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Chapter
Abstract

Recurrent neural networks with gated units proved to be extremely powerful
in sequence modeling. However, their generalisation and interpretability are still
extremely challenging tasks. Improvements in generalisation and interpretability of
deep feedforward networks for Automatic Speech Recognition have been achieved
by using Stimulated learning. The same framework could be applied to Recurrent
Language Models. In this work, we stimulate the internal activations of the gated
units, which we reorganise first in a 2D grid and subsequently in a torus, to form
a smooth surface. Moreover, we exploit interpretable word2vec stimuli to obtain a
dynamic target-specific smoothing of the activations. The final performances result
improved by the stimulation, showing that encouraging spatial smoothness yields better
generalisation.
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1Chapter
Introduction

In this thesis we expand the application of the Stimulated Learning framework [50]
to Recurrent Neural Networks for Language Modeling (RNNLMs). The proposed stim-
ulation organises the activations in a toroidal grid and introduces a spatial smoothing
constraint on the activation surface. We then exploit word2vec target patterns to
address interpretability. Experimentation has been carried out to assess the model
performance compared to existing RNNLMs [8]. The models are then applied on an
Automatic Speech Recognition task (ASR) to compute Word Error Rate performances.
In most cases, the proposed model achieves comparable or better performances than
the non-stimulated models.

1.1 Motivation
The Stimulated training of Deep Neural Networks (DNNs) was first proposed by Tan

et al. in 2015 [44] and further investigated in [39] and [50], showing that introducing
stimuli during training improves the robustness to unseen data, leading to better
generalisation. The spatial smoothing stimulation of acoustic models yielded gains in
WER for ASR [50, 51] and Keyword search [39], leaving the open question of whether
the same stimuli could be beneficial to LM tasks.

In this work we analyse and expand the application of the framework to RNNLMs.
We focus on the concept of spatial smoothing, proposing a novel reorganisation of the
activation units in a toroidal surface. We then exploit word2vec stimulation patterns to
address RNNLM interpretability. The key motivations to conduct this investigation are
mainly two. First, it gives the opportunity to apply the stimulated learning framework
on RNNs. Second, it allows to analyse the impact of switching the domain from acoustic
modeling to language modeling, opening the discussion about stimulated learning to a
broader range of sequential data inputs.



2 Introduction

1.2 Organisation of the chapters
The remaining chapters are organised as follows:

In Chapter 2 we introduce the necessary background information about Deep Learning.
In Chapter 3 we outline the main notions regarding Statistical Language Modeling
and describe Neural Language Models and RNNLMs. In Chapter 4 we introduce the
concept of Activation Based Regularisation and present Spatial Smoothing. Network
Interpretability is addressed in Chapter 5. The experiments are described in Chapter
6, specifically the experimental results on spatial smoothing are reported in Section
6.3 and results on interpretability can be found in Section 6.5. Finally, in Chapter 7
the experimental results are discussed and directions for future work are suggested.

1.3 Claims of the thesis
The most important original contributions of this thesis are:

• Implementation of the Stimulated Framework for the TF-RNNLM 1

• Analysis of the spatial smoothing regularisation and improvements in generalisa-
tion performances

• Analysis of word2vec and Part-of Speech stimulation patterns

1
Source code location: https://github.com/mormontre/thesis
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Deep Learning

In this section we review the core concepts of deep learning architectures that will
be further addressed in the dissertation, reporting the related literature to place the
investigation within a broader context.

2.1 Feedforward Deep Neural Networks
Feedforward Neural Networks (NNs) attempt to approximate a function f , which

maps the input x to some label category y: y = f(x;◊), where ◊ are the parameters of
the approximation. NNs can have one or more internal layers (see Figure 2.1), which
introduce a sequence of nonlinearities that are not accessible from the outside.

Fig. 2.1 Feedforward deep neural network with multiple hidden layers

For instance, the input of the (l + 1)-th hidden layer, hl+1, is a function of the
ouptut of the l-th layer, zl(x):

hl+1(x) = ‡(zl(x)) (2.1)

zl(x) = W lhl(x)+bl
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where ‡(z) is the activation function and W and b are respectively the weight matrix
and the bias of the transformation.
The output layer of the network for classification tasks is usually a softmax function,
which is defined as:

„(x) = exp(z
i

(x))
q

J

j=1 exp(z
j

(x))
(2.2)

Activation functions The activation function determines the nature of the hidden
units. The most common examples of activation functions are shown in Figure 2.2.
The simplest is the step function, which is discontinuous in zero and is either equals
to 1 or 0 elsewhere. Examples of more sofisticated activations are the sigmoid, theActivation Functions

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

• Activation functions:
¶ step function (green)
¶ sigmoid function (red)
¶ tanh function (blue)

• softmax, usual output layer (sum-to-one/positive) for classification

�i(xt) = exp (wT
i xt + bi)

qJ
j=1 exp

�
wT

j xt + bj
�
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step

sigmoid

tanh

Fig. 2.2 Common activation functions

softmax and the hyperbolic tangent (tanh), which do not present discontinuities in
zero. The sigmoid, or logistic regression function ‡(z) is defined as:

‡(z) = 1
1+ e≠z

(2.3)

The hyperbolic tangent function tanh(z) is defined as:

tanh(z) = ez≠ e≠z

ez + e≠z
(2.4)

The output of both the sigmoid and the hyperbolic tangent are continuous although
they are defined over two di�erent intervals, which are respectively [0,1] and [-1,1].
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2.1.1 Network training
The training of neural networks consists of learning the set of parameter ◊ that
minimises a loss function L. Two popular choices for the loss function are the Least
Squares Error function and the Cross-Entropy criterion. Cross-Entropy is generally
the training loss of networks with a softmax output over a number of possible classes
k. For a set of training examples {{x1,t1}, · · · ,{x

n

,t
n

}}, Cross-Entropy is defined as:

LCE(◊) =≠
nÿ

i=1

kÿ

i=1
t
i

log (f(x
n

,◊)) (2.5)

where t
i

is the target output for the input x
i

.
The computation of the gradients is e�ciently performed using the backpropa-

gation algorithm [21], although the nonlinearities in the network require the use of
iterative gradient-based optimizers.

Gradient optimisation Gradient descent is the simplest and most used network
training algorithm. The parameters are initialised with a starting guess and iteratively
updated so that small steps are made in the direction of the greatest rate of decrease
of the cost function L. A momentum term [38, 2] is generally added to the gradient
descent formula, leading to the following expression:

�◊· =≠÷ÒL(◊)|
◊

· +µ�L(◊·≠1) (2.6)

where the learning rate ÷ specifies the convergence speed of the algorithm by controlling
the impact of the gradient on the new estimates of the weights [4] and µ is the momentum
parameter. The momentum adds inertia to the descent motion and reduces the number
of oscillations towards the minimum as shown in Figure 2.3. The Nesterov Momentum

SGD
SGD with 
momentum

ADAM

Fig. 2.3 Comparison of Stochastic Gradient Descent algorithms



6 Deep Learning

further modifies the update rule by computing the gradient after the application of
ÒL(◊)|

◊

· [43].

Adaptive learning rate optimisation The optimisation process is extremely sen-
sible to the initial value of the learning rate parameter. Some optimisation algorithms
such as AdaGrad, Adadelta[53], and RMS [46] adapt the learning rates individually
for each model parameter. Adam, proposed by Kingma and Ba in [28], is based on
adaptive estimates of lower-order moments and combines the benefits of both RMS and
AdaGrad. Instead of adapting the parameter learning rates based as in RMSProp on
the average first moment, e.g the mean, Adam includes in the adaptation the average of
the second moments of the gradients, namely the variance. Specifically, the algorithm
calculates an exponential moving average of the gradient and the squared gradient,
and two parameters control the decay rates of the moving averages. The method is
computationally e�cient, has little memory requirements, is invariant to the diagonal
rescaling of the gradients and is well suited for problems that are large in terms of
data and parameters[28]. Moreover, Adam includes bias corrections to the estimates of
the first order moments and the second order moments, taking account of the network
initialisation at the origin.

Sensitivity to initialisation The initial values of the parameters are a relevant
issue for a correct training process, since di�erent initialisation may determine whether
convergence is reached, at what speed, and the final value of the local optimum. To
reduce the e�ects of di�erent initialisations, two main observations shoud be taken
into account. First, the symmetry between di�erent units should be broken by adding
Gaussian noise to the initial values. Second, the initial values of the weights should be
set in such a way to prevent both the explosion and the vanishing of the gradients. For
instance, they should be set neither too large neither too small. A sensible initialisation
can be obtained with the Xavier initialisation[18] , which constrains the variance of
the input gradient to be the same as the variance of the output gradient by imposing:

V ar(W
i

) = 1
n

out

(2.7)

where n
out

is the number of neurons of the next layer.
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2.2 Recurrent Neural Networks
RNNs are a family of neural networks for processing sequential data. The RNN

structure is showed in Figure 2.4. The output is a function of the hidden layer h, which
is a recurrent layer. The recurrent layer is fed as input to the network together with
x

i

:

h
t

= fh(W f

h

x
t

+W r

h

h
t≠1 +b

h

)
y

t

= ff (W
y

h
t

+b
y

)
(2.8)

where W
h

,b
h

, is the couple weight matrix, bias associated to the recurrent layer and
W

y

,b
y

is the one associated to the output. The main peculiarity of RNNs is that they
share the same weights across the time steps through h

t

. As a result, RNNs scale to
much longer sequences than DNNs.

Time delay

xt

ht-1

ht

yt

xt xt+1

ht ht+1

yt yt+1

Fig. 2.4 Recurrent Neural Network structure. Left: compact representation. Right:
RNN unfolded computational graph for two steps in time.

The computational graph of RNNs can be unrolled into directed acyclic graphs
(DAG), which represent copies of the memory RNN cells connected forwards in time,
as shown in Figure 2.4 (Right). The hidden state is passed throughout the sequence of
computations as a temporary memory mechanism. For this reason, the hidden state is
often referred to as history vector. Unrolling the RNN structure allows to e�ciently
compute the gradients by dividing their computation in a series of local gradients with
backpropagation through time (BPTT)[49].
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Long-Short Term Memory Networks [20, 16]

t

xt

ht−1

ht

xt ht−1

ct f
h

f
m

xt ht−1

σ σ

σ

i

time delay

f

ii
io

ht−1x
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z

rh h
~ IN

OUT

(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 1: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget
and output gates, respectively. c and c̃ denote the memory cell and the new memory cell content. (b)
r and z are the reset and update gates, and h and h̃ are the activation and the candidate activation.

3 Gated Recurrent Neural Networks

In this paper, we are interested in evaluating the performance of those recently proposed recurrent
units (LSTM unit and GRU) on sequence modeling. Before the empirical evaluation, we first de-
scribe each of those recurrent units in this section.

3.1 Long Short-Term Memory Unit

The Long Short-Term Memory (LSTM) unit was initially proposed by Hochreiter and Schmidhuber
[1997]. Since then, a number of minor modifications to the original LSTM unit have been made.
We follow the implementation of LSTM as used in Graves [2013].

Unlike to the recurrent unit which simply computes a weighted sum of the input signal and applies
a nonlinear function, each j-th LSTM unit maintains a memory cj

t at time t. The output hj
t , or the

activation, of the LSTM unit is then

hj
t = oj

t tanh
�
cj
t

�
,

where oj
t is an output gate that modulates the amount of memory content exposure. The output gate

is computed by

oj
t = � (Woxt + Uoht�1 + Voct)

j ,

where � is a logistic sigmoid function. Vo is a diagonal matrix.

The memory cell cj
t is updated by partially forgetting the existing memory and adding a new memory

content c̃j
t :

cj
t = f j

t cj
t�1 + ijt c̃

j
t , (4)

where the new memory content is

c̃j
t = tanh (Wcxt + Ucht�1)

j .

The extent to which the existing memory is forgotten is modulated by a forget gate f j
t , and the

degree to which the new memory content is added to the memory cell is modulated by an input gate
ijt . Gates are computed by

f j
t =� (Wfxt + Ufht�1 + Vfct�1)

j ,

ijt =� (Wixt + Uiht�1 + Vict�1)
j .

Note that Vf and Vi are diagonal matrices.

3

Fig. 2.5 LSTM and GRU cells. Left: Long Short Term Memory networks. Figure
credits to [23]. Right: Gated Recurrent unit. Figure credits to [10]

Long-term dependencies Hochreiter in 1991 and Bengio et al. in 1993 showed
that RNNs su�er of vanishing and exploding gradients when the dependencies are
kept over many stages[23, 3]. The gradient of long-term interactions have exponentially
smaller magnitude than the gradient of a short-term interactions and this causes the
learning process to be either really slow or really unstable [20]. Gating solutions such
as Long Short-term Memory (LSTMs) networks and Gated Recurrent Units (GRUs)
(which are shown in Figure 2.5) create paths through time which avoid the derivatives
to vanish or explode.

2.2.1 Long Short Term Memory networks
The LSTM model has been proposed by Hochreiter and Schmidhuber in 1997 and
perfectioned by Gers et al in 2000 [23, 15, 14, 16]. In LSTM cells the input and the
output are the same as in an ordinary recurrent neural network and a synergy of gating
functions and memory controls the flow of information. The structure of the LSTM
cell is shown in Figure 2.5 (on the left). The main component of the LSTM cell is the
state unit c

t

, which represents the long-term memory of the cell. The information in
the state unit is kept updated by three gates, namely the input gate, i

t

, the output
gate, o

t

, and the forget gate, f
t

.
The forget gate resets from the memory the parts of information that are not

relevant anymore to the learning process. The input and the output gate control
respectively the amount of information that is currently relevant to the learning process
and the information that should be kept as a candidate for the short term memory.
Formally, the LSTM cell is defined as follows:
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where ¶ denotes the Hadamard product (e.g. element wise product); x
t

is the input
vector; h

t

is the output vector; c
t

is the cell state vector; and W , U and b are
respectively the parameter matrices and bias vectors for each function update.

The activation functions ‡
g

,‡
c

and ‡
h

are usually hyperbolic tangents [42], although
di�erent alternatives have been proposed in [15] and [14].

2.2.2 Gated Recurrent Units
GRU cells share the same idea of LSTM cells, but have less gating functions. The
structure of the GRU unit is shown in Figure 2.5. GRUs do not possess an internal
memory and have only two gates, namely the reset gate and the update gate. The
reset gate r

t

determines how to combine the new input x
t

with the previous memory
h

t≠1, whereas the update gate z
t

defines how much memory is important to keep.

Formally, the GRU unit is defines as:

z
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+Uzh
t≠1 +bz)
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x
t
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h
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h

t
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t

¶h
t≠1 +(1≠z

t

)¶‡
h

(W
h

x
t

+U
h

(r
t

¶h
t≠1)+b

h

)
(2.10)

where W ,U and b are the relative parameter matrices and bias vector of each gate.
The activation ‡

g

is a sigmoid function, whereas generally a tanh is used for ‡
h

.

GRU and LSTMs are superior to the standard recurrent units although it is still
not clear which of the two gating units is better [10]. On the one hand, the internal
recurrency of LSTMs gives them more expressive power than the one of GRUs. On
the other hand, the number of parameters in LSTMs is higher than in GRUs and this
leads to a more complex model with slower training times.
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2.3 Network Generalisation
Ensuring that the model will perform well not only on the training data but also

on new inputs is a central problem in deep learning. Generalisation is defined as
the ability to train with one data set and then successfully classify independent test
sets, possibly reducing the test error. One way of achieving generalisation is through
the introduction regularisation constraints in the objective function. In theory, the
introduction of the correct regularisation to the objective function can ensure even very
large and complex models to appropriately generalise. However, in practice really often
the testing performances of conventionally regularised large models do not overcome
markedly the training performances [55].

2.4 Regularisation
Regularisation is as any modification of the learning algorithm which is intended
to reduce the generalisation error but not the training error. Some regularisation
methods consist in the addiction of extra constraints on the models, with the purpose
of restricting of placing soft boundaries to the space of the parameter values.

The regulariser R(◊) is added as a penalty to the cost function to introduce a trade-o�
between fitting the training and satisfying a further condition. The original objective
function L is modified as follows:

L̃(◊) = L(◊)+“R(◊) (2.11)

where “ œ [0,Œ) is a hyperparameter that weights the regularisation contribution.
There is no an overall best form of regularisation, since each task usually requires

di�erent additional constraints. Very often, parameter norm penalties, e.g. L1, L2,
are used to limit the capacity of the models while achieving specific objectives such as
weight decay or weight sparsity. In the following section we briefly analyse the e�ect
conventional regularisation methods.

2.4.1 L2: weight decay
One of the simplest and most common kinds of parameter norm penalty is L2, which

is also known as weight decay. The L2 regularisation is a norm regularisation term
which keeps the values of the weights as small as possible during the optimisation. For
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instance, under the no bias parameter assumption (◊ = w), the L2 regularisation can
be written as:

RL2(◊) = wT w

The training criterion is modified in:

L(◊) = “

2wT w +L(◊) (2.12)

with corresponding parameter gradient:

�
w

L(◊) = “w +�
w

L(◊) (2.13)

To take a single gradient step to update the weights, the update rule is as follows:

wΩw≠ ‘(“w +�
w

L(◊)) (2.14)

Which leads to the following rule:

wΩ (1≠ ‘“)w≠ ‘�
w

L(◊) (2.15)

Eq. 2.15 shows the shrinking e�ect on the weight vector by the constant factor (1≠ ‘“)
at each iteration [20]. L2 causes the learning algorithm to ’perceive’ the input as having
higher variance, which makes it shrink the weights on the features whose convariance
with the output target is low compared to this added variance[20].

2.4.2 L1: weight sparsity
Another traditional regularisation is L1, which can instead be interpreted as pro-

moting sparsity in the weight matrix. L1 regularisation is defined as the sum of the
absolute values of the individual parameters:

Ê(◊) = ||w||1 =
ÿ

i

|w
i

| (2.16)

The optimisation function becomes:

L̃(◊) = “||w||1 +L(◊) (2.17)

The gradient of ||w|| generates a sign(w) term in the update rule, which results in
sparse weight solutions.
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2.4.3 Dropout: ensemble of infinite subnetworks
Dropout has a powerful regularisation e�ect, although it is not applied directly as

a regularisation term in the training objective. Conceptually, dropout provides an
inexpensive approximation to training and evaluating an ensemble of exponentially
many neural networks. The trained ensemble consists of all subnetworks that can be
formed by removing non output units from an underlying base network.

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di�erent from each other and in order to make
neural net models di�erent, they should either have di�erent architectures or be trained
on di�erent data. Training many di�erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di�erent networks on
di�erent subsets of the data. Even if one was able to train many di�erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di�erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Fig. 2.6 Dropout Neural Network. Figure credits to: [41] Left: A standard NN with 2
hidden layers. Right: Example of the 2 hidden layer network after the application of
dropout. Crossed units have been dropped.

In Figure 2.6 we report the illustration of the working principle of dropout proposed
by Srivastava et al. in [41]. Each node is assigned a probability to be used or discarded.
The crossed nodes have been dropped from training, hence reducing the computational
power of the network.
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Language Modeling

In this chapter we briefly report the background notions on statistical language
modeling and illustrate the main characteristics of RNNLMs.

3.1 Statistical Language Modeling
Statistical Language Modeling is a sequential data modeling problem, whose goal is

to capture the information about the organisation of the words in a sentence. Given a
sentence Ê1:L = {Ê1,Ê2, ..,Ê

L

}, its structure can be modeled as a prediction problem.
For instance, Ê1:L can be seen as a sequence of words in the vocabulary, and we can
estimate the probability distribution of the next word. The probability distribution
reflects how likely is any given word to occur next in the sequence.
Formally, we want to compute the joint probability p(Ê1:L):

p(Ê1:L) = p(Ê1,Ê2, . . . ,Ê
L

) (3.1)

Which can be decomposed into a product of conditional probabilities of the next word,
given the previous history:

p(Ê1:L) =
L+1Ÿ

i

p(Ê
i

|Ê1,Ê2, . . . ,Ê
i≠1) (3.2)

where sentence start and sentence end markers are often added to the word sequences.
The Markov assumption is used to condition the probability only on the previous
N words, since handling all possible word sequences is impractical in both terms of
computational complexity and storage. The resulting model is called N -gram model.



14 Language Modeling

3.1.1 N-gram models
N -gram language models are the standard approximation to making the calculation of
the word sequence probability practicable. A general N -gram model allows to compute
the probability of the joint sequence as a function of the conditional probabilities of
the n≠ th token given the preceding N ≠1 as follows:

p(Ê1,Ê2, . . . ,Ê
L

) =
L+1Ÿ

i

p(Ê
i

|Ê
i

≠1,Ê
i

≠2, . . . ,Ê
i≠N+1) (3.3)

N-grams training Training N-grams is straightforward with maximum likelihood
(ML) estimation, since the ML estimate can be computed by counting the number of
times a certain N -gram appears in the training corpus.

Limitations of N-gram models N-gram models allow an e�cient computation
of a baseline model. However, they have a number of drawbacks. First, they have
poor generalization capabilities. For instance, in case of unseen or rare words, the ML
probability estimates tend to collapse to zero. Smoothing and back-o� methods are
generally used to eliminate the consequences of assigning zero probability to uncommon
or unseen words in the training set [7]. Second, classical N -gram models are vulnerable
to the curse of dimensionality. The number of possible n-grams scales exponentially with
the size of the vocabulary, which is generally very large. Finally, N -grams are discrete
and sparse. Their computation does not take into account any similarity between
words neither at the semantic or the grammatical level, ignoring a fundamental part of
language structure.

Neural Language models overcome most of these issues and therefore are generally
preferred to N-grams.

3.1.2 Neural Language Models
The DNNLM proposed by Bengio is shown in Figure 3.2. The input words are defined
over finite length vocabulary V and are represented using a 1-of-V coding. For instance,
each word is associated with a vector of length V where all elements are zero, except the
value corresponding to the index of the given word. The first part of the network finds
a linear projection matrix P that maps the one-hot encoded words to a real vector of
a smaller dimensionality m, called distributed feature vector. The projection matrix P

is sharedd among words at di�erent positions in history and models words similarities
as clusters[3]. In the second part of the network a hidden layer with a non-linear
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |�m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Fig. 3.1 Bengio’s Neural Language Model. Figure credits [3].

activation function (generally a tanh or a sigmoid) computes a transformation of the
input (generally of 100-300 dimensions), and finally a softmax over the size of the full
vocabulary is used to produce the output predictions. The output layer represents the
probability distribution P (Ê

t

|h
t≠1) [35].

Distributed representation of words The main advantage of Neural Language
Models over the standard N≠gram model is the projection layer given by the transfor-
mation P . The projection operation maps the sparse one-hot vectors to a distributed
representation.

The concept of distributed representation was first presented by Hinton in 1984
[22]. The distributed space allows to represent one concept with many units, which
may contribute simultaneously to the representation of more than just one concept.
This formulation is extremely powerful and compact, since it allows to use n features
with k values to describe kn di�erent concepts.

Hinton’s original practical example is useful to show how the distributivity of the
space enhances generalisation to similar concepts. In a distributed representation
framework chimpanzees and gorillas are likely to be close in the representation since
they share similar features. Given the prior knowledge that chimpanzees like onions,
then in the distributed space the expectation that also gorillas like onions arises.
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The point of strenght of the use of such representation for words is that it allows to
leave the sparse one-hot representation and model language in a dense and flexible space.
In such space words with similar meanings or referring to common contexts are mapped
very close to each other. As a result, one single concept can be di�erentiated into
several slightly di�erent concepts by subsequent modifications in the weight parameters
[22]. Notwithstanding, the mapping between the concept and its representation is
not a bijection, hence is not directly invertible. This makes the interpretation of the
representations extremely challenging (see Section 5.1).

3.2 Recurrent Neural Network Language Models
The structure of RNNLMs is shown in Figure 3.2. The model maintains the same

1-hot coding and the layer projection [3]. The one-of-K representation is generally
done over the entire vocabulary or over the subset of the most frequent K words,
called shortlist, to save computational time. The words projections are computed as
in Bengio’s neural model and then fed together with the history vector as input to
the network. The hidden layer compresses the information from the two inputs and
computes a new representation using a sigmoid activation. The output layer is given
by a further softmax, which produces the normalised RNNLM probabilities for the
next word given the history [8]. The probability of the word sequence is given by:

P (Ê1:L) =
L+1Ÿ

i=1
P (Ê

i

|Ê1:i≠1)¥
L+1Ÿ

i=1
P (Ê

i

|Ê
i≠1,h

i≠2)¥
L+1Ÿ

i=1
P (Ê

i

|hi≠1) (3.4)

Training Cross Entropy criteria The standard cross entropy training criteria in
Eq. 2.5 for the word sequence Ê1:L is computed on the word sequence as follows:

LCE(◊) =≠ 1
L

Lÿ

i=1
log(P

RNN

(Ê
i

|h
i

)) (3.5)

where the RNN output probability is given by the softmax activation function.

Advantages of a recurrent LM The main di�erence between the feedforward
NLMs and RNNLMs is in representation of the history. For feedforward NNLMs,
the history is just a representation of the previous words, whereas in RNNLMs the
representation of history is learned from the data during training. This allows a more
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2 Overview of RNNLMs

RNNLMs [3] represent the full, non-truncated history hi =< wi�1, . . ., w1 >
for word wi using a 1-of-k encoding of the previous word wi�1 and a continues
vector vi�2 for the remaining context. For an empty history, this is initialised.
An out-of-vocabulary (OOV) input node can also be used to represent any input
word not in the chosen recognition vocabulary. The topology of the recurrent
neural network used to compute LM probabilities PRNN(wi|wi�1, vi�2) consists
of three layers. The full history vector, obtained by concatenating wi�1 and
vi�2, is fed into the input layer. The hidden layer compresses the information
from these two inputs and computes a new representation vi�1 using a sigmoid
activation to achieve non-linearity. This is then passed to the output layer to
produce normalized RNNLM probabilities using a softmax activation, as well
as recursively fed back into the input layer as the “future” remaining history to
compute the LM probability for the following word PRNN(wi+1|wi, vi�1).

For the sake of simplicity, RNNLMs discussed in this section contains single
hidden layer. RNNLMs with multiple hidden layers could be easily extended
and supported in the toolkit.

2.1 RNNLM with full output layer

An example RNNLM architecture with an unclustered, full output layer is shown
in Figure 1. RNNLMs can be trained using an extended form of the standard
back propagation algorithm, back propagation through time (BPTT) [4], where
the error is propagated through the recurrent connections back for a specific
number of time steps, for example, 4 or 5 [5]. This allows RNNLMs to keep
information for several time steps in the hidden layer. To reduce the computa-
tional cost, a shortlist [6, 7] on output layer limited to the most frequent words
can be used. To reduce the bias to in-shortlist words during RNNLM training
and improve robustness, an additional node is added at the output layer to
model the probability mass of out-of-shortlist (OOS) words [8, 9, 10].

Input layer

...

...
...

sigmoid

...

linear

softmax

OOV input node

OOS output node

Hidden layer Output layer

wi�1

vi�2

vi�1

vi�1

PRNN(wi|wi�1, vi�2)

Figure 1: A full output layer RNNLM with OOS nodes.

2

Fig. 3.2 CUED RNNLM. Figure credits to [9].

e�cient encoding of words that could have occurred at variable position in the history,
since the model can simply remember the older parameters learned for the previous
occurrence of that word. Conversely, feedforward NNs would have to recompute the
values of the parameters each time.

3.3 Evaluation Metrics and application to ASR
The evaluation of LMs can be done either in an intrinsic or in an extrinsic fashion.

The intrinsic evaluation involves the computation of the model entropy and the relative
perplexity. The extrinsic evaluation requires the application of the model to a specific
task, which can be for example rescoring the word probabilities of the output of an
ASR system and compute the Word Error Rates (WERs) with respect to a reference.

3.3.1 Perplexity
Perplexity is defined as:

PPL = P (Ê1:L)≠ 1
L+1 =

Q

a
L+1Ÿ

i=1
P (Ê

i

|Ê1, ..,Ê
i≠1)

R

b
≠ 1

L+1

(3.6)

where L is the total number of words in the sentence Ê1:L.
Perplexity can informally be thought as a measure of how likely a language model

is to predict the test data, since it can be seen as the exponential of the average
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per-word cross entropy of the test data. There is a close relationship between entropy
and perplexity, namely:

H = log2PPL

The model which yields the lowest perplexity is in some sense the closest to the true
model which generated the data. Therefore, we can consider entropy and perplexity
as very useful measures, which are strongly positively correlated with the final ASR
system performance [35].

3.3.2 Word Error Rates
In the extrinsic evaluation the model is applied to the practical task of rescoring the
acoustic output of an ASR system.

N-best lists The output of an acoustic model is usually a large number of candidate
sentences, called N-best lists. Each sentence in the list has assigned a probability score,
which is then used by the LM to reorder the di�erent possibilities according to how
likely is for each of them to belong to the language. For example, the sentence ’I saw a
van’ sounds really similar to ’eyes awe of an’, although the first should be preferred to
the second because it conveys a meaningful message, whereas the other has no sense at
all. The role of the LM is to rescore the probability of the two sentences and increase
the likelihood of the first option with respect to the second.

Word Error Rates The WER is indicative of the mismatches between the best
decoded utterance option W

dec

and the reference utterance transcription W . After
rescoring, the first best option for each sentence is taken as the final output of the
system and compared to an original reference transcription. Words and sequences are
matched using dynamic programming, yielding the optimal string match which has
the lowest possible score [52]. Once the optimal alignment is found, the number of
substitution errors (S), deletion errors (D) and insertion errors (I) is calculated, and
the WER is computed as:

WER = S +D + I

N
(3.7)

Language Model interpolation Language model interpolation is often used to
merge the characteristics of two or more language models, which may express di�erent
aspects of language. The interpolation between two models a and n is computed
follows:
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P (Ê)¥
L+1Ÿ

i=1
(⁄

a

P
a

(Ê
i

|Ê1, ..,Ê
i≠1)+⁄

n

P
n

(Ê
i

|Ê1, ..,Ê
i≠1) (3.8)

where the interpolation weights ⁄
a

and ⁄
n

reflect how appropriate is the language
model for the target domain and are subject to ⁄

a

+⁄
n

= 1. They can either be tuned
manually or estimated with Expectation Maximisation to minimise the perplexity on a
small amount of data from the target domain.

Generally, perplexity on held-out test data is preferred during the development
stage, since the extrinsic evaluation has a series of drawbacks. First of all, it can be
computationally expensive to test di�erent language models on ASR systems. Moreover,
it does not give and independent evaluation of the model, since performance is related
to the system the model is applied to. Therefore usually perplexity on held-out test
data is preferred during the development stage. The extrinsic evaluation has di�erent
drawbacks. WER does not give and independent evaluation of the model, since
performance is related to the system the model is applied to. Therefore, comparisons
between di�erent setups are not particularly informative and only comparisons for
the same system and data should be used. However, WER comparisons for the same
system and data are excellent measures of performance, better than perplexity.





4Chapter
Activation based regularisation

The main concept of stimulated learning lays in the introduction of stimuli during
the network training process through the use of activation based regularisation terms.

In this chapter we review the basic principles of the stimulated framework and
propose the Toroidal Spatial Smoothing regularisation term which encourages the
formation of a smooth activation surface on a toroidal reorganisation of the network
activations.

4.1 The Stimulated Learning framework
The Stimulated learning framework proposes a general procedure to obtain activation

based regularisation terms that can be used to insert additional constraints on the
values of the activations. Such constraints should be used to promote behaviours of the
activations that are likely to improve both the interpretability and the generalisation
of the network.
The main steps in stimulated training are four, namely the the organisation of the
activations in an activation surface, the transformation of the activation with a specific
transformation function, the definition of target patterns and the final definition of the
regularisation term as a distance function between the current values of the activations
and the desired targets.

4.1.1 Node organisation
The distributed nature of the embeddings allows the reorganisation the hidden acti-

vations according to any possible ordering. The work in [44] proposed the organisation
in d-dimensional grids through the following operation:
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In the surface each activation is projected on a Cartesian coordinate system, thus each
neuron can be located as a point in the network-grid space.

4.1.2 Activation Transformation
Three di�erent types of activation transformation have been proposed in the previous
work on stimulated learning [44, 51, 50], namely the activation normalisation, the
filtering of the activations, and the transformation into a probability mass function.

4.1.3 Normalisation
The normalised activation is defined as:

h̃
t

i(l) = h
t

i(l)—(l)
i

(4.3)

where —
(l)
i

is used to reflect the impact that the activation function has on the following
layer l +1:

—
(l)
i

=
Ûÿ

k

w
(l+1)2
ik

(4.4)

The normalisation can be used to describe the activation behaviour and identify
useless activations. For instance, —

(l)
i

is small when the weights of the next layer for
the activation node i are small or for the neurons that only stay close to the extreme
ends of the range of the activation function and that do not vary much during training.
Since these neurons do not strongly contribute to the learning process, they can be
removed by the representation.
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4.1.4 Probability mass function
The space of the grid can be interpreted as a discrete probability space. Therefore, the
activations can be transformed into a probability mass function, which will contain
information about the activation behaviour. The probability mass function can be
defined as follows:

h̃
(l)
ti

= h
(l)
ti

q
j

h
(l)
tj

(4.5)

In this representation the activations can be considered as a whole, instead of indepen-
dent items.

4.1.5 Filtering
The d-dimensional activation surface can be interpreted as an ’activation image’ made
of ’pixel neurons’ [50]. Digital Image Processing techniques such as filtering can be
applied to the activation image. In 2D and 3D an immediate visualisation of the results
can be obtained. For example, the application of linear smoothing filters replaces
each activation pixel by a combination of its neighboring pixels, thus smearing out the
activation image [39, 51].

Formally, linear filters are defined as a discrete two dimensional real valued function
K : ZxZæ R, which can be represented as a filter matrix, K(i,j). The size of the
matrix is equal to the size of the filter region, and every element K(i,j) specifies the
weight of the corresponding pixel in the summation. The application of the filter to
the activation image is done through a convolution process:

H̃
(l)
t

= H
(l)
t

ıK (4.6)

For instance, K is moved over the activation image H so that the origin K(0,0)
corresponds to the current image position (u,v). The filter coe�cients K(i,j) are then
multiplied with the corresponding activation image element H(u + i,v + j) and the
results are added together. Finally, the resulting sum is stored at the current position
in the new image.
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4.1.6 Target pattern

The activation target patterns G
(l)
t

define the desired behaviour in the network that
the stimulation should enhance. Di�erent concepts can be modelled by di�erent target
patterns, which can be mainly distinguished in time-variant and time-invariant.

Time invariant patterns Time invariant patterns introduce a general concept
which should be statically satisfied during the training of the network:

G
(l)
t

= G(l) (4.7)

Time-variant targets Time variant patterns introduce dynamic constraints during
training. The phoneme targets in [50] are an example of time variant patterns. Target
areas are defined on the activation grid for a series of inputs. According to the current
input the target is changed accordingly to promote to local activation of the target
area. As a result, the stimulated training enables to learn representations that yield
high activations for any given input only in the vicinity of the target zone for the
specific input [39].

4.1.7 Regularisation

Regularisation aims at minimising the di�erence D(H̃(l)
t

,G(l)
t

) between the transformed
activation H̃

(l)
t

and the target pattern G
(l)
t

over the training data:
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The di�erence between the transformed activations and the targets can be computed
in three di�erent ways, namely by using the Mean Squared Error, the KL-divergence
or the Cosine Similarity.

Mean Squared Error The Mean Squared Error (MSE) method directly defines the
regularisation term:
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(4.9)

where ||H||
F

is the Frobenious norm of the matrix H.
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KL divergence The KL-divergence method uses the activations transformed in a
probability mass function and compares them with a target distribution:
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The mismatch between the two distributions is minimised during the training process.
As a result, the activation distribution is encouraged to form the target pattern [39].

Cosine similarity The use of cosine similarities extends the di�erent concept to
arbitrary activation types, without the necessity of a probability mass function. The
cosine similarity is formally defined as:
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The cosine similarity encourages the similarity between two vectors in the inner
product space, not requiring the transformation of the activation into a probability
mass function. Instead of comparing the two probability distributions it measures the
angle between the transformed activations vector and the target pattern.

4.2 Introducing Spatial Smoothing for LMs
The idea behind encouraging spacial smoothness is inherent in the definition of the

smoothness, or local constancy of a function f , which assumes only small changes of
the function values which lay within a small region. Therefore, if u¥ v, then the target
function f should have the property f(u)¥ f(v) . Formally, we would like that:

f(x+ ‘d)¥ f(x) (4.12)

for unit d and small ‘ [20]. Eq. 4.12 assumes the similar behaviour of nearby input
representations. This assumption perfectly matches the characteristics of the distributed
representation of words in the projection layer of neural LMs. Therefore, enforcing
spatial smoothing would benefit the spatial reorganisation of the hidden neurons and
exploit the distributed nature of the network activations to improve the regularisation
capabilities of the model. For example, we can consider the case of ’CAT’ and ’DOG’,
which belong to the same semantic class of domestic animals. Assuming that their
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representations are close in the distributed space, the activations for those inputs
should be similar. The smoothing regularisation should therefore drive the di�erence
between the activations relative to each input very close to zero. This can be achieved
by the convolution of the activation surface with a high-pass filter.

4.2.1 High-pass filtering the activation image
Smoothing filters can be used to interpolate the values of nearby activation pixels. For
instance, the simplest high-pass filter is the 3x3 box kernel (visualised in Figure 4.1),
which is defined as:
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The high-pass filtered image is obtained throught the convolution operation between
the activation image and the filter, as in Eq. 4.6.

Fig. 4.1 Filtering details. Right: visualisation of a 3x3 box filter kernel. Left: convolu-
tion operation of the box filter with the activation grid.

Regularisation term The final regularisation term is given by encouraging the
high-pass filtered activations to be small, namely by imposing the Frobenious norm of
the activations to be close to zero. Formally:
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where “ is the regularisation penalty, N
w

is the total number of words in the
vocabulary, and H̃ l

t

are the filtered activations of the l-th layer at iteration t .
The training criterion becomes:

L(◊) = LCE(◊)+“RSmooth(◊) (4.15)

where “ is a regularisation penalty, that controls the contribution of the activation
regularisation term.

4.2.2 Filtering Edge-E�ects
The borders of the activation grid represent a limit case that is a well-known issue

in Image processing. Theoretically,the convolution can only be applied at locations
(u,v) where the filter matrix K is fully contained in the image. Several solutions have
been introduced, such as zero-padding or mirroring. Zero padding adds an additional
border of zeros around the image, which allows to compute the convolutions.

As a side-e�ect, the ’zero’ added context is smoothed with activations of the network,
which results in driving the activations to very low values. For instance, Figure 4.2 we
present the result of high-pass filtering a flat activation image, e.g. all the activations
have been set to one, which represents an already perfectly smooth surface. The
expected result of the filtering should be flat to zero, since there is no variation to
smooth. The di�erent colours at the borders show instead that edge-e�ects modify the
value of the grid at the borders.

4.2.3 Changing the topology: from open to closed surfaces
An alternative solution is given by the introduction of curvature in the reorganisa-

tion of the hidden units to pass from the open, flat grid surface to a closed surface
representation.

Closed surfaces Closed surfaces are compact and unbounded. Compactness is a
property that generalizes the notion of a subset of Euclidean space being closed, namely
containing all its limit points and that has all its points lying within some fixed distance
between each other. Examples of closed surfaces are the sphere, the torus and the
connection of a number of planes (eg. cube). The deformation of a flat grid into a
torus through the introduction of contiguity is generally used in Digital Electronics,
especially for logic simplification with the Karnaugh mapping [26].
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Fig. 4.2 Edge e�ects at the grid borders. Left: Edge e�ects after the convolution
with a 3x3 Kernel of a totally smooth surface.The blue color corresponds to a perfectly
smooth surface, with all zeros. The lighter colors at the borders show that the surface
is perturbed by the introduction of zeros in the convolution. Right: 5x5 box filter
kernel edge e�ects. As the size of the filter increases the side-e�ects at the edges are
amplified.

Toroidal grids Topologically, a torus is a closed surface defined as the product of
two circles: S1 ◊ S1. In three dimensions, a flat grid can be deformed into a torus by
joining the borders of the grid as shown in Figure 4.3. Toroidal grids can be obtained
by applying the same principle used in the karnaugh maps. Adjacency is added as
shown in Figure 4.3, where the nodes with the same colors are joined to form a closed
surface.

Formally, the torus structure can be obtained modifying the node activations
organisation in Eq. 4.2 as follows:
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Fig. 4.3 Deformation into torus. Left: Adjacency is added on the horizontal and
vertical evidenced stripes. The same colours are merged. Middle: the grid corners
with the same colors are put in adjacent places. Right: resulting torus.

An expanded activation grid is created where one line is added on top, one line at the
bottom and two columns are added to each side. The added line at the top replicates
the values of the last time at the bottom, and the added line at the bottom replicates
the values in the first line of the original activation grid. The same pattern is followed
for the lateral columns. The values in the four angles are swapped so that the top left
corner contains the value of the grid in the bottom right corner.

4.2.4 Relationship between Spatial Smoothness and L2
Encouraging the norm of the activations to be small reminds the weight decay regular-
isation, where the weights are encouraged to be small. The relationship between the
spatial smoothness concept and L2 regularisation can be analysed in the simple case
where the filtering operation returns the raw activations:
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From the definition of Frobenious norm:
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Under the assumption that the individual activations h
(l)
i

are obtained by a tanh
function (which we will call with Â(·) for brevity) :
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The tanh can be approximated by a Taylor series:
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where K = ÂÕ(0) and Â(0) = 0. Rewriting Eq. 4.20, where J is a constant:

h
(l)2
i

¥KJ2
Q

a 1
J

ÿ

j

w
(l)
ij

h
(l≠1)
j

R

b
2

(4.21)

The application of the arithmetic mean-geometric mean inequality leads to:
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The sum in Eq.4.22 is the arithmetic-harmonic mean, which allows us to rewrite
the equation as:
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where C has been used as a cumulative constant to gather the terms brought out from
the sum. The total regularisation is given by the sum overall layers, which leads to:
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Hence, L2 is an upper bound for the spatial smoothness regularisation.

The non-filtered constraint indirectly acts on the weights as the L2 regularisation,
encouraging them to remain small. While L2 acts on the full weight matrices, spatial
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smoothing is only applied on the activations of the hidden layer. For example, if both
the embedding layer and hidden layer have the same number N of hidden units, then
the L2 regularisation has a computational cost of O(N2) , while spatial smoothing has
cost of O(N). Therefore, spatial smoothing could be an e�cient regularisation term in
case of very large networks.

This would result extremely beneficial in case of the training of very large networks,
since it would avoid the overfitting on the training data at a lower cost than the L2
regularisation.





5Chapter
Network Interpretability

Several approaches have been used to to obtain a meaningful representation of neural
networks activations, especially for Convolutional Neural Networks [30, 12, 54, 17].
The tradional methods invert the transformations inside the network use the signals
from the forward propagation to reconstruct the features detected by each neuron.
While the interepretation is almost immediate for digital image inputs, in case of
sequential inputs interpretability is generally limited to the individual analysis of
ranges of the activations, their saturation points, etc., which may result cumbersome
and not straightly intuitive.

In the next sections we illustrate the main issues connected to the interpretation of
sequential data inputs and we propose two di�erent methods to convey meaning to the
network hidden activations.

5.1 Interpretability for sequential data inputs
Interpreting sequential data inputs can be less intuitive than interpreting images,
especially when they are multidimensional. The analysis of multidimensional data
through di�erent visualisation methods has been addressed since the early twentieth
century, when scientists such as Pearson and Fisher developed methods for the analysis
of multivariate data [29].

In case of speech signals, Sensitivity-Characterised Activity Neurograms have been
proposed by Tan et al. to analyse the activations of a deep feed forward network [44].
Alternatively, the stimulated training of DNN proposed an interpretable training of an
acoustic model, where a visible pattern moves in 2D map of phonemes as the input is
observed[39, 50] .
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5.2 Visualisation of the recurrent layer
The qualitative interpretation of the embedding process of recurrent units such as

LSTMs cells and GRUs has recently become of interest [54, 5, 27, 37, 45] and allows
to investigate important properties of the gated units. For instance, Palangi et al.
visually showed the LSTM ability to capture long term memory dependencies and
forget irrelevant information by automatically attenuating unimportant words and
detecting the salient keywords in sentences.

Furthermore, Karpathy et al. analysis of the LSTM cell showed that LSTM can
robustly identify interpretable high-level patterns such as lines, lengths, brackets and
quotes. Such properties allow to treat sentences as sequences of words with internal
structures, yielding at the end of the encoding process a cumulative representation of
the whole sentence [37].

5.3 Activation images
The first issue for interpretability is the visualisation of the activations. The hidden

layer should follow a spatial organisation easy to visualise and meaningful, so that
interpretation is possible. For instance, the activation vector can be reorganised in a
2D-flat grid as proposed in Eq. 4.2, yielding an activation image where the activation
intensities in the di�erent regions of the space are rendered with di�erent colours.

If just a random reorganisation is selected, activation images are similar to the one
shown on the left in Figure 5.1, where the activations do not follow any meaningful
ordering. Promoting a similar behaviour of nearby activations would allow visible
activation patterns to form, similar to the one proposed on the right in Figure 5.1.
Each activation pattern could specialise on one feature of the input. For example, lets
imagine that for the input word ’OKAY’ a region of the activation matrix constantly
activates. We would like to observe a similar pattern for ’OK’ , since essentially the
two words correspond to the same concept.

Conveying meaning to the activation image The definition of a meaningful
mapping within the activation image would allow to convey a meaningful interpretation
of the activation patterns. If we introduce a mapping of the space where each region
represents a specific feature of the input, then we can inject interpretability to the
representation of the activations. Moreover, having di�erent regions being active
depending on the input unit may help the network to discriminate better and as a
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Fig. 5.1 Comparison between two reorderings of the activation patterns. Left: random
reordering. Right: desired behaviour of the activations in an interpretable handcrafted
map.

consequence yield lower error rates[39]. For example, Figure 5.1 compares a random
ordering of the activations to a preferable ordering, which defines di�erent patterns
according to the syntactic structure of English sentences.

5.4 Exploitation of target patterns
The identification of a target pattern for the internal activations of the network is
strictly connected to the external meaning that we would like to inject in the network
training. For instance, it could be useful to incorporate in the mapping the semantic
and the grammatical relationships that may be found in a sentence. For this reason, in
the following sections we present two di�erent target patterns: the first uses directly
the Word2vec embeddings, which proved successful in expressing the semantic closeness
between words; the second uses Part-of-Speech tagging to include syntactic information
in the mapping.

5.4.1 Word2vec embeddings
Several work has been done recently to learn real-valued vector representation of
words [19, 34, 36]. Mikolov et al. Skip-gram model is an e�cient method for learning
high-quality distributed vector representations of words, generally known as word2vec.
In this representation the syntactic and semantic word relationships are encoded in
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such a way that words that occur in similar contexts are closer in the learned vector
space. For instance, common examples are the vector operations:

v(Paris)≠v(France)+v(Italy)æ (Rome)

v(king)≠v(man)+v(woman)æ v(queen)

where v(·) returns a vectorial word2vec representation, and æ symbolises the closest
word2vec vector to the one obtained [34, 19].

The word2vec space constitutes a meaningful space to map words, since close words
in this space generally occur close in natural language. The Google billion corpus has
been used as the training corpus to obtain the projections.

Google billion corpus The Google billion words corpus is a benchmark with over
one billion words of training data 1, which has been used to evaluate novel language
modeling techniques and to compare their contribution when combined with other
advanced techniques [6]. The data were gathered by monolingual English corpora
and duplicated sentences were removed. The vocabulary includes most of the existent
English words, consisting of 793 471 individual words.

The pretrained Google billion word2vecs are opened to the public, and consists
300-dimensional vectors which represent each of the words in the corpus. Such large
number of word vectors can be used to obtain a dense 2D space where most of the
word similarities are mantained in the projection. Generally, dimensionality reduction
methods such as T-sne [32] or Principal Components Analysis are used. Figure 5.2
shows a portion of the word2vec space for the Google billion corpus embeddings. The
cluttered nature of the projection space is useful to represent semantic similarities,
although it makes interpretability extremely complicated.

The regularisation term is obtained by placing Gaussian targets on top of each
projected word vector and computing the cosine distance between the word embedding
in the neural model and the target embedding in the word2vec target map.

5.4.2 Part of speech target maps
Part of speech patterns can be used to encourage the grid regions to model the

syntactic structure of the sentences. A Part-Of-Speech Tagger is an algorithm that
1
The benchmark is available as a (code.google.com project)
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Fig. 5.2 3D Tensorboard [1] visualisation of the PCA of a subset of the Google bilion
Word2vec Embeddings.

reads a textual input and assigns to each token a part of speech label, such as noun,
verb, adjective, etc [47]. Part of speech categories group together words which have
similar grammatical properties and similar behavior in terms of syntax or morphology.
Ideally, we would like to obtain a map that encodes the syntactical structure of English
sentences. For example, we would like to have the the nouns grouped together and close
in space to verbs and articles, since even the simplest sentence is generally composed
by an article, a noun and a verb.

POS Regularisation The POS regularisation term can be obtained following the
same procedure explained in [50] for acoustic features. The word2vec vectors belonging
to each POS category are averaged to obtain the centroid of each category. Dimension-
ality reduction methods such as T-SNE [32]are used to project the 300-dimensional
centroids on a 2D map, which should enhance the natural smooth transitions between
similar contexts. Since T-SNE is very dependent on the initialisation of some parame-
ters (i.e. initial perplexity, number of iterations, etc.), Multidimensional Scaling (MDS)
[31] can be used as a valid alternative. MDS maintains information on the original
distances between two elements in the high-dimensional space, while evidencing as
much as possible similarities and di�erences between group of elements.
Once identified the mapping, a normalised Gaussian distribution is placed on top of
each category point and the final regularisation term is obtained by minimising the
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KL-divergence between the activations distribution and the target distribution as in
Eq. 4.10.



6Chapter
Experiments

6.1 Training data
Two di�erent training sources, namely the AMI meeting corpus and the Multi Genre
Broadcast Challenge (MGB) were used. Table 6.1 presents summary statistics on the
data.

Dataset Vocsize (W) (train) Size (MW) (val) Size (W) (test) Size (W)
AMI meetings 32K 1.0 121 K 115 K
MGB3 transcription 43K 4.8 71 K -

Table 6.1 Corpus statistics

6.1.1 AMI meeting transcriptions
The AMI Meeting Corpus is a public set of recorded meetings which has been collected
by The European-funded AMI project. The training set consists of 78 hours of meeting
recordings for which high quality, manually produced orthographic transcription for
each individual speaker are provided. Eight meetings were kept from the training set
and used as development and test sets. The corpus consists of approximatively 100
thousand sentences for a total of 1M words and approximatively 32K unique words in
the vocabulary.

6.1.2 Multi-Genre Broadcast Challenge
The MGB Challenge is an evaluation of speech recognition, speaker diarization, di-
alect detection and lightly supervised alignment using TV recordings supplied by the
British Broadcasting Corporation (BBC) and consists of audio from BBC television
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system dev PPL test PPL
3-gram 93.6 82.8
CUED-RNNLM v1.0 - LSTMs 79.91 71.7
TF-RNNLM-AMI - LSTMs 76.23 ± 0.30 69.10 ± 0.23

Table 6.2 Baseline system performances on AMI. The TF-RNNLM-AMI results are
averaged on three di�erent reinitialisations.

programmes. The data is very varied and covers the full range of genres (e.g. comedy,
drama, sports shows, quiz shows, documentaries, news etc). The speech data is broad
and multi-genre, spanning the whole range of TV output, and represents a challenging
task for speech technology. The corpus consists of approximatively 4.8 M words, 63K
unique words, which have been short-listed to the most frequent 42K.

6.2 Network Configurations

The basic RNNLM structure used for the experiments 1 comprehended input and
output layers over the full vocabulary, a projection layer and a recurrent layer with
either LSTMs and GRUs cells. An out-of-vocabulary node has been used to represent
any input word not in the recognition vocabulary. Training used the BPTT algorithm,
where the error is propagated back through the recurrent connections for 20 time
steps. The initial network weights were set with the Xavier initialisation and the initial
learning rate tuned between 1e-2 and 1. The Adam optimiser has been used with
gradient clipping to a maximum norm of 10.
This configuration sightly di�ers from the CUED-RNNLM configuration, which uses the
BPTT algorithm for 5 timesteps, an out-of-shortlist node, mini-batch SGD optimisation
and initial learning rate of 1.0.

TF-RNNLM-AMI Nearly 43K input and output nodes are used in TF-RNNLM-
AMI. The embedding projection layer has 196 units and the recurrent layer uses 196
LSTM cells. The system performance has been compared to the CUED-RNNLM
baseline in Table 6.2. The TF-RNNLM-AMI PPL reaches on average over a set of three
random reinitialisations 76.23 PPL on the development set and goes down to 69.10 on
the test set. This results are slightly lower than the CUED-RNNLM baseline, which is
probably due to the small di�erences in the two model configurations. However, the
obtained results are still comparable with the CUED-RNNLM baselines.

1
Credits to A. Malinin for the base model Tensorflow implementation
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6.3 Experiments on Spatial smoothing
In this section we present the experiments on the spatial smoothing regularisation.

The spatial smoothing regularisation term is obtained by following the procedural
steps presented in Section 4.2. The hidden units activations are organised in a 14x14
flat grid and their convolution with a 3x3 box filter kernel K is used to obain the
high-pass filtered activation grid, H̃

(l)
t

. A static target pattern G(l) = 0 is fixed. The
MSE criterion is used to compute the distance between the transformed activations
and the target pattern. Figure 6.10 shows the learning curves of the models, which to
converge on average after 15 epochs.

Fig. 6.1 Flat Smooth system training and validation curves for di�erent regularisation
penalties on the AMI dataset. The light blue curve represents the baseline TF-RNNLM
model, where no stimulation has been applied.

Experiments Spatial smoothing has been investigated on both models with a flat
grid reorganisation of the activation (which will be called Flat Smooth systems) and with
toroidal surfaces (e.g. Toroidal Smooth systems). Experiments cover the investigation
of a various range of model properties with the final goal of finding the best smoothing
model configuration. First, we investigated the impact of the regularisation penalty on
the dynamic range of the regularisation. Second, we compared the flat organisation
of the activations to the toroidal organisation and we investigated the use of either
stronger or bigger filter kernels. Modification of the grid sizes were analysed to see how
the regularisation scales on larger models. Finally, models with dropout were trained
and compared to the smoothing models.
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Impact of the regularisation penalty
The regularisation penalty “ controls the strength of the regularisation term in the

training objective function. Larger values of “ correspond in final higher training
costs and in better validation performances, as shown in Figure 6.2. For instance,
for increasing values of gamma the training cross entropy raises from 3.68 to 3.78,
whereas the validation error decreases as “ increases, reaching the minimum of 4.30 for
“ = 1e≠2.

Training Cross Entropy
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Fig. 6.2 Final training and validation cross entropy costs for di�erent regularisation
penalties on AMI.

Figure 6.3 shows the trade-o� between the regularisation and the cross entropy cost
for di�erent values of the regularisation penalty.

Fig. 6.3 Tuning of the regularisation penalty. Left: Cumulative regularisation (MSE)
added during training for di�erent values of the regularisation penalty “ on a log scale.
Right: Perplexity on the testing set against regularisation penalty.

Higher values of “ lead to lower values of the cumulative regularisation term added
during the training process. For instance, when “ = 1.0 the order of magnitude of
RSmooth(◊) reaches is 101, whereas for “ = 1e≠ 5 it ranges between 105 and 106.
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Hence, larger regularisation penalties encourage smoother activation surfaces, leading
to smaller cumulative regularisation terms.
The oscillation of the perplexity on held out test data on the right in Figure 6.3 shows
that the best trade-o� compromise is given by “ = 1e≠3 for the Flat Smooth system
and by “ = 1e≠2 for the Toroidal Smooth system.

Introduction of the toroidal curvature
The organisation of the hidden nodes in a torus leads to the closed surface in Figure

6.4. The continuous toroidal shape allows to avoid the filtering edge-e�ects at the
borders of the activation image.

Fig. 6.4 Network activations on a toroidal organisation of the hidden units

The tuning of the regularisation penalty on the Toroidal Smooth system followed
the same considerations made on the Flat Smooth system. For instance, the perplexity
oscillation of the toroidal model for di�erent penalties is shown on the right in Figure
6.3 (in green). The PPL of the model decreases as more and more importance is given
to the regularisation penalty. The model with “ = 1e≠2 yields also the lowest values
of the validation cross entropy, at 4.30 against the baseline value of 4.34.

Generalisation to unseen data Table 6.3 shows the generalisation performances
of the best systems on held out test data.

Both the smoothing systems yielded consistent improvements in the development
and test perplexities with respect to the baseline model. The toroidal smooth system
yields the best average performances over a set of 3 repetitions, with an average
decrease of 3.0 points in the test PPL. The introduction of a short-list for the output
word probabilities of the most ¥ 22K used words in the vocabulary (as proposed in
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system “
dev PPL test PPL

TF-RNNLM-LSTM 0.0 76.23 ± 0.30 69.10 ± 0.23
Flat Smooth-LSTM 1e-3 74.47 ± 0.40 66.20 ± 0.42
Toroidal Smooth-LSTM 1e-3 74.01 ± 0.35 66.12 ± 0.32

Table 6.3 Smooth LSTM system performances over di�erent initialisations on AMI.

[8]) yields a further average improvement of 2.0 points in the development perplexity
(e.g. development perplexity 72.00 and test perplexity 66.15), which could be further
enhanced by the introduction of an out-of-shortlist output node. The use of GRU did
not lead to better performances, although toroidal smoothing decreases the test PPL
of 3.0 points even in GRU models, reducing the test PPL of the baseline model GRU
from 75.46 to 72.36 (see Table 6.4).

system “
test PPL

TF-RNNLM-GRU 0.0 74.46 ± 0.24
Toroidal Smooth-GRU 1e-3 72.36 ± 0.31

Table 6.4 Smooth GRU system performances over di�erent initialisations on AMI.
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Analysis of di�erent filter kernels In addition to the 3x3 box filter, the application
of a 5x5 linear filter kernel and of a 5x5 Gaussian high-pass filter (in Figure 6.6) has
been investigated. Figure 6.7 shows the relative training and validation learning curves
of the Toroidal Smooth system. Overall, the 3x3 kernel still gives the best performance
when compared to bigger filters. Bigger filters or more powerful filters such as the
Gaussian high-pass filter (in Figure 6.6) introduce a stronger regularisation, which
causes the models to underfit the training data, as can be seen in Figure 6.7. Larger
networks with more than only 196 units could benefit from a regularisation with a
larger filter, since the stronger regularisation could avoid overfitting on the training
data.

Fig. 6.5 Application of a 5x5 linear smoothing kernel (1 in the central box , -0.08 in
the immediate surroundings and -0.02 in the furthest part [5]) on a sample pattern.
Left: activations sample pattern. Centre: filter Right: filtering output.

Fig. 6.6 Application of a Gaussian high pass filter on a sample pattern. Left: activations
sample pattern. Centre: filter visualisation Right: filtering output.

Analysis of di�erent sizes of the hidden layer The impact of the regularisation
on bigger networks has been tested using a larger model, with 1024 LSTM cells. Figure
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Fig. 6.7 Flat smooth system with di�erent filter kernels. Left: training Cross Entropy.
Right: validation Cross Entropy. The gaussian filter causes underfitting.

Fig. 6.8 Regularisation of larger hidden layers compared to the unregularised corre-
sponding networks. Overfitting is prevented by the introduction of the regularisation
term.

6.8 shows how the regularisation introduced by spatial smoothing avoids overfitting.
For instance, the validation cross entropy of the toroidal smooth system with 1024
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units converges to the same range of values of the smaller model. The regularisation
penalty was tuned on the bigger model and set at 1e≠4. Normalising the regularisation
term over the number of hidden units in the layer could remove the dependency of the
regularisation penalty on the layer size.

Comparison between spatial smoothness and dropout Table 6.5 shows the
comparison between the perplexity on the validation set and on held-out test data for
the toroidal smoothing model and a standard RNNLM with dropout. The development
perplexity is really high in the dropout models, but they have strong generalisation
performances. The generalisation performances of the toroidal smooth model is
comparable to the performances of the RNNLM with dropout.

System dev PPL test PPL
Dropout (p=0.5) 87.83 ± 0.22 66.63 ± 0.31
Dropout (p=0.8) 81.19 ± 0.18 67.54 ± 0.32
Toroidal Smooth 74.47 ± 0.40 66.12 ± 0.32

Table 6.5 Comparison of development and test PPL values of the TF-RNNLM with
toroidal smoothing and with dropout .

ASR performances Table 6.6 reports the WER evaluation for the best analysed
models. The Toroidal Smoothing system reports slights WER improvements. The WER
has been computed rescoring the 50-bests list of the ASR output of a Kaldi acoustic
model training recipe featuring sequence training [48, 9] with FMLLR 2 transformed
MFCC features 3 [40, 13]. The RNNLMs has been interpolated with a 3-gram model,
with language model penalty tuned between 10 and 12. The LM interpolation weights
have been manually tuned between 0.5 and 0.8 for the 3-gram model and 0.5 and
0.2 for the Tensorflow models. The di�erence between the CUED-RNNLM WER
and the TF-RNNLMs WERs underlines that the performances of the two models are
not directly comparable. This is probably due to the structural di�erences between
the two models, as explained in Section 6.2. However, improvements in the WERs
of the Tensorflow models are reliable since the Tensorflow models configurations are
consistent.

2
FMLLR:Feature space Maximum Likelihood Linear Regression

3
MFCC: Mel-frequency cepstral coe�cients
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system +WERs
3-gram 25.8
CUED-RNNLM v1.0 - LSTMs 25.3
TF-RNNLM-AMI - LSTM 24.6
Flat Smooth-LSTM 24.5
Toroidal Smooth-LSTM 24.5

Table 6.6 ASR performances on AMI with LM rescoring.

6.4 Experiments on the MGB dataset
TF-RNNLM with toroidal smoothing and GRU units were trained on the MGB dataset
to apply the framework on a di�erent corpus. MGB has in fact very di�erent features
from AMI, since it is a much larger corpus and contains varied language styles.

TF-RNNLM-MGB In the TF-RNNLM-MGB model 196 GRUs were preferred to
LSTMs to reduce the computational complexity and a shortlist was used to limit both
the input and the output layer to the most 43K frequent words. The bias to in-shortlist
words during RNNLM training could be reduced with an additional out-of-shortlist
node at the output layer.

Toroidal smoothing The toroidal smoothing system has been applied to the three
di�erent presented models. Table 6.7 reports the final perplexities of the models. As
the size of the hidden layer increases, larger unregularised networks tend to overfit
the training data. The smooth regularisation allows the training of very large models
without any decrease in performances due to overfitting.

14x14 25x25 30x30
unregularised 182.79 199.60 204.10
toroidal smooth 179.11 179.76 178.52

Table 6.7 MGB validation perplexity of the unstimulated and the stimulated models
(TF-RNNLM-GRU).

Further experimentation on the MGB models could have been carried out to
investigate the impact of the regularisation penalty and of the use of di�erent filters.
However the long training time of the models did not allow to expand the investigation
further during the project time period.
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6.5 Experiments on Interpretability
Related work on stimulated learning [39, 50, 44] showed that the injection of external

knowledge during the training process could lead to the formation of interpretable pat-
terns in the hidden activations as well as yielding better generalisation. Interpretability
has been investigated on the AMI corpus, by looking at two di�erent types of target
patterns. First, the Skipgram model word2vec embeddings of the Google billion word
corpus have been used in a ’raw target map’ (e.g. raw-map system). Second, syntactic
information has been included using Part-of-Speech tagging labels (e.g. POS-MDS
system).

Network configurations The same network configurations in Section 6.2 have been
used, and both tanh and sigmoids have been investigated with the cosine distances.
The KL divergence regularisation has been used only with sigmoids as suggested in
[50]. The learning curves and the tuning of the regularisation penalty “ are reported
in Figure 6.10.

Raw-map targets The word2vec embeddings of the AMI vocabulary are obtained
from the online pre-trained models with gensim 4 [36] . Each embedding is computed
with the contextual information about the surrounding words, and therefore the
word2vec embeddings are likely to represent both the semantic and syntactic features
of the words [36]. The embeddings are then projected on a 2-dimensional grid with
T-SNE [32] and Gaussian targets with 0.5 standard deviation are centred on each of
the projected word points (see Figure 6.9).

Fig. 6.9 T-SNE word embeddings targets. Left: T-sne projection of the word embeddings
on the 2-d grid. Right: gaussian target pattern for ’OKAY’.

4https://radimrehurek.com/gensim/
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Fig. 6.10 System training learning curves and parameters tuning. Left: raw-map and
POS-MDS system training and validation curves as opposed to the baseline RNNLM
(where sigmoids have been used instead of tanh) Right: Tuning of the regularisation
penalty “

Response to one input sentence The raw word2vec stimulation shows that the
gating structure in the LSTM cells keeps track of the previous activation patterns
throughout the sentence. For example, Figure 6.11 shows the ’activation canvas’
response to the input sentence ’HERE WE GO’. As the words pass through the network
di�erent areas are stimulated while some of areas remain active. At the end of the
sentence the activation grid can be seen as an ’embedding’ of the full sentence [37].

Fig. 6.11 Raw word2vec stimulation response with the sentence input ’HERE WE GO’.
The units kept in the LSTM memory have been evidenced.

The stimulation leads to nearly 2% improvement points in the test perplexity of the
model (see Table 6.8), showing that the incorporation of external information helps the
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training process. A further tuning of the standard deviation of the Gaussian targets
could lead to better performances. Notwithstanding, the cluttered nature of the raw
word2vec projections makes interpretability stil challenging.

System “ dev PPL test PPL
TF-RNNLM 0 75.69 69.10
Raw-map 1e-1 75.00 67.20
POS-MDS 1e-1 74.84 68.20

Table 6.8 Development and Test PPL for each of the di�erent systems.

Semantic targets The second experiment involved the introduction of semantic
structure in the activation targets. The Stanford Natural Language Parser 5 [11] has
then been used to assign POS tags for each of the Skipgram word2vec embeddings
of the Google billion corpus. The average word embeddings are computed for each
POS category, obtaining an indicative POS embedding. The POS embeddings are
reduced with Multi Dimensional Scaling (MDS) from 300 dimensions to just 2, and
subsequently centred and scaled to fit the grid size. Figure 6.12 shows the POS target
map obtained by projecting the average embeddings for each POS category on the
2d-grid. The POS tags descriptions are reported in the Appendix.

Ideally, the target map should automatically encode meaningful characteristics
of the input data. The traditional structure of English sentences is reflected in the
POS-MDS map, where ’similar’ POS tags are close together. For instance, the syntactic
structure of the sentence is encoded through the closeness of the tags for determiners
(DT), nouns (NN and NNs) and verbs (VB), which generally are close to each other
and represent the key elements of English sentences.

The stimulated training followed the procedural steps reported in [50]. The target
pattern and the activation grid are first converted into probability mass functions.
The regularisation term is then computed by looking at the KL-divergence between
the target distribution and the current activation distribution. Figure 6.13 shows an
example of the activation patterns for the input word ’OKAY’ in the baseline system,
the Toroidal smooth system and the POS-MDS system. The first three images refer to
systems with tanh activations, hence the green color corresponds to zero, blue to -1

5https://nlp.stanford.edu/software/lex-parser.shtml
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Fig. 6.12 POS targets map

and red to +1. The last image has been obtained from a system with sigmoids, hence
blue corresponds to zero and red to one. Both the e�ects on smoothing and of the
target specific stimuly are noticeable in the output images.

(a) (b) (c) (d)

Fig. 6.13 Internal Representation of ’OKAY’ (RB, Adverb) in the di�erent Systems.
(a): Unregularised network, tanh activations. (b): Toroidal Smoothing, tanh activations.
(c): Raw-map target, tanh activations. (d): POS-MDS target, sigmoid activations

System performances The application of POS-MDS stimulation only brings slight
improvements in the testing perplexity of the system, e.g. 0.9%. This might be due to
di�erent factors that should be more carefully addressed in the development of the
POS stimulated system. To begin with, the labeling of the POS tagger may introduce
a certain degree of error. For instance, the tagger addresses each word individually
and not directly in the specific context. The introduction of sentence-specific tags
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(i.e. tailored on the training corpus) would address this problem, thus reducing the
context shift between the Google billion word corpus and the AMI corpus. Moreover,
a proper tuning of the standard deviation ‡ of the gaussian targets is needed to ensure
better performances. If ‡ is too large, the target may cover more than one POS cluster,
whereas if ‡ is too small, the activations are encouraged to behave as delta inputs
on the activation grids, thus removing all the benefits given by a smooth activation
surface.

The word patterns present two main di�erences from the acoustic patterns in [50, 39].
The acoustic patterns were more clearly delineated and the change of pattern was
characterised by a smooth transitions between the previous and the next pattern. The
first di�erence may be addressed by using larger grids and stronger regularisation terms.
The absence of smooth transitions may be intrinsic of the language modelling problem
and due to to the discrete nature of language. For instance, the acoustic sounds
are characterised by continuous transitions between one sound and the other, which
are well captured by the stimulation. Conversely, language does not present smooth
transitions between words. Both the raw-map and the POS-MDS regularisation can
be better interpreted as the imposition of target-specific smoothing constraints on the
activation surface. The gaussian target enhances the activation of a particular region
of the activation grid (see Figure 6.13) while driving to zero the activations outside of
the target area. In both mappings the targets with similar features (either semantic
for word2vec or syntactic for the POS maps) are close to each other, and therefore the
activations related to similar features fall under the gaussian target, which encourages
them to form a smooth surface.
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Discussion and Future Work

In this project we addressed interpretability and generalisation, which are two major
issues in deep learning. Especially, we focused on the conceptual question of whether it
is possible to bring improvements in both the training process and the generalisation
capabilities of RNNLMs by defining alternative regularisation terms. A regularisation
term that promotes the formation of smooth surfaces in a toroidal reorganisation of
the recurrent layer activations has been proposed and compared to the smoothing of
flat activation grids. Experimental results demonstrate that the toroidal smoothness
stimuli a�ects the training criteria, yielding to better generalisation performances.

The results are consistent with the existing research on Stimulated Learning.
The same framework principles which have been previously used on ASR tasks have
been presented on a language modeling task for the first time. Similarly, Recurrent
architectures have been used for the first time instead of multilayer feed forward
networks. The conventional spatial smoothing system has then been explored on a
novel organisation of the activations on a closed toroidal surface. Experiments on the
interpretability task have used simple o�-the-shelf methodologies to investigate possible
ways of injecting external knowledge on the syntactic structure of English sentences in
the network training criterion.

Overall, the spatial smoothing regularisation yields better performances than the
target specific stimuli. Moreover, the smoothed systems allow the training of larger
networks and prevents overfitting, and yielded comparable results to the application of
dropout. This lets believe that spatial smoothing could be a valid alternative to the
common regularisation terms.

More research in this area is still necessary before claiming the statistical significance
of this results. As first instance, the application of the RNNLM should be conducted
on di�erent language modeling tasks, especially to verify how the regularisation term
scales with the dimensionality of the training corpus. For instance, there seems to be a
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relationship between the size and strength of the filter used and the size of the network,
which could not be further addressed in this work because of time limitations. Moreover,
the ability of spatial smoothing to prevent overfitting in case of large networks should
be verified on even larger architectures, e.g. 4096 nodes and even more.

The analysis on interpretability should be further expanded by the definition of
better mappings, for instance starting from a statistical POS parser, which allows the
assignment of the tags with some degree of uncertainty. Moreover, the parsing should
be done directly on the training data at the sentence level in such a way to reduce the
errors introduced by the parser because of language ambiguities.

The further investigation of these areas could lead to even better improvements in
the network interpretability and generalisation capacities.



Chapter
References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

[2] Becker, S., Le Cun, Y., et al. (1988). Improving the convergence of back-propagation
learning with second order methods. In Proceedings of the 1988 connectionist models
summer school, pages 29–37.

[3] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155.

[4] Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university
press.

[5] Burger, W., Burge, M. J., Burge, M. J., and Burge, M. J. (2009). Principles of
digital image processing. Springer.

[6] Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson,
T. (2013). One billion word benchmark for measuring progress in statistical language
modeling. arXiv preprint arXiv:1312.3005.

[7] Chen, S. F. and Goodman, J. (1996). An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th annual meeting on Association for
Computational Linguistics, pages 310–318. Association for Computational Linguistics.

[8] Chen, X., Liu, X., Qian, Y., Gales, M., and Woodland, P. C. (2016a). Cued-
rnnlm—an open-source toolkit for e�cient training and evaluation of recurrent neural
network language models. In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 6000–6004. IEEE.

[9] Chen, X., Liu, X., Wang, Y., Gales, M. J., and Woodland, P. C. (2016b). E�cient
training and evaluation of recurrent neural network language models for automatic
speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(11):2146–2157.

[10] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555.



58 References

[11] De Marne�e, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating
typed dependency parses from phrase structure parses. In Proceedings of LREC,
volume 6, pages 449–454. Genoa Italy.

[12] Donahue, J., Jia, Y., Vinyals, O., Ho�man, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition.
In International conference on machine learning, pages 647–655.

[13] Gales, M. J. (1998). Maximum likelihood linear transformations for hmm-based
speech recognition. Computer speech & language, 12(2):75–98.

[14] Gers, F. A. and Schmidhuber, E. (2001). Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on Neural Networks,
12(6):1333–1340.

[15] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:
Continual prediction with lstm.

[16] Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2002). Learning pre-
cise timing with lstm recurrent networks. Journal of machine learning research,
3(Aug):115–143.

[17] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587.

[18] Glorot, X. and Bengio, Y. (2010). Understanding the di�culty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 249–256.

[19] Goldberg, Y. and Levy, O. (2014). word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.

[20] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[21] Hecht-Nielsen, R. et al. (1988). Theory of the backpropagation neural network.
Neural Networks, 1(Supplement-1):445–448.

[22] Hinton, G. E. (1984). Distributed representations.

[23] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

[24] Huang, X., Acero, A., Hon, H.-W., and Foreword By-Reddy, R. (2001). Spoken
language processing: A guide to theory, algorithm, and system development. Prentice
hall PTR.

[25] Jurafsky, D. (2000). Speech & language processing. Pearson Education India.

[26] Karnaugh, M. (1953). The map method for synthesis of combinational logic
circuits. Transactions of the American Institute of Electrical Engineers, Part I:
Communication and Electronics, 72(5):593–599.



References 59

[27] Karpathy, A., Johnson, J., and Fei-Fei, L. (2015). Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078.

[28] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[29] Koch, I. (2013). Analysis of multivariate and high-dimensional data, volume 32.
Cambridge University Press.

[30] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[31] Kruskal, J. B. and Wish, M. (1978). Multidimensional scaling, volume 11. Sage.

[32] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605.

[33] Mikolov, T. (2012). Statistical language models based on neural networks. Pre-
sentation at Google, Mountain View, 2nd April.

[34] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). E�cient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

[35] Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010).
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AChapter
POS Nomenclature

We followed the original POS Nomenclature of the Stanford POS parser, which is
following reported for completeness. Only a subset of the original categories have been
kept, which are evidenced in italics.
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle

AAppendix
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24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb


