The process of modelling systems with multiple outputs has a lot of practical value. Example: climate modelling.

Our goal is to incorporate the output relationships into the modelling process to improve predictions [1].

GPAR Model

Suppose we have a set of functions that have the following relationships:

\[
y_1(x) = f_1(x) \\
y_2(x) = f_2(x,y_1(x)) \\
\vdots \\
y_n(x) = f_n(x,y_1(x),\ldots,y_{n-1}(x))
\]

Training

1. Find an appropriate ordering of each of the functions using a greedy approach.
2. Train each GP with inputs composed of available observations and outputs from foregoing GPs.

Prediction

\[
y_1 \leftarrow GP_1 + x \\
y_2 \leftarrow GP_2 + x + y_1 \\
\vdots \\
y_n \leftarrow GP_n + x + y_1 + \ldots + y_{n-1}
\]

Experiments

GPAR vs independent GPs (IGPs) on synthetic data:

GPAR vs IGP using sparse GPs on real data:

Noise structure recovery on synthetic data:

Freeze-Thaw Bayesian Optimization

Freeze-thaw is an information-theoretic approach that uses Bayesian optimization for hyperparameter tuning [2]. Our goal is to improve this with GPAR.

Approach

- Model each loss during the training process using a different set of GPs (using a custom kernel).
- Model the asymptotic cross-validation loss over a set of feasible hyperparameters using a GP.

Possible Extensions

Deep GPs, parameter tying, optimal conditional ordering, neural architecture search.

References