
Designing Neural Network Hardware
Accelerators Using Deep Gaussian

Processes

Márton Havasi

Supervisor: Dr. J. M. Hernández-Lobato

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy

Churchill College August, 2017

Declaration

I, Marton Havasi of Churchill College, being a candidate for the M.Phil in Machine Learning,
Speech and Language Technology, hereby declare that this report and the work described
in it are my own work, unaided except as may be specified below, and that the report does
not contain material that has already been used to any substantial extent for a comparable
purpose.

Word count: 14007

Márton Havasi
August, 2017

Acknowledgements

First and foremost, I would like to express my gratitude towards my supervisor, Dr. J.
M. Hernández-Lobato, for his help and support. His immense knowledge, guidance and
insightful comments proved incredibly valuable throughout the project. It has been a pleasure
working with him.

Secondly, I want to thank all the MLSALT professors, lecturers and examiners who have
been there to answer my questions and ready to provide insights over the course of the year.
They have done a great job of teaching and explaining the intricacies of machine learning
and speech technology.

Finally, I would like to thank Microsoft Research for sponsoring this project. The Azure
computing resources proved extremely useful when I was running my costly experiments.

Abstract

Neural networks have become the mainstream tool for classification tasks in the past decade.
However, their spread to consumer devices, such as IoT devices, smartphones and laptops,
has been hindered by their high requirements for processing power. A solution to the problem
is to use hardware accelerators specifically designed for deep neural networks in order to
increase their efficiency.

This project aimed to tackle the problem of optimizing aforementioned designs. The goal
was to find configurations that struck a balance between power consumption and error rate.
Since testing a configuration can be expensive, we treated the design process as a black-box
multiobjective optimization problem with the objectives being low prediction error rate and
low power consumption.

The underlying predictive model for the optimization process was a Deep Gaussian
Process (DGP). DGPs were ideal candidates for the task at hand, because they give reasonable
uncertainty estimates even in the presence of limited training data. In terms of flexibility, a
DGP is equivalent to an infinitely wide, multi-layer neural network.

Moreover, our novel extension to DGPs were Joint DGP models. In Joint DGP models,
the same network is used to model both objective functions. There are two advantages to
this setup. Firstly, the number of models that need to be trained is reduced to one. Secondly,
this configuration allows the deep model to capture the underlying correlation between the
objective functions which can potentially lead to an increase in performance.

We found that DGPs performed similarly to the baseline Gaussian Process (GP) model,
both of which significantly outperformed the naïve data collection strategy. Furthermore, we
found evidence of improved uncertainty estimates in the case of DGP and Joint DGP models.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Work completed . 3

2 Literature review 5
2.1 Bayesian Optimization . 5

2.1.1 Single objective optimization . 6
2.1.2 Constrained optimization . 7
2.1.3 Multiobjective Optimization . 8

2.2 Gaussian Processes . 12
2.2.1 Description of GPs . 12
2.2.2 Sparse Gaussian Processes . 16
2.2.3 Gaussian Processes in the context of Bayesian Optimization 18

2.3 Deep Gaussian Processes . 19
2.3.1 Brief description of DGPs . 20
2.3.2 Approximate inference . 21
2.3.3 Recent works . 22
2.3.4 Deep Gaussian Processes in the context of Bayesian Optimization . 24

2.4 Bayesian Optimization in hardware design 25
2.4.1 Neural Network Hardware Accelerators 25

3 Methods 29
3.1 S-Metric Selection-based Efficient Global Optimization 29
3.2 Deep Gaussian Processes for Regression 31

3.2.1 Fully Independent Training Conditional Approximation 32
3.2.2 Approximate inference via Expectation propagation 33

x Table of contents

3.2.3 Joint DGPs . 37
3.3 Implementation details . 38

3.3.1 Implementation of the DGP models 38
3.3.2 Implementation of the GP baseline models 39
3.3.3 Implementation of the Multiobjective Optimization process 39
3.3.4 Support for distributed computing 40

4 Results 41
4.1 Verification of the implementation . 41
4.2 Runtime comparison . 43
4.3 Multiobjective Optimization . 45
4.4 Pair-wise comparison of the hypervolume improvement 47
4.5 Model accuracies . 48

5 Discussion 51
5.1 Multiobjective Optimization . 51
5.2 Model accuracies . 54
5.3 Review of the models . 55

5.3.1 GP models . 55
5.3.2 Sparse GP models . 55
5.3.3 DGP and Joint DGP models . 56

6 Conclusions 57
6.1 Further work . 57

6.1.1 Application to other problems and domains 57
6.1.2 Improving the optimization process on the current task 58
6.1.3 Improving the DGP model . 58

References 59

Appendix A Derivation of the prediction mean and variance 63

Appendix B Expectation Propagation 65

List of figures

1.1 The hypervolume enclosed by the Pareto points and the reference point. . . 2

2.1 Demonstration of the Multiobjective Optimization process on a toy problem. 9
2.2 Comparison of covariance functions in the one dimensional case. 14
2.3 Comparison of full GP and sparse GP models. 18
2.4 Simplified view of DGPs. 21
2.5 Demonstration of the DGP model on a 2D toy problem. 27

3.1 Examples of SMSego acquisition values. 30
3.2 FITC graphical model. 32
3.3 The architecture of Joint DGPs. 37

4.1 Increasing EP energy during training. 42
4.2 Training and test log-likelihoods during training. 43
4.3 Runtime of the training process for the two implementations. 44
4.4 The increasing hypervolume over the iterations. 47
4.5 The ‘close-to-optimal’ points. 49

List of tables

2.1 Tunable parameters of the design . 26

4.1 Training parameters . 44
4.2 The increasing hypervolume over the iterations. 47
4.3 Pairwise comparison of the models. 48
4.4 Log-likelihoods of the different predictive models. 50
4.5 RMSE of the different models . 50

5.1 Considerations when choosing the reference point. 53

Chapter 1

Introduction

Designing neural network hardware accelerators is a slow and expensive process. Each
accelerator design takes multiple iterations of testing and adjustments to perfect. In particular,
the testing of hardware configurations is resource and time consuming since the most reliable
way to get accurate metrics is to emulate the hardware under realistic loads. In this project, we
seek to reduce the number of testing iterations necessary in the design of a high-performance
hardware accelerator.

Each accelerator design involves many parameters such as memory size, cache bandwidth,
floating-point precision and clock-frequency. The space spanned by these parameters is
simply too large to trust a human expert with setting all the parameters. This project
tackles the final stage of hardware design: tuning these parameters in order to optimize the
performance of the hardware accelerator.

When optimizing the design, there are two conflicting goals in mind. Both the error rate of
the neural network and the power consumption of the hardware nees to be low. Furthermore,
due to the costs of testing, the number of configurations we can evaluate is limited.

We approached the process of designing neural network hardware accelerators as a
black-box multiobjective optimization problem. Using a limited budget of evaluations, we
wish to approximate the set of ‘optimal’ configurations (also called Pareto points), that is,
configurations that are not worse in both error rate and power consumption than any other
configuration. The process went as follows. In each iteration, we tested a new configuration.
Then, using the result of the test, we updated our model’s belief of the behavior of all the
candidate configurations. At the end of the iteration, the model produced an optimized
decision about the location of our next evaluation. We had two goal with each evaluation.
Firstly, to find optimal configurations, secondly, to improve the accuracy of our beliefs thus
solving the exploration vs. exploitation problem.

2 Introduction

The efficiency of the process was judged by how well it managed to approximate the
optimal set of points. This was achieved by maximizing the metric, which was defined as the
hypervolume enclosed by the Pareto points and a fixed reference point as shown in Figure
1.1.

Fig. 1.1 The hypervolume enclosed by the Pareto points and the reference point. The black
markers denote all the candidate configurations.

As the underlying model for the optimization process, we used Deep Gaussian Processes
(DGP) (Damianou and Lawrence, 2013) with Gaussian Processes (GP) (Williams and Ras-
mussen, 1996) providing the baseline. They were ideal candidates for the task at hand,
since they are flexible and they can provide sensible uncertainty estimates even from a few
datapoints.

1.1 Work completed 3

The implementation and training of the DGP models was based on (Bui et al., 2016).
We employed sparsity approximations in order to improve scalability and used Expectation
Propagation for computationally tractable training.

Furthermore, we investigated a novel extension to DGPs. In the case of DGPs, a separate
model was trained to predict each objective function. However, in Joint DGPs, we used the
same network to predict all objective functions at the same time. In this setup, the hidden
layers were shared between the objective functions, but each objective had its own output
node for prediction. The rationale behind this setup was that it allowed the model to capture
the underlying correlations between the objective functions in the hidden layers. This lead
to slightly improved uncertainty estimates over DGPs as well as it reduced the number of
models that needed to be trained to one.

We derived two conclusions from our experiments. First, DGPs performed on par with
GPs over the course of the optimization process and they both considerably outperformed
the naïve (random) data-collection strategy. Second, the added flexibility of DGPs and Joint
DGPs increased the quality of the uncertainty estimates. The test log-likelihood of the GP
model was −1.20± 0.06 as opposed to −0.61± 0.04 of DGPs and −0.48± 0.05 of Joint
DGPs at 300 training points.

1.1 Work completed

In the first part of the project, we implemented our DGP model based on (Bui et al., 2016) in
Tensorflow. This model used sparse GP approximations for scalability and Expectation Prop-
agation for training. The technical details are described in Section 3.2 and the implementation
details in Section 3.3.1.

Following that, we built a framework for multiobjective optimization. Our choice of
data-collection strategy was SMSego (Section 3.1) which we tested in combination with the
different predictive models.

The data used in the experiments consisted of 6276 randomly sampled points sourced by
simulations of neural network hardware accelerators (Reagen et al., 2016).

Finally, we conducted experiments regarding the improvement in hypervolume over the
course of the optimization process, as well as separate experiments for testing the predictive
power of each model. Our findings along with the discussion of the results are included in
Chapter 5.

Chapter 2

Literature review

This chapter introduces Bayesian Optimization (BO) and Multiobjective Optimization includ-
ing a summary of the current state-of-the-art data collection strategies. This is followed by a
description of Gaussian Processes (GP) and a review of Deep Gaussian Processes (DGP).
The chapter is concluded with an overview of recent works related to the application of
Bayesian Optimization to hardware design problems.

2.1 Bayesian Optimization

With the increasing complexity of product designs, such as websites, microprocessors or
machine learning models, a new area of problems emerged. These designs often had a vast
number or parameters that could interact in an unexpected and unpredictable ways. Far too
many for a human expert to decide upon. Bayesian Optimization (BO) (Shahriari et al.,
2016) emerged as a solution to the problem. Bayesian Optimization is a technique that uses
machine learning models in order to tune the parameters of a configuration which often
results in significant improvement in efficiency.

In technical terms, Bayesian Optimization refers to a family of approaches to sequential
optimization of an objective function where the analytic form of the function is unknown (ie.
black-box function) and the cost of evaluating the objective function is expensive. Typically,
the number of evaluations is restricted due to the high cost.

x′ = argmax
x∈X

f (x)

The key idea is that one can invest significant computational effort into intelligent decision
making under the assumption that the cost of evaluating the expensive objective function
dominates the overall cost.

6 Literature review

2.1.1 Single objective optimization

Single objective optimization is the most common case where there is only a single objective
function to maximize. Examples include maximizing the number of visitors to a website,
maximizing consumer satisfaction, minimizing the power consumption of a circuit and
maximizing the test log-likelihood of a statistical model.

The process requires two pieces. A predictive model and a data collection strategy.
The predictive model must be able to estimate the objective function with uncertainty

bounds. It maintains a probabilistic belief about the behavior of the objective function as
the optimization progresses. Due to the low number of samples, it is key to have a model
that gives reasonable estimates even from only a few datapoints. The most commonly used
model, a Gaussian Process, is described in Section 2.2 followed by a description of Deep
Gaussian Processes in Section 2.3.

The data collection strategy takes the form of an acquisition function that approximates
how much ‘value’ one can gain by evaluating the objective function at a certain point. In each
iteration, the acquisition function is calculated over all the points and the highest scoring
point is selected for evaluation.

The iterative process is shown on Algorithm 1.

f ← objective function
M← predictive model
α(x,M)← acquisition function
Data: X ← is the set of candidate parameter configurations (grid)
Data: D0 = {}
for n = 1,2 . . . ,N do

xn = argmaxx∈X α(x,M(Dn−1))
yn = f (xn)
Dn = {(xn,yn)}

⋃
Dn−1

end
Result: xargmaxn(yn)

Algorithm 1: Bayesian Optimization

The acquisition function is responsible for balancing exploration (improving the accuracy
of the predictive model) versus exploitation (evaluating points that are likely to be optimal)
using the estimates and uncertainties provided by the predictive model. The exploration part
is key for long-term improvement while exploitation reaps the immediate benefits of the
predictive model.

The most commonly used acquisition functions (Jones et al., 1998) include:

• Probability of improvement (PI):

2.1 Bayesian Optimization 7

α(x) = P(y≥ maxn(yn)|x)

• Expected improvement (EI):

α(x) = E (max(y−maxn(yn)|x) ,0.0)

• Lower Confidence Bound (LCB):

α(x) = µy− cσ
2
y

Where (µy,σ
2
y) is the model prediction for y and c is a constant.

• Entropy Search (ES):

α(x) = H(p(x′|D))−H(p(x′|D
⋃
{(x,y)}))

Where H denotes the entropy and x′ denotes the optimal solution. The acquisition
value is the reduction in the entropy of the solution.

Each of these acquisition functions achieve the goal of balancing exploration versus
exploitation in some way. Their degree of effectiveness varies, although we can single out
Entropy Search as being the most efficient for a wide variety of problems.

2.1.2 Constrained optimization

While Bayesian Optimizations is very successful at optimizing a single objective, in the real
world, it is rarely the goal to optimize a single objective at all costs. Typically, the parameters
are constrained in some way. For instance, one might want to maximize the number of
visitors on the website, but there is an upper bound to the server costs the he or she is
willing to pay. A second example is the design of chemical molecules. The constraints arise
from invalid combination of parameters that lead to molecules that cannot be synthesized
(Gómez-Bombarelli et al., 2016).

Formally in constrained optimization, we aim to maximize f (x) subject to constraints
c1(x), . . . ,cK(x).

x′ = argmax
x∈X

f (x) s.t. c1(x)≥ 0, . . . ,cK(x)≥ 0

8 Literature review

The approach in this case is quite similar to Bayesian Optimization (Algorithm 1),
although the acquisition functions need to be adapted to the constrained case.

Some methods, such as PI and EI (Jones et al., 1998) can be straight-forwardly applied
in the constrained case. Simply, train a probabilistic model for each of the constraints
c1(x), . . . ,cK(x) and incorporate the probability of an input x meeting all of them in the
calculation of the acquisition value.

For example, PI becomes:

α(x) = P(c1(x)≥ 0, . . . ,cK(x)≥ 0,y≥ maxn(yn)|x)

However, for both PI and EI, it can be an issue if there has not been a valid solution yn in
the process so far. Predictive Entropy Search with Constraints (PESC) (Hernández-Lobato
et al., 2015) deals with the issue using an information-based approach which was shown to
outperform both EI and PI-based methods on real-world examples.

In addition, in an inspiring paper (Hernández-Lobato et al., 2016b) PESC was extended
to support decoupled constraint evaluation. This can be extremely useful in cases that allow
separate evaluation of the constraints. A good example is that in molecule design, it is often
much quicker to decide whether a design leads to a synthesizable molecule than it is to predict
its properties. In these cases, decoupled evaluations can lead to significant cost reduction.

2.1.3 Multiobjective Optimization

A natural extension of constrained optimization is to have multiple objective functions
instead of constraints. For instance, one might be interested in all hardware configurations
that have high performance while having the lowest possible power consumption for the
given performance.

Multiobjective Optimization (or Pareto optimization) is concerned with optimizing mul-
tiple, back-box objective functions simultaneously. In non-trivial cases, the objectives are
conflicting and therefore there is no single optimal solution to be found. Instead, the solution
consists of a set of optimal points.

A point is Pareto-optimal when there is no single point that performs better than said
point in every objective function. In the optimization process we seek to approximate the set
of Pareto-optimal points. The set of Pareto-optimal points is called the Pareto-front.

The optimization process is analogous to BO with the exception that a separate predictive
model is required for each objective function. Figure 2.1 demonstrates the concept of the
predictive model, acquisition function and the hypervolume for a toy problem.

2.1 Bayesian Optimization 9

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.5

1.0

1.5

2.0

Ob
je
ct
iv
es

Model predictions

Obj 1
Obj 2

(a) The 5 datapoints and the predictions made by
the predictive model.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

Aq
ui
sit

io
n
va

lu
e

Aquisition function

(b) The acquisition value.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Obj 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ob
j 2

Pareto frontier

(c) The hypervolume of the current Pareto-front.

Fig. 2.1 Demonstration of the Multiobjective Optimization process on a toy problem.

Hypervolume

When comparing two sets of Pareto-front approximations, it is not necessarily the case that
one is strictly better than the other. It might be the case that both sets contain points that
dominate points from the other set (domination is when one point outperforms another in
every objective). Therefore it is necessary to introduce a performance metric that assesses
the quality of the Pareto-front approximations.

10 Literature review

The performance metric that is commonly used in multiobjective optimization is the
hypervolume of the Pareto-front. The hypervolume is defined as the volume enclosed by the
Pareto front and a fixed reference point in the objective space. The intuition is that the process
aims to maximize the volume of the dominated points, which is maximal when the optimal
Pareto-frontier has been found. Figure 1.1 demonstrates the concept for two objectives. The
reference point is typically chosen to be the maximal value + 1 in each objective function
(Emmerich and Naujoks, 2004), although we found that an inappropriate reference point can
have detrimental impact on the performance (Section 5.1).

Acquisition functions

Multiobjective optimization is inherently different from single objective Bayesian optimiza-
tion due to having no single objective function to maximize. The acquisition functions from
the single-objective case are not straight-forwardly applicable in the multiobjective case.

In this project, the method we used was SMSego which is described in detail in Section
3.1.

Below is a brief overview of the current state-of-the-art data collection strategies for the
multiobjective case. Some of the analysis is based on (Hernández-Lobato et al., 2016a).

• Pareto Efficient Global Optimization (ParEGO) (Knowles, 2006) is a unique ap-
proach that reduces the multidimensional problem to a single dimension. In each
iteration, a weight vector λ is sampled and a new objective function is generated.

fλ (x) = maxi(λi fi(x)+ρ ∑
i

λi fi(x)

Where ρ is typically chosen to be a small value eg. 0.05. From this point, any single
objective acquisition can be used to determine the next point. While ParEgo is a
straight-forward approach, it can under-perform when it comes to improvement in
hyper-volume (Ponweiser et al., 2008).

• Expected Hyper-volume Improvement (EHI) (Emmerich and Klinkenberg, 2008) is
the natural extension of EI to the multiobjective setting. For each predicted point, the
acquisition value is the expected improvement in hyper-volume over the current Pareto
set.

EHI(x) =
∫

p(y|x,θ)
(

HV (S
⋃
{y})−HV (S)

)
dy

2.1 Bayesian Optimization 11

Where S is the current Pareto set, θ are the model parameters and HV denotes the
hypervolume function.

The main drawback of the method is that the above integral is very difficult to accurately
approximate. Moreover, cost of the naïve approximation that uses a grid of points
grows exponentially w.r.t. the number of objective functions.

• S-metric selection-based efficient global optimization (SMSego) (Ponweiser et al.,
2008) uses an optimistic estimate of the objective functions to speed up the computa-
tions. The acquisition value of each point is the improvement in hypervolume by the
optimistic estimate.

ỹ = µy− cσy

SMSego(x) = HV (S
⋃
{ỹ})−HV (S)

Where µy and σy are the mean and standard-deviation given by the predictor and c is a
constant. The advantage of SMSego is that it is quick and simple to calculate, however,
the downside is that it cannot cope with non-Gaussian predictions.

• Pareto Active Learning (PAL) (Zuluaga et al., 2013) takes SMSego one step further
without increasing its computational cost. For each point x, PAL defines a region of
uncertainty.

Q(x) = {ỹ|µy− cσy < ỹ < µy + cσy}

This gives a rough estimate for the region where y is located with probability depending
on the value of the constant c. Then each point is classified as Pareto-optimal, non-
Pareto-optimal or unclassified. Pareto-optimal points are the ones where no points in
Q(x) are dominated by the current Pareto-set. The points where the whole region of
Q(x) is dominated by the current Pareto-set are classed as non-Pareto-optimal. The
rest of the points are unclassed. In each iteration, the next candidate is the unclassed
point with the largest uncertainty area (largest volume of Q(x)).

The advantage of this method is that it is cheap and very efficient at reducing the un-
certainty near the Pareto-front. However, reduction in uncertainty does not necessarily
correlate with increased hypervolume. A further disadvantage is that the method does
not cope well with noisy data because it classifies too many points as ‘unclassified’.

12 Literature review

• Sequential uncertainty reduction (SUR) (Picheny, 2015) is the extension of PI to the
multidimensional case. The process is similar to EHI, except that the acquisition value
is the probability of improving the hypervolume. SUR suffers from the same problems
as EHI. High computational cost which makes it viable only for 2-3 dimensions.

• Predictive Entropy Search (PESMO) (Hernández-Lobato et al., 2016a) is the adap-
tion of entropy search to the multiobjective domain. Its acquisition value is the expected
reduction in the entropy of the Pareto-set.

PESMO(x) = H(S)−Ey(H(S
⋃

y))

While it has been shown that PESMO often outperforms the other approaches, it suffers
from the same issue as EHI. The expected value cannot be directly calculated and can
be expensive to approximate.

Our choice of data-collection strategy was SMSego which we could justify by its straight-
forward implementation and reasonable performance. While it is important to employ an
efficient acquisition function, the focus of the project was to evaluate DGPs and Joint DGPs
in a multiobjective optimization setting. The choice of acquisition function did not play a
crucial role in this regard.

Fortunately, GPs and DGPs are not affected by SMSego’s inability to deal with non-
Gaussian predictions, because the predicted distribution is always Gaussian for these two
models.

2.2 Gaussian Processes

This section presents a review of Gaussian Process models. It talks about the underlying
assumptions and mechanisms that define a GP, followed by the introduction of sparse
approximations that are used in order to reduce the high computational cost of GPs. Finally,
the section analyses their role in the context of Bayesian Optimization.

2.2.1 Description of GPs

A Gaussian Process (GP) (Williams and Rasmussen, 1996) is a distribution over functions
that can be used for Bayesian regression. f : X →R where f is an infinite dimensional
mapping from the input space X to the real numbersR:

2.2 Gaussian Processes 13

p(f |D) =
p(f)p(D| f)

p(D)

The distributions defined by GPs share the property that for any finite subset of the input
space {x1, . . . ,xn}, the marginal probability p(f (x1), . . . , f (xn)) is a multivariate Gaussian
distribution.

This property can be used to calculate the marginal likelihood to make predictions.

Hyperparameters

The hyperparameters of a Gaussian Process are the mean function µ and the covariance
function K:

p(f (xxx)) =N (µµµ,Σ)

µµµ = [µ(x1), . . . ,µ(xn)]
T

Σ =

K(x1,x1) K(x1,x2) . . . K(x1,xn)

K(x2,x1) K(x2,x2) . . . K(x2,xn)
...

...
K(xn,x1) K(xn,x2) . . . K(xn,xn)

In most use-cases, including this project, the mean µ is fixed at 0 since we have no prior

knowledge of the function.
The covariance function K controls the ‘wiggliness’ of the function. It determines how

much each datapoint correlates with the others. It can be any function as long as Σ is a
positive definite matrix for all xxx, ie. a valid covariance matrix. In this project, we used two
types: squared exponential and Matérn.

The squared exponential kernel is a straight forward kernel function that is widely used
across different domains due to its simple form and straight-forward implementation.

Kse(x,x′) = σ
2
f exp

(
−
(

x− x′

l

)T (x− x′

l

))
+δ (x,x′)σ2

n

The first term is exponential of the length-scale l adjusted square distance. The lengths-
scale is usually kept separate for each input dimension in order to automatically determine
how relevant they are (Automatic Relevance Determination or ARD). If the length-scale is
large for a given input dimension then it will only have a minor impact on the outcome. The

14 Literature review

second term accounts for the measurement noise in the samples. Furthermore, the addition
of σ2

n to the diagonal of Σ ensures the computational stability of the calculations.
The second kernel that we used is the Matérn kernel. The reason that we used it is that

Spearmint1, a toolkit for Bayesian Optimization, employs a Gaussian Process with Matérn
covariance function as its underlying model. Spearmint is an acknowledged tool both in
academia an industry and therefore serves as a good baseline for our experiments.

The Matérn kernel that is used by Spearmint is constructed as follows.

KMat(x,x′) = σ
2
f

21−ν

Γ(ν)

(√
2ν

∣∣∣∣x− x′

l

∣∣∣∣)ν

Kν

(√
2ν

∣∣∣∣x− x′

l

∣∣∣∣)+δ (x,x′)σ2
n

Where ν is a constant parameter and Kν is the modified Bessel function (Jin and Jjie,
1996). At ν→∞, the function is equivalent to the squared exponential kernel. Typical values
for ν are 3/2 and 5/2. Spearmint uses ν = 5/2. In this case, the function takes the following
form:

KMat(x,x′) = σ
2
f

(
1+
√

5
∣∣∣∣x− x′

l

∣∣∣∣+ 5
3

∣∣∣∣x− x′

l

∣∣∣∣2
)

exp
(
−
∣∣∣∣√5

x− x′

l

∣∣∣∣)+δ (x,x′)σ2
n

The advantage of the Matérn covariance function is that it does not converge to 0 as
rapidly as the squared exponential function does (Figure 2.2a and 2.2b). This allows distant
data-points to influence the predictions while the impact of nearby data-points remains the
same.

-3 -2 -1 0 1 2 3

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
S

E
(0

,
x
)

Squared Exponential Kernel

(a) Squared Exponential covariance function

-3 -2 -1 0 1 2 3

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
M

a
t(0

,
x
)

Matérn kernel with = 5/2

(b) Matérn covariance function

Fig. 2.2 Comparison of covariance functions in the one dimensional case.

1https://github.com/HIPS/Spearmint

2.2 Gaussian Processes 15

The practical issue of covariance functions is that it is difficult to choose one that is right
for the problem. It is almost always the case that a cleverly handcrafted covariance function
performs better than a general one, however, constructing one requires prior knowledge of
the behavior of the function. DGPs offer a solution to this problem by remapping the inputs
in the hidden layers which makes them less sensitive to the choice of covariance function.

Optimizing the hyperparameters

One approach to optimizing the hyperparameters is Maximum Likelihood (ML) training. As
the name suggests, the hyperparameters are set to maximize the marginal likelihood of the
observations.

θ = argmaxθ p(yyy|xxx,θ)

log(p(yyy|xxx,θ)) =−1
2

yyyT
Σ
−1yyy− 1

2
log|Σ|− n

2
log2π

The log-likelihood was derived by taking the logarithm of the Gaussian probability
density function.

While ML training lends itself when we have no prior knowledge of the function, it
can sometimes be an issue that the length-scale l and noise σn take extreme values and the
computation becomes unstable.

The second commonly used approach is Maximum-a-Posteriori (MAP) training. Here,
the hyperparameters have a prior distribution and the goal is to maximize the posterior
likelihood.

θ = argmaxθ p(yyy|xxx,θ)p(θ)

In the presence of prior distributions, MAP outperforms ML training.

Regression

From the assumption that the data can be fully explained as a sample from a multivariate
Gaussian distribution, it follows that we can make predictions yyy′ at any finite set of inputs
xxx′ = [x′1, . . . ,x

′
k]

T . [
yyy
yyy′

]
∼N

(
000,

[
K(xxx,xxx) K(xxx,xxx′)
K(xxx′,xxx) K(xxx′,xxx′)

])
Where

16 Literature review

K(xxx′,xxx) = K(xxx,xxx′)T =

K(x′1,x1) K(x′1,x2) . . . K(x′1,xn)

K(x′2,x1) K(x′2,x2) . . . K(x′2,xn)
...

...
K(x′n,x1) K(x′n,x2) . . . K(x′n,xn)

K(xxx′,xxx′) =

K(x′1,x

′
1) K(x′1,x

′
2) . . . K(x′1,x

′
n)

K(x′2,x
′
1) K(x′2,x

′
2) . . . K(x′2,x

′
n)

...
...

K(x′n,x
′
1) K(x′n,x

′
2) . . . K(x′n,x

′
n)

The distribution of the predictions is always a multivariate Gaussian. In practice, we

always make independent predictions which means that xxx′ only includes a single value. As a
result, each prediction has a scalar value for variance as opposed to a full covariance matrix.

The prediction takes the following form. The derivation is included in Appendix A.

yyy′|yyy∼N
(
K(xxx′,xxx)K(xxx,xxx)−1yyy,K(xxx′,xxx′)−K(xxx′,xxx)K(xxx,xxx)−1K(xxx,xxx′)

)
The computational cost of making calculating the marginal likelihood is O(N3) in time

and O(N2) in space since it is dominated by the cost of inverting K(xxx,xxx) = Σ. The cost of
making K predictions is O(KN2+K2N) in time and O(N2+K2) in space which is dominated
by the cost of calculating the covariance matrix for the predictions.

2.2.2 Sparse Gaussian Processes

This section gives an overview of sparse GPs. For the use of sparse approximations in the
project, refer to Section 3.2.1. For a more in-depth discussion on spare GPs, see (Snelson
and Ghahramani, 2006).

As mentioned earlier, one of the disadvantages of GPs is their high training and prediction
costs: O(N3) and O(N2) respectively. To mitigate the issue, sparse approximations (Snelson
and Ghahramani, 2006) can be utilized. Using M ≪ N pseudo inputs, the costs can be
reduced to O(M2N) and O(M2) respectively.

With this setup, the pseudo targets play the role of latent function values. Denote the
pseudo inputs and pseudo targets with (x̄xx, f̄ff). We can derive the distribution for a finite set of
inputs x′ analogously to GPs.

yyy′| f̄ff ∼N
(
K(xxx′, x̄xx)K(x̄xx, x̄xx)−1 f̄ff ,K(xxx′,xxx′)−K(xxx′, x̄xx)K(x̄xx, x̄xx)−1K(x̄xx,xxx′)

)
For a single input x′ we get:

2.2 Gaussian Processes 17

y′| f̄ff ∼N
(
K(x′, x̄xx)K(x̄xx, x̄xx)−1 f̄ff ,K(x′,x′)−K(x′, x̄xx)K(x̄xx, x̄xx)−1K(x̄xx,x′)

)
Where K(x′, x̄xx) = K(x̄xx,x′)T = [K(x′, x̄xx1), . . . ,K(x′, x̄xx1)M].
Assuming that the outputs are generated i.i.d. for the inputs, we can get the likelihood of

the data.

p(yyy|xxx, x̄xx, f̄ff) = ∏
n

p(yn|xn, x̄xx, f̄ff) =N
(
K(xxx, x̄xx)K(x̄xx, x̄xx)−1 f̄ff ,Λ

)
Where Λ = diag(λn), λn = K(xn,xn)−K(xn, x̄xx)K(x̄xx, x̄xx)−1K(x̄xx,xn).
A naïve approach would train x̄xx and f̄ff to maximize the likelihood of the training data.

This would be problematic due to the large number of parameters a likely lead to overfitting.
We can get much more accurate results by integrating out the pseudo targets f̄ff .

The prior distribution of f̄ff is a Gaussian prior with the covariance matrix being defined
by the kernel function of the GP. This is a reasonable prior because one can assume that the
pseudo targets are distributed similarly to the real data.

f̄ff ∼N (0,K(x̄xx, x̄xx))

The posterior over the pseudo targets f̄ff can be calculated analytically using Bayes rule.

p(f̄ff |yyy,xxx, x̄xx) =N
(
K(x̄xx, x̄xx)Q−1K(x̄xx,xxx)Λ−1yyy,K(x̄xx, x̄xx)Q−1K(x̄xx, x̄xx)

)
Where Q = K(x̄xx, x̄xx)+K(x̄xx,xxx)Λ−1K(xxx, x̄xx).
In order to obtain a predictive distribution, we have to integrate out the pseudo targets

with the posterior.

p(y′|x′,yyy,xxx, x̄xx) =
∫

p(y′|x′, x̄xx, f̄ff)p(f̄ff |x̄xx)d f̄ff =N
(
µ
′,σ ′2

)
µ
′ = K(x′, x̄xx)Q−1K(x̄xx,xxx)Λ−1yyy

σ
′2 = K(x′,x′)−K(x′, x̄xx)(K(x̄xx, x̄xx)−1−Q−1)K(x̄xx,x′)

The pseudo inputs x̄xx can be trained using stochastic gradient ascent along with the
hyperparameters using the marginal likelihood.

p(yyy|xxx, x̄xx,θ) =
∫

p(yyy|xxx, x̄xx, f̄ff)p(f̄ff |x̄xx)d f̄ff =N
(
0,K(xxx)K(x̄xx, x̄xx)−1K(x̄xx,xxx)+Λ

)

18 Literature review

Since Λ is diagonal, the cost is dominated by the matrix multiplication K(x̄xx,xxx)Λ−1K(xxx, x̄xx)
in the calculation of Q which has cost O(M2N). The predictions can be obtained in O(M)

time for the mean and O(M2) for the variance.
Figure 2.3a shows the full GP model and Figure 2.3b shows the sparse model obtained

from gradient ascent training.

(a) Full GP model. (b) Sparse GP model.

Fig. 2.3 Comparison of full GP and sparse GP models. The initial positions of the pseudo
inputs are denoted by red crosses and the positions of the pseudo inputs after stochastic
gradient ascent training are denoted by blue crosses. 2

One concern is that the pseudo inputs might overfit the training data. However, even in
the case when M = N i.e. there is a pseudo point for each training point (xxx = x̄xx), the equations
simply revert to a full GP model.

2.2.3 Gaussian Processes in the context of Bayesian Optimization

In Bayesian Optimization, it is essential to have a statistical model that provides high-quality
predictions with uncertainty estimates. All of the data collection strategies rely on these
predictions to make the best possible decision about the next evaluation.

Not all predictive models perform well in an optimization setting. First and foremost,
the model must be able to give sensible predictions and uncertainties even when the data is
scarce. Typically, the high cost of evaluation limits the process to 10-1000 evaluations. Some

2Image source: (Snelson and Ghahramani, 2006)

2.3 Deep Gaussian Processes 19

models, such as deep neural networks, perform poorly in this environment which makes them
a suboptimal choice.

However, there are trends in optimization problems that we can take advantage of. The
data often has low volume and dimensionality. This advocates employing Gaussian Processes,
since they work very well with limited, low-dimensional data and their high computational
cost is dwarfed by the cost of evaluating the objective function.

The two advantages of Gaussian Processes are that they can work from very few data-
points and that they are flexible. They are also very good at coping with noisy observations.

Gaussian Processes are non-parametric models since they are fully defined by the set of
hyper-parameters θ = {l,σ f ,σn}. The underlying assumption of GPs is that the samples are
drawn from an infinite dimensional function therefore the complexity of the model does not
increase with more data.

However, there are some non-trivial difficulties that need to be overcome when selecting
the hyper-parameters. Firstly, the covariance function has a large impact on the performance
of the model and it is difficult to choose without any prior knowledge of the objective
function. One approach is the use a kernel that performs well under most tasks, such as
the squared exponential kernel with a separate length-scale for each dimension but such an
approach cannot compete with a carefully handcrafted covariance function. Secondly, the
hyper-parameters need to be tuned. This is done in one of two ways. Maximum Likelihood
(ML) training maximizes the marginal likelihood. It is straight-forward, but if we have any
prior knowledge, Maximum-a-Posteriori (MAP) training works by maximizing the likelihood
of the posterior.

A second drawback of GPs is their high computational cost. The cost of calculating the
inverse covariance matrix is O(N3) in time and O(N2) in space where N is the number of
training samples. This entails that GPs are not a viable choice when the number of training
samples is large, however, this is not an issue in Bayesian Optimization.

GPs are widespread in Bayesian Optimization both in academia and in the industry. Tools
such as Spearmint rely on GPs as their predictive model.

2.3 Deep Gaussian Processes

Deep Gaussian Processes (Damianou and Lawrence, 2013) are multilayer generalizations of
Gaussian Processes. Since GPs are equivalent to infinitely wide neural networks, DGPs are
equivalent to infinitely wide, multi-layer neural networks. The inclusion of hidden layers
makes DGPs more general and flexible predictors than GPs.

20 Literature review

Unlike Section 2.2, this section does not give an in-depth description of DGPs. Instead,
we summarize the historical work and recent accomplishments in the area. In Section 3.2,
we include detailed information on the exact use of DGPs in the project.

The section is concluded with a discussion about the advantages and disadvantages of
using DGPs in Bayesian Optimization.

2.3.1 Brief description of DGPs

This section summarizes the DGP model presented in (Damianou and Lawrence, 2013).
While we touch on all the key points in the paper, we highly recommend reading it for a
more in-depth discussion.

To simplify the explanation, we are describing a DGP with only a single hidden layer
and one node per layer. The architecture is shown on Figure 2.4. Moreover, follow suit with
the original paper and introduce DGPs in an unsupervised learning scenario.

In this setup, Z is the unobserved parent node and the observed outputs are yyy. The outputs
of the layers are defined as f X ∼ GP(0,KX(zzz,zzz)) and fY ∼ GP(0,KY (xxx,xxx)) where KX and
KY are the kernel functions of the layers analogous to a GP.

The inputs to the next layer are simply the outputs of the previous one with added
Gaussian noise. Figure 2.5 serves as a demonstration using a single hidden layer that contains
two nodes.

xxx = f X(zzz)+ εX εX ∼N (000,σ2
X III)

yyy = fY (xxx)+ εY εY ∼N (000,σ2
Y III)

This structure can be naturally extend by adding more hidden layers (vertical extension)
or by adding more nodes into the already existing layers (horizontal extension) and fully
connecting them to the layer below and above. The architecture of the Joint DGP model that
we used in the project is shown in Figure 3.3.

Training is still unclear. One can see that the number of parameters that need to be trained
grew significantly (xxx). As it turns out, we can marginalize the whole latent space out in a
Bayesian manner. The Bayesian training does not only drastically reduce the number of
parameters, but also enables an automatic Occam’s razor to deal with potential overfitting
problems. In the next section, we present a variational approach that obtains a lower bound
to the marginal likelihood.

2.3 Deep Gaussian Processes 21

Fig. 2.4 Simplified view of DGPs.

2.3.2 Approximate inference

This section gives the example of variational marginalization of the latent variables, but as
we show in the next section, there are other options for approximate inference.

During training, we seek to maximize the marginal likelihood.

logp(yyy) = log
∫

p(yyy|xxx)p(xxx|zzz)p(zzz)dxxxyyy

Unfortunately, this integral is intractable due to the non-linear way in which xxx and zzz
interact.

One can obtain a lower-bound to the marginal likelihood F ≤ logp(yyy) using Jensen’s
inequality.

F =
∫
Qlog

p(yyy, fffY ,xxx, fff X ,zzz)
Q

The role of Q will be explained later.
The joint distribution can be expanded.

p(yyy, fffY ,xxx, fff X ,zzz) = p(yyy| fffY)p(fffY |xxx)p(xxx| fff X)p(fff X |zzz)p(zzz)

The integral is still intractable. The difficult terms are p(fffY |xxx) and p(fff X |zzz) due to the
non-linear relationship they have with xxx and zzz.

Tractability can be achieved through a two-step process.
First, we can use the key result of (Titsias and Lawrence, 2010) which is that with the

introduction of pseudo input-target pairs, the prior distributions can be propagated through

22 Literature review

the non-linear mapping f . This is analogous to Sparse GPs. For each mapping, we augment
the probability space with M pseudo inputs (also called inducing points) x̄xx and z̄zz and we
marginalize the pseudo targets uuuX and uuuY .

Second, we can cleverly define Q to cancel out the difficult terms p(fffY |xxx) and p(fff X |zzz).

Q= p(fffY |uuuY ,xxx)q(uuuY)q(xxx)p(fff X |uuuX ,zzz)q(uuuX)q(zzz)

Where q(uuuY) and q(uuuX) are free-form variational distributions and q(xxx) and q(zzz) are
factorized Gaussians w.r.t the dimensions.

q(xxx) =
Q

∏
q
N (µX

q ,S
X
q) q(zzz) =

QZ

∏
q
N (µZ

q ,S
Z
q)

Finally, we arrive to a tractable lower bound.

F = gY + rX +Hq(xxx)−KL(q(zzz)||p(zzz))

gY = Ep(fffY |uuuY ,xxx)q(uuuY)q(xxx)

(
logp(yyy| fffY)+ log

p(uuuY)

q(uuuY)

)

rX = Ep(fff X |uuuX ,zzz)q(uuuX)q(zzz)

(
logpxxx| fff X)+ log

p(uuuX)

q(uuuX)

)
WhereH denotes the entropy of the distribution and KL refers to the Kullback-Leibler

divergence. For a more detailed, step-by-step derivation see (Damianou and Lawrence, 2013).
The training of the DGP models involves optimizing the above expression w.r.t. the

hyperparameters for each GP mapping (θ = {σ f ,σn, l}), the inducing points (x̄xx and z̄zz) and
the variational parameters.

The issue with the variational approach is that the number of variational parameters still
grow linearly with the size of the data. As a result, DGPs are notoriously difficult to train
because they can get stuck in a local optima. The next section offers multiple solutions to
this problem.

2.3.3 Recent works

This section outlines three recent and remarkable results in the area of approximate inference
for DGPs. They all enable scaling of DGPs to medium-large datasets. This helps to place our
work in the context of ongoing research.

2.3 Deep Gaussian Processes 23

Firstly, a paper by (Bui et al., 2016), in which Approximate Expectation Propagation
is used for approximate inference. Our implementation of the DGP model is based on this
paper.

Secondly, a paper by (Dai et al., 2015), in which they introduce a recognition model:
Variational Auto-Encoded deep Gaussian process (VAE-DGP).

Thirdly, a paper by (Salimbeni and Deisenroth, 2017), in which they present a doubly
stochastic variational inference algorithm, which does not force independence between
layers.

Deep Gaussian Processes for Regression using Approximate Expectation Propagation

In this paper, Expectation Propagation (Minka, 2001) is used for approximate inference with
the goal in mind to scale DGPs up to be able to cope with large quantities of training data as
well as to apply them to regression tasks.

The paper demonstrates these qualities by applying DGP models to large datasets and
shows that they always outperform GPs. An in-depth description of the content of the paper
is given in Section 3.2.

When we applied this model in the Multiobjective Optimization setting, one concern
we had was that the model might underperform since it was not designed for small datasets.
While we could not exclude the possibility that a different approximate inference method
might perform better than EP, we did find that the log-likelihood of the DGP models were
always higher than the baseline GP models.

Variational Auto-Encoded Deep Gaussian Processes

In order to scale up DGPs to handle large datasets, the authors augment DGPs with a
variationally auto-encoded inference mechanisms. Said mechanisms are referred to as
recognition models. A recognition model can be used to constrain the variational posterior
distributions of latent variables. In turn, this lead to reduction in the number of parameters
for optimization since the number of variational parameters do not grow linearly with the
size of the data.

The second result of the paper is that it establishes the auto-encoded variational lower
bound, which can be computed in a distributed manner. This enables further scaling of the
models, although it does not lead to reduced costs in the computation.

24 Literature review

Doubly Stochastic Variational Inference for Deep Gaussian Processes

A noteworthy result by (Salimbeni and Deisenroth, 2017) is that the authors lift the forced
assumption of independence between the layers in order to build more flexible models. The
authors introduced a doubly stochastic variational inference algorithm to cope with the
intractable posterior distribution, which in addition, enabled scaling to large datasets.

The first source of stochasticity is the sampling approach that is used to approximate the
marginals. Samples are drawn from the variational posterior formed by the inducing points.
This is enabled by the fact that the marginals conditioned on the previous layer only depend
on the corresponding inputs.

The second source of stochasticity comes from mini-batch training. This step is required
for the scalability of any model.

2.3.4 Deep Gaussian Processes in the context of Bayesian Optimization

Similarly to GPs, DGPs are flexible, non-parametric models. They can handle noisy and
low volumes of training data and still make sensible predictions. Moreover, DGPs offer a
solution to a key issue with GPs which is the problem of selecting appropriate covariance
functions and determining the hyper-parameters. DGPs are not sensitive to the choice of
covariance function due to the fact that the hidden layers can warp the inputs and reduce or
extend dimensionality resulting in an automatically designed kernel that is flexible and fits
the problem.

Unlike GPs, DGPs have not been extensively applied to Bayesian Optimization problems
due to their history of training difficulties. However, with the recent results in the field, the
became promising candidates to be used as predictive models.

Computational cost

Ordinary, the computational cost of DGPs would be O(LN3), however, this can be reduced
to O(LNM2) (where M is the number of inducing points per node) by using sparse GP
approximations. One implication of this is that the cost grows quadratically with the number
of inducing points but only linearly with the number of layers, therefore, the errors introduced
by the sparse approximation can be mitigated by increasing the depth and width of the
network.

2.4 Bayesian Optimization in hardware design 25

2.4 Bayesian Optimization in hardware design

Designing hardware is one of the many applications of Bayesian Optimization in the industry.
It is an appealing problem to solve, since the testing of configurations is often very expensive
and the number of parameters is too high for a human expert to tune intelligently.

Black-box Bayesian Optimization has been shown to outperform other approaches both
in the number of samples required and the quality of the solution found. (Orianna DeMasi,
2014) demonstrated the effectiveness of BO in micro architectural processor design. A
straight forward approach, using GP models with EI as the acquisition function was able to
solve the design problem in as few as 15-20 evaluations.

A more recent paper (Hernández-Lobato et al., 2016c) examined the design of neural
network hardware accelerators, the same problem that appears in this project. The paper
considered the idea of using decoupled evaluations in multiobjective optimization in order to
reduce testing costs. Its significant difference from our project is that the authors focused on
refining the optimization process whereas our work aims to improve the predictive model.

2.4.1 Neural Network Hardware Accelerators

The real-world problem that this project tackles is the problem of designing neural network
hardware accelerators. Despite that we are treating the design process as a multiobjective
black-box optimization problem, it is important to outline the underling design in order to be
able to assess the impact of our work.

Deep Neural Networks (DNN) have risen in popularity in the past decade and continue to
rise due to their flexibility and power in supervised regression and classification tasks. They
are the state-of-the-art technology in areas such as Image Recognition, Speech recognition,
Speech Synthesis etc.. However, one issue with DNNs is that they require significant
computational resources such as high-performance CPUs/GPUs to use which presents a
major obstacle in their integration to smart phones, mobile and battery powered devices.
They are too slow and draw too much power to be used in this setting.

Minerva (Reagen et al., 2016) offers a solution to the problem in hardware. Specialized
DNN accelerators that both maintain high accuracy and low power consumption. It claims
to achieve a 8.1x reduction in power consumption across five datasets without significantly
compromising the prediction accuracy. It achieves the results in five stages that are briefly
described below:

• Stage 1: Training Space Exploration. Establishing baselines for state-of-the-art ML
tasks and selecting a suitable network topology.

26 Literature review

• Stage 2: Microarchitecture Design Space. Selecting adequate microarchitectural
parameters such and clock frequency, memory bandwidth

• Stage 3: Data Type Quantization. Restricting the number of bits that are stored in each
layer. When a value does not require the full, 16-bits fixed point precision, fewer bits
can be used to save computation and bandwidth.

• Stage 4: Selective Operation Pruning. Removes the nodes from the network whose
output is predominantly zero.

• Stage 5: SRAM Fault Mitigation. Due to the algorithmic redundancy of DNNs, they
have high tolerance for single value faults. This gives room to reduce the SRAM
voltage, which in turn increases the number of read-faults, which are then mitigated by
rounding the faulty weights towards zero.

The issue with the process is that each stage involves multiple parameters that need
to be tuned (Table 2.1). Moreover, testing configurations is expensive both in time and
computational resources. They are each tested by emulating the hardware in software and
training and testing DNNs on five large datasets. The tool used for testing the configurations
is Aladdin (Shao et al., 2014). It can predict the power-performance characteristics of a
hardware accelerator within a small error range without having to physically produce and
test the configuration.

Parameter Min Max Step
Neurons per layer 50 250 1
Learning rate 0.001 1 ε

Dropout rate 0 0.4 ε

L2 penalty 0 0.1 ε

Memory bandwidth 1 32 2x

Loop parallelism 1 32 2x

Total number of bits 1 32 2x

Fraction integer bits 0 1 ε

Table 2.1 Tunable parameters of the design

Multiobjective Optimization allows us to find the set of optimal parameters in the power
and error tasks with a limited number of evaluations using Aladdin. This does not only signif-
icantly reduce the cost of the design process but can also lead to more optimal configurations.

2.4 Bayesian Optimization in hardware design 27

(a) Mappings of the nodes of the DGP. The outputs of each node are colour coded.
The locations of the inducing points are marked by black.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x 2

Training data

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Training data.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x 2

DGP model

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(c) DGP model.

Fig. 2.5 Demonstration of the DGP model on a 2D toy problem.

Chapter 3

Methods

This chapter contains an in-depth review of SMSego and DGPs for regression followed by
the novel extension to DGPs: Joint DGPs. We focus on providing granular, implementation
level detail.

Finally, the chapter is concluded with details on the implementation in relation to our
experiments.

3.1 S-Metric Selection-based Efficient Global Optimization

S-Metric Selection-based Efficient Global Optimization (SMSego) is the multiobjective
optimization approach that we used in this project. This section is a review of (Ponweiser
et al., 2008).

As described in the introduction, SMSego is a method for multiobjective optimization
that uses an optimistic estimate of the hypervolume improvement as the acquisition function.
Its use in the project is justified by its straight-forward implementation and reasonably good
performance compared to other optimization methods.

The acquisition value is calculated based on the Lower Confidence Bound (LCB).

ypot = µy−ασy

Where α corresponds to a given confidence level pα = (1− 2Φ(α))m assuming m
objective functions. We found that α = 2.0 works well which corresponds to pα = 0.002.

To avoid the problem of having too many points in the Pareto-set where is point is only
marginally better than the neighboring points, we introduce the concept of ε-domination. A
point ε-dominates another if in each objective function, it either dominates or is within ε

distance. We want to adapt ε to the current progress. ε should decrease over time, be sensible

30 Methods

in the context of the scale of the objective function and to decrease as the number of points
in the Pareto approximation gets too high. This way, the low ε values allow for new points in
the Pareto approximation, while under high ε values, more potential points are ε-dominated
and therefore it is more difficult to extend the Pareto approximation.

ε =
∆Λ

|Λ|
+ cnle f t

Where Λ denotes the current Pareto approximation and ∆Λ = max(Λ)−min(Λ). This
way, the term ∆Λ

|Λ| controls the pacing of the Pareto points. c = 1− 1
2m is the idealized

probability of each remaining evaluation to be a Pareto point and nle f t is the remaining
number of evaluations. This formula has proven to limit the maximum number of points in
practice (Emmerich and Naujoks, 2004).

(a) Examples of the non-ε-dominated so-
lution, the dominated solution and the ε-
dominated solution.

(b) Pareto frontier example with the predicted and poten-
tial solutions.

Fig. 3.1 Examples of SMSego acquisition values.1

SMSego distinguished three cases (Figure 3.1):

• Non-ε dominated solution. The acquisition value of the potential point is the increase
in hypervolume. S(Λ

⋃
{ypot})S(Λ) where S denotes the hypervolume.

• Dominated solution. For each dominating point, a penalty is applied:

p = ∑
yi∈Λ

−1+∏
m
j=1
(
1+ ypot, j− yi, j

)
if yi dominates ypot

0

1Image source: (Ponweiser et al., 2008)

3.2 Deep Gaussian Processes for Regression 31

This penalty helps to distinguish between the points when there are no non-ε-dominated
potential solutions left.

• ε dominated solution. In this case, the penalty is only applied to the dimensions where
the potential solution is strictly dominated.

3.2 Deep Gaussian Processes for Regression

Deep Gaussian Processes (Damianou and Lawrence, 2013) are multilayer extensions of GPs
where the output of each hidden layer is used as the input for the next. This section contains
a review of (Bui et al., 2016) with focus on the algebraic calculations required for a complete
implementation.

There are two key advantages to DGPs over GPs. Firstly, they are more general and
flexible due to the mapping provided by the hidden layers. While a single GP is equivalent
to an infinitely wide, single layer neural network, a DGP is equivalent to an infinitely wide,
multilayer neural network. Secondly, they are less sensitive to the choice of the covariance
function. The hidden layers allow for stretching and warping the inputs which results in
an automatically designed kernel function in the subsequent layers. On Figure 2.5, we can
observe the capability of DGPs in terms of dealing with function cliffs.

Formally, for input and output pairs (xi,yi) for i = 1 . . .N, the operation of a DGP
consisting of L hidden layers can be written as follows:

hhh111 = xxx

p(fl|θl) = GP(fl;000,KKKlll)

p(hhhlll| fl,hhhl−1,σl) = ∏
n
N (hl,n; fl(hl−1,n),σ

2
l)

p(y| fl,hhhL,σL) = ∏
n
N (yn; fl(hL,n),σ

2
L)

(3.1)

At L = 1, the model collapses into a single layer, ‘shallow’, GP model. Typically a hidden
layer consists of multiple nodes, although we did not indicate this in our notation.

Similarly to GPs, the cost is dominated by the inversion of the covariance matrix O(LN3).
To reduce the computational cost, we employ sparse approximations to the GPs in each
layer (Section 3.2.1). Fortunately, the impact of sparse approximations is mitigated by the
multi-layer configuration. The hidden layers restore some of the representative power that is
taken away by the sparse approximation.

32 Methods

Calculating the marginal likelihood is intractable so approximate inference techniques
are required. Section 3.2.2 describes Expectation Propagation, an approach that allows us to
establish a lower bound to the marginal likelihood that can be used for training.

3.2.1 Fully Independent Training Conditional Approximation

The Fully Independent Training Conditional (FITC) (Quiñonero-Candela and Rasmussen,
2005; Snelson and Ghahramani, 2006) approximation reduces the cost from O(LN3) to
O(LNK2) where N is the number of training instances, K in the number of inducing points
per node and L is the number of hidden layers.

The sparsity approximation is formed using K inducing input output pairs (zzzl,uuul) for l =
1, . . . ,L in each node which, in turn, are used to make predictions on the actual data. The
inducing points are assumed to be independent. This creates a semi-parametric representation
of the original GP model. A graphical representation of the model is included in Figure 3.2.

Fig. 3.2 FITC graphical model.

We can formalize the model as follows.

p(uuul|θl) =N (0,K(uuul,uuul)) for l = 1, . . . ,L

p(hl|hl−1,ul,σl) = ∏
n
N
(
hl,n;Cl,nuuul,Rl,n

)
p(y|hL,uL,σL) = ∏

n
N (yn;CL,nuuuL,RL,n)

(3.2)

3.2 Deep Gaussian Processes for Regression 33

where

Cl,n = K(hhhl−1,n,zzzl)K(zzzl,zzzl)
−1

Rl,n = K(hhhl−1,n,hhhl−1,n)−K(hhhl−1,n,zzzl)K(zzzl,zzzl)
−1K(hhhl−1,n,zzzl)

T +σlI

K denotes the kernel (Section 2.2). The derivation of these results is the same as before
(Appendix A).

The locations of the inducing points zzz are added towards the the set of hyperparameters
and are trained jointly. As for uuul , we can infer from the training data in with the goal in mind
to maximize the marginal likelihood. Section 3.2.2 describes the inference process in detail.

As mentioned earlier, the time complexity of the training is reduced to O(LNK2) since
the covariance matrix that needs to be inverted is only K dimensional. For this to be an
improvement over O(LN3), K needs to be less than N. In our experiments we found that the
value K = 0.1N works well in practice. One might argue that fixing K at a constant ratio to
N defeats the point of the approximation, since the runtime is technically still O(N3). The
counter-argument is that while the statement is true, fixing K at 0.1N is still three orders of
magnitude improvement which greatly improves the computational feasibility of the model.
In our experiments, K = 0.1N was sufficient, although for large N it might become necessary
to establish a non-linear relationship between K and N.

3.2.2 Approximate inference via Expectation propagation

This section describes the inference of the inducing points uuu = {uuul}L
l=1 and the training of

the model parameters α = {zzzl,θl}L
l=1.

The posterior distribution of the inducing outputs can be written as

p(uuu|xxx,yyy) = p(uuu)∏
n

p(yn|xn,uuu) (3.3)

Predictions can be formed using

p(y′|x′,xxx,yyyα) =
∫

p(y′|x′,uuu)p(uuu|xxx,yyy)duuu (3.4)

And the marginal likelihood

p(yyy|α) =
∫

p(uuu,hhh)p(yyy|uuu,hhh,α)duuudhhh (3.5)

34 Methods

The problem is that neither the posterior distribution p(uuu|xxx,yyy) nor the marginal likelihood
p(yyy|α) is tractable for multiple layers. The issue is dealt with by using Stochastic Expectation
Propagation (SEP) (Li et al., 2015) to approximate both the posterior and the marginal
likelihood.

Expectation Propagation

A review of Expectation Propagation (EP) (Minka, 2001) is included in Appendix B.
Expectation Propagation allows us to obtain an approximation to the marginal likelihood

by considering the EP energy.

log(p(y|uuu))≈F(α) = φ(θ)−φ(θprior)+
N

∑
n=1

logZ̃n

logZ̃n = logZn +φ(θ \n)−φ(θ)

logZn = log
∫

q\n(uuu)p(yn|xn,uuu)duuu

(3.6)

Where θ , θ \n and θprior refer to the natural parameters of q(uuu), q\n(uuu) and p(uuu) respec-
tively. φ(θ) denotes the log normalizer of the Gaussian distribution with natural parameters
θ . These equations were derived from marginalizing and normalizing the posterior (Equation
3.3). For the full derivation, refer to (Seeger, 2005).

EP in its current form is still not efficient enough. Firstly, it is too costly to optimize
N data factors in each loop of the optimization process. Secondly, the data-factors take up
O(NK2) space which is clearly not feasible for large N.

Stochastic Expectation Propagation

We can improve on EP by using the Stochastic Expectation Propagation (SEP) (Li et al.,
2015) algorithm. In SEP, we make the approximation that all the data factors are the same:
q(uuu) = p(uuu)g(uuu)N . While this might seem drastic at first, we have to realize that g(uuu) is
an N dimensional multivariate Gaussian distribution therefore it has sufficient flexibility to
approximate the GP posterior. In fact, SEP has been shown to perform close to EP in practice
while solving both of the issues presented earlier. The memory requirement of SEP is O(K2)

as opposed to EP’s O(NK2).
A second, advantage of SEP is that it allows for minimization the EP energy directly.

In EP, the marginal likelihood is the byproduct of the optimized data-factors, but in SEP,

3.2 Deep Gaussian Processes for Regression 35

it can be optimized directly. With tied data factors t̃n(uuu) = g(uuu), the cavity distributions
q\n(uuu) = q(uuu)

g(uuu) = q\1(uuu) are also the same and the EP energy can be simplified.

log(p(y|uuu))≈F(α) = φ(θ)−φ(θprior)+
N

∑
n=1

(
logZn +φ(θ \1)−φ(θ)

)
=−(N−1)φ(θ)+N(φ(θ \1)−φ(θprior)+

N

∑
n=1

logZn

logZn = log
∫

q\1(uuu)p(yn|xn,uuu)duuu

(3.7)

Direct optimization only works if we can approximate logZn. The approximation is
presented in the next section. As for the other terms, they can be calculated exactly since
θ = θprior +Nθ1 and θ \1 = θprior +(N−1)θ1 where θ1 denotes the natural parameters of
the tied data factor g(uuu).

The difference between minimizing the data-factors and the EP energy is that minimizing
that data-factors is averaging the natural parameters in the term g(uuu) while minimizing the
energy averages the moments of

∫
q\1(uuu)p(yn|xn,uuu)duuu. Note that it is not necessarily the

case that optimizing the EP energy and the data-factors lead to the same optima.

Probabilistic backpropagation

Computing logZn is not tractable in a multi-layer setup because the cavity q\1 forms a
complex, non-Gaussian distribution in the layers beyond the first one. To tackle this problem,
the approximation we are making is moment-matching this non-Gaussian cavity distri-
bution to form a Gaussian one. The process is equivalent to Assumed Density Filtering
(Hernández-Lobato and Adams, 2015) under the special case of Gaussian distributions.
The approximation to Z is made in each layer starting from the first one and iteratively
progressing towards the output layer.

To make the moment matching approximation, we need to reintroduce the values at the
hidden layers hhh. For a two layer model we get:

Z =
∫

q\1(uuu)p(y|x,uuu)duuu

=
∫

q\1(uuu2)p(y|h1,uuu2)dh1duuu2

∫
q\1(uuu1)p(h1|x,uuu1)duuu1

(3.8)

Next, we can marginalize out the inducing outputs uuu.

36 Methods

Z =
∫

q(h1)q(y|h1)dh1

q(h1) =N (m1,v1)

q(y|h1) =N (m2|h1,v2|h1)

(3.9)

The means and variances take the form :

m1 = K(x,z1)K(z1,z1)
−1m\11

v1 = σ1 +K(x,x)−K(x,z1)K(z1,z1)
−1K(z1,x)+K(x,z1)K(z1,z1)

−1V \11 K(z1,z1)
−1K(z1,x)

m2|h1 = K(h1,z2)K(z2,z2)
−1m\12

v2|h1 = σ2 +K(h1,h1)−K(h1,z2)K(z2,z2)
−1K(z2,h1)+K(h1,z2)K(z2,z2)

−1V \12 K(z2,z2)
−1K(z2,h1)

(3.10)

The ‘law of integrated conditionals’ can be used to moment match the integral above
(Barber and Schottky, 1998; Deisenroth and Mohamed, 2012; Girard et al., 2003).

Z ≈N (m2,v2)

m2 = Eq(h1)[m2|h1]

v2 = Eq(h1)[v2|h1]+ varq(h1)(m2|h1)

(3.11)

Expanded:

m2 = Eq(h1)[K(h1,z1)]A

v2 = σ1 +Eq(h1)[K(h1,h1)]+ tr(BEq(h1)[K(z2,h1)K(h1,z2)]−m2
2

A = K(z2,z2)
−1m\12

B = K(z2,z2)
−1
(

V \12 +m\12 m\1,T2

)
K(z2,z2)

−1−K(z2,z2)
−1

(3.12)

The expectation of the kernel matrix is not always analytically computable, but for
squared exponential kernels, which we used in this project exclusively, it is (Titsias, 2009;
Wilson and Adams, 2013).

All the equations can be naturally extended to more than two layers, although we only
used two layers in our experiments.

3.2 Deep Gaussian Processes for Regression 37

In practice, the gradients of the ADF can be backpropagated through the layers using
the chain rule, hence the title ‘backpropagation’, similarly to the backpropagation algorithm
used in training neural networks (Hernández-Lobato and Adams, 2015). Fortunately, with
the availability of automatic differentiation tools, such as Tensorflow, the analytical forms
of the gradients can be computed automatically using repeated application of the chain rule.
Section 3.3 gives more details on the development framework.

Moreover, the process is suitable for minibatch training to speed up convergence. Simply,
in the final term, project the result of the minibatch to the whole.

log(p(y|uuu))≈F(α) =−(N−1)φ(θ)+N(φ(θ \1)−φ(θprior)+
N
|B|

|B|

∑
b=1

logZb (3.13)

3.2.3 Joint DGPs

Our novel extension with Joint DGPs is to add a second output node to the network. This
enables the DGP to have multiple outputs and therefore predict multiple objective functions
simultaneously. The goal is to capture the underlying correlations in the objective functions
and to reduce the number of models that need to be trained to one.

The addition of multiple output units is fairly straight-forward. We need to simply
calculate the approximate marginal likelihoods and optimize their sum.

There is no change in computing the log normalizers Φ. As for Zn, the means m2 and
variances v2 have to be calculated separately for the two output units and the resulting
logZn-s need to be summed up.

Fig. 3.3 The architecture of Joint DGPs.

38 Methods

3.3 Implementation details

The implementation consisted of four distinct parts: the implementation of the DGP and GP
models, the implementation of the multiobjective optimization process and the support for
distributed experiments.

3.3.1 Implementation of the DGP models

This section gives a brief overview on Automatic Differentiation Tools (ADT) followed by
justification on why it was necessary to implement the DGP models in Tensorflow.

Automatic Differentiation Tools

The use of machine learning in industry and academia was revolutionized by the introduction
of ADTs. ADTs are toolkits or libraries for machine learning that enable simple and very
efficient implementations without requiring a significant technical background.

The key idea is that ADTs separate the light computation, such as processing the data, and
the heavy computation, such as calculating matrices and derivatives. Following Amdahl’s
law, they focus on optimizing the performance of the latter.

They work by using a high-level programming language (Python in our case) to define
the computation that needs to be carried out for a given model. Examples include calculating
kernel matrices and outputs of the layers in a DNN. Then, they build a ‘computation graph’
that implements the computations in a low-level programming language (Tensorflow uses
C++). Since the computation is defined first, the low-level code that executes it can be
highly optimized for the hardware. In the final stage, when the training data is supplied, the
computation can be executed very efficiently. Moreover, the setup allows for quick adaptation
to different computing hardware as well as to use of GPUs.

A key feature of ADTs is that they can calculate the derivative of any expression as long
as it was derived using differentiable steps. This is achieved by repeated application of the
chain-rule. Since it is all automatic, the code for the computation can be more clear, concise
and less error-prone.

Nowadays, the use of ADTs is widespread. They are essential tools for producing clear
and easily modifiable code.

Tensorflow implementation

When we started the project, we had a working implementation of DGPs. This was the
original code used for (Bui et al., 2016).

3.3 Implementation details 39

The original code was written in Python and used the Theano framework for computa-
tion. The shortcomings of this code were the lack of comments, the presence clutter and
inefficiencies. The code was unclear and difficult to extend or modify. This prevented further
use and adaptation.

An issue with Theano was that it required compilation when run on a machine for the
first time. This could cause issues when running the code in a distributed fashion.

As the result of the shortcomings, we decided to write a new implementation that uses
the Tensorflow framework. We chose Tensorflow because of its growing presence in the
machine learning community and its ease of use. It not only allowed for clear and extensible
code but also eliminated the need for compilation.

In Section 4.1, we demonstrated that new implementation in Tensorflow is more efficient
than the original Theano one. It resulted in a 1.5− 4x speedup depending on the number
of training points. A large portion of the gains come from Tensorflow’s more efficient
initialization of the computation graph.

3.3.2 Implementation of the GP baseline models

Regarding the GP model that we used as the baseline in our experiments, we adopted a
library implementation. It was not necessary to implement our own version due to the wide
availability of GP implementations online. In addition, a library implementation provided a
form of guarantee of correctness because it had been exposed to extensive testing therefore it
was less likely to contain bugs.

We chose the GPy library2 because its ease of use. Our positive prior experience with the
library during the Kaggle contests also played a significant role in making the decision.

In terms of training the hyperparameters, the hyperparameter space can have many local
minima therefore we optimized them using an l-BFGS (Liu and Nocedal, 1989) optimizer
with 20 restarts. l-BFGS is a limited memory, gradient based optimizer that uses the Hessian
matrix for quick convergence. The choice of the optimizer had little impact on the result.

3.3.3 Implementation of the Multiobjective Optimization process

The multiobjective optimization required implementation of the optimization framework and
the data collection strategy.

Both of these were fairly straight-forward to implement in Python. The optimization
process required iterations of model updates based on the acquisition values of the candidate
points.

2https://sheffieldml.github.io/GPy/

40 Methods

The acquisition value was based on SMSego. SMSego took the prediction means and
variances and calculated the hypervolume of the potential point.

The algorithm we used for calculating the hypervolume was based on recursion. There
has been substantial research on efficient ways of calculating the hypervolume (While et al.,
2006), but that is far beyond the scale of this project. We could afford to use an inefficient
implementation due to the low number of dimensions and datapoints.

3.3.4 Support for distributed computing

Retraining the DGP model in every iteration is a costly computation. In order to finish the
optimization experiments, it was necessary to be able to run multiple instance on a cluster.

We used the department’s grid engine to run the experiments because it allowed for larger
scale experiments than our Microsoft Azure credit did.

Due to issues with the grid, we had to build a robust setup for the experiments. Our
processes frequently crashed due to power outages and insufficient storage space. To combat
the problem we implemented automatic recovery of crashed experiments.

Chapter 4

Results

4.1 Verification of the implementation

The first set of experiments verified the implementation and tuned the training parameters.
Our goal was to establish that the model is a working implementation of a DGP and to fix
the initial learning rate, batch size and the number of iterations that lead to convergence.

Figure 4.1 shows the decreasing EP energy over the training iterations. The subtle
fluctuations were due to the small batch size and learning rate, but we were still able to verify
that the model was converging.

The training and test likelihoods are plotted on Figure 4.2. Both the training and test
likelihoods converged rapidly, often reaching their maximum after as few as 500 epoch.

For some models, such as neural networks, overfitting can be a serious issue and there
is a wealth of research published on combating the problem. When looking for signs of
overfitting, we found that the test likelihood steadily increased through the training process
which indicated that the model did not overfit. As a result, we were able to set the number of
training epoch to a comfortably high number.

Our choice of stochastic optimizer was Adam (Kingma and Ba, 2014). We tested other
gradient-based optimizers as well, but they all performed within close proximity of each
other.

We settled on the training parameters shown in Table 4.1. They were proven to be
adequate for the quantity and quality of the training data used during the optimization
process.

The selection of the training and test sets is described in Section 4.5.

42 Results

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−1500

−1250

−1000

−750

−500

−250

0

250

500

En
er
gy

Model energy

(a) N = 20.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−1500

−1250

−1000

−750

−500

−250

0

250

500

En
er
gy

Model energy

(b) N = 50.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−1500

−1250

−1000

−750

−500

−250

0

250

500

En
er
gy

Model energy

(c) N = 100.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−1500

−1250

−1000

−750

−500

−250

0

250

500

En
er
gy

Model energy

(d) N = 200.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−1500

−1250

−1000

−750

−500

−250

0

250

500

En
er
gy

Model energy

(e) N = 300.

Fig. 4.1 Increasing EP energy during training.

4.2 Runtime comparison 43

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g-
lik

el
ih
oo

d

Training and Test log-likelihoods
Training log-likelihood
Test log-likelihood

(a) N = 20.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g-
lik

el
ih
oo

d

Training and Test log-likelihoods
Training log-likelihood
Test log-likelihood

(b) N = 50.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g-
lik

el
ih
oo

d

Training and Test log-likelihoods
Training log-likelihood
Test log-likelihood

(c) N = 100.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0
Lo

g-
lik

el
ih
oo

d

Training and Test log-likelihoods

Training log-likelihood
Test log-likelihood

(d) N = 200.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Lo
g-
lik

el
ih
oo

d

Training and Test log-likelihoods

Training log-likelihood
Test log-likelihood

(e) N = 300.

Fig. 4.2 Training and test log-likelihoods during training.

4.2 Runtime comparison

One of the reasons why we decided to re-implement DGPs from scratch in Tensorflow was
the speedup that we were hoping to get from the state-of-the-art machine learning toolkit. In
this experiment, we measured the benefits of the more optimized toolkit.

44 Results

Initial learning rate No. of training epoch Batch size
0.01 2000 50

Table 4.1 Training parameters

The experiments were run on a 16 core Microsoft Azure machine with no other processes
running during the tests. Multithreading was enabled and GPUs were not used. We checked
that both processes could fit in RAM in order to ensure that the bottleneck was the processing
power of the machine. The runtimes were very consistent therefore we deemed unnecessary
to repeat the experiment multiple times.

Figure 4.3 shows the training times using the training parameters from Section 4.1. The
Tensorflow implementation achieved a 1.5−4x speedup depending on the number of training
samples. The speedup was more significant for fewer samples due to Tensorflow being able
to initialize the computation graph significantly faster which took constant time regardless of
the number of training samples.

The selection of the training and test sets is described in Section 4.5.

Runtime comparison

20 50 100 200 300

Training points

0

50

100

150

200

250

300

350

R
u
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Tensorflow

Theano (original)

Fig. 4.3 Runtime of the training process for the two implementations.

4.3 Multiobjective Optimization 45

4.3 Multiobjective Optimization

Our main experiments measured the improvement in hypervolume over the iterations of the
multiobjective optimization process. This experiment draws the comparison between the
predictive models in the setting of neural network hardware accelerator optimization.

The experiments were run for 200 iterations starting from an initial set of 30 randomly
selected evaluations. For each model, we ran 50 experiments in parallel. Moreover, to reduce
the variance in the results, the initial set of 30 datapoints were shared across the models but
each of the 50 experiments had a different initial set.

Along with the means, the t-based confidence intervals for the mean 1 hypervolume are
plotted in Figure 4.4 for each model. Table 4.2 contains the same information in a numeric
format.

We selected 6 models that we wanted to compare. Three baselines: Random, Squared
exponential GP, and Matérn GP as well as three novice models: Shallow GP, DGP, and Joint
DGP.

Random

In the random model, the point of the next evaluation was selected randomly from all
candidate points. The process was expected to improve the hypervolume since there was
always the possibility of selecting Pareto-optimal points.

The random process needed to be included in the baseline models since the hypervolume
was expected to increase even by random evaluations. To clarify, we expected all models
to exceed the performance of a random process, we included it in order to demonstrate the
effectiveness of the intelligent decision making in the multiobjective optimizations process.

Squared exponential GP

The Gaussian Process (described in Section 2.2) using a squared exponential function was
the vanilla GP model. It was straight-forward to implement and it worked reasonably well in
all settings.

The kernel was a squared exponential function with a separate length-scale for each
dimension. The hyperparameters were optimized using ML training.

1http://www.stat.wmich.edu/s216/book/node79.html

46 Results

Matérn GP

Our second GP model used a Matérn kernel function with ν = 5
2 . This was the model that

Spearmint, the toolkit for multiobjective optimization, used.
The Matérn covariance function is often better suited for optimization than a simple SE

because it does not drop off as quickly for distant points. This allows points that are further
away to influence the model prediction, which is desirable when the data is sparse.

The hyperparameters were trained using ML.

Sparse GP

Sparse GP is a GP that employs the FITC approximation to set the number of inducing points
to 10% of the training points.

This model had a squared exponential kernel function and was trained using MAP
training.

The FITC sparse approximation is often used to reduce the cost of GPs. We included
this model in the experiments to examine the impact of the model degradation caused by the
sparsity approximation.

DGP

This is the Deep Gaussian Process model described in Section 3.2.1.
It uses a separate DGP model for each objective function. They contain a single hidden

layer with two hidden nodes and a single output node. The hyperparameters were trained
using EP.

Every node had squared exponential kernel function and the number of inducing points
was set to 10% of the training points.

Joint DGP

Our extension to DGPs was the use multiple output units in the same model. That gave Joint
DGPs the ability to predict all objective functions in a single model.

The model had a single hidden layer with two hidden nodes and two output nodes in the
output layer. Each output node predicted a different objective function (predictive error and
power consumption).

Every node had squared exponential kernel function and the number of inducing points
was set to 10% of the training points.

4.4 Pair-wise comparison of the hypervolume improvement 47

0 25 50 75 100 125 150 175 200
Iteration

154

156

158

160

162

164

166

168

170

Hy
pe

rv
ol
um

e

Improving hypervolume

Random
Squared Exp GP
Matern GP
Maximum hypervolume

(a) Comparison of Squared Exp GP and Matérn
GP.

0 25 50 75 100 125 150 175 200
Iteration

154

156

158

160

162

164

166

168

170

Hy
pe
rv
ol
um

e

Improving hypervolume

Random
Joint DGP
Sparse GP
DGP
Maximum hypervolume

(b) Comparison of Sparse GP, DGP and Joint DGP
models.

0 25 50 75 100 125 150 175 200
Iteration

154

156

158

160

162

164

166

168

170

Hy
pe
rv
ol
um

e

Improving hypervolume

Random
DGP
Squared Exp GP
Maximum hypervolume

(c) Comparison of DGP and Squared Exp GP.

0 25 50 75 100 125 150 175 200
Iteration

154

156

158

160

162

164

166

168

170
Hy

pe
rv
ol
um

e
Improving hypervolume

Random
Joint DGP
DGP
Maximum hypervolume

(d) Comparison of DGP and Joint DGP.

Fig. 4.4 The increasing hypervolume over the iterations.

Iterations 20 50 100 200
Random 159.35 ± 1.02 161.83 ± 0.70 163.26 ± 0.55 164.80 ± 0.36
Squared Exp GP 164.10 ± 0.35 165.10 ± 0.27 165.96 ± 0.27 167.16 ± 0.23
Matérn GP 163.85 ± 0.38 165.09 ± 0.32 166.07 ± 0.29 167.28 ± 0.21
Sparse GP 163.81 ± 0.39 165.14 ± 0.31 165.96 ± 0.20 166.96 ± 0.15
DGP 163.60 ± 0.40 164.93 ± 0.28 166.03 ± 0.22 166.88 ± 0.14
Joint DGP 163.57 ± 0.54 165.00 ± 0.32 165.98 ± 0.21 166.85 ± 0.14

Table 4.2 The increasing hypervolume over the iterations.

4.4 Pair-wise comparison of the hypervolume improvement

For a more conclusive analysis of the hypervolume improvement, we did a pairwise compari-
son between the models.

48 Results

The justification for this type of analysis is that the variance in the results of the previous
experiment originated from two sources. Firstly, the randomness in the models. Random
initialization and differences in the stochastic optimization can lead to slightly different
models in each training. Secondly, the variance came from the different set of initial 30
points for each of the 50 runs. In order to eliminate variance from the second source, we can
analyze the pairwise performance of the models.

One can derive p-values for one model’s superiority over another by examining how
many times, out of the 50 runs, one model performed better than the other. The p-values are
calculated under the null hypothesis that the two models performed equivalently well and
they had equal chances of overtaking the other. From this assumption, the p-values can be
calculated using the biased-coin test. If, out of 50 runs, one model outperformed another in
X occasions then the associated p-value can be obtained using:

p =
X

∑
k=0

(
50
k

)
0.550

Since we are making many comparisons at the same time, we consider statistical signifi-
cance at 0.01 > p or 0.99 < p which is equivalent to a ratio under 16

50 . This is only met by
the comparison between the random process and the squared exponential GP.

A final note is that in the case of 200 iterations, the experiments do not add up to 50.
Despite our best efforts, two experiments crashed before reaching 200 iterations. More
details on this in Section 3.3. The p values were adjusted under the assumption that the
crashes were independent from the initial sets.

20 iterations 50 iterations 100 iterations 200 iterations
Model 1 Model 2 M1 M2 p M1 M2 p M1 M2 p M1 M2 p
Random Squared Exp GP 3 47 0.000 3 47 0.000 2 48 0.000 1 47 0.000
Squared Exp GP DGP 31 19 0.968 25 25 0.556 20 30 0.101 25 23 0.667
Squared Exp GP Matérn GP 27 23 0.760 20 30 0.101 22 28 0.240 23 25 0.443
Sparse GP Squared Exp GP 18 32 0.032 27 23 0.760 24 26 0.444 20 28 0.156
DGP Joint DGP 25 25 0.556 19 31 0.059 24 26 0.444 22 26 0.333

Table 4.3 Pairwise comparison of the models.

4.5 Model accuracies

To further our investigations, we compared the predictive power of our models. We exam-
ined two metrics: log-likelihood and Root Mean Squared Error (RMSE). The goal of this
experiment was to assess how well the models were able to fit the training data independently
of the optimization process.

4.5 Model accuracies 49

RMSE =

√
N

∑
n=1

(ỹn− yn)2

N

Since during the optimization process, ‘close-to-optimal’ points are evaluated more often
and the model accuracies are more important for these points, we tested the models on a
restricted set of points. We ordered all candidate points by the number of points that they
were dominated by. Then, we selected the first 20% of the points as the restricted set. Figure
4.5 demonstrates the concept. When running the experiment, we randomly sampled the
training points and used the remainder of the restricted set as test points.

−4 −3 −2 −1 0 1 2 3
Prediction Error

0

5

10

15

20

25

30

35

40

Po
we

r C
on

su
m
pt
io
n

Complete candidate set

(a) The complete candidate set.

−4 −3 −2 −1 0 1 2
Prediction Error

0

5

10

15

20

25

30

35

Po
we

r C
on

su
m
pt
io
n

Restricted candidate set

(b) The restricted candidate set.

Fig. 4.5 The ‘close-to-optimal’ points.

The test log-likelihoods and the test RMSE are reported in Table 4.4 and 4.5 respectively.
The 95% confidence intervals were calculated using the Student-t distribution for the means.
The scores are reported separately for the two objectives as well as an overall score, which is
the average of the two.

50 Results

Training Points Squared Exp GP Matérn GP Sparse GP DGP Joint DGP
Predictive Error

20 -20.94 ± 4.02 -16.26 ± 3.95 -1.96 ± 0.13 -2.11 ± 0.23 -2.32 ± 0.28
50 -6.77 ± 1.49 -4.26 ± 0.73 -1.51 ± 0.05 -1.44 ± 0.08 -1.69 ± 0.17
100 -2.87 ± 0.33 -2.42 ± 0.33 -1.16 ± 0.03 -1.04 ± 0.10 -0.95 ± 0.07
200 -1.81 ± 0.12 -1.50 ± 0.12 -0.93 ± 0.03 -0.82 ± 0.07 -0.84 ± 0.09
300 -1.56 ± 0.10 -1.25 ± 0.08 -0.82 ± 0.03 -0.56 ± 0.08 -0.58 ± 0.09

Power Consumption
20 -15.53 ± 2.47 -10.83 ± 2.19 -2.27 ± 0.11 -2.67 ± 0.38 -2.30 ± 0.18
50 -5.26 ± 0.68 -3.72 ± 0.75 -1.81 ± 0.04 -1.64 ± 0.07 -1.55 ± 0.06
100 -3.55 ± 0.64 -2.42 ± 0.53 -1.29 ± 0.03 -1.14 ± 0.03 -1.06 ± 0.03
200 -2.16 ± 0.16 -1.45 ± 0.08 -0.95 ± 0.02 -0.84 ± 0.02 -0.76 ± 0.02
300 -1.69 ± 0.10 -1.14 ± 0.09 -0.73 ± 0.02 -0.66 ± 0.03 -0.37 ± 0.04

Overall
20 -18.24 ± 2.26 -13.55 ± 2.18 -2.11 ± 0.08 -2.39 ± 0.22 -2.31 ± 0.16
50 -6.01 ± 0.77 -3.99 ± 0.50 -1.66 ± 0.03 -1.54 ± 0.05 -1.62 ± 0.09
100 -3.21 ± 0.38 -2.42 ± 0.33 -1.22 ± 0.02 -1.09 ± 0.05 -1.01 ± 0.04
200 -1.99 ± 0.11 -1.48 ± 0.08 -0.94 ± 0.02 -0.83 ± 0.04 -0.80 ± 0.05
300 -1.62 ± 0.07 -1.20 ± 0.06 -0.78 ± 0.02 -0.61 ± 0.04 -0.48 ± 0.05

Table 4.4 Log-likelihoods of the different predictive models.

Training Points Squared Exp GP Matérn GP Sparse GP DGP Joint DGP
Predictive Error

20 1.56 ± 0.06 1.52 ± 0.06 1.53 ± 0.05 1.61 ± 0.03 1.58 ± 0.02
50 1.17 ± 0.04 1.14 ± 0.04 1.25 ± 0.02 1.28 ± 0.04 1.33 ± 0.03
100 1.00 ± 0.02 0.96 ± 0.03 1.03 ± 0.02 0.93 ± 0.03 1.08 ± 0.04
200 0.87 ± 0.01 0.83 ± 0.02 0.89 ± 0.01 0.75 ± 0.02 0.83 ± 0.02
300 0.81 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 0.66 ± 0.01 0.73 ± 0.02

Power Consumption
20 3.18 ± 0.20 2.91 ± 0.18 3.25 ± 0.11 3.72 ± 0.13 3.92 ± 0.18
50 2.17 ± 0.14 1.80 ± 0.11 2.61 ± 0.05 2.91 ± 0.07 2.98 ± 0.08
100 1.80 ± 0.09 1.23 ± 0.06 2.19 ± 0.04 2.11 ± 0.07 2.21 ± 0.05
200 1.33 ± 0.06 0.88 ± 0.03 1.79 ± 0.04 1.49 ± 0.05 1.60 ± 0.04
300 1.20 ± 0.06 0.83 ± 0.04 1.48 ± 0.04 1.11 ± 0.04 1.22 ± 0.05

Overall
20 2.53 ± 0.13 2.34 ± 0.11 2.55 ± 0.07 2.87 ± 0.08 3.00 ± 0.12
50 1.77 ± 0.09 1.53 ± 0.07 2.05 ± 0.04 2.25 ± 0.05 2.31 ± 0.05
100 1.47 ± 0.06 1.12 ± 0.03 1.71 ± 0.03 1.64 ± 0.04 1.75 ± 0.03
200 1.13 ± 0.04 0.86 ± 0.02 1.41 ± 0.02 1.18 ± 0.03 1.28 ± 0.03
300 1.03 ± 0.04 0.80 ± 0.02 1.20 ± 0.02 0.92 ± 0.03 1.01 ± 0.03

Table 4.5 RMSE of the different models

Chapter 5

Discussion

This chapter interprets the results of the experiments and discusses some of the issues and
difficulties with the testing methodology.

5.1 Multiobjective Optimization

The multiobjective optimization experiment demonstrated the power of intelligent decision
making. All models decisively outperformed the random process which shows that it is an
effective solution to the hardware design problem.

The hypervolume exhibited a rapid increase in the first ~15 iterations which turned into a
steady increase between iteration 20 and 130. The hypervolume nearly leveled out before
iteration 150 and all methods reached a proximity of the optimal solution.

The experiment did not manage to distinguish between the six models. All models
performed within the error bounds of the baseline GP model. This indicates that the models
are expected to perform similarly well when put to the test in a real-world optimization
process. However, there are a few key points that need to be mentioned relating to these
results.

Potential causes of the similar results

This section examines the factors that could have played a role in the near identical hypervol-
ume curves for the 6 models.

The first point to note is that the resolution, i.e. frequency, of the set of candidate points
can cause issues. It is important to have many candidate points near the Pareto-frontier in
order for the methods to make an actual choice on the next evaluation. If the resolution is too
low then the methods cannot distinguish themselves by making a slightly better decisions

52 Discussion

since a slightly better model might just arrive to the same candidate point. This likely did not
affect our experiment since we ran for very few iterations (200 iterations compared to 6276
candidate points), however, this can become an issue for higher iterations.

The second source of variance is the noise in the data itself. Since the data was obtained
by running simulations, it inevitably contains measurement noise. This means that an inferior
method can prevail just by being more fortunate with its evaluations. By random chance, it
could stumble upon points that scored very well in the objectives due to the measurement
noise. The model accuracy experiment (Section 4.5) did confirm that the prediction error
was very difficult to predict which we think played a significant role in the outcome.

Thirdly, the initial set of evaluations can cause differences in the methods. It is a definite
advantage to have near Pareto-optimal points in the initial set. To combat the problem, we
used the same sets of initial points across the six models but a different one for each of the
50 runs for a single model. This did reduce the variance introduced by the initial set but it
did not eliminate it completely. Furthermore, the hypervolume error bars are inadequate
tools for assessing performance when the starting points are shared across the runs. A more
appropriate assessment is presented in the form of a pair-wise comparison of models in
Section 4.4. This experiment completely eliminated the variance introduced by the initial
since it only considered the binary state of having higher hypervolume between models that
shared the initial set. The experiment further supported our previous observations which is
that all models outperform the random process but there is no significant difference between
the models themselves.

Reference point

During experimentation, we found that the effectiveness of the process was strongly influ-
enced by the choice of the reference point. The reference point determined the way we
calculated the hypervolume during the process (Section 2.1.3). Initially, as (Emmerich and
Naujoks, 2004) suggested, we fixed the reference point at (maxerror +1.0,maxpower +1.0).
This was an inadequate choice and it caused all models to perform no better than the random
process. After the investigation we identified the problem. The prediction error and the power
consumption values lied on different scales and the hypervolume did not account for that.
The choice of reference point overwhelmingly prioritized low error over power consumption
since power consumption worked on a larger scale. The issue was further amplified by the
fact that that the error rate is the more difficult metric to predict in general (Section 4.5).

We compiled the considerations when choosing the reference point into Table 5.1. Our
suggestion is not to rely on a rule of thumb such as (maxerror + 1.0,maxpower + 1.0). The
reference point needs to be hand-picked for the problem because it plays a key role in

5.1 Multiobjective Optimization 53

deciding the nature of the Pareto-frontier that we get as the result. For our experiments, we
used (10.0,15.0) (Figure 1.1) because it lies in the ‘sweet-spot’ that does not prioritize one
objective function over the other.

High in Error Low in Error
High in Power Preference for points with ex-

tremely low values in error or
power. Balanced points are not pri-
oritized.

Preference for low power. Error
values are not prioritized.

Low in Power Preference for low error. Power
values are not prioritized.

Preference for points with low
power and error. Points with ex-
tremes in one metric are not priori-
tized.

Table 5.1 Considerations when choosing the reference point.

Scale considerations

As we mentioned it in Section 4.3, we ran the experiment 50 times for each model for 200
iterations. Considering that the computational cost all of our models grew cubically, the cost
of running the experiment was substantial.

We would have preferred to run the experiment in larger scale and for more iterations,
however, after examining the results, we decided against doing so. The experiments conclu-
sively indicate that there are no significant differences in the models and running them in
larger scale would change this fact. As for running the experiments for more iterations, the
graphs indicate that the problem is effectively ‘solved’ after ~100 iterations and the hyper-
volume levels out. Moreover, having too many iteration amplifies the resolution problem
mentioned earlier.

To get an insight into the performance of the models with more training points, we can
refer to the model accuracy experiments is Section 4.5. They do not suggest that we can
expect any change if there were more iterations.

We concluded that the cost of running the experiment in a larger scale outweighed the
potential benefits.

Experiment conclusions

From this experiment, we made the conclusion that all models performed similarly in the
multiobjective optimization setting. We identified two potential causes: the resolution of the
candidate set and the high noise in the data.

54 Discussion

Using pairwise comparisons, we showed that the third potential cause, the differences in
initialization, did not play a significant role.

5.2 Model accuracies

Our second set of experiments focused on solely the comparison of the models. The training
and test sets were restricted to the near Pareto-optimal points and we measured two metrics:
log-likelihood and RMSE (Section 4.5).

The reason that this experiment is needed is that there are multiple factors that play a
role in the even outcome of multiobjective optimization experiment. Here, we purposefully
eliminated the surrounding optimization process. While this did allow us to distinguish
between the accuracy of the predictions made by the models, the outcome of this experiment
did not justify making conclusions about the optimization process as a whole.

The log-likelihoods and RMSE values are shown in Table 4.4 and 4.5 respectively.

Log-likelihoods

Looking at the log-likelihoods, the best models were the DGP, Joint DGP followed by the
Sparse GP. These three were better than the Squared Exp GP and Matérn GP baselines by a
significant margin for all objectives and number of training samples.

DGP and Joint DGP outperformed Sparse GP for ≥ 100 training points in a statistically
significant way. This demonstrates the flexibility of the deep model.

DGP and Joint DGP were head-to-head up until 300 training points. At 300 points, the
Joint DGP model surpassed the DGP model by having an impressive −0.37 log-likelihood
for power consumption.

RMSE

The RMSE experiment gives us insight into the quality of the prediction means since RMSE
does not consider the uncertainty.

The results are different from the log-likelihood experiment. The Matérn GP model
performed the best overall and Sparse GP the worst with the rest in-between the two.

Scale considerations

Since this experiment required less models to be trained than the optimization experiment, we
could run each test 100 times with randomized training samples. This led to tight confidence
bounds and allowed us to differentiate the models.

5.3 Review of the models 55

Experiment conclusions

The combined result of the two experiments indicate that the deep models were on-par with
the GP models when it came to predicting the mean, but they were better at predicting
the uncertainty. This lead to similar RMSE values but higher log-likelihoods for the DGP
models.

The best performing model in term of log likelihood were the DGP and the Joint DGP
models. When it came to RMSE, the GP with a Matérn kernel proved to be superior to all
other models.

5.3 Review of the models

This section discusses each model separately.

5.3.1 GP models

We used two GPs, one with a squared exponential kernel and one with a Matérn kernel, as
baselines for our experiments. As discussed earlier, they performed reasonably well on the
task.

The only difference we found between the two is that the RMSE was lower for the
Matérn GP. This did not prove to be significant enough to provide an edge in the optimization
process.

5.3.2 Sparse GP models

As one of our models, we included a Spare GP in order to examine the impact of the FITC
approximation. We found that the Sparse GP model surpassed the GP model in log-likelihood,
but it was the worst model when it came to RMSE.

This leads to the conclusion that the approximation had a negative impact on the prediction
mean and a positive one on the variance. The explanation for the former is the fact that we
are approximating the GP model with only a few inducing inputs. As for the latter, the sparse
model was able to better model the uncertainty using the flexibility of the inducing points.

This model demonstrated the applicability of sparse approximations even at very low
number of datapoints since the impact in the optimization process was not measurable.

56 Discussion

5.3.3 DGP and Joint DGP models

DGPs and Joint DGPs matched the performance of the GP baselines in the multiobjective
optimization experiment. This proves that they are a viable choice for the task at hand.

The introduction of hidden layers lead to an improvement in the models. The log-
likelihoods experiment demonstrated that the deep models were able to give better uncertainty
estimates than the shallow (single layer) counterparts. However, this was not the case in the
RMSE experiment. The accuracy of the prediction means was comparable to GPs with slight
differences depending on the number of training points.

The improved uncertainty estimates did not prove to be enough to lead to a significant
improvement in the optimization task due to factors described in Section 5.1.

As for the Joint DGP models, they exhibited substantial improvement in the log-likelihood
of the power consumption at 300 training points which lead to a small improvement in the
overall log-likelihood. The effects on the log-likelihood of the predictive error were minimal.
While this proves the idea that the joint predictor is able to capture the underlying correlations
in the objective function, the improvement was, again, not enough to make a significant
impact in the optimization task.

Chapter 6

Conclusions

In this project, we successfully implemented DGP models and applied them to the real-world
problem of optimizing neural network hardware accelerators.

In the optimization task, the DGP model performed on par with the baseline GP models
that are widely used both in academia and in the industry. Moreover, the DGP models
managed to surpass GPs in terms of test log-likelihood on the data.

As a novel extension, we experimented with Joint DGP models that used a single
predictor for estimating all the objective functions. We showed that Joint DGPs improved the
uncertainty estimates over the standard DGP model in the presence of at least 100 training
samples.

6.1 Further work

Further work based on the results of this project can be divided into three main categories.

6.1.1 Application to other problems and domains

Bayesian optimization is known for its wide range of applications and the same applies to
multiobjective optimization.

The most straight-forward application domain is hardware design and robotics. Bayesian
Optimization has a good historical record on these tasks. To mention a few examples, (Lizotte
et al., 2007) and (Calandra et al., 2016) both discuss the problem of gait optimization in
robotics. These works can be extended to use DGP models instead of single layer GPs.

Multiobjective optimization also has applications in machine learning. We used neural
network hardware accelerators as our problem of focus, however, the same methodology is
applicable to deep learning itself. The models often have a large hyperparameter space that

58 Conclusions

is costly to evaluate and optimization can offer a solution to this. (Snoek et al., 2012) offers
an in-depth investigation on the problem.

6.1.2 Improving the optimization process on the current task

This project gave an insight on the applicability of DGP models in an SMSego optimization
process. There are several other approaches that can be tested.

One direction is to improve the data collection strategy. SMSego was a straight-forward
choice, but it might be the case that other approaches outperform SMSego. For example,
unlike SMSego, EHI (Emmerich and Klinkenberg, 2008) is able to exploit non-Gaussian
predictions. This might give EHI an edge when the predictive model is able to output a
non-Gaussian posterior. For example, Bayesian Neural Networks (Depeweg et al., 2016) are
an example of such models.

The second direction is to test different predictive models. As mentioned earlier, Bayesian
Neural Networks can be a good candidate since they are able to cope with sparse data and
noisy measurements.

6.1.3 Improving the DGP model

DGPs can be improved by making them more efficient or more accurate.
For example, (Salimbeni and Deisenroth, 2017) improves on the flexibility of DGPs

by allowing correlations between layers. This can increase the quality of the uncertainty
estimates of DGPs.

Efficiency can be improved by further optimizing hyperparameters such as the dept
and width of the network as well as the number of inducing points per node. In fact, this
optimization task is an excellent candidate for Bayesian Optimization.

References

David Barber and Bernhard Schottky. Radial basis functions: a bayesian treatment. In
Advances in Neural Information Processing Systems, pages 402–408, 1998.

Thang Bui, Daniel Hernández-Lobato, Jose Hernandez-Lobato, Yingzhen Li, and Richard
Turner. Deep gaussian processes for regression using approximate expectation propagation.
In International Conference on Machine Learning, pages 1472–1481, 2016.

Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian op-
timization for learning gaits under uncertainty. Annals of Mathematics and Artificial
Intelligence, 76(1-2):5–23, 2016.

Zhenwen Dai, Andreas Damianou, Javier González, and Neil Lawrence. Variational auto-
encoded deep gaussian processes. arXiv preprint arXiv:1511.06455, 2015.

Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence
and Statistics, pages 207–215, 2013.

Marc Deisenroth and Shakir Mohamed. Expectation propagation in gaussian process dynam-
ical systems. In Advances in Neural Information Processing Systems, pages 2609–2617,
2012.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft.
Learning and policy search in stochastic dynamical systems with bayesian neural networks.
arXiv preprint arXiv:1605.07127, 2016.

Michael Emmerich and Jan-willem Klinkenberg. The computation of the expected im-
provement in dominated hypervolume of pareto front approximations. Rapport technique,
Leiden University, 34, 2008.

Michael Emmerich and Boris Naujoks. Metamodel-assisted multiobjective optimisation
strategies and their application in airfoil design. Adaptive computing in design and
manufacture VI, 6:248–260, 2004.

Agathe Girard, Carl Edward Rasmussen, Joaquin Quinonero Candela, and Roderick Murray-
Smith. Gaussian process priors with uncertain inputs application to multiple-step ahead
time series forecasting. In Advances in neural information processing systems, pages
545–552, 2003.

Rafael Gómez-Bombarelli, David Duvenaud, José Miguel Hernández-Lobato, Jorge Aguilera-
Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic
chemical design using a data-driven continuous representation of molecules. arXiv preprint
arXiv:1610.02415, 2016.

60 References

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive
entropy search for multi-objective bayesian optimization. In International Conference on
Machine Learning, pages 1492–1501, 2016a.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning,
pages 1861–1869, 2015.

José Miguel Hernández-Lobato, Michael Gelbart, Matthew Hoffman, Ryan Adams, and
Zoubin Ghahramani. Predictive entropy search for bayesian optimization with unknown
constraints. In International Conference on Machine Learning, pages 1699–1707, 2015.

José Miguel Hernández-Lobato, Michael A Gelbart, Ryan P Adams, Matthew W Hoffman,
and Zoubin Ghahramani. A general framework for constrained bayesian optimization
using information-based search. 2016b.

José Miguel Hernández-Lobato, Michael A Gelbart, B Reagen, Robert Adolf, Daniel
Hernández-Lobato, Paul N Whatmough, David Brooks, Gu-Yeon Wei, and Ryan P Adams.
Designing neural network hardware accelerators with decoupled objective evaluations. In
NIPS workshop on Bayesian Optimization, 2016c.

JM Jin and Zhang Shan Jjie. Computation of special functions. Wiley, 1996.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems. IEEE Transactions on Evolutionary
Computation, 10(1):50–66, 2006.

Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. Stochastic expectation
propagation. In Advances in Neural Information Processing Systems, pages 2323–2331,
2015.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1):503–528, 1989.

Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Automatic gait
optimization with gaussian process regression. In IJCAI, volume 7, pages 944–949, 2007.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

Benjamin Recht James Demmel Orianna DeMasi, Joseph Gonzalez. Using bayesian opti-
mization for hardware design. 2014.

Victor Picheny. Multiobjective optimization using gaussian process emulators via stepwise
uncertainty reduction. Statistics and Computing, 25(6):1265–1280, 2015.

http://arxiv.org/abs/1412.6980

References 61

Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. Multiobjective
optimization on a limited budget of evaluations using model-assisted\mathcal {S}-metric
selection. In International Conference on Parallel Problem Solving from Nature, pages
784–794. Springer, 2008.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse ap-
proximate gaussian process regression. Journal of Machine Learning Research, 6(Dec):
1939–1959, 2005.

Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee, Sae Kyu
Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Minerva: Enabling
low-power, highly-accurate deep neural network accelerators. In Proceedings of the 43rd
International Symposium on Computer Architecture, pages 267–278. IEEE Press, 2016.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference for deep
gaussian processes. arXiv preprint arXiv:1705.08933, 2017.

Matthias Seeger. Expectation propagation for exponential families. Technical report, 2005.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking
the human out of the loop: A review of bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin: A pre-
rtl, power-performance accelerator simulator enabling large design space exploration
of customized architectures. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st
International Symposium on, pages 97–108. IEEE, 2014.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs.
In Advances in neural information processing systems, pages 1257–1264, 2006.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

Michalis K Titsias. Variational learning of inducing variables in sparse gaussian processes.
In International Conference on Artificial Intelligence and Statistics, pages 567–574, 2009.

Michalis K Titsias and Neil D Lawrence. Bayesian gaussian process latent variable model.
In International Conference on Artificial Intelligence and Statistics, pages 844–851, 2010.

Lyndon While, Philip Hingston, Luigi Barone, and Simon Huband. A faster algorithm for
calculating hypervolume. IEEE transactions on evolutionary computation, 10(1):29–38,
2006.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for regression. In
Advances in neural information processing systems, pages 514–520, 1996.

Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and
extrapolation. In Proceedings of the 30th International Conference on Machine Learning
(ICML-13), pages 1067–1075, 2013.

62 References

Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel. Active learning
for multi-objective optimization. In International Conference on Machine Learning, pages
462–470, 2013.

Appendix A

Derivation of the prediction mean and
variance

We have [
yyy
yyy′

]
∼N

(
000,

[
K(xxx,xxx) K(xxx,xxx′)
K(xxx′,xxx) K(xxx′,xxx′)

])
An alternative notation: [

x1

x2

]
∼N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
The since the distribution is multivariate Gaussian, the conditional distribution of x2|x1

must also be a multivariate Gaussian. Therefore the objective is to derive the mean and the
covariance matrix of the conditional distribution.

Consider zzz = x2 +Ax1 where A =−Σ21Σ
−1
11

cov(z,x1) = cov(x2 +Ax1,x1)

= cov(x2,x1)+Acov(x1,x1)

= Σ21−Σ21Σ
−1
11 Σ11

= 0

(A.1)

z and x1 are jointly Gaussian and they are uncorrelated therefore they are independent.

64 Derivation of the prediction mean and variance

E(x2|x1) = E(z−Ax1|x1)

= E(z)−Ax1

= µ1 +Aµ2−Ax1

= µ1−Σ21Σ
−1
11 (µ2− x1)

(A.2)

As for the variance, the term Ax1 is fully defined by x1 therefore adding it to a conditional
variance term will not affect it:

var(x2|x1) = var(x2 +Ax1|x1) = var(z|x1) = var(z)

Using the sum rule for the variance:

var(z) = var(x2 +Ax1)

= var(x2)+Avar(x1)AT + cov(x2,x1)AT +Acov(x1,x2)

= Σ22 +Σ21Σ
−1
11 Σ11Σ

T−1
11 Σ

T
21−Σ21Σ

T−1
11 Σ

T
21−Σ21Σ

−1
11 Σ12

= Σ22−Σ21Σ
−1
11 Σ12

(A.3)

Therefore we have,

x2|x1 ∼N
(
µ1−Σ21Σ

−1
11 (µ2− x1),Σ22−Σ21Σ

−1
11 Σ12

)

Appendix B

Expectation Propagation

Expectation Propagation (EP) Minka (2001) is an approximate method for calculating the
posterior as well as approximating the marginal likelihood. It works from the assumption
that the posterior distribution q(uuu) takes the form:

q(uuu) ∝ p(uuu)∏
n

t̃n(uuu)

.
Where p(uuu) is the prior and t̃n for n = 1, . . . ,N are approximate data factors. The

idea is that each t̃n captures the contribution that a single datapoint makes to the posterior.
The goal is to replace the intractable posterior with a product where each term is from a
tractable distribution. In this project, t̃n always takes the form of an unnormalized multivariate
Gaussian.

It would be ideal to optimize KL(p(uuu|x,y)||q(uuu)), however, that is generally not tractable.
Instead, EP optimizes the data factors t̃n in an iterative process (Algorithm 2).

Data: (xn,yn)
t̃n← random initialization
q(uuu)← p(uuu)∏n t̃n(uuu)
repeat

for n← 1 to N do
q\n(uuu) ∝

q(uuu)
t̃n(uuu)

= p(uuu)∏i ̸= j t̃n(uuu)

t̃n← argmintnKL
(

q\n(uuu)p(yn|xn,uuu)||q\n(uuu)t̃n(uuu)
)

q(uuu)← t̃n(uuu)q\n(uuu)
end

until convergence or divergence;
Algorithm 2: Iterative EP

66 Expectation Propagation

This works because the KL divergence can be optimized analytically assuming multivari-
ate Gaussian data-factors. An issue, however, is that the process is not guaranteed to converge.
It is possible that the loop repeats infinitely through a cycle of data-factors, although the
EP energy, which can be used to approximate the marginal likelihood, is non-increasing
throughout the process.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Work completed

	2 Literature review
	2.1 Bayesian Optimization
	2.1.1 Single objective optimization
	2.1.2 Constrained optimization
	2.1.3 Multiobjective Optimization

	2.2 Gaussian Processes
	2.2.1 Description of GPs
	2.2.2 Sparse Gaussian Processes
	2.2.3 Gaussian Processes in the context of Bayesian Optimization

	2.3 Deep Gaussian Processes
	2.3.1 Brief description of DGPs
	2.3.2 Approximate inference
	2.3.3 Recent works
	2.3.4 Deep Gaussian Processes in the context of Bayesian Optimization

	2.4 Bayesian Optimization in hardware design
	2.4.1 Neural Network Hardware Accelerators

	3 Methods
	3.1 S-Metric Selection-based Efficient Global Optimization
	3.2 Deep Gaussian Processes for Regression
	3.2.1 Fully Independent Training Conditional Approximation
	3.2.2 Approximate inference via Expectation propagation
	3.2.3 Joint DGPs

	3.3 Implementation details
	3.3.1 Implementation of the DGP models
	3.3.2 Implementation of the GP baseline models
	3.3.3 Implementation of the Multiobjective Optimization process
	3.3.4 Support for distributed computing

	4 Results
	4.1 Verification of the implementation
	4.2 Runtime comparison
	4.3 Multiobjective Optimization
	4.4 Pair-wise comparison of the hypervolume improvement
	4.5 Model accuracies

	5 Discussion
	5.1 Multiobjective Optimization
	5.2 Model accuracies
	5.3 Review of the models
	5.3.1 GP models
	5.3.2 Sparse GP models
	5.3.3 DGP and Joint DGP models

	6 Conclusions
	6.1 Further work
	6.1.1 Application to other problems and domains
	6.1.2 Improving the optimization process on the current task
	6.1.3 Improving the DGP model

	References
	Appendix A Derivation of the prediction mean and variance
	Appendix B Expectation Propagation

