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Abstract

Automatic Chemical Design leverages recent advances in deep generative modelling to provide
a framework for performing continuous optimization of molecular properties. Although the
provision of a continuous representation for prospective lead drug candidates has opened the
door to hitherto inaccessible tools of mathematical optimization, some challenges remain for
the design process. One known pathology is the model’s tendency to decode invalid molecular
structures. The goal of this thesis is to test the hypothesis that the origin of this pathology
is rooted in the current formulation of Bayesian optimization. Recasting the optimization
procedure as a constrained Bayesian optimization problem, results in novel drug compounds
produced by the model consistently ranking in the 100th percentile of the distribution over
training set scores.
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Chapter 1

Introduction

1.1 Motivation

The goal of chemical design is to find novel molecular structures that display desirable proper-
ties. This search is complicated by the fact that chemical space is vast. From basic structural
rules it is estimated that the space of pharmacologically active molecules satisfying Lipinski’s
rule of five [65] is upwards of 1099, a novemdicillion [953, 56, 7]. Further to this, chemical space
is discrete and so existing search methods in de novo drug design such as genetic algorithms
cannot make use of continuous optimization techniques which may leverage geometrical cues
such as gradients to optimize the objective [99, 107]. Recently however, advances in machine
learning and in particular in the field of deep generative modelling have produced models
capable of interconverting between discrete and continuous representations of traditionally
challenging data formats [8]. The generation of realistic synthetic samples from these models
has found applications in image [37], text [8], speech and music [87] generation. Closely fol-
lowing this work, Gémez-Bombarelli et al.[33] have developed a model capable of converting a
discrete representation of molecules to and from a continuous representation. On conversion to
the continuous representation, optimization that makes use of tools from continuous mathemat-
ics may be undertaken to search for molecules with desired properties. Optimized continuous
representations may then be generated from the model, giving rise to the concept of Automatic

Chemical Design.

1.2 Automatic Chemical Design

The operation of the Automatic Chemical Design pipeline is illustrated schematically in
Figure 1.1. Starting with a discrete representation of some training molecules, denoted with
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Fig. 1.1 An Illustration of the Automatic Chemical Design Pipeline.

feature 1 and feature 2, and a value for some design metric encoding drug-likeness, it is possible
to construct a mathematical model of the space in-between these examples via Bayesian
optimization. This statistical model is then used as the space to optimize over. The maxima
of the statistical model are then decoded as optimized discrete molecules. This approach has
applications in high throughput virtual screening of drug candidates [98, 90, 32] as a front end
for more expensive molecular docking simulations or yet more expensive physical synthesis.
Although a strong proof of concept for the idea of performing continuous optimization
in molecular space, the goal of de novo drug design using such a model suffers faces some

obstacles to realization:

1. Dead regions in the continuous latent space: What to do when Bayesian optimization

brings you far away from your data?

2. What to optimize? How do you encode the property of drug-likeness in a numerical

metric? Is it even a good idea to attempt to do this?

These are the two questions this thesis seeks to answer. The principle contribution of the thesis
will be to present a solution to the first question through the implementation of an algorithm for
constrained Bayesian optimization. This will rein in the Bayesian optimization process such
that it only selects points that lie within a certain region of the latent space where the probability
of a successful decoding is high. The second question will be addressed from an applications

perspective in terms of how best to go about using the model that addresses question 1.
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1.3 Outline of Thesis

Chapter 2 will outline the theoretical background of both Bayesian optimization and constrained
Bayesian optimization.

Chapter 3 will present the results of constrained Bayesian optimization first on a toy constrained
optimization problem to demonstrate the validity of the algorithmic implementation and second,
on the molecular data, paying particular attention to compare the validity and quality of the
molecules produced by the baseline (unconstrained Bayesian optimization) and constrained
implementations. The chapter will finish by proposing practical strategies for the application of
constrained Bayesian optimization for Automatic Chemical Design.



Chapter 2

Background

2.1 Bayesian Optimization

Bayesian optimization [61, 82] is a method of solving the mathematical problem formulated as

x" = argmin f(x) (2.1)

xekX
where x* is the global minimizer (or maximizer) of an unknown objective function f and X’
is the design space. In global optimization X" tends to be a compact subset of R? although
the Bayesian optimization framework is sufficiently flexible to be applied to search spaces
that feature categorical inputs such as the integers [27]. In practice, the problem is further

characterised by the following three properties:

1. Black-box: The unknown objective function f lacks an analytical expression but may be

evaluated point-wise at any arbitrary query point X in the domain.

2. Noisy evaluation: The evaluation of f produces outputs that are corrupted by zero-mean

noise relative to the true value.

3. Expense: Querying f(x) at any x takes a long time.

An intuitive example of this class of problem in machine learning is the optimization of
hyperparameters for machine learning algorithms. The expensive black-box function in this
case is the mapping between a set of hyperparameters and the test set performance of the
algorithm. There is no analytical form for this mapping and hence the user must query some
set of parameters corresponding to the input domain in order to access the value of the function
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f(x). The querying process entails re-training the algorithm on each query and is very time-
intensive as a consequence. An intuitive example of this class of problem in chemistry is the
optimization of a potential drug candidate. In this case the expensive black-box function is
the mapping between the drug candidate and its efficacy as a medicine. In order to obtain
an efficacy estimate f(x) for a drug compound x in input space it is necessary to conduct the
time-intensive querying process corresponding to physically synthesising the drug in the lab
and assessing its properties experimentally.

It is useful to consider what strategy to adopt in this circumstance. The most obvious
approach that may spring to mind in the case of machine learning is to start with some
hyperparameter setting, evaluate it, and systematically increase it until you have found the
optimal evaluation. Another approach would be to guess hyperparameter settings at random
until you find an optimal solution. These approaches are known as grid search and random
search respectively and are heavily influenced by property 3. in so far as they are prohibitively
expensive when confronted with a time-intensive evaluation process.

Bayesian optimization presents an intelligent solution to performing this class of search. It
consists of two components; a surrogate model of the black-box objective and an acquisition
function. The surrogate model encodes the prior belief about how the objective function should
behave as well as a model of the data-generation mechanism. Given that little information is
typically known about the black-box objective function in advance, it is typically required that
the surrogate model is probabilistic and can maintain a measure of uncertainty about how well
it is doing in representing the true black-box objective. It is also necessary that the surrogate
model be sufficiently flexible to represent the black-box function. This probabilistic model is
sequentially updated on each iteration of the search when a new data point is obtained. The
acquisition function must direct this search so as to explore areas of the design space where
the model is uncertain but the acquisition function must also exploit regions where the model
shows favourable values for the optimum. This principle is referred to as learning vs. earning
in the financial domain [28]. The exploitation behaviour is necessary so that the algorithm
will find a favourable solution within some finite number of black-box function evaluations.
Considering property 3. above once again, it is necessary that the acquisition function be
cheaper to evaluate relative to the black-box objective for this strategy to be efficient. As such,
acquisition functions are often chosen so as to have analytical forms that are easy to evaluate or
approximate.

An illustration of the Bayesian optimization process is given below.
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Fig. 2.1 A Demonstration of Bayesian Optimization [103].

One might imagine that the range of the machine learning parameter of interest lies on the
x-axis and the y-axis represents test set performance. The black-box objective function is
shown as the dotted line although it is important to note that this analytical form would not be
available in practice. The surrogate model expresses uncertainty in regions where it has not
seen any data so far. The acquisition function directs the search towards locations where the
model has high uncertainty and high predictive mean for the maximization problem. In the
chemistry setting one may imagine that the x-axis represents a set of drug candidates. One
intuitively thinks of this set of drug candidates as being discrete but indeed [33] allow for a
continuous representation that moulds the problem into a form suitable for continuous Bayesian
optimization. The y-axis in this case would be the efficacy of the drug compound. Given a
sufficiently good metric for the efficacy of a drug candidate, the procedure could lead to the

identification of a strong candidate for clinical trials faster than grid search or random search.
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In the specific application domain of automatic hyperparameter tuning discussed above,
Bayesian optimization has found use in the tuning of deep belief networks [5], Markov Chain
Monte Carlo (MCMC) methods [73, 38], Convolutional Neural Networks (CNNs) [112, 117]
and choosing between algorithms offered by the WEKA and sckikit-learn machine learning
libraries [120, 44]. The myriad applications beyond hyperparameter tuning include A/B testing
[58, 101, 13], environmental monitoring and sensor networks [115, 26, 74], Recommender
systems [64, 13, 123], Natural Language Processing (NLP) [126, 129] and Statistical Machine
Translation (SMT) [4], Robotics and Reinforcement Learning [67, 78, 77, 17, 12], Combina-
torial Optimization problems such as the tuning of mixed integer solvers [46, 127, 125] and
nearest neighbour algorithms [75] and interactive interfaces for preference learning [23, 9].
More recently, Bayesian optimization has even spread into fields as disparate from Machine
Learning as Combinatorial Chemistry [86] and wave energy flux prediction [15].

The list below gives a non-exhaustive overview of the open-source software packages
available for Bayesian optimization, although the experiments in this thesis featured a custom
implementation based on [42, 11, 33]:

* Hyperopt [5]. http://jaberg.github.com/hyperopt/
* SMAC [48]. http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

* DiceOptim [96].
http://cran.r-project.org/web/packages/DiceOptim/index.html

* Spearmint [112]. https://github.com/HIPS/Spearmint/

* pybo [44]. https://github.com/mwhoffman/pybo/

* MOE [14]. http://yelp.github.io/MOE/

* BayesOpt [76]. https://github.com/rmcantin/bayesopt/
* GPyOpt [34]. https://github.com/SheffieldML/GPyOpt/

* Auto-WEKA [120, 59]. http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

For an in-depth treatment of Bayesian optimization, the reader is referred to the comprehensive
works of [68, 10, 103].
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2.2 Constrained Bayesian Optimization

An extra dimension of complexity may be added to the formulation of the Bayesian optimization
problem if regions of the design space X" are invalid. Examples of such occurrences are in the
optimization of Machine Learning algorithm hyperparameters where certain hyperparameter
configurations can cause divergences in training or models to run out of memory. An example
in chemistry would be the case where a region of chemical space corresponding to a set of
similar drug compounds whose efficacy you are trying to evaluate are synthetically inaccessible.
This class of problem is known as constrained Bayesian optimization within the Bayesian
optimization framework. The constraint in this case, is the fact that regions of the design space
are invalid. Typically, the constraint function will be boolean-valued. When such a constraint is
known a priori, it may be incorporated into the optimization of the acquisition function. The
more interesting case arises when the constraints are a priori unknown. The objective and

constraint function may be unknown for two reasons:

1. The constraint has not been observed over the full design space and so it is necessary to
interpolate and extrapolate the function values of inputs that have not yet been evaluated.

2. The constraint function may itself be noisy; multiple queries to the constraint function at
the same input can result in different function values.

The same principles also apply to the unknown black-box objective function. Problems
that adhere to the two points above come under the general class of stochastic programming
problems [105]. A natural goal for a statistical model of this kind of problem is to attempt
to minimize the objective in expectation and to satisfy the constraints with high probability.

Expressed formally the optimization problem is

rr;inE[f(x)] s.t.Pr(C(x)) >1-0 (2.2)
where C(x) is the boolean function representing the constraint condition and 1 — J is some
user-specified minimum confidence that the constraint is satisfied. These two features combined
comprise a probabilistic constraint, the requirement that the constraint be satisfied with high
probability. (2.2) describes the Bayesian optimization problem formulation in this thesis. The
black-box objective function is noisy because a single latent point may decode to multiple
molecules and hence obtain different values for drug-likeness. The constraint is that a given
latent point must decode successfully a large fraction of the times decoding is attempted. There

is no valid estimate of the value of this fraction because in practice only a finite number of
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decodings are attempted. In such a fashion, the constraint can be considered to be noisy. The
formulation of constrained Bayesian optimization given above can be extended to the case of
multiple constraints [29].

Other aspects to consider in this setting include whether the problem has a coupled or a
decoupled structure. In the coupled setting the objective and the constraint are both evaluated
at each iteration. If the problem has a decoupled structure, this can be exploited in the design
of the search strategy as a form of multi-task Bayesian optimization [60, 130, 117]. A related
aspect is the topic of cost-sensitive Bayesian optimization [112], where some regions of the
design space may be more expensive to evaluate relative to others. For our purposes, the
problem is coupled and all regions of the design space are assumed to be equally expensive to
evaluate. Although in this work there is no use of data collection strategies for decoupled or
cost-sensitive problems, references will be provided in the general discussion on data collection
strategies. Now that the problem structure has been outlined, it is necessary to describe the two

components of the solution:

1. The modelling of the black-box objective and the constraint.

2. The data collection strategy.

2.2.1 Modelling

The empirical performance of a statistical model for Bayesian optimization hinges on the ability

to satisfy two antagonistic factors:

1. The ability to perform full Bayesian inference on the posterior over unknown objective

functions.

2. The ability to scale to large datasets and/or large function evaluation budgets.

With regard to point 1., barring some technical difficulties in encoding prior information,
Bayesian inference has been identified as an optimal calculus for dealing with uncertain
or incomplete information [122, 16, 50, 72]. As such, it is natural that one would wish
to perform full Bayesian inference on the posterior over functions in order to obtain well-
calibrated uncertainty estimates. Uncertainty estimates are responsible for guiding exploration
of the unknown black-box function and hence the omission of artefacts is desirable. Typically,
Gaussian Processes (GPs) have been the model of choice for Bayesian optimization applications
due to their ability to meet the criteria of point 1. This being said, GPs fall down heavily on
point 2, displaying algorithmic complexity of O(N 3) in the number of data points N. Given

that the molecular dataset featured in this thesis features N = 250, 000, the review will focus on
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two methods that satisfy point 2 at the expense of point 1, namely, Sparse Gaussian Processes
to model the black-box objective function and Bayesian Neural Networks (BNNs) to model
the black-box constraint function. The disadvantage of these models is that in scaling to large
datasets, the ability to carry out full Bayesian inference is sacrificed and hence a large field
of work is now devoted to performing approximate inference. The antecedent of the Sparse
Gaussian Process, the Gaussian Process, will be discussed as a means of introducing the Sparse
Gaussian Process. For sake of completeness it should be mentioned that other models have
featured in work on Bayesian optimization such as Random Forests [48] and a Bayesian linear
regression model built from features learned from deep neural networks [113]. The discussion
will focus on the particular instantiations of these models that featured in the experimental
work but will mention, for reference, related methods. The discussion will also aim to highlight
the settings in which the different models might be chosen based on their relative advantages
and disadvantages.

Gaussian Processes

A sparse Gaussian Process is used in this thesis to model the continuous-valued black-box ob-
jective function. In order to discuss the particular sparse Gaussian Process model implemented
for the experiments, it will first be necessary to discuss the general full Gaussian Process and
as a prerequisite its definition in GP-regression. The introduction will adopt the function space
view of the Gaussian Process. In the context of Bayesian optimization, a Gaussian Process
is used to describe the prior distribution over possible black-box objective functions. For the

alternative weight-space view of Gaussian Processes the reader is referred to [94]. Formally:

Definition 2.2.1. A Gaussian Process is a collection of random variables, any finite number of

which have a joint Gaussian distribution.

In the context of Gaussian Process Regression, a single random variable consists of the value
of the function f(x) at location x. The Gaussian Process is specified by a mean function

m(x) = E[f(x)] (2.3)

and a covariance function

k(x,x") = E[(f(x —m(x))(f(x) —m(x'))] (2.4)

and is written as
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f(x) ~ GP(m(x),k(x,x')). (2.5)

In practice, the prior mean function is typically set to a constant and inferred from data.
Henceforth, it will be taken to be m(x) = 0. Formally, the covariance function specifies the

covariance between pairs of random variables,

k(x,x') = cov(f(x), f(x')). (2.6)
Choice of Kernel

In this case, the random variables corresponding to the pair of function outputs f(x) and
f(x') are written as a function of the pair of inputs x and x. Intuitively, the covariance function
captures the notion of similarity in input space by expressing the notion that close inputs x
will map to close targets f(x). The covariance function is also known as a kernel owing to the
definition of a kernel from integral operator theory as a general name for a function k mapping
a pair of inputs x € X, X’ € X into R. The covariance function will be termed kernel from here
on in. Two popularly used kernels are the squared exponential kernel

2
—|x—x
ksQE(X,X') = G_;% exp <%) (2.7)

and the Matern kernel

kMatern (X7 X/) = (28)

o a2

where GJ% is the amplitude parameter, ¢ is the lengthscale parameter, K, is a modified Bessel
function of the second kind, I" is the gamma function and v is some non-negative parameter
of the kernel function. Typical values for v are % and % for machine learning applications
[94]. Inspecting the form of the squared exponential covariance function, it can be seen that
the covariance between a pair of inputs decays exponentially with their distance in the input
space. The lengthscale parameter can be thought of as a coefficient for this exponential decay
dictating the characteristic lengthscale of a given dimension in input space. Informally, at
large distances, the inputs become decorrelated. The principle is similar in statistical physics,
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where correlation functions dictate how correlated the output of a process is through time.
Henceforth, hyperparameters such as ¢ and v will be suppressed in the notation as 6. A further
characteristic of kernel functions is stationarity. Stationary kernel functions are functions of
x —x’ and as such are invariant to translation in the input space. A stationary kernel may also
be isotropic if it is a function of |x —x’| whereupon the output becomes invariant to all rigid
motions. Such stationary, isotropic kernels are also known as radial basis functions [94]. It is

possible to specify an anisotropic kernel by specifying

‘x—x'|2:(x—x’)TM(x—x'). (2.9)

for some positive semidefinite M. When M = diag(¢)~? one recovers a kernel that implements
automatic relevance determination (ARD) [84]. Informally, ARD dictates how important
different dimensions are. At large values of the lengthscale for a given dimension, the output of
the covariance function becomes invariant to the choice of input locations. This has the effect
of removing the dimension from the inference. General M's have been examined by [80] and
[89].

Making Predictions

Returning to the application of Bayesian optimization, we are interested in the following

realistic modelling situation:

y(x) = f(x)+ €0, (2.10)

where

p(e) = N(0,1). 2.11)

In this instance, we don’t have access to function values, but rather only noisy observations
thereof. Further to this, we assume that the noise is additive and iid. In this thesis, the main
application of Bayesian optimization to the molecular data will be a problem of this kind,
however in the toy problem considered, we will assume that we have access to the true function
values when evaluating the black-box objective. This idealised scenario is realised in a few

select applications such as computer simulations [97]. In the case of the modelling situation
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with noisy observations of the black-box objective we wish to place a Gaussian Process prior
over the non-linear function f(x) which governs the underlying generative process we wish to

model:

p(f(x)|6) = GP(0,K(x,x)) (2.12)

where K (x,x’) is now a matrix such that [K];; = k(xj,X;) and 6 represents the set of hyperpa-

rameters. The prior over observations will be given as

p(y(x)|6) =GP (0,K(x,x) +105y). (2.13)

In this case the additive term / Gyz follows from the independence assumption for the noise.
Being in possession of some training data consisting of observed target values y, we can arrive
at the key predictive equations by writing down the joint distribution of the observed target

values alongside the function values at the test locations under the prior

1 2
[y] NN(()’ K(X,X')+ 02 K(X,X.) ) o1
f, K(X.,X) K(X., Xx)
Using the relation
f.ly) = 2.15
p(f.ly) o) (2.15)

it becomes possible to condition the joint prior on the observations, restricting the joint prior to

contain only the functions that agree with the observed data points. We arrive at

p(£ Xy, X.) = N (£, cov(£.)) (2.16)

for the predictive distribution, where

f, =KX X)[KX.X)+071y (2.17)
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is the predictive mean at the test locations X, and

cov(f,) = K(X,, X.) — K(X.. X)[K(X,X) + 0,1 'K(X,X.) (2.18)

is the predictive uncertainty. Some interesting observations include the fact that the pre-
dictive mean f, is linear in the data y and that the predictive uncertainty can be thought
of as comprising a term corresponding to the prior uncertainty K(X,,X,), minus a term,
K(X.,X)[K(X,X)+ Gyzl]_lK (X,X,) corresponding to the reduction in uncertainty acquired

following the observation of the target values.
Model Selection

A further attractive feature of Gaussian Processes can be elucidated by examining them in the
context of hierarchical Bayesian model selection [69]. The model hierarchy may be specified

in three tiers corresponding to:

1. Model Parameters
2. Model Hyperparameters

3. Model Structures

As the Gaussian Process is a nonparametric approach, model parameters are typically obtained
in the form of the posterior distribution over functions. Model hyperparameters include such
entities as the lengthscales and amplitude parameters that were discussed in the context of
kernels. An example of a model structure would be the specification of a parametric form of
kernel. The Gaussian Process framework allows us to undertake model selection at the second

tier through the optimisation of the marginal likelihood

1 -
log p(y|X,0) ==y (Ko (X.X') +071) "y (2.19)

N J/

TV
encourages fit with data

1 N
—Elog|K9(X,X') +0/1| —Elog(Zn).

(.

~
controls model capacity

The notation of Ky (X, X") in this instance, indicates explicit dependence on the hyperparameters

0. and N denotes the number of observations. The optimization of the marginal likelihood (also
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termed the evidence [71]) encompasses the Occam factor [93] in so far as it favours models of
intermediate complexity. This see-saw balancing effect is seen in the two terms in equation 19,
one corresponding to a term that promotes a fit with the data and another term that penalises
models that are too complex. Unlike with other methods, the marginal likelihood is typically
analytic in the case of the Gaussian Process framework. The optimization of the marginal
likelihood is usually performed in one of two ways. The first approach is based on optimizing
(??) directly and results in a type II maximum likelihood estimate for the hyperparameters [94].
This approach can overfit if the data is sparse. The second approach involves performing full
Bayesian inference at the hyperparameter level by marginalising out the hyperparameters at

prediction time. This is undertaken by evaluating the integral

hyperprior
—
p(vIX.H) = [ ply[X.0.H) p(8]H) 8 (220)

and given an appropriate specification for the hyperprior can give rise to even more robust
predictive uncertainty estimates relative to performing full Bayesian inference at the parameter
level. Unfortunately this integral is often intractable in practice. Nonetheless approximate
solution methods exist in the form of the Laplace approximation [70] which can work well
in the case of peaked posteriors over hyperparameters, and methods such as slice sampling
[85], which has been put to practical use for Bayesian optimization applications [112]. In the
context of Bayesian optimization, Gaussian Processes possess the following advantages and

disadvantages in their use as the surrogate model for the objective function.

Advantages

1. Availability of full Bayesian inference over the posterior to obtain a closed form posterior

predictive distribution with well-calibrated uncertainty estimates

2. Availability of an analytic form for the marginal likelihood which enables Bayesian model
selection at the hyperparameter level. Overfitting is hence less of an issue, especially if

full Bayesian inference is available at the hyperparameter level.

Disadvantages

1. Carrying out full Bayesian inference is O(N?) in the number of observations due to
the necessity of inverting the covariance matrix [K(X,X)+ o71]~! which appears in
the expressions for the predictive mean, predictive covariance and marginal likelihood.

The covariance matrix here is given for the case of noisy observations. In practice, the
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Cholesky decomposition may be computed once and stored resulting in O(N?) complexity
for subsequent predictions given a fixed set of kernel hyperparameters. Given however,
that the kernel hyperparameters must be recomputed at every iteration of Bayesian
optimization this fact does not mitigate the O(N?) cost for large function evaluation
budgets.

2. Non-Gaussian predictive distributions are not supported due to issues with intractability.
In practice, one may want to use heavier-tailed non-Gaussian predictive distributions
in order to be robust to outliers. Recent work has proposed a GP model based on the

student T-distribution as an alternative [79].

3. A parametric form of kernel must be chosen although there have been some efforts to

automate the process of doing this [21].

For the purposes of Bayesian optimization, it is point 1. under the disadvantages that is the
most egregious property of GPs in practice. The O(N?) complexity is prohibitive both for large
function evaluation budgets and large data sets and indeed, this has motivated the development
of the sparse approximations which will be discussed in the following section. For alternative
introductions to Gaussian Processes, the reader is referred to [1, 21, 94] in increasing order of

technical detail.

Sparse Gaussian Processes

The computational requirements of full Gaussian Processes motivate the use of sparse approx-
imations. Common to all sparse approximations is that only a subset of the latent variables
are treated exactly while the rest are given some approximate but computationally cheaper
treatment [92]. As such, sparse approximations are characterised by focussing inference on
a set of quantities that represent approximately the posterior over functions [3]. Concretely,
these approximations can take the form of pseudodata, spectral representations [63] or more
abstract representations [62]. The discussion here will focus on the pseododata method given
that a variant of this method was used in all experiments reported. The method of pseudopoints
may be described as an attempt to summarise the original dataset witih M < N data points.
The M data points are known as pseudodata. The aim is to construct these M data points in
such a way that the training process maintains a high degree of fidelity relative to the training
process for the original dataset. The computational advantage of this approach is that O(N?)
time complexity becomes O(NM?) and O(N?) memory complexity becomes O(NM). The
pseudopoint is “sparse” because it induces structure in the covariance matrix featuring zeros at
various places. This sparse matrix structure then facilities efficient computation. It is possible

to broadly categorise pseudopoint methods into two familes:
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Approximate Model, Exact Inference The defining feature of this family of methods is
an approximate generative model. The approximate generative model is chosen based on
a divergence measure that either minimises the distance between models at modelling time
or at a stage after the class of models has been restricted to a class in which inference is
efficient. Examples in this family include the Deterministic Training Conditional (DTC)[102],
the Fully Independent Training Conditional (FITC) [109] and the Partially Independent Training
Conditional (PITC) [92].

Exact Model, Approximate Inference The defining feature of this family of methods is that
the exact generative model is maintained and all “approximations” occur at inference time.
At inference time, one measures the similarity to the exact posterior. Examples in this family
include Variational Free Energy methods [121] and methods based on Expectation Propagation
(EP) [110, 91, 11].

From the methods provided above, the two most popular are FITC and VFE [3], as unlike
previous methods [108, 102, 92], they provide an approximation to the marginal likelihood
which may be leveraged in conjunction with gradient-based optimization to learn the hyperpa-
rameters from data. The method employed in the experiments in this thesis was FITC and so it

will now be outlined.

FITC Commensurate with FITC’s interpretation as an approximate model in which exact

inference is performed, the interpretation of modifying the prior of a full Gaussian Process to

p(f(x)|0) = GP(0, Q¢ + diag[Kir — O] ) (2.21)

will be used, where
Kiy = Ko(X,X") (2.22)
is a change of notation that is consistent with the notation of [3] and facilitates the description

of

Ot = KKy Kut (2.23)



2.2 Constrained Bayesian Optimization 27

as a low-rank matrix introduced to reduce the size of the matrix inversion to M. Using this
interpretation of the prior, the negative log marginal likelihood used to train the methods is

given as

N 1 .
F= £} log(27) + 3 log | Qs + diag[Kis — Ogf] + 0, 1| (2.24)
controls rngael capacity
1 ) -
+5Y ' (O + diag[K — Ox] + 071) "y (2.25)

-~

encourages fit with data

F is the symbol used to denote the negative log marginal likelihood as opposed to the positive
log marginal likelihood given for the full Gaussian Process in section 2.1.1. The expression is
analogous in so far as it contains two terms corresponding to a data fit term and a complexity
penalty, the difference being that the matrix inversion of (Qy + diag[Kg — Qgf] + Gyzl )~!is now
cheaper to compute. (Qg + diag|Ker — O] + Gyzl ) may be thought of as a covariance ellipse,
data outside of which is penalised. In turn the complexity term % log |Qg¢ + diag[Ker — Q] + Gyzl |
characterises the volume of possible datasets compatible with the data fit term. As in the full
Gaussian Process scenario, the mechanism of Occam’s razor penalises the model for being able
to predict too many datasets. The recent empirical observations of [3] would appear to show
that FITC has a tendency to underestimate the noise variance 6y> by using the diagonal term
diag (K — Qyr) as heteroscedastic (input dependent) noise to account for differences between
the sparse and full GP approaches. By placing inducing inputs near training data that lie close
to the mean, the heteroscedastic noise term may be locally shrunk, giving rise to a smaller
complexity penalty. If the noise variance Gyz is altered in this manner, it loses its interpretation
as the amount of uncertainty in the data that can’t be explained [3]. This may cause issues for
Bayesian optimization applications which rely on being able to draw a distinction between
inherent noise and uncertainty in the surrogate model which may be reduced. The FITC
approximation is used to model the black-box objective for all experiments reported here. The
advantages and disadvantages of sparse GP methods in relation to Bayesian optimization may

be summarised as follows:

Advantages The principle advantage sparse GPs possess over full GPs is scale. Typically
full GPs are limited to datasets numbering the thousands of data points. The reduced time and
memory requirements of sparse GPs make running inference on medium and large datasets

computationally tractable.
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Disadvantages The principle disadvantage of sparse GPs is the reduction in quality of

uncertainty estimates that arises as a result of the approximation.

Bayesian Neural Networks

Bayesian Neural Networks (BNNs) have been a recent addition to the gamut of Bayesian
optimization literature [113, 114, 57]. As in the case of sparse GPs, exact computation of
the posterior is intractable with BNNs, rendering approximate inference a necessity. There
are a number of approximate inference techniques currently being applied to BNNs, but one
common characteristic is that the predictive distribution is approximated by averaging over

samples {W;}X_|, of the network weights

>~

p(y|x,D) ~ Z (y|x, Wx). (2.26)

D= {xn} _; are the observations in this instance. Drawing analogies to Gaussian Process
inference, the sampling over network weights equates to a sampling over functions. In all
experiments reported here, we use the method of Black-box alpha divergence minimization [42]
to undertake approximate inference. Black-box alpha divergence minimization is implemented
by approximating the true posterior by the minimization of the axdivergence distance metric
[106]. The original paper on the method [42] showed that by changing the value of & in
this divergence, it is possible to interpolate between Variational Bayes [52] and EP [81]
corresponding to the limits of @ = 0 and o = 1 respectively. Intuitively, these limits may
be thought of as interpolating between solutions that fit a single mode in the true posterior
(o = 0) or that aim to cover multiple modes in the true posterior (¢ = 1) [42, 40]. Recent work,
including that of the original paper, has shown empirically that a value of & of 0.5 produces
good predictions [42, 18]. In this thesis, the Black-box alpha divergence minimization method
is used in conjunction with a BNN that models the constraint for all experiments performed. In

the context of Bayesian optimization the advantages and disadvantages of BNNs are as follows:

Advantages BNNs can scale to high-dimensional datasets and in such scenarios can be
preferred to full GPs.

Disadvantages As in the case of sparse GPs, BNNs require approximate inference methods
and hence produce uncertainty estimates of a lower calibre relative to full GPs.
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2.2.2 Data Collection Strategy

The ideal scenario for Bayesian optimization would feature a loss function that described how
optimal a sequence of queries to the black-box objective are. Such a loss function is available
in the form of regret. Regret is defined as the difference between the reward obtained and the
best possible reward obtainable at iteration n of the Bayesian optimization procedure. Regret

may be expressed as cumulative regret,

1 N
Ry =< Y (2.27)
n=0

where r, gives the instantaneous regret at iteration n. or as simple regret ry which is the
regret obtained at the final iteration of the Bayesian optimization procedure. Simple regret
captures the goal of Bayesian optimization better in that penalisation is not incurred for poor
function evaluations leading to the final recommendation. Intuitively, you are not punished for
exploration. The usage of the regret metric features in the minimum expected risk framework,
where the expected loss is minimized in order to produce an optimal set of queries. However, in
practice, the true sequential risk, up to a full evaluation budget is typically intractable. Despite
some attempts to approximate this ideal look-ahead policy for a finite number of future steps
[88, 30, 35], most research focusses on the use of myopic heuristics known as acquisition
functions. Taking the case of a minimization problem as an example, the general desiderata
for an acquisition function is that the values should be low where the objective is potentially
low. This corresponds to regions of the surrogate function where the uncertainty is high and the
predictive mean is low. There are many examples of acquisition functions. Some of the more

widely-used variants may be categorised as follows:

1. Improvement-based acquisition functions - Characterised by favouring points likely to
improve upon an incumbent target. Examples include Probability of Improvement (PI)
[61] as well as Expected Improvement (EI) [82, 51].

2. Optimistic acquisition functions - “Optimistic in the face of uncertainty”. Members of
this class use a fixed probability best case scenario according to the model to decide on a
query [103]. One example is the Upper Confidence Bound (UCB) acquisition function
[115].

3. Information-based acquisition functions - These methods work with the posterior distribu-
tion over the unknown minimizer xx. This posterior distribution being implicitly induced

by the posterior over objective functions f. Examples in this class include Thompson
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Sampling (TS) [119], the Informational Approach to Global Optimization (IAGO) [124],
Entropy Search (ES) [39] and Predictive Entropy Search (PES) [41].

In addition, there has been work that claims that there is no single acquisition function that is
optimal for every problem [43], giving rise to a field of literature concerned with the design
of portfolios of acquisition functions [43, 45, 104]. The idea being, that at each iteration of
Bayesian optimization, an ensemble of acquisition functions is used to decide upon the next
query point.

This thesis makes use of a variant of EI known as Expected Improvement with Constraints
that is applicable for constrained optimization problems. As such, EI will be introduced as a

pre-requisite for the discussion of EIC.

Expected Improvement

Expected Improvement (EI) is the expected amount of improvement over a specified target 1 if

the objective function is evaluated at x. It is defined to be

e}

BIO) = B[ —3)+] = [ (n=9)+p(0dy (2.28)
where p(y|x) is the posterior predictive marginal density of the objective function evaluated at
X. (N —y)4+ = max(0,n —y) is the improvement over the target 7. Intuitively, one can think
of the improvement as being a measure that only starts to accumulate value once you start
integrating the predictive density below the line corresponding to y = 1 for a given x. The
Expected Improvement heuristic encodes what this value is as a function of x. Typically, the
target 1, also known as the incumbent, is set to be the current recommendation. In turn, for the
unconstrained formulation of Bayesian optimization the recommendation may either be defined
as the minimum observed value over previous observations [112] or as the minimum of the
expected value of the objective [9]. For the constrained formulation of Bayesian optimization
considered in this thesis, the current recommendation is defined to be the minimum expected
value of the surrogate model such that a set of probabilistic constraints are satisfied. An
extension to EI known as Expected Improvement with Constraints is one mean of achieving
this.
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Expected Improvement with Constraints

EIC may be thought of as EI that offers improvement only when a set of constraints are satisfied.
EIC was first introduced by [100] and has received more recent attention from [111, 25]. It is
defined as

EIC(x) = EI(x) Pr(C(x) > 0) (2.29)

where Pr(C(x) > 0) denotes the probability that a boolean constraint C(x) is satisfied. The
implicit n suppressed in EI(x) in equation 29, may be set in an analogous way to vanilla

Expected Improvement as:

1. The best observation in which all constraints are observed to be satisfied [28].

2. The minimum of the posterior mean such that all constraints [28].

The latter approach is adopted for the experiments performed in this thesis. Additionally, if at
the stage in the Bayesian optimization procedure where a feasible point has yet to be located,
the form of acquisition function used is that defined by [28]

EIC(x) = { Pr(C(x) > 0)EI(x),  if 3% C(x) 230

>0
Pr(C(x) > 0), otherwise

The intuition behind (2.30) is that if the probabilistic constraint is violated everywhere, the
acquisition function selects the point having the highest probability of being in the feasible
region. The algorithm ignores the objective until it has located the feasible region. EIC is the

acquisition function of choice in all experiments reported.

Parallel Bayesian Optimization

Traditional Bayesian optimization performs function evaluations in sequence. With the advent
of computing clusters, one natural question is whether it is possible to submit multiple function
evaluations in parallel to reduce wall-clock time [112, 47]. There are two known approaches
for this:

1. Submit queries in a batch.

2. Submit queries asynchronously.
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Approach 1 above, requires the optimization of a multipoints acquisition function in g X D
dimensions. Such an acquisition function has been proposed by [30] but in general it is
favourable to try and avoid the g x D dimensional optimization if possible. Naively selecting
points for querying without evaluating them and re-training the model would result, with the
exception of a sampling-based procedure like Thompson Sampling, in the same point repeatedly
being chosen within an iteration. As such, approach 2 above maximises the acquisition function
at each iteration to yield a suggestion X given a set of pending queries {xj?end} [100]. Intuitively,
a point is selected as in the standard Bayesian optimization procedure, but instead of being
passed through the expensive evaluation process it becomes a “pending query”’. The objective
function value at this pending query, along with the effect it would have on the re-trained
model, is then fantasised using some computationally cheap process. One means of enacting
this approximate model update is by using the Kriging-Believer algorithm which uses the
current estimate of the GP predictive mean for a query location as a proxy for the expensive
black-box function evaluation of the query location. This is possible because conditioning on
an observation equal to the posterior mean leaves the mean value of the function unchanged
elsewhere and the model variance can be cheaply updated with a rank-one update to the
Cholesky decomposition of K (Xp,Xp), the old covariance matrix, to yield the new covariance
matrix K (X,X) [20]. The Kriging-Believer algorithm has been used for Bayesian optimization
by [5] and [28] and will be used for all experiments in this thesis.



Chapter 3

Results

3.1 Outline

Having introduced the mathematical formulations of Bayesian optimization and constrained
Bayesian optimization as paradigms of search in the face of uncertainty, the results of this
chapter will investigate the hypothesis that constrained Bayesian optimization is a more natural
paradigm for the problem of Automatic Chemical Design. The chapter will begin in section
3.2 with a validity test of the algorithm for constrained Bayesian optimization in the setting
of a toy constrained optimization problem featuring the Branin-Hoo function. In section 3.3,
some of the background necessary for understanding the application of Bayesian optimization
to Automatic Chemical Design will be elaborated on. Section 3.4 will feature the principle
results of the thesis in terms of answering whether constrained Bayesian optimization offers
any improvement over unconstrained Bayesian optimization. Lastly, section 3.5 will investigate

potential applications for Automatic Chemical Design with constrained Bayesian optimization.

3.2 Branin-Hoo Function

The Branin-Hoo function will act as a toy problem on which to test the validity of the custom
algorithmic implementation for constrained Bayesian optimization. The optimization of the
Branin-Hoo function has long been a benchmark for the comparison of global optimization
algorithms [19] and more recently has become a benchmark for the comparison of Bayesian
optimization algorithms [22]. The particular variant of the Branin-Hoo optimization that will
be of interest here is the constrained formulation of the problem featured in [29]. The 2D

Branin-Hoo function is given as
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2
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f(X) = (X2 —5.1
and has three global minima at the coordinates (—x,12.275), (x,2.275) and (9.42478,2.475).
In order to formulate the problem as a constrained optimization problem, a disk constraint on

the region of feasible solutions,

(x1 —2.5)% + (x, — 7.5)% < 50, (3.2)

is introduced. In contrast to the formulation of the problem in [29], the disk constraint is
coupled in this scenario in the sense that the objective and the constraint will be evaluated
jointly at each iteration of Bayesian optimization. In addition, the observations of the black-box
objective function will be assumed to be non-noisy. The minima of the Branin-Hoo function as

well as the disk constraint are illustrated in Figure 3.1.
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(a) Minima Locations (b) Disk Constraint

Fig. 3.1 Constrained Bayesian optimization of the 2D Branin-Hoo Function.

The disk constraint eliminates the upper-left and lower-right solutions, leaving a unique global
minimum at (7,2.275). Given that the implementation of constrained Bayesian optimization
considered here relies on the use of a sparse GP as the underlying statistical model of the
black-box objective and as such is designed for scale as opposed to performance, the results
will not be compared directly against those of Gelbart et al. [29] who use a full GP to model
the objective. It will be sufficient to compare the performance of the algorithm against random
sampling. Both the sequential Bayesian optimization algorithm and the parallel implementation
utilising the Kriging-Believer algorithm will be tested.
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3.2.1 Implementation

A Sparse GP featuring the FITC approximation and based on the implementation of [11] is
used to model the black-box objective function. The kernel choice is exponentiated quadratic
with ARD lengthscales. The number of inducing points M was chosen to be 20 in the case of
sequential Bayesian optimization, and 5 in the case of the parallel Bayesian optimization using
the Kriging-Believer algorithm. The sparse GP is trained for 400 epochs using Adam [53]
with the default parameters and a learning rate of 0.005. The minibatch size is chosen to be 5.
The extent of jitter, a parameter that provides stabilization in the computation of the posterior
predictive distribution such that the Cholesky decomposition will not fail [94], is chosen to be
0.00001. A Bayesian Neural Network, adapted from the MNIST digit classification network
of [42] is trained using black-box alpha divergence minimization and models the constraint
function.

The network has a single hidden layer with 50 hidden units, Gaussian activation functions
and logistic output units. The mean parameters of ¢, the approximation to the true posterior,
are obtained by sampling from a zero-mean Gaussian with variance m according to the
method of [31], where dj, is the dimension of the previous layer in the network and d, 1s the
dimension of the next layer in the network. The value of « is taken to be 0.5, minibatch sizes
are taken to be 10 and 50 Monte Carlo samples are used to approximate the expectations with
respect to ¢ in each minibatch. The BNN adapted from [42] was implemented in the Theano
library [2, 118]. The LBFGs method [66] was used to optimize the EIC acquisition function in

all experiments.

3.2.2 Results

The results of the sequential constrained Bayesian optimization algorithm with EIC are shown
in Figure 3.2. The algorithm was initialised with 50 labeled data points drawn uniformly at

random from the grid depicted. 40 iterations of Bayesian optimization were carried out.
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Fig. 3.2 Constrained Bayesian Optimization on the 2D Branin-Hoo Function with a Coupled Disk
Constraint. a) Minima of the true Branin-Hoo function. b) Contour plot of the predictive mean of the
sparse GP used to model the objective function. Lighter colours indicate lower values of the objective.
¢) Data points collected over 40 iterations of sequential Bayesian optimization. d) The disk constraint,
where the feasible region is given in yellow. e) The predictive variance of the sparse GP used to model the
objective function. f) The contour learned by the BNN giving the probability of constraint satisfaction.

The figures are provided for illustrative purposes only and show that the algorithm is correctly
managing to collect data in the vicinity of the single feasible minimum. Figure 3.3 compares
the performance of parallel Bayesian optimization using the Kriging-Believer algorithm against
the results of random sampling. Both algorithms were initialised using 10 data points drawn
uniformly at random from the grid on which the Branin-Hoo function is defined and were run
for 10 iterations of Bayesian optimization. At each iteration a batch of 5 data points were

collected for evaluation.
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Fig. 3.3 Performance of Parallel Bayesian Optimization with EIC against Random Sampling.

After 10 iterations, the minimum feasible value of the objective function was 0.42 for parallel
Bayesian optimization with EIC using the Kriging-Believer algorithm and 2.63 for random
sampling. The true minimum feasible value is 0.40. It is worth noting that these results
are not statistically significant and are merely provided as a means of demonstrating that
the implementation is observing the constraint. It is very likely that the parallel constrained
Bayesian optimization algorithm experienced a serendipitous initialisation on the single run
shown.

3.2.3 Discussion

The results above act as a proof of concept that the implementation of constrained Bayesian
optimization is behaving as expected in so far as it recognises the constraint in the problem and
appears to do better than random sampling. Reiterating a point made previously, it would not
be fully appropriate to compare the results of the current implementation to that of [29] as the
sparse GP surrogate model of the objective is not expected to be competitive with a full GP in
terms of its ability to represent the black-box function. It could be worth however, performing
some investigation into how much worse the sparse GP performs relative to the full GP in the
constrained setting. Another aspect that could be explored is the impact of the initialisation or
initial design.It has recently been argued that different algorithms will vary in their performance

depending on how much information about the design space there is available [83].
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3.3 Background to Automatic Chemical Design

This section provides a brief background of some details of the model featured in [33] that may
be needed in order to place the ensuing results in context. Figure 3.4 illustrates the composition

of the Automatic Chemical Design model in terms of its constituents.

RORINO

+ [Baycsian Optimisation

® @)

Text Encoder

Automatic Chemical Design

Fig. 3.4 Automatic Chemical Design as a Conglomerate of Smaller Models.

Implementing a VAE with RNN encoder-decoder networks gives rise to a text encoder, which
has recently been used to encode sentences in a continuous space [8]. The ability to leverage the
text encoder with a text-based representation of molecules known as simplified molecular-input
line-entry system, or SMILES [128], gives rise to the possibility of representing a molecule
as a continuous-valued vector. The continuous representation is then amenable as a target for
continuous optimisation. Thus, by marrying the text encoder with Bayesian optimisation in its
latent space, one arrives at the Automatic Chemical Design model. For further information on
VAESs and RNNs the reader is referred to [55, 54] for VAEs, [116] for RNNs and [36] for both.
An illustration of the SMILES representation for molecules is given for the molecule benzene

O — » 'cleceec]!

Fig. 3.5 SMILES - A Text Representation for Molecules.

in Figure 3.5.
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Figure 3.6 offers another view of the Automatic Chemical Design model, illustrating the

different representations that feature in the pipeline.
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Fig. 3.6 The Model as a Sequence of Representational Transformations. Step 1 shows a benzene
molecule being represented in its text-based format as a SMILES string. Step 2 shows the SMILES
string for benzene being encoded using a text encoder into a continuous-valued vector of latent points.
Step 3 shows the optimization process occurring within the latent space of the variational autoencoder,
whereupon some objective function of the latent points is optimized to yield a recommendation for the
best point. Step 4 shows the optimal latent point being decoded to a SMILES string. Step 5 shows the
now optimal SMILES string being decoded into an optimal molecule.

A further question that requires answering is what the best applications would be for a model
that can perform Automatic Chemical Design. The answer to this question is strongly linked to
the properties of the objective function optimized in the latent space. The objective function

optimized here and also in [33] is
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J°¢P (1) = logP(m) — SA(m) — ring-penalty (m). (3.3)

where m denotes a molecule, logP is the water-octanol partition coefficient, a molecular property
whose value is an important estimate of drug-likeness, SA is the synthetic accessibility score of
the molecule m [24] and ring-penalty is an ad-hoc penalty term introduced in order to prevent the
model from generating molecules possessing ring sizes larger than 6. The scores corresponding
to each term in this objective are normalised to have zero mean and unit standard deviation
across the training data. It is important to note that the particulars of the quantities being
optimized should be largely unimportant in assessing the efficacy of the Bayesian optimization
procedure. As such, the objective function in (??) was used in all subsequent experiments as
the true black-box objective function. A discussion will follow in section 3.5 about what the
best types of objective function for an application of the Automatic Chemical Design model

might be.

3.4 Performance of Constrained Bayesian Optimization

This section constitutes the formal test of the hypothesis from [33] that the root cause of the
decoder’s lack of efficiency in decoding latent points collected by Bayesian optimization arises
as a result of the presence of large “dead regions” in the latent space from which it becomes
very difficult to decode valid molecules. The section will proceed firstly by describing the
implementation details of the Bayesian optimization procedure for the molecular dataset.

Secondly, the results of a set of diagnostic experiments are presented. The experiments are
diagnostic in the sense that they are designed to investigate the hypothesis that unconstrained
Bayesian optimization is collecting points in a dead region that lies far away from the training
data in the latent space. Thirdly, the performance of constrained Bayesian optimization will
be compared directly with that of the Bayesian optimization procedure of the original model
(baseline model) in terms of the number of valid and drug-like molecules generated. The related
aspect of the number of new molecules generated will also be discussed here. Lastly the quality
of the molecules produced by constrained Bayesian optimization and the baseline model is
compared, Quality in this case is measured by the objective function scores of new molecules
proposed by the methods.
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3.4.1 Implementation

The implementation details of the encoder-decoder network remain unchanged from [33]. The
objective function is modelled by a sparse GP based on the FITC approximation in the case
of both constrained and unconstrained Bayesian optimization. M, the number of inducing
points is set to 500, the minibatch size is 5000, the number of training epochs is 50 and the
learning rate is 0.005. If unmentioned, the remaining parameters remain the same as in the case
of the implementation for the Branin-Hoo function. In the case of the constrained Bayesian
optimization algorithm, the BNN is constructed with 2 hidden layers each 100 units wide with
ReL.U activation functions and a logistic output. Minibatch size is set to 1000 and the network
is trained for 5 epochs with a learning rate of 0.0005.

Again, if unmentioned all remaining parameters are unchanged from the implementation for
the Branin-Hoo experiments. In both the unconstrained and constrained Bayesian optimization
procedures, 20 iterations of parallel Bayesian optimization were performed using the Kriging-
Believer algorithm collecting data in batch sizes of size 50. Both the unconstrained and
constrained approaches were initialised with 249,456 training points corresponding to 249,456
drug-like molecules drawn at random from the ZINC database [49]. The same training set of
randomly-drawn molecules as [33] was used. The train/test split of this data was in the ratio
of 90/10. In results where the mean and standard error is reported, each run corresponds to a
different random train/test split in the ratio of 90/10. For constrained Bayesian optimization,
the binary classification BNN was trained using a balanced training set of 234, 880 latent points

with binary labels. The labelling procedure will be outlined in the following section.

3.4.2 Diagnostic Experiments and Labelling Criteria

A set of experiments were designed in order to investigate the hypothesis that points collected
by Bayesian optimization lie far away from the training data in latent space and hence give
rise to a large number of invalid decodings. Five sets of latent points were created. The first
set consisted of 50 latent points from the training data. In the VS, or very small noise set, 1%
noise was added to 50 randomly chosen training values along each dimension. The percentage
of noise in this case is defined relative to the maximum difference between training set values
along a given dimension. The noise itself is drawn from a uniform distribution that ranges
from [—%noise, +%noise|. In the S, or small noise set 10% noise was added to the training
values along each dimension. In the B, or big noise set 50% noise was added to the training
values along each dimension. The final set, BO, consisted of 50 points collected by running
the Bayesian optimization procedure of the original model. These latent points subsequently

underwent 500 decode attempts and the resulting observations are summarised in Figure 3.7.
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Fig. 3.7 Experiments on 5 disjoint sets comprising 50 latent points each. VS Noise are training data
points with approximately 1% noise added to their values, S Noise have 10% noise added to their values
and B Noise have 50% noise added to their values. As an example, the percentage noise in the case of
1% noise is defined to be a value drawn from a uniform distribution where the lower end of the range is
0.01 times the maximum difference between the values of the training data along a given dimension. a)
The percentage of times a given latent point from each set was decoded to a valid molecule, averaged
over 50 latent points. b) The percentage of times a given latent point from each set was decoded to a
methane molecule, averaged over 50 latent points.

There would appear to be a noticeable decrease in the percentage of valid molecules decoded as
one moves further away from the training data in latent space (adding more noise to the training
values should be equivalent to moving further away from them). Consequently, the fact that the
points collected by Bayesian optimization do the worst in terms of their percentage of valid
decodings would suggest that these points lie farther away from the training data than than
even the B Noise set. A further artefact of the decoder is that it would seem to over-generate
methane molecules when far away from the data. One hypothesis for why this is the case
is that methane is represented as 'C’ in the SMILES syntax and is by far the most common
character. Hence far away from the training data, combinations such as C’ followed by a
stop character may have high probability under the distribution over sequences learned by the
decoder. Given that methane has far too low a molecular weight (or equivalently its SMILES is
too short) to be a suitable drug candidate, a third plot is generated in Figure 3.8, whereupon the
percentage of decoded molecules is given such that the molecules are both valid and have a
tangible molecular weight. From here on in the definition of a tangible molecular weight will
be interpreted somewhat arbitrarily as being a SMILES length of 5 or greater. Further to this,
molecules that are both valid and have a SMILES length greater than 5 will be referred to as
drug-like.
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Comparing the Percentage of Drug-like Molecules Decoded

Training Data VS Noise S Noise B Noise BO

Fig. 3.8 Drug-like Molecules.

From the histogram in Figure 3.8, it may be observed that the points collected by Bayesian
optimization produce an even smaller proportion of drug-like molecules than they did valid
molecules relative to the training and noise-displaced training data. As a result of these
diagnostic experiments, it was decided that the criteria for labelling latent points to initialise
the binary classification constraint neural network would be the following: if the latent point
decodes into drug-like molecules in more than 20% of decode attempts, it should be classified
as a positive class and negative otherwise. The results of the constrained Bayesian optimization
procedure trained using the aforementioned labelled data will be presented in the following
section.

3.4.3 Molecular Validity

As mentioned in the section on implementation, the constraint function was initialised with
117440 positive class points and 117440 negative class points. For a latent point to be labelled
positive at least 20% of its attempted decodings must be valid. The positive labelled data points
were obtained by running the training data through the decoder and classifying those points
that satisfied the criteria as positive. The negative class points, in contrast, were collected by
decoding points sampled uniformly at random across the design space. The relative performance
of constrained Bayesian optimization and unconstrained Bayesian optimization (baseline) [33]
is compared in Figure 3.9.
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Fig. 3.9 The percentage of latent points decoded to drug-like molecules. 20 iterations of Bayesian
optimization with batches of 50 data points collected at each iteration (1000 latent points decoded in
total). The standard error is given for 5 separate train/test set splits of 90/10. Drug-like in this instance
specifies a requirement that the molecules must both be valid and have a length greater than 5 in the
SMILES Representation.

For this experiment, each latent point undergoes 100 decoding attempts and the most probable
SMILES string is retained. This SMILES string is then categorised as being drug-like or
not drug-like. The results suggest that greater than 80% of the latent points decoded by
constrained Bayesian optimization produce drug-like molecules compared to less than 5%
for unconstrained Bayesian optimization. However, one must also account for the fact that
the constrained approach may be gaining an artificial advantage on this metric by decoding
the training data. There would seem to be a fine line between exploring the latent space and
wandering into a dead region. If the constrained region is too tight, then the decoding process
will tend to produce molecules that have been seen in training, yet when there is no constraint,
there is a danger that the optimisation process will decode points in dead regions of latent
space. One means of controlling the trade-off between these two extremes would be to treat the
labelling criteria as a parameter to be tuned. If the minimum percentage of decodings required
to be ’drug-like’ is more lenient, the noose around the training data is loosened but one will

be less successful at decoding due to the risk of entering a dead region of the latent space.
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Conversely, if the noose is too tight, most of the molecules decoded are liable to be training
data. One means of controlling the balance between these two factors is to look at the number
of new drug-like molecules generated by the process. Constrained and unconstrained Bayesian
optimization are compared on this metric in Figure 3.10.

Percentage of New Drug-like Molecules Generated
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Fig. 3.10 The percentage of new drug-like molecules generated from 20 iterations of Bayesian optimiza-
tion with batches of 50 data points collected at each iteration (1000 latent points decoded in total). The
standard error is given for 5 separate train/test set splits of 90/10.

One may observe that constrained Bayesian optimization outperforms unconstrained Bayesian
optimization in terms of generating new molecules, but not by a large margin. The number of
new drug-like molecules however is a metric that is subject to some abuse due to the arbitrary
definition of what it means to be drug-like. Following a manual inspection of the SMILES
strings collected by the unconstrained optimization approach, it would appear as though there
were many strings with lengths marginally larger than the cutoff point, which is suggestive of
partially decoded molecules. As such, a fairer metric for comparison that is in-keeping with the
ethos of Bayesian optimization should be the quality of the new molecules produced as judged
by the scores from the black-box objective function. This comparison is made in the following

section.
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3.4.4 Molecular Quality

The histogram in Figure 3.11 represents the distribution of objective function scores seen in
the training data. The blue and red lines are respectively the best molecules produced by
unconstrained Bayesian optimization and constrained Bayesian optimization averaged over 5

random train/test splits.
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Fig. 3.11 The best scores for new molecules generated from the baseline model (blue) and the model
with constrained Bayesian Optimization (red). The vertical lines show the best scores averaged over
5 separate train/test set splits of 90/10. The histogram is presented such that only the top 10% of the
training data scores are depicted.

Table 3.1 gives the percentile that the averaged score of the new molecules found by each
process occupies in the distribution over training set scores.
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Run | Baseline | Constrained
1 49th 86th
2 S51st 97th
3 12th 90th
4 37th 93rd
5 29th 94th

Table 3.1 Percentile of the Averaged New Molecule Score Relative to the Training Data. The Results of
5 Separate Train/Test Set Splits of 90/10 are Provided.

Returning briefly to the results of Figure 3.11, constrained Bayesian optimization would appear
to be able to generate higher quality molecules relative to unconstrained Bayesian optimization
and in slightly higher quantity. In order to ensure that the averaged results aren’t vulnerable to

outliers, the scores of the best new drug-like molecules are provided in Table 3.2.

Run | Baseline | Constrained
1 88th 100th
2 98th 100th
3 76th 100th
4 96th 100th
5 95th 100th

Table 3.2 Percentile of the Best New Molecule Score Relative to the Training Data. The Results of 5
Separate Train/Test Set Splits of 90/10 are Provided.

Over the 5 runs undertaken, the constrained optimization procedure in every run produced
new drug-like molecules in the 100th percentile of the distribution over training set scores.
Given a set of drug-like molecules, being able to generate new candidates that rank in the 100th
percentile in the distribution over training set scores is an enticing prospect. There is however,
one caveat in that it is first necessary to know what score to optimize. In drug discovery, the
question of what constitutes a drug-like molecule is a surprisingly difficult question to think
about [6]. The following section will address questions related to knowing what to optimize

and will propose some areas of application for the current model.

3.5 Objective Design

The objective optimized in [33] is
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JEP (1) = QED(m) — SA(m) — ring-penalty (m).. (3.4)

Using Equation 3.4, [33] were able to generate new molecules with very high values under
the objective relative to the training set and indeed this was a very important demonstration of
the theoretical performance of Bayesian optimization within the Automatic Chemical Design
model. The spirit of this section however, will be to show some conflicts that might occur
between some commonly proposed metrics in the literature such as the synthetic accessibility
metric [24] and the quantitative estimate of drug-likeness metric [6] that may occur in practice if
the constrained Bayesian optimization model developed were to achieve widespread application.
Writing the synthetic accessibility score explicitly as

SAscore = fragmentScore — complexityPenalty, 3.5)

and by noting that the complexityPenalty is composed of a sum over four terms corresponding

to:

ringComplexityScore = log(nRingBridgeAtoms + 1) + log(nSpiroAtoms + 1), (3.6)

stereoComplexityScore = log(nStereoCenters + 1), (3.7)

macrocyclePenalty = log(nMacrocycles + 1), (3.8)

1.005

sizePenalty = natoms — natoms 3.9

one may observe that the synthetic accessibility score incorporates a ring penalty and so there
are contributions to ring penalties from two terms in Equation 3.4. Similar conflicts may arise
in the joint optimization of the QED score and the SA score, where the SA score contains a size

penalty and the QED score attempts to ensure that molecules remain under a certain molecular
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weight in accord with Lipinski’s rule of five [65]. As can be seen above, it is a very difficult
task to try to optimize for multiple properties given how often commonly used metrics tend
to come into conflict. Additionally, the gold standard for validating metrics such as SA and
QED is agreement with human medicinal chemists. As such, one proposal for the model of
Automatic Chemical Design would be to make it available in the fashion described by [9]. In
this manner human medicinal chemists could be used to help provide a prior over the likely or
desirable parameter settings for the objective function that is being sought. One can envisage
an iterative process occurring whereby a human chemist accepts or rejects the model’s proposal
based on chemical intuition, the model updates the parameters of the objective it is trying to
optimize and proposes another molecule that is hopefully closer to what the chemist is looking

for.



Chapter 4

Conclusion

4.1 Contributions

The reformulation of the search procedure in the Automatic Chemical Design model as a

constrained Bayesian optimization problem has led to concrete improvements on two fronts:

1. Validity - The number of valid molecules produced by the constrained optimization
procedure offers a marked improvement over the original model. Furthermore, it may be
possible to treat the criteria for defining the constraint as a parameter that may be tuned

to control the extent of exploration of the latent space.

2. Quality - For five independent train/test splits, the scores of the best molecules generated
by the constrained optimization procedure consistently ranked in the 100th percentile
of the distribution over training set scores. The ability to find new molecules that
are competitive with the very best of the training set is a powerful demonstration of
the model’s capabilities. As a further point, the generality of the approach should be
emphasised. This approach is liable to work for a large range of objectives encoding

countless desirable molecular properties.

4.2 Future Work

Future work can entail experiments to investigate if further performance gains may be achieved
from tuning the criteria for defining a constraint. Furthermore, it would be interesting to
investigate the possibility of developing an interface whereby a human medicinal chemist could
interact with the model in order to perform Bayesian optimization in a hierarchical fashion in

the design of the objective function as well as in the design of molecules that optimize it.
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