log pθ (x|y,z)

]
+ log p(y)−Dkl

(
qφ (z|x,y)∥pθ (z)

)
, (3.3)

where we note that log p(y) is constant w.r.t. both θ ,φ . For the unlabeled case, an additional
inference network qφ (y|x) is introduced, and the unlabeled ELBO can be expressed as:

L u(x;θ ,φ) = ∑
y∈Y

qφ (y|x)L l(x,y;θ ,φ)+H
(

qφ (y|x)
)
, (3.4)

where H computes the entropy of a probability distribution. It is important to note that
after training the inference network qφ (y|x) is used for classification of unseen examples,
and the generative model discarded (in terms of the supervised task at hand). Since no terms
including qφ (y|x) appear in Eq. (3.3), the authors propose an additional term to the overall
cost function such that the inference network is trained with both the labeled and unlabeled
data. Thus, the final objective function for training is:

L (x,y;θ ,φ) = ∑
(x,y)∼p̃l

L l(x,y;θ ,φ)+ ∑
(x,y)∼p̃u

L u(x;θ ,φ)+αE(x,y)∼p̃l

[
logqφ (y|x)

]
,

(3.5)
where p̃l , p̃u represent the empirical distribution of the labeled and unlabeled data, respec-
tively, and α is a hyper-parameter that needs to be tuned. The final additional term allows
qφ (y|x) to learn from the labeled data as well as the unlabeled data.
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Finally, Kingma et al. [30] propose stacking M1 and M2 in what can be thought of as a
2-layer stochastic model, as depicted in Figure 3.2.

Fig. 3.2 Graphical model representation of stacked M1 and M2.

However, convergence for multi-layer deep generative models is difficult, and in Kingma
et al. [30] the authors were unable to train the model jointly end to end. Instead, the authors
first learned a latent representation using M1, then used the latent representation (z1) to train
M2. This version of stacking M1 and M2 without joint training achieved excellent results on
a number of benchmark semi-supervised tasks, including a MNIST [35] classification task
using only ten labeled instances from every class.

3.1.1 Improved Semi-Supervised Learning with Auxiliary Deep Gen-
erative Models

Building on the ideas presented in Kingma et al. [30], an auxiliary variable was proposed to
be added to the models in Maaløe et al. [38], as depicted in Figure 3.3a.

(a) ADGM (b) SDGM

Fig. 3.3 Graphical model representations of ADGM and SDGM.
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Adding the auxiliary variable a leaves the generative model of x,y unchanged while sig-
nificantly improving the representative power of the posterior approximation. An additional
inference network is introduced such that:

qφ (a,y,z|x) = qφ (z|a,y,x)qφ (y|a,x)qφ (a|x). (3.6)

It can then be shown that the labeled ELBO can be expressed as:

L l(θ ,φ ;x,y) = Eqφ (a,z|x,y)

[
log pθ (x,y,a,z)− logqφ (a,z|x,y)

]
, (3.7)

and similarly, that the unlabeled ELBO as:

L u(θ ,φ ;x) = Eqφ (a,y,z|x)

[
log pθ (x,y,a,z)− logqφ (a,y,z|x)

]
. (3.8)

Similarly to Kingma et al. [30], the authors add an additional term for qφ (y|a,x) to ensure
learning from the labeled data as well. The authors show that adding the auxiliary variable
improves convergence rates and lower bounds on numerous benchmarks [37, 38].

Interestingly, by reversing the direction of the dependence between x and a, a model
similar to the stacked version of M1 and M2 is recovered (Figure 3.3b), with what the authors
denote skip connections from the second stochastic layer and the labels to the inputs x. In
this case the generative model is affected, and the authors call this the Skip Deep Generative
Model (SDGM). This model is able to be trained end to end using SGD (according to the
Maaløe et al. [38] the skip connection between z and x is crucial for training to converge).
Unsurprisingly, joint training for the model improves significantly upon the performance
presented in Kingma et al. [30].

3.2 Active Learning with Bayesian Neural Networks

A number of interesting approaches have recently been proposed for efficient training of
large-scale BNNs. Gal and Ghahramani [13, 14] show how dropout [59] can be reinterpreted
as approximating posterior Bayesian inference for neural networks, while Hernández-Lobato
and Adams [19], Blundell et al. [4] show how backpropagation and variational inference can
be redesigned to derive posterior distributions for the weights. Regardless of the learning
procedure, one of the most important applications of Bayesian neural networks is active
learning for high dimensional and complex datasets. In the following sections we discuss
how BNNs can be used for scalable active learning.
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3.2.1 Approximating Acquisition Functions

In Section 2.2 a number of uncertainty measures were introduced that can be used as
acquisition functions for active learning in classification settings. These functions are often
intractable and cannot therefore be used in a straightforward manner.

However, Gal et al. [15] show how these acquisition functions might be approximated
using BNNs with dropout as an approximation for a posterior distribution over weights. In
this work, we propose using Bayesian backpropagation [4] to approximate posterior inference
in BNNs. Despite this difference, the methods proposed in Gal et al. [15] to approximate
acquisition functions are applicable to our methodology as well. Below we discuss these
approximations.

Variation Ratios

As detailed in Eq. (2.2), variation ratios is given as:

αVarRatios(x;θ) = 1−max
y∈Y

pθ (y|x).

In the case of BNNs, we can approximate the posterior predictive distribution as [4, 12]:

pθ (y|x) =
∫
W

p(y|x,w)p(w|Dtrain)dw

≈
∫
W

p(y|x,w)qφ (w)dw

≈ 1
L

L

∑
l=1

p(y|x,wl) with wl ∼ qφ (w)

=∆ p̂(y|x),

(3.9)

where qφ (w) is the variational approximation to the true posterior distribution p(w|Dtrain).
In practice in the classification case, the final layer of the network is a softmax function
approximating p(y|x,w). Substituting the approximation in Eq. (3.9) into Eq. (2.2), we can
define the approximation to αVarRatios(x;θ) as:

α̂VarRatios(x;θ) =∆ 1−max
y∈Y

p̂(y|x). (3.10)
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Predictive Entropy

Similarly, we can use the approximation to pθ (y|x) to approximate αEntropy(x;θ). Recall
from Eq. (2.3) that:

αEntropy(x;θ) =− ∑
y∈Y

pθ (y|x) log pθ (y|x).

Thus, we can simply substitute the estimator in Eq. (3.9) into Eq. (2.3), such that:

α̂Entropy(x;θ) =∆ − ∑
y∈Y

p̂θ (y|x) log p̂θ (y|x). (3.11)

Mutual Information

Finally, approximating αMI(x;θ) is a little more involved. Recall from Eq. (2.4) that:

αMI(x;θ) = H (y|x)−Ep(θ |Dtrain)

[
H (y|x,θ)

]
.

Eq. (2.4) consists of two terms. The first term is equivalent to the predictive entropy, and can
be approximated as in Eq. (3.11). Further, as shown in Gal et al. [15] we can estimate the
second term with the approximate posterior as:

Ep(θ |Dtrain)

[
H (y|x,θ)

]
≈ Eqφ (w)

[
H (y|x,θ)

]
≈−1

L

L

∑
l=1

∑
y∈Y

(y|x,wl) log p(y|x,wl),
(3.12)

where wl ∼ qφ (w). Combining Eq. (3.12) and Eq. (3.11) we have that [15]:

α̂MI(x;θ) =∆ − ∑
y∈Y

p̂θ (y|x) log p̂θ (y|x)

+
1
L

L

∑
l=1

∑
y∈Y

(y|x,wl) log p(y|x,wl).

(3.13)

Gal [12], Gal et al. [15] show that leveraging uncertainty in BNNs can be leveraged to
great efficiency for active learning of high-dimensional and complex data such as images.
While predictive entropy and variation ratios can be applied in deterministic models, Gal et al.
[15] demonstrate the significant advantage of Bayesian models in AL, which can be easily
understood as calibrated uncertainty estimates are crucial to the acquisition functions. Further,
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BALD only makes sense in a Bayesian setting where p(θ |Dtrain) is a proper distribution and
not a delta function.

3.3 Relationship to this Work

Our model is most similar to the work detailed by Kingma et al. [30]. However, since our
discriminative component is a Bayesian neural network with random inputs, we use a slightly
different inference network architecture.

Similarly, Bayesian deep learning has recently been shown to be highly effective in
active learning regimes [19, 15]. In contrast to these works, the proposed model can perform
semi-supervised and active learning simultaneously, which may lead to significant improve-
ments. Another difference is that while Gal et al. [15] use dropout as a proxy for Bayesian
inference [14] and Hernández-Lobato and Adams [19] use a technique called probabilistic
backpropagation, we propose leveraging variational inference to explicitly model the weight
uncertainty [4].

The proposed model builds on ideas from both DGMs and Bayesian deep networks to
suggest a principled method for simultaneous semi-supervised and active learning.





Chapter 4

Deep Generative Models with
Discriminative Components

We propose extending BNNs with stochastic inputs (e.g., as in Depeweg et al. [10]) by adding
a dependency from latent variables z to the inputs x (as in Figure 4.1). This dependency
results in a component that is similar to a VAE within the model, and enables us to naturally
include an inference network for z. Further, we propose new inference procedures to allow
this model to be used for semi-supervised learning, as in [30, 37].

xz

y

N

Fig. 4.1 Proposed graphical model

There are a few motivations for this model: (i) it builds on the idea of VAEs, but attempts
to do so in a manner that results in an explicit probabilistic model for the labels, (ii) it
extends BNNs with stochastic inputs to include inference networks for the latent variables,
which should allow generalizing these to high dimensional variables, and (iii) it naturally
accommodates semi-supervised and active learning with the generative model. The generative
model can be described as:
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p(z) = N (z;000, III) , pθ (x|z) = fθ (x;z) , (4.1)

pθ (y|z,x) = Cat(y;πy) , (4.2)

where fθ (x;z) is a valid probability distribution (Normal and Bernoulli for continuous and
binary data, respectively) and we parameterize the distributions of x,y with deep neural
networks (e.g., in the case where fθ (x;z) = N (x; µx,ν

2
x )):

µx = NNx(z,θ) , logνx = NNx(z,θ) , (4.3)

πy = NNy(z,x,θ) , (4.4)

where NNx,y are neural networks with weights wx,y, and θ = {wx,wy}.

4.1 Variational Training of the Model

We propose a variational approach for training the model. At this point we are interested in
point estimates of θ , and variational inference of z. We first develop the variational lower
bound using standard techniques [62]. In the semi-supervised setting, there are two lower
bounds, for the labeled and unlabeled case.

4.1.1 Labeled Data ELBO

Following recent ideas and advances in variational inference [31, 52], we introduce inference
networks qφ (z|x,y) to approximate the intractable posterior distribution. We can express a
lower bound on the marginal likelihood of the observed data as:

log pθ (x,y) = log
∫

pθ (x,y,z)dz = log
∫

pθ (x,y,z)
qφ (z|x,y)
qφ (z|x,y)

dz

≥
∫

qφ (z|x,y)
[

log pθ (x,y,z)− logqφ (z|x,y)
]
dz

= Eqφ(z|x,y)

[
log pθ (x,y,z)− logqφ (z|x,y)

]
= Eqφ(z|x,y)

[
log pθ (x|z)+ log pθ (y|x,z)

]
−DKL

(
qφ (z|x,y)||p(z)

)
=∆ L l(θ ,φ ;x,y),

(4.5)
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where qφ (z|x,y) is a recognition network parameterized by φ :

qφ (z|x,y) = N
(

z; µz(x,y),Diag(σ2
z (x,y))

)
. (4.6)

where here too µz, σ2
z are parameterized by neural networks. The lower-bound contains a

term for the likelihood associated with the pair of variables x and y, and a regularization term
for the inference network. We can approximate expectations w.r.t. qφ (z|x,y) by sampling
from it (with the reparameterization trick [31]), and using the samples to compute likelihood
terms:

L l(θ ,φ ;x,y)≈ 1
L

L

∑
l=1

[
log pθ (x,y|zl)− logqφ (zl|x)+ log p(zl)

]
, (4.7)

with zl ∼ qφ (z|x,y). The KL divergence in Eq. (4.5) is analytically tractable due to the
assumed form of the posterior approximation, but in the general case can be approximated
via MC sampling.

4.1.2 Unlabeled Data ELBO

We follow similar methods to derive the lower bound for the unlabeled case. In this setting,
we have:

log pθ (x) = log
∫∫

pθ (x,y,z)dydz = log
∫∫

pθ (x,y,z)
qφ (z,y|x)
qφ (z,y|x)

dydz

≥
∫∫

qφ (z,y|x)
[

log pθ (x,y,z)− logqφ (z,y|x)
]
dydz,

(4.8)

where we have introduced the recognition network qφ (z,y|x). It is important to note that by
decomposing qφ (z,y|x) = qφ (z|x)qφ (y|x,z) terms for y cancel and the model reverts back to
a standard VAE (see Appendix A).

We therefore suggest an alternative. Rather than decomposing the recognition network
as qφ (z,y|x) = qφ (z|x)qφ (y|x,z), we decompose it as qφ (z,y|x) = qφ (y|x)qφ (z|x,y). Thus,
instead of having two recognition networks qφ (y|x,z) and qφ (z|x), we will have the two
recognition networks qφ (z|x,y) and qφ (y|x). The introduction of the network qφ (y|x) is a
little odd given the generative model pθ (y|x,z). However, using this decomposition leads to
the following lower bound for the unlabeled data:
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log pθ (x) = log
∫∫

pθ (x,y,z)dydz = log
∫∫

pθ (x,y,z)
qφ (z,y|x)
qφ (z,y|x)

dydz

≥
∫∫

qφ (z,y|x)
[

log pθ (x,y,z)− logqφ (z,y|x)
]
dydz

=
∫∫

qφ (z,y|x)
[

log pθ (y|x,z)+ log pθ (x|z)+ log p(z)− logqφ (z,y|x)
]
dydz

= Eqφ (z,y|x)

[
log pθ (x,y|z)

]
−Eqφ (y|x)

[
Dkl(qφ (z|x,y)||p(z))

]
+H

(
qφ (y|x)

)
=∆ L u(θ ,φ ;x),

(4.9)

where H (·) computes the entropy of a probability distribution. This form of the lower
bound has data fit terms for both x and y in the generative model, as well as regularization
terms for both recognition networks qφ (z|x,y) and qφ (y|x) (these too are parameterized by
neural networks). Expectations w.r.t. qφ (z,y|x) can be approximated using Monte-Carlo
approximation by first sampling yl ∼ qφ (y|x), then sampling zl ∼ qφ (z|x,yl).

The recognition network qφ (z|x,y) is shared by both the unlabeled and labeled objectives.
The recognition network qφ (y|x) is unique to the unlabeled data. Following the work in
[30, 38], we add a weighted term to the final objective function to ensure that qφ (y|x) is
trained on all data1 such that:

L (θ ,φ ;x,y) = ∑
(x,y)∼p̃l

L l(x,y;θ ,φ)+ ∑
x∼p̃u

L u(x;θ ,φ)+αE(x,y)∼p̃l

[
logqφ (y|x)

]
, (4.10)

where α is a small positive constant which is initialized in a similar way as in [30], p̃l is
the empirical distribution of labeled points and p̃u is the empirical distribution of unlabeled
points.

4.2 Discrete Outputs

Optimizing Eq. (4.10) is straightforward when y is continuous as we can approximate ex-
pectations by taking samples from qφ (z|x,y) and qφ (y|x) and use stochastic backpropagation
and the reparameterization trick [31, 52] to differentiate through these approximations.

1This is not strictly necessary in our model, but we find that it increases convergence speed and eases
training.
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Despite recent efforts [27], reparameterization for discrete variables is as yet not a well-
understood process. Optimization of L u requires taking expectations w.r.t. qφ (y|x) which
may be a continuous or discrete distribution. In the discrete case (y ∈ {1, ...,K}), rather than
Monte-Carlo approximation we propose directly computing the expectation by summing
over the possible values of y:

Eqφ (y|x) [ f (y,z,x)] = ∑
y∈Y

qφ (y|x) f (x,y,z). (4.11)

Substituting this for the relevant terms in Eq. (4.9) yields:

Eqφ (y|x)

[
log pθ (x,y|z)

]
= ∑

y∈Y
qφ (y|x)Eqφ (z|x,y)

[
log pθ (x,y|z)

]
, (4.12)

Eqφ (y|x)

[
Dkl(qφ (z|x,y)||p(z))

]
= ∑

y∈Y
qφ (y|x)Dkl

(
qφ (z|x,y)||p(z)

)
, (4.13)

We note that Eq. (4.12) and Eq. (4.13) are equivalent to a finite mixture density for qφ (z|x):

qφ (z|x) =
K

∑
k=1

γkqk
φ (z|x), (4.14)

where γk = qφ (y = k|x) and qk
φ
= qφ (z|x,y = k). Therefore, in the case where exact enumer-

ation is not tractable (e.g, in the case where there are many categories, such as the ImageNet
dataset [33]), it may be possible to scale the model up to many categories by sampling
through the mixture density. Let h = Eqφ (z|x) [ f (x,y,z)] be the expectation of a function being
maximized (e.g., Eq. 4.12), then Graves [18] shows that the gradient for the mixture weights
γk can be approximated as:

∂h
∂γk
≈ 1

N

N

∑
n=1

D

∑
d=1

∂ f (x,y,z(n))

∂ z(n)d

∂ z(n)d
∂γk

; z(n) ∼ qφ (z|x), (4.15)

and we can sample from qφ (z|x) by assuming a diagonal covariance matrix and using
univariate inverse CDFs. This process is given in detail (including explicit gradient terms and
sampling procedures) in Appendix B. This process allows us to differentiate through y, and
we can differentiate through z by sampling with the reparameterization trick from individual
components qφ (z|x,y). This is left for future exploration if time permits.

Taking explicit expectations w.r.t. qφ (y|x) rather than Monte-Carlo approximations
allows us to extend the training procedure to cases where y is discrete. In the continuous case,



34 Deep Generative Models with Discriminative Components

these expectations will be approximated by Monte-Carlo sampling as per usual in AEVB
algorithms [31].

4.3 Introducing Model Uncertainty

A major advantage of our proposed approach is that it enables us to express model uncertainty
in the discriminative component NNy(z,x,θ) by computing a posterior distribution on the
weights Wy. To allow this we extend the model described in Eq. (4.1, 4.2) to include the
weights (here we describe including Wy, but it is straightforward to include Wx as well) by
considering the following prior and likelihood functions::

pθ (Wy) = N (Wy;0,I) , (4.16)

pθ (y|x,z,Wy) = Cat(y;πy) , (4.17)

where πy = NNy(z,x,Wy) is parameterized by a neural network with weights Wy. We assume
that the model weights are independent of the latent variables z. Assuming a single labeled
data point, the posterior distribution for the latent variables is:

pθ (Wy,z|x,y) =
pθ (y|z,x,Wy)p(z)p(Wy)

p(y|x)
. (4.18)

Unfortunately, this posterior is intractable. Following the work in Blundell et al. [4], Depeweg
et al. [10], we introduce an additional approximate distribution qφ (Wy) = N (Wy; µw,σ

2
w)

which we assume is independent of the inference networks qφ (y,z|x). Re-deriving the lower
bound for the labeled case yields:

log pθ (x,y) = log
∫∫

Z ,⊒

pθ (x,y,z,w)dzdw

≥
∫∫

Z ,W

qφ (z,w|x,y)
(

log pθ (x,y,z,w)− logqφ (z,w|x,y)
)

= Eqφ (z,w|x,y)

[
log pθ (x,y|z,w)

]
−DKL

(
qφ (z|x,y)∥p(z)

)
−DKL

(
qφ (w)∥p(w)

)
=∆ L l(θ ,φ ;x,y)

(4.19)

This can be approximated using the reparameterisation trick as:
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L l(θ ,φ ;x,y)≈ 1
L ∑

l
log pθ (x,y|z(l),w(l))−DKL

(
qφ (z|x,y)∥p(z)

)
−DKL

(
qφ (w)∥p(w)

)
(4.20)

where z(l) ∼ qφ (z|x,y) and w(l) ∼ qφ (w). Similarly, re-deriving the lower bound for the
unlabeled case yields:

log pθ (x) = log
∫∫

pθ (x,y,z,w)dzdydw

≥ Eqφ (y,z,w|x)

[
log pθ (x,y|z,w)− logqφ (y,z,w|x)

]
= Eqφ (y|x)

[
L l(θ ,φ ;x,y)

]
+H

[
qφ (y|x)

]
=∆ L u(θ ,φ ;x)

(4.21)

This too can be approximated using the reparameterisation trick as:

L u(θ ,φ ;x)≈ ∑
y∈Y

qφ (y|x)
1
L ∑

l
L l(θ ,φ ;x,y)+H

[
qφ (y|x)

]
(4.22)

where the labeled loss is approximated using L samples as in Eq. (4.20).
We follow the work presented in Blundell et al. [4], and optimize the objective functions

in Eq. (4.20, 4.22) by applying reparameterisation to the weights W , a procedure known as
Bayes-By-Backprop.

Training with these objective functions us allows to explicitly capture model uncertainty
via uncertainty in the weights. This in turn allows us to use the model for active learning
as well as semi-supervised learning, and increases robustness to over-fitting in smaller data
regimes.

4.4 Prediction with the Model

Given a trained model (point estimates for θ ,φ ), we would like to make predictions for y∗
(and perhaps infer z∗) for a new test input x∗:

p(y∗|x∗,D ,θ ,φ) =
∫
Z

p(y∗|x∗,z)p(z|x∗)dz

≈ Eqφ (z|x,y) [p(y|x∗,z)]
(4.23)
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The problematic term in Eq. (4.23) is qφ(z|x,y). To approximate p(y⋆|x⋆) for a new example
x⋆, we must integrate pθ (y⋆|x⋆,z,Wy) with respect to the posterior distribution on z and
Wy. For this, Wy is sampled from qφ (Wy), while z is sampled from the recognition network
qφ (z|x⋆,y⋆). Since this recognition network requires y⋆, we use a Gibbs sampling procedure,
drawing the first sample of y⋆ from the recognition network qφ (y⋆|x⋆). In particular,

y(0)⋆ ∼ qφ (y⋆|x⋆) ,

W (τ)
y ∼ qφ (Wy) ,

z(τ) ∼ qφ (z|x⋆,y
(τ−1)
⋆ ) ,

y(τ)⋆ ∼ pθ (y⋆|x⋆,z(τ),W
(τ)
y ) ,

 for τ = 1, . . . ,T .

and the final prediction and encoding are averaged over the samples:

ŷ =
1
T

T

∑
τ=1

y(τ), ẑ =
1
T

T

∑
τ=1

z(τ). (4.24)

Using qφ (y⋆|x⋆) to initialize the procedure increases efficiency and negates the need for a
burn in period. In our experiments T = 10 produced good results.
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Implementation, Experiments, and
Results

In this section we discuss experimentation and results with the models. Before that, we
review a number of key implementation details we found especially useful for achieving
good results with the models. All implementations are in TensorFlow [1] and are compatible
with GPU processing. Complete code to work with the models (including experiment scripts)
can be found on the accompanying code repository.1

5.1 Key Implementation Details

All the theory and mathematics required to train, predict, and sample from the models are
described in the chapters above. However, in practice training the models required a number
of additional insights and machinery to be stable and successful. In this section we briefly
present some of the key implementation details required for the models to work properly.
The motivation for this section is to provide potential users of the model with additional
insights into tuning the necessary parameters, as well as provide some practical advice for
practitioners who wish to train similar models (DGMs/BNNs).

5.1.1 KL Warmup

When training the model, we observed that often the generative component p(z)p(x|z) tended
to severely underfit the data, producing very simple latent representations that led to low
likelihoods. This in turn led to poor predictive performance of the BNN, as the generative
component was not informing the discriminative component.

1https://github.com/Gordonjo/generativeSSL.

https://github.com/Gordonjo/generativeSSL
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Further, we observed that during training the optimization procedures seemed to favor the
KL divergence term; rather than achieving high conditional likelihoods Eqφ (z|x,y)

[
pθ (x|z)

]
,

the KL divergence was converging on 0. This implied that the model was ‘giving up’ on the
data in favor of the simpler prior for the latent representation.

Following the work presented in Sønderby et al. [58], the generative model ELBO was
adjusted to include a warm-up variable β τ :

L l(x,y;θ ,φ) = Eqφ(z|x,y)

[
log pθ (x|z)+ log pθ (y|x,z)

]
−β

τDKL

(
qφ (z|x,y)||p(z)

)
(5.1)

where τ is the optimization epoch. The schedule for β is based on the number of warmup
epochs such that β τ is linearly incremented from zero to one in the desired number of epochs.

The warmup for the KL term encourages the model to first move towards representations
that generate good reconstructions of the data before regularizing the complexity of the
inference network.

Interestingly, we found that warmup was not required for all datasets. However, in certain
cases it was necessary for the generative component to learn a representation that informed
the discriminative component of the underlying structure and enable it to achieve desirable
predictive performance.

5.1.2 Learning Rate Annealing and Weight Regularization

Optimization of the objective function was performed using an Adam optimizer [29] with
parameters β1 = 0.9 and β2 = 0.999. However, the hyper-parameter that had the strongest
effect on the training procedure and needed careful tuning was the learning rate η .

One of the most influential implementation details, which we observed to greatly improve
training stability and epochs to convergence, was placing η on an exponential decay schedule,
such that:

η
τ = η0 ∗ γ

τ/ω (5.2)

where η0 is an initial step-size, τ is the training epoch, 0 < γ < 1 is a decay rate, and ω

moderates the exponential decay. This allows the step size to be large at the beginning of
training when we wish to move quickly towards an optimum, and the step size to be small
towards the end of training when we wish to converge.
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While the schedule for η introduces more hyper-parameters, we found these easier to
reason about intuitively, and the schedule induced drastic improvements in the training
procedure.

Another important factor was adding weight regularization to the deterministic models
(non-Bayesian). Here, for every neural network in the model not trained with a Bayesian
procedure, we added ℓ2-norm regularization for the weights. Weight regularization encour-
ages smaller weights (corresponding to simpler models) [16], and empirically improved the
stability of training and consistency of the optimum found by the optimization procedure.

5.1.3 Variance Initialization

One problem encountered when introducing model uncertainty was that the BNN component
training diverged, and training was unsuccessful. To allow convergence, we initalize the
variational approximation qφ (W ) with arbitrarily small variances (on the order of exp(−10)).
Doing so allows training to proceed, and converge.

The success of the intialization can be understood as follows: when the weight variances
are very small, qφ (W ) approaches a delta function around the means. Empirically, we
observe that as training progresses, the weight variances grow, as can be expected due to the
KL-divergence term in Eq. (4.20, 4.22). While the variances are small, training is equivalent
to MAP estimation of the weights. Thus, initializing the variances to be very small is similar
to first performing MAP estimation (i.e., “guiding” the model towards the data), and then
regularizing qφ (W ), counter-acting the tendency of VI to ignore the data in favor of the
simpler regularization term [2].

Another intuition regarding the importance of initializing the variances to low values can
be seen by noting that the variance of the gradient estimator is proportional to the variance of
the weights. Thus, if during the beginning of training the variances are large, the variance of
the gradient estimator is large and training tends to diverge. By initializing the variances to
be very small, we reduce the variance of the gradient estimator and encourage convergence.

5.1.4 Batch Normalization

Batch-normalization (BN; [26]) is a recently proposed technique to improve the training
process of deep neural networks. A BN layer in a network renormalizes the d-dimensional
input x(k) to the kth hidden layer across a mini-batch as

x̃(k) =
x(k)−E[x(k)]√

V(x(k))
, (5.3)
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and then applies the activation to x̃(k) rather than x(k). The basic intuition behind BN is that
SGD training is complicated by the fact that changes to the weights of previous layers affect
the distribution of the data coming into layer k. By performing the normalization, the inputs
to layer k maintain a distribution that is approximately standard normal [26].

Further, to increase the expressiveness of the output of layer k, two additional (learned)
parameters are introduced such that the normalization becomes:

x̃(k) = γk

(
x(k)−E[x(k)]√

V(x(k))

)
+βk, (5.4)

allowing the distribution of the inputs to vary from a standard normal distribution.
It is necessary to distinguish between the training and testing regimes in BN. In the

training regime, one uses batch means and variances in the estimates of E[x(k)] and V [x(k)]
[26]. However, for the testing regime this may be inappropriate, as we may be interested in
prediction for inputs with different statistics to the training batches (e.g., prediction for a
single input, or uniformly distributed inputs across a region of interest). To deal with this, it
is typical to maintain population mean and variance estimates (Ê[x(k)],V̂ [x(k)]) that are then
used at test time. The population estimates are estimated with moving averages throughout
the training procedure, such that at each iteration we perform the update:

Ê
[
x(k)
](τ)

= κÊ
[
x(k)
](τ−1)

+(1−κ)E
[
x(k,τ)

]
,

V̂
[
x(k)
](τ)

= κV̂
[
x(k)
](τ−1)

+(1−κ)V
[
x(k,τ)

]
,

(5.5)

where 0 ≤ κ ≤ 1 is a momentum rate for the moving average estimation and x(k,τ) is the
minibatch input to layer k at iteration τ .

BN has been shown to significantly improve convergence rates of deep models, and Søn-
derby et al. [58] claim that it is especially useful for training DGMs. Empirically, we found
that applying BN to the networks parameterizing the distributions pθ (x|z), pθ (y|x,z), qφ (y|x),
and qφ (z|x,y) resulted in dramatic improvements in convergence, requiring as much as an
order of magnitude less epochs for the model to converge. See Section 5.3 for further
regarding the use of BN.
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5.2 Moons Data

In this section we detail experiments conducted with the moons dataset. The data contains
two classes, each generated from a deterministic function with additive Gaussian noise
(Figure 5.1).

(a) σ2
d = 0.1 (b) σ2

d = 0.2

Fig. 5.1 Data generated from the moons data function with differing levels of noise.

We generate two sets (training and testing), each containing 1e4 examples. This dataset is
not especially challenging for any non-linear classifier. However, we use this data to validate
the performance of our model by introducing a semi-supervised scenario similarly to Maaløe
et al. [38] (Figure 5.2).

(a) σ2
d = 0.1 (b) σ2

d = 0.2

Fig. 5.2 Semi-supervised scenarios for the moons data. Grey data-points are unlabeled during
training.

In the semi-supervised case, the model has access to only three labeled instances from
each class, and the remaining training instances are unlabeled. This case is challenging, as the
model must make use of the unlabeled data to learn the structure, and use very little labeled
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information for classification. A standard classifier that cannot make use of the unlabeled
data will not be able to achieve good performance on this task.

5.2.1 Experimental Setup

We compare the performance of a number of models in this scenario. We examine the
performance of a standard DNN, M2 [30], SDGM [38], and the proposed approach for Semi-
Supervised Learning using a Point Estimate for Wy (SSLPE) and the proposed approach for
Semi-Supervised Learning using an Approximate Posterior Distribution for Wy (SSLAPD).
Performance is compared in terms of test log-likelihood and classification accuracy.

All neural networks have two hidden layers with 128 neurons in each. We use RELU [45]
activation functions on all hidden layers, and softmax or linear activations for output layers
with categorical or continuous variables respectively. Adam [29] is used for optimization
with a tuned learning rate and annealing schedule. Warmup periods are employed for KL-
divergence terms, where the temperature is increased linearly, and the number of warmup
epochs is tuned for each model.

We use an existing implementation of SDGM.2 Note that BN is implemented for the
SDGM, but not for M2 in the original implementation,3 which may have significant im-
pacts on performance (see Section 5.3). Further, the original repository does not contain a
GPU-compatible implementation of M2 (only for the stacked version of M1+M2) which
significantly slows down performance and hinders experimentation. Therefore, for M2 we
use our own implementation (which can be found in the repository for this project).4 We
verify our implementation by comparing to the author’s implementation on the Moons’ data
without BN, as well as on MNIST, where our implementation achieves similar performance
to that detailed in Kingma et al. [30]).

5.2.2 Accuracy and Log-Likelihood

For each model, we tune the necessary hyper-parameters (learning schedule and KL-warmup),
and train the model to convergence. We repeat this process five times for the moons data
with additive noise of 0.1 and 0.2, and measure accuracy and log-likelihood after training is
complete. The results (mean and standard deviation) are detailed in Tables 5.1, 5.2.

2https://github.com/larsmaaloee/auxiliary-deep-generative-models
3https://github.com/dpkingma/nips14-ssl
4https://github.com/Gordonjo/generativeSSL
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Table 5.1 Model performance comparison on moons data with 0.1 additive Gaussian noise.

DNN M2 SDGM SSLPE SSLAPD

Accuracy 83.6 (3.46) 98.1 (1.21) 99.2 (0.50) 99.2 (0.30) 99.9 (0.01)
log p(y|x) -1.207 (0.40) -0.142 (0.06) -0.062 (0.03) -0.073 (0.03) -0.007 (0.01)

Table 5.2 Model performance comparison on moons data with 0.2 additive Gaussian noise.

DNN M2 SDGM SSLPE SSLAPD

Accuracy 73.04 (0.88) 94.8 (0.37) 95.1 (0.38) 95.9 (0.35) 96.8 (0.06)
log p(y|x) -1.303 (0.13) -0.258 (0.01) -0.371 (0.04) -0.149 (0.01) -0.084 (0.01)

In all cases SSLAPD outperforms all other models significantly. Unsurprisingly, a
standard DNN is unable to achieve good performance as it is not capable of leveraging the
unlabeled data.

For the the 0.1 additive noise case, SDGM and SSLPE achieve similar performance in
terms of accuracy and log-likelihood. However, when noise level is increased to 0.2, SSLPE
significantly outperforms SDGM in log-likelihood, though accuracy is still comparable. This
implies that SSLPE produces better uncertainty estimates than SDGM, which is visually
reinforced in Figure 5.3.

M2 is able to achieve comparable (though not quite as consistently high quality) per-
formance as the other semi-supervised models. Further, similarly to the results reported in
Maaløe et al. [38] we found that training the model was unstable and often diverged (even
after introducing batch normalization).

In the case of 0.2 additive noise, SSLAPD significantly outperforms the other models
in both accuracy and log-likelihood. Further, SSLAPD consistently converged to the same
solution, while other models exhibited larger variation in performance, and did not always
converge to the such a high quality solution (as indicated by the standard deviation of the
performance measures).

5.2.3 Uncertainty Estimates

A major motivation for development of the proposed model was the use of the model
classifier pθ (y|z,x) for classification rather than the variational approximation qφ (y|x) (M2)
or qφ (y|a,x) (SDGM). One consequence of this is that the uncertainty estimates of the model
may be more accurate. This may explain the performance gap in log-likelihood between
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SDGM and SSLPE/SSLAPD on the noisier data. Figures 5.3, 5.4 illustrate this point by
examining the learned decision boundaries of the model.

(a) DNN (b) M2 (c) SDGM

(d) SSLPE (e) SSLAPD

Fig. 5.3 Example decision functions learned in the semi-supervised moons scenario with 0.1
additive Gaussian noise by the different models.

M2 learns very wide uncertainty estimates, that while resulting in high accuracy when a
0.5 threshold is applied, may be a contributing factor to the unstable learning process, and
indicate that it is not leveraging the unlabeled data as much as other models.

SDGM leverages the unlabeled data and learns an accurate decision boundary, but
has almost no uncertainty in its predictions. This leads to poor log-likelihood values
(especially in the noisier setting). This may be attributed to overfitting of the classifier
qφ (y|a,x), which could possibly arise from high dependence on the additional penalty term
Eqφ (a|x)

[
logqφ (y|a,x)

]
in the objective function. Conversely, this may be a result of using the

variational approximation as a classifier, leading to poorly calibrated uncertainty estimates, a
known failing of variational inference [40, 2].5

In contrast, SSLPE and SSLAPD exhibit well-calibrated uncertainty estimates that lead
to good performance in both accuracy and log-likelihood, and allow them to deal well with
noisier data. Further, as we would might expect from approximate Bayesian inference,
SSLAPD exhibits uncertainty estimates that grow when predicting in regions that are further
away from the training data.

5Both explanations are hypotheses, and in general further investigation is required to better understand these
behaviors.
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(a) DNN (b) M2 (c) SDGM

(d) SSLPE (e) SSLAPD

Fig. 5.4 Example decision functions learned in the semi-supervised moons scenario with 0.2
additive Gaussian noise by the different models.

5.3 Batch Normalization for Bayesian Neural Networks

We observed that while applying BN to the networks of SSLAPD introduced significant
improvements to the training procedure, the testing regime for BN produced results that were
of very low quality. In this section we propose an adaptation to BN to be more appropriate
for variational BNNs [4].

A straightforward implementation of BN to BNNs would be to normalize the outputs
of a layer generated by a sample from the variational approximation qφ (W ). However, as
the batch statistics depend on the sample of W , this procedure introduces stochasticity into
the normalized batch statistics that is not consistent across iterations and thus leads to poor
performance in the test regime (Figure 5.5b).

We can formalize the issue as follows. Given the output of layer k−1, z(k−1), the input
to the activation function of layer k is:

x(k) =W T
k z(k−1)+bk; (5.6)

with Wk,bk being the weights and bias of the kth layer. For BN, we are interested in E[x(k)]
and V [x(k)]. E[x(k)] can be expressed as:



46 Implementation, Experiments, and Results

E[x(k)] = E
[
W T

k z(k−1)+bk

]
(5.7)

= E
∫

W,b

(
W T

k z(k−1)+bk

)
p(W |x)dWdb (5.8)

≈ E
∫

W,b

(
W T

k z(k−1)+bk

)
qφ (W )dWdb (5.9)

= E
[
µ

φ

W z(k−1)+µ
φ

b

]
, (5.10)

where µφ denotes the mean of qφ (W ). Eq. (5.9) implies that applying straightforward BN
to sampled weights in a BNN is equivalent to approximate MC estimation of E[x(k)] under
the variational approximation. However, Eq. (5.10) demonstrates that the integration can
be carried out analytically in this case, and implies that using the variational means may be
preferable for computing the normalization statistics. A completely analogous derivation
shows that the variational means should also be used for computing V [x(k)].

Thus, a version of BN appropriate for BNNs performs forward passes through the network
with sampled weights as in Blundell et al. [4], but uses the weight means to compute the
normalization statistics. We implement this version of BN, and use it for SSLAPD rather
than straightforward BN.

(a) (b) (c)

Fig. 5.5 Comparing test results for different BN regimes. (a) Training regime for test data.
(b) Testing regime with straightforward BN. (c) Testing regime for adapted BN.

Figure 5.5 details the performance of different BN regimes. We trained SSLAPD for fifty
epochs on the semi-supervised moons data, and applied BN in different ways. In all cases,
the model converged to optimal performance during training.

In Figure 5.5a we apply the training regime to test data (i.e., use empirical batch statistics).
This works well for the test data (test examples are correctly classified), which has similar
statistics to the training data, but fails to predict for the entire x region, as this batch has
different statistics, resulting in a warped decision boundary.
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In Figure 5.5b straightforward BN has been applied. The population estimates are not
good estimates of the statistics used for normalization during training, resulting in low quality
predictions, despite the fact that training has converged to optimal performance.

Finally, Figure 5.5c shows the results of using the adapted BN: predictions are consistent
through training and testing, and can be used to predict for inputs with statistics different
from those seen throughout training.

5.3.1 Effect of Batch Normalization

In this section we highlight the effect of batch normalization on training the models. The
most noticeable effect of batch normalization is in convergence of the training procedure;
improvement becomes much smoother as training progresses, and convergence is dramatically
faster. BN also eliminated the need for a training schedule (without BN a decay on the
learning rate was necessary to achieve convergence).

We compare the performance (test accuracy and ELBO) of SSLPE and SSLAPD with and
without BN on the moons data with 0.1 and 0.2 additive Gaussian noise. Learning rates (and
schedules) were tuned independently for each model, and training was allowed to proceed to
convergence.

(a) Test Accuracy (b) −Ltest(x,y;θ ,φ)

Fig. 5.6 Accuracy and ELBO curves for Moons data (σ2 = 0.1) with and without BN.

Figure 5.6 presents (left) accuracy on a held out test set against epochs, and (right) test
ELBO against training iterations. The figure demonstrates that in terms of accuracy, BN has
a significant effect on convergence speed and stability. SSLPE achieves 100% accuracy after
two or three epochs, and SSLAPD after approximately twenty. In contrast, without BN the
models take on the order 50-75 epochs to converge, and training is much less stable.

Interestingly, the effect on the overall ELBO is much less pronounced. In both cases the
models achieve slightly better ELBO values with BN, but the difference is less significant and
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(a) Test Accuracy (b) −Ltest(x,y;θ ,φ)

Fig. 5.7 Accuracy and ELBO curves for Moons data (σ2 = 0.2) with and without BN.

(a) BALD (b) Predictive Entropy (c) Variation Ratios

Fig. 5.8 Acquisition functions computed for the x region using a trained model.

convergence speed is on the same order. Similar trends can be seen for the case of σ2 = 0.2
in Figure 5.7. Here the effect of BN on accuracy is more pronounced, as without BN training
is very unstable and the models often converge to sub-optimal solutions, or do not converge
at all.

5.4 Active Learning

In this section we detail experiments carried out in the active learning setting with the moons
dataset. We begin by examining the acquisition functions given a model trained in the
semi-supervised setting as shown in Figure 5.2. Following this we compare performance of
active learning to random selection with a random data initialization.

5.4.1 Examining the Acquisition Functions

Given a trained model (such as in Figure 5.3), we can visualize the acquisition functions
across the entire X space as shown in Figure 5.8.
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(a) (b) (c)

Fig. 5.9 Multiple instances of applying the acquisition functions to a pool. Highlighted
examples were selected by the acquisition functions.

The acquisition functions give similar and reasonable estimates for the moons data. All
functions favor regions that are close to the decision boundary, where confidence in the
predictions is lowest. Predictive entropy and variation ratios give nearly identical results,
as is to be expected for the binary case. BALD seems to favor regions that may be on the
decision boundary, but are further away from the data, which is very encouraging.

We can also apply the acquisition functions to the unlabeled data and examine which
examples each function would choose to label in a real case, as depicted in Figure 5.9. Here
we use the unlabeled set as a pool of points the model can potentially query an “oracle" for
labels, and apply the three acquisition functions to them. Of course, since the acquisition
functions are stochastic (MC) approximations, different instances may result in different
selections.

Here too it is clear that the different acquisition functions are behaving similarly, and
favoring examples that are near the decision boundary. While these initial examinations are
encouraging, it is necessary to experiment with a more realistic scenario for active learning.

5.4.2 Performance Comparison

In this section we examine the performance of the active learning model in a more realistic
setting. We randomly select a set of four points to label (Figure 5.10) and train SSLAPD and
SSLAPE. Then, we allow the model to query examples until thirty points are labeled, using
predictive entropy and BALD (BALD is used only for SSLAPD, as it has no interpretation in
the deterministic setting) and compare performance to a random selection scheme.

In previous sections, we saw that by intelligently selecting examples to label, we could
successfully train the model with only six labeled instances. Here the task is more difficult as
the initial (small) labeled set is randomly selected (though we set the random seed for this
to enable fair comparison across models and acquisition functions), resulting in potentially
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Fig. 5.10 Randomly selected initial labeled set for AL performance experiment.

poor initial models. Ideally, by using active learning the model should converge to optimal
performance significantly faster than with random selection.

All models use the same architectures as in previous sections. Due to the stochasticity
in the process, we average results for every model-acquisition function combination across
three instances. The results of this experiment are detailed in Figure 5.11.

Figure 5.11 demonstrates that the active learning scheme significantly outperforms
random selection, and is able to converge to optimal performance with significantly fewer
labeled examples than without active querying. In many cases, the model was unable to
achieve optimal performance even with 30 randomly selected labeled examples. In contrast,
using predictive entropy to label examples enabled both SSLPE and SSLAPD to achieve
optimal performance with around ten labeled examples (four of which were randomly selected
for initialization).

Fig. 5.11 Accuracy of SSLAPD and SSLPE against number of labeled points using different
acquisition functions compared to that of random selection.
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Interestingly, predictive entropy significantly outperforms BALD, converging with ten
labeled examples whereas BALD requires approximately fifteen. This may be an artifact of
the dataset and not carry on to more complex cases (such as MNIST), though similar results
were observed in Gal et al. [15].

Finally, we can examine the querying process for a single instance. Figure 5.12 visualizes
this process for one run of SSLAPD with the predictive entropy acquisition function.

It is interesting to note that the querying process seems to first traverse the lower half-
moon, and then continues to the top half-moon. This may be due to the fact that the random
initialization included three points from the top half-moon, and only one from the bottom.
Regardless, the model seems to effectively traverse the data manifold, requiring only nine
labels (in this instance) to achieve optimal performance, starting from a random initialization.

5.5 MNIST Experimentation

The previous sections have all dealt with toy data. While providing a good test bed for initial
experimentation and development of the models, the moons’ data is of low dimension and
complexity, and is therefore not of real interest from a practical standpoint. In this section
we report preliminary results from experimentation with the MNIST dataset [35].

MNIST is a dataset containing 70,000 images of handwritten digits, represented as
28×28 pixel matrices, each pixel assuming a greyscale value between one and 255 (these
are typically normalized to between zero and one). MNIST is a standard dataset used for
development and benchmarking in the ML community.

5.5.1 Performance Comparison

We carry out the following experiment. We use a standard training-testing split of the data
set. The training set contains 60,000 examples, and 10,000 are set aside for testing. We
further split the training set into a labeled and unlabeled set, with the labeled set containing
{20, 60, 100, 300} examples per class. We generate five versions of the un/labeled split
for statistical strength and train each model (DNN, M2 [30], SSLPE, SSLAPD) on each of
the splits. Performance is measured in accuracy and log-likelihood on the held-out test set.
All neural networks contain two hidden layers of 500 neurons each, with RELU activation
functions. We use a 100-dimensional latent space, and tune learning rates and warmup
periods separately for each model. Tables 5.3, 5.4 report the means and standard deviations
of the performance metrics.



52 Implementation, Experiments, and Results

(a) Labeled: 4
Accuracy: 74.27

(b) Labeled: 5
Accuracy: 83.67

(c) Labeled: 6
Accuracy: 88.40

(d) Labeled: 7
Accuracy: 89.61

(e) Labeled: 8
Accuracy: 95.73

(f) Labeled: 9
Accuracy: 99.47

Fig. 5.12 Visualizing the active querying process. In each image, grey points are unlabeled
(pool), black examples are the labeled set, and red examples are selected to be labeled in the
next iteration.
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Table 5.3 Accuracy results for MNIST experimentation

Labels
(per class) DNN M2 SSLPE SSLAPD

20 79.6 (0.26) 92.4 (0.71) 92.0 (0.47) 92.3 (0.73)
60 87.2 (0.21) 95.7 (0.25) 95.6 (0.34) 95.0 (0.17)

100 89.9 (0.23) 96.4 (0.32) 96.4 (0.23) 95.9 (0.18)
300 94.1 (0.12) 97.5 (0.18) 97.3 (0.20) 97.0 (0.17)

Table 5.4 Log-likelihood results for MNIST experimentation

Labels
(per class) DNN M2 SSLPE SSLAPD

20 -.990 (<0.01) -.415 (0.08) -.524 (0.05) -.305 (0.04)
60 -.708 (0.02) -.219 (<0.01) -.332 (0.02) -.190 (<0.01)
100 -.539 (0.02) -.164 (<0.01) -.198 (0.03) -.152 (<0.01)
300 -.357 (<0.01) -.112 (<0.01) -.126 (<0.01) -.110 (<0.01)

Interestingly, we observe slightly better accuracy results for M2 than those reported in
Kingma et al. [30] with our own implementation, so we report these rather than citing the
values from the original paper. As can be expected, the DNN performs very poorly compared
to the remaining models as it can not make use of the unlabeled data. All models significantly
outperform it in accuracy and log-likelihood.

In terms of accuracy, M2 outperforms (or is equal to) our models in all cases, though
not to a significant degree. Further, SSLPE achieves slightly better accuracy than SSLAPD
except for the case with only twenty labeled examples per class. In contrast, SSLAPD
significantly outperforms both M2 and SSLPE in terms of log-likelihood. The significance
of this decreases as the labeled set grows larger, and for 300 labels per class the performance
difference between M2 and SSLAPD is negligible.

5.5.2 Generating Samples and Encoding

We examine the generative capabilities of the model. Note that one drawback of our proposed
model compared to those proposed by Kingma et al. [30], Maaløe et al. [38] is that our model
cannot perform conditional generation6 as the target variable is a leaf node in the graphical
model. Regardless, the model can be used to generate domain samples after training is

6By conditional generation we mean generating domain samples conditioned on a specific class.
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complete. Figure 5.13 visualizes 100 digits generated by SSLPE and SSLAPD after training
with varying labeled set sizes.

(a) SSLPE
NL = 20

(b) SSLPE
NL = 60

(c) SSLPE
NL = 100

(d) SSLPE
NL = 300

(e) SSLAPD
NL = 20

(f) SSLAPD
NL = 60

(g) SSLAPD
NL = 100

(h) SSLAPD
NL = 300

Fig. 5.13 Sample from trained SSLPE/SSLAPD models on MNIST using different labeled
set sizes. Number of labels (NL) is per-class.

As the generative model of x is independent of the targets y in our model, no significant
difference is expected between samples generated with different label set sizes. Indeed, from
visual inspection of Figure 5.13 it appears that the size of the labeled set does not have a
significant effect on the generated images.

Finally, we can visualize the manifold of the data in the learned latent space. To this
end, we encode the test data into the latent representation z after training with SSLPE and
SSLAPD. Since the encoder qφ (z|x,y) necessitates a y value, we integrate this out with the
same Gibbs process as for prediction, and average over sampled values of z rather than y.

We train SSLPE and SSLAPD with 1,000 labeled examples (and the rest of the training
set unlabeled), and encode the 10,000 test examples. We use a 50-dimensional latent space
for both models. To visualize the latent manifold, we reduce the latent representation of the
test data to two-dimensions with t-SNE [39]. Figure 5.14 shows the latent manifold learned
by SSLPE and SSLAPD. Both representations do a good job of mapping the different digits
to distinct regions of the latent space, and generate well separated clusters, implying that
the models have learned a latent representation of the data that is meaningful and useful for
classification of the digits.
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(a) SSLPE (b) SSLAPD

Fig. 5.14 Visualizing the latent spaces learned by the models with t-SNE.

5.5.3 MNIST Discussion

The performance of SSLAPD in log-likelihood is encouraging, and implies that the decision
function learned may be smoother than those of M2 and SSLPE, especially when the labeled
set is smaller. This may be particularly useful in the future when we examine the active
learning capabilities of the models on MNIST, starting with small labeled sets.

We note that experimentation was also attempted with ten labels per class. In Kingma
et al. [30] results are reported for this setting, and in fact we found that M2 can achieve
significantly better accuracy than reported there. However, as of the writing of this thesis
neither SSLPE or SSLAPD are able to achieve the desired level of performance in that setting.
Investigation as to the cause of this is on-going, but results are as yet preliminary.

Finally, it is also important to note that here we compare the performance of our models to
M2. However, these are not state-of-the-art in DGM based semi-supervised learning. There
is strong evidence supporting the notion that by adding stochastic layers performance in this
setting can be greatly improved [30, 37, 38]. These enhancements can be applied to our
models as well, and achieving performance comparable to SDGMs in the semi-supervised
setting is a possible avenue of future research.





Chapter 6

Conclusion

6.1 Discussion

In this thesis we have presented a deep generative model with a discriminative component.
We proposed variational methods for training the model with point estimates and Bayesian
inference. Further, we developed methods to train the model in the semi-supervised setting,
with both labeled and unlabeled data.

By incorporating a discriminative component within the model we were able to side-step
one of the drawbacks of existing (semi)-supervised VAE methodologies, and use the model
rather than the variational approximations for classification. Besides being more satisfying
from a modeling perspective, this enabled us to express model uncertainty, which can be
leveraged for tasks such as Bayesian optimization and active learning that require calibrated
measures of uncertainty.

Finally, we conducted experiments on a toy dataset and MNIST to demonstrate the
feasibility of the model in the semi-supervised and active learning setting. Our experiments
show encouraging results in that the model can be trained efficiently (both deterministically
and with Bayesian inference), and can be used to achieve performance comparable to state of
the art models.

Our work further demonstrates the potential of deep generative models. Combining the
flexibility of probabilistic modeling and the capacity of deep learning opens the door to the
development of many interesting models. The model presented here is one example of the
potential of this framework, but more complex and powerful models can be easily designed
and implemented with the tools and principles used here.
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6.2 Future Work

There are a number of interesting avenues for future work based on the results and method-
ologies presented in this thesis.

Complex Data

The results presented are encouraging, but are (largely) restricted to low-dimensional and
simple data. In contrast, the main interest in machine learning is in its applicability to
large scale and complex datasets. Therefore, it is crucial to examine the scalability of the
model to more “interesting” datasets. This is especially true for the Bayesian setting where
scalability is often an issue. Experimentation with the MNIST dataset has begun (both in
the semi-supervised and active learning setting), and is the immediate extension of the work
presented in this thesis and required to demonstrate the usefulness of the model. More
rigorous experimentation is necessary with MNIST in the semi-supervised setting. It is also
interesting to consider additional (more complex) datasets such as CIFAR [32] and Celebrity
faces [36].

Larger Models

Initial experimentation with the model on MNIST indicates that performance is comparable
to that of the M2 model presented in Kingma et al. [30]. However, a number of papers have
since demonstrated that constructing larger models (by e.g., concatenating with a VAE [30]
or adding additional stochastic layers [37, 38]) can significantly improve performance. An
interesting avenue of future research is to experiment with similar larger models and improve
performance of this framework to state of the art in both semi-supervised and active learning
settings.

Active Learning Experimentation

One of the significant advantages of the proposed model is the possibility of joint semi-
supervised and active learning. To this point, active learning experimentation has only been
conducted with the toy dataset (with encouraging results). However, this dataset is too simple,
and it is important to carry out similar experiments with a more complex dataset such as
MNIST in the active learning regime.
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Appendix A

Deconstruction of the Inference Network

If we decompose qφ (z,y|x) = qφ (z|x)qφ (y|x,z), and allow qφ (y|x,z) = pθ (y|x,z) we have:

log p(x) = log
∫∫

pθ (x,y,z)dydz = log
∫∫

pθ (x,y,z)
qφ (z,y|x)
qφ (z,y|x)

dydz

≥
∫∫

qφ (z,y|x)
[
log pθ (x,y,z)− logqφ (z,y|x)

]
dydz

=
∫∫

qφ (z,y|x)
[
log pθ (x,z)+ log pθ (y|x,z)− log pθ (y|x,z)− logqφ (z|x)

]
dydz

=
∫

qφ (z|x)
[
log pθ (x,z)− logqφ (z|x)

]∫
pθ (y|x,z)dydz

= Eqφ (z|x) [log pθ (x|z)]−DKL(qφ (z|x)||p(z))
(A.1)

By doing this the likelihood term for y has canceled in the expectation. Further, no other
terms within the expectation depend on y, such that its expectation cancels, and we are left
with the standard VAE term for the unlabeled observations, disconnecting the labeled and
unlabeled data.

This reduces to simply training a standard VAE using the unlabeled data, and then perhaps
using the resulting recognition network qφ (z|x) to improve the training of the recognition
network qφ (z|x,y).





Appendix B

Gradients and Sampling With Mixture
Densities

In this section the details for the mixture density optimization procedure are given. We
adopt some of the notation of [18]. We can express our distribution over z as a product over
dimensions:

p(z|φ) =
D

∏
d=1

pd(z|z<d,φ) (B.1)

where z<d = {z1, ...,zd−1}. Then, given an inverse CDF F−1
d , we can sample from p(z|φ) as

follows:

ẑ1 = F−1
1 (u1); ẑd = F−1

d (ud|ẑ<d) (B.2)

where ui ∼U(0,1). It is straightforward then to show that:

∂ ẑd

∂φ
=− 1

pd(ẑd|ẑ<d,φ)

ẑd∫
−∞

∂ pd(t|ẑ<d,φ)

∂φ
dt

=− Fd(ẑd|ẑ<d)

pd(ẑd|ẑ<d,φ)

∞∫
−∞

pd(t ≤ ẑd|ẑ<d,φ)
∂ log pd(t|ẑ<d|φ)

∂φ
dt

≈− 1
N

Fd(ẑd|ẑ<d)

pd(ẑd|ẑ<d,φ)

N

∑
n=1

∂ log pd(t(n)|ẑ<d,φ)

∂φ
; t(n) ∼ pd(t ≤ ẑd|ẑ<d,φ)

(B.3)

where we can sample from pd(t ≤ ẑd|ẑ<d,φ) with simple rejection sampling from pd(t|ẑ<d,φ).
We can express the mixture density thus:
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pd(zd|z<d) =
K

∑
k=1

p(k|z<d)pd(z|φ) (B.4)

where we are assuming here that z has a diagonal covariance matrix such that pd(zd|z<d) =

pd(zd). Denoting p(k|z<d) = πk
d , it is defined recursively as:

π
k
1 = γk; π

k
d =

πk
d−1 pk

d−1(zd−1|φ)
pd−1(zd−1|φ)

(B.5)

where pk
d denotes the distribution for dimension d under mixture component k. Taking the

derivative of pd(zd|z<d) w.r.t. γ j and substituting into Eq. B.3 yields:

∂ ẑd

γ j
=−

Fk
d (ẑd)

pd(ẑ|φ)

K

∑
k=1

∂ logπk
d

∂γ j
π

k
d (B.6)

where it can be shown that:

∂ logπk
d

∂γ j
=

∂ logπk
d−1

∂γ j
−∑

l
π

l
d

∂ logπ l
d−1

∂γ j

+

(
∂ log pk

d−1(ẑd−1)

∂ ẑd−1
−∑

l
π

l
d

∂ log pl
d−1(ẑd−1)

∂ ẑd−1

)
∂ ẑd−1

∂γ j

(B.7)

We can obtain the derivatives in Eq. B.6, B.7 by a joint recursion starting from the initial
conditions:

∂πk
1

∂γ j
=

δ jk

γ j
;

∂ ẑ1

∂γ j
=−

F j
1 (ẑ1)

p1(ẑ,φ
(B.8)

We can use these results to perform backpropagation through the mixture densities as
detailed in Eq. 4.14. Specifically, we can sample from qφ (z|x) as detailed in Eq. B.2, and
optimize the mixture priors (and thus qφ (y|x)) by substituting Eq. B.6 into Eq. 4.15.
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