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Spoken Dialogue Systems

Spoken Dialogue Systems (SDSs) offer an easy and intuitive way for the
user-machine interaction. The user speech is interpreted through Spoken
Language Understanding and mapped to an abstract representation u;.
The Dialogue Manager updates the belief state b of the system and selects
an action a; via a decision rule (policy) m, then converting the response
into speech through Natural Language Generation (Figure 1).
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Figure 1: Components of a Spoken Dialogue System.

Policy Optimisation

At each turn, the policy chooses the action that maximises the ezpected
cumulative reward ():

m(b) = argmax, {Q(b,a) : a € A} (1)

The GPSARSA algorithm is used, which models the Q-tfunction as a
Gaussian Process (GP):

Q(bv CL) ™~ gp(m(bv CL), k((bv CL), (bv CL))) (2)

Bayesian Committee Machine

The Bayesian Committee Machine (BCM) approach combines estimators
trained on different datasets [1] (Figure 2), such as multiple estimates of
the policy from different domains |2|. In general, it guarantees higher

performance with respect to the correspondent in-domain policy (Figure

3).
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Figure 2: Configuration of the BCM.
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Figure 3: Performance of in-domain and BCM-based policies.
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Hierarchical BCM

The same approach can be performed in a hierarchical fashion (Figure
4) by specifying a BCM for each of the n subsets of M domains, which
compose the upper-level committee [3].
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Figure 4. Configuration of the HBCM.

Preliminary Results

The hierarchical configuration allows more efficient scaling and guaran-
tees a simpler parallelisation comparing to the BCM, especially when a
larger number of domain is used. (Figure 5).
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Figure 5: Comparison of the BCM and HBCM for a set of six domains.
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Further Experiments

The generalisation capability of the policy optimisation algorithm in a
HBCM setup could be highlighted by:

® using a larger domain database

® exploring different hierarchical configurations

® evaluating the performance of a policy on an unseen
domain
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