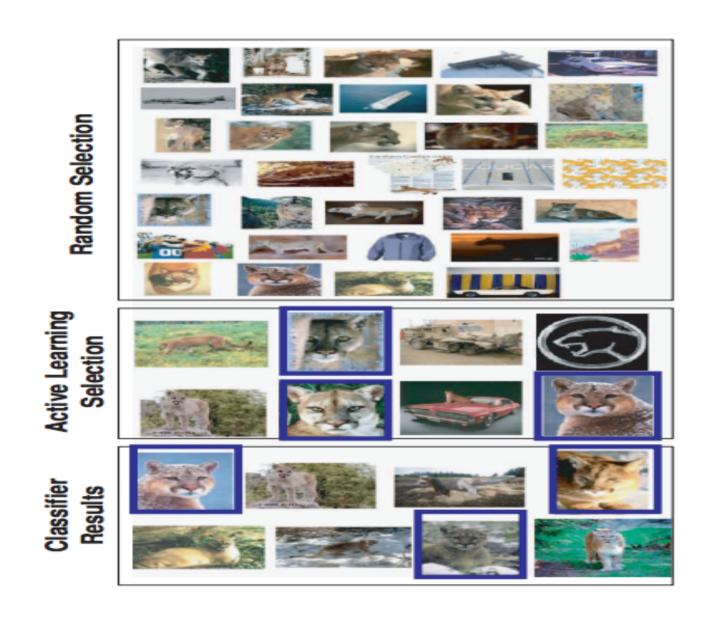


Model uncertainty in deep learning for information theoretic active learning

- Bayesian approaches to deep learning frameworks
- Bayesian Convolutional Neural Networks for active learning image data • **Data-efficiency** in image recognition tasks



Using uncertainty for Bayesian Active Learning

- 1. **Pool-based Information Theoretic Active Learning**
- Higher entropy implies classifier is uncertain about its class membership

2. Representing model uncertainty in deep neural networks

- Dropout in DNNs as an approximation to the Gaussian Process (GP)
- Dropout training in DNNs can be cast as approximate Bayesian inference
- 3. Bayesian Convolutional Neural Networks (Bayesian CNNs)
- Dropout after every convolution layer at training
- At test time approximate the predictive posterior by averaging stochastic forward passes (Monte-Carlo Dropout)
- Robust to over-fitting on small datasets, unlike traditional CNNs

Acquisition Functions

Dropout Bayesian Active Learning by Disagreemement (Dropout BALD)

• Use expected information gain to quantify uncertainty in probability distribution

$$U(x) \approx H[\frac{1}{k} \sum_{i=1}^{k} P_i] - \frac{1}{k} \sum_{i=1}^{k} H[P_i]$$

- Seek data point for which model has high uncertainty about the average output P_i obtained from each MC dropout probability estimates
- Seek data point for which model has low expected average uncertainty about its predictions

Active Learning with High Dimensional Inputs Riashat Islam, Yarin Gal, Zoubin Ghahramani

University of Cambridge, UK

(1)

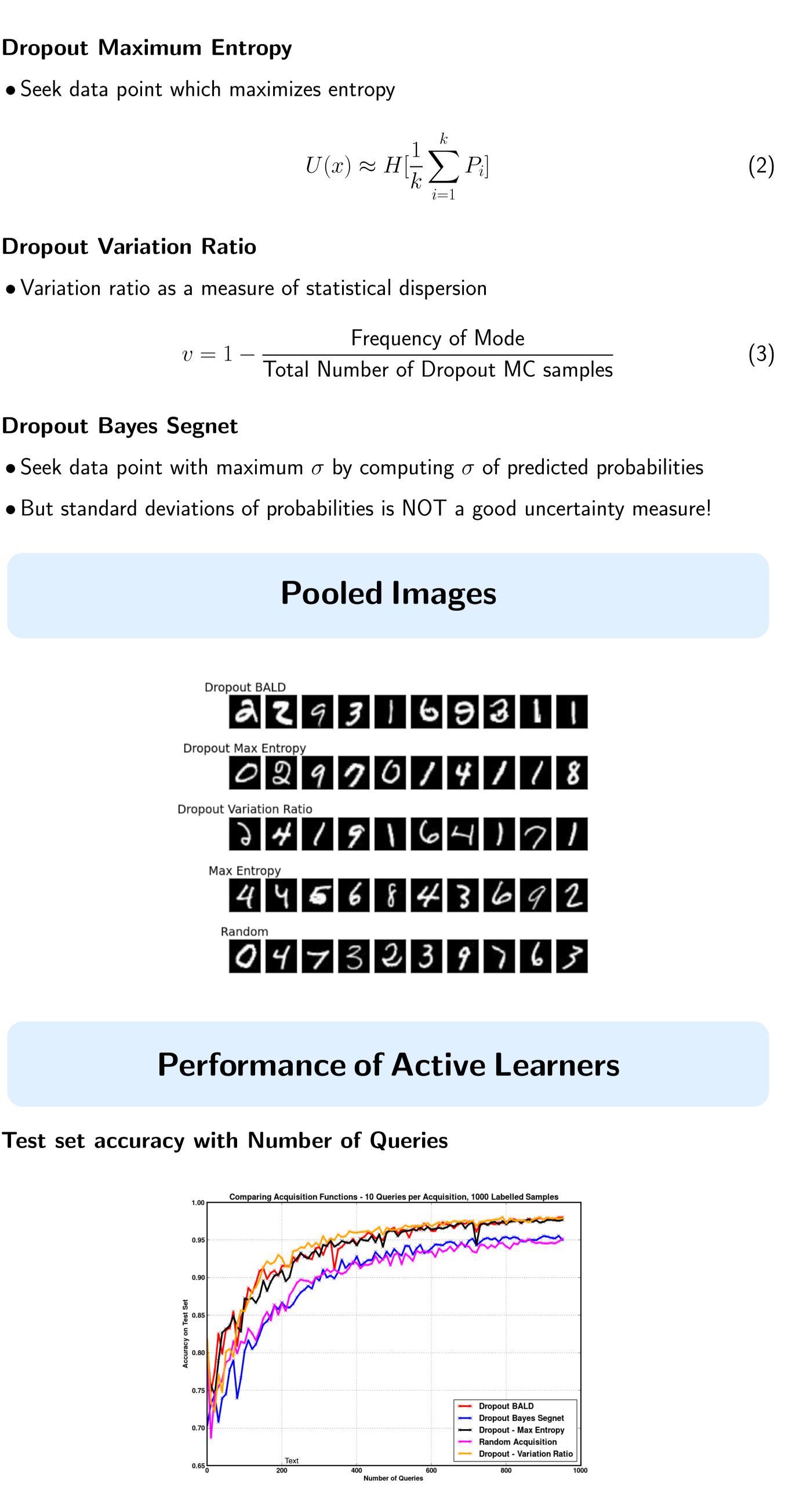
Dropout Maximum Entropy

• Seek data point which maximizes entropy

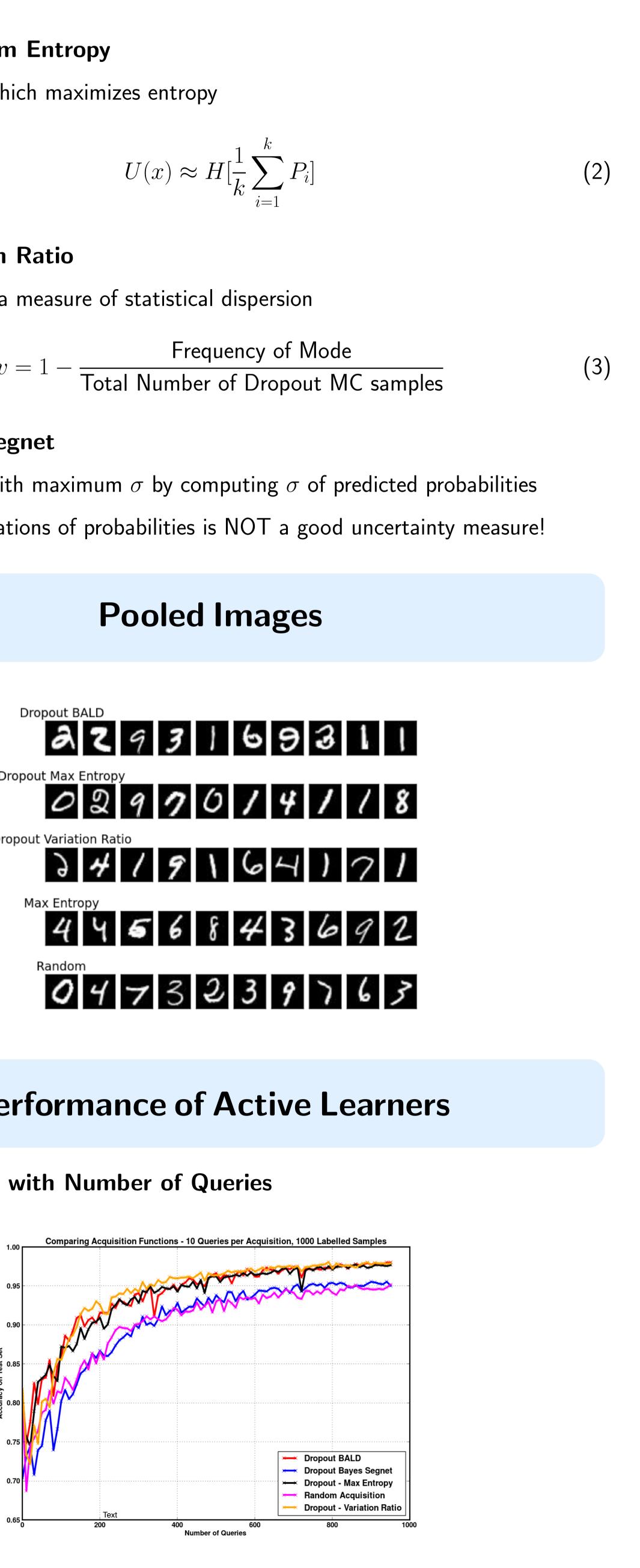
Dropout Variation Ratio

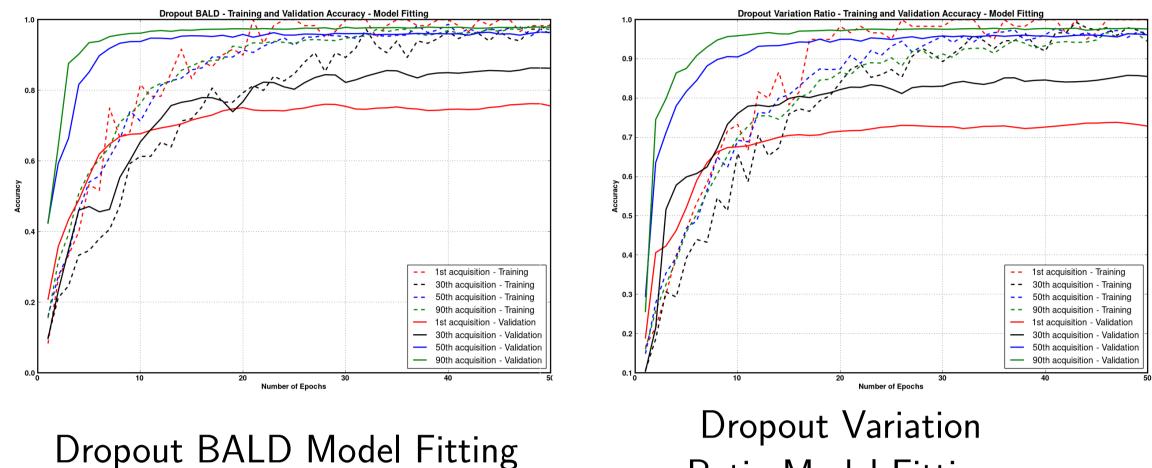
• Variation ratio as a measure of statistical dispersion

Dropout Bayes Segnet

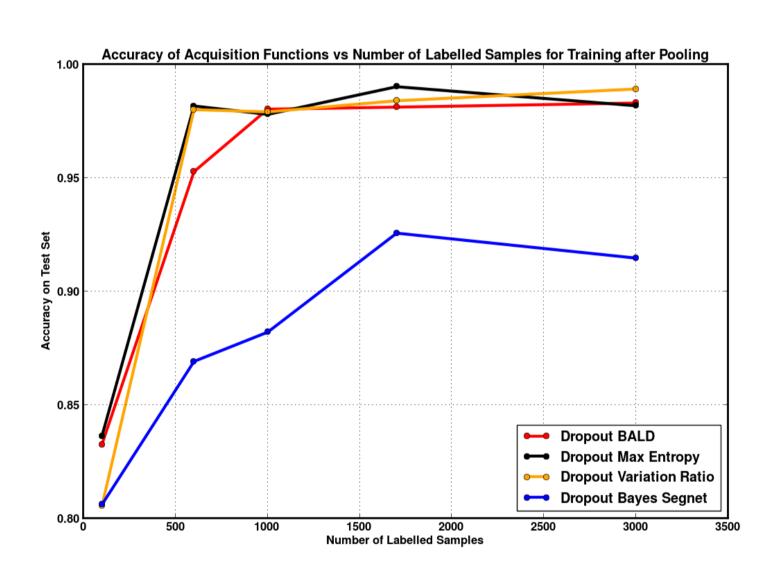


Test set accuracy with Number of Queries





Test accuracy of **98.40%** with 1600 labelled samples and **98.92%** with 3000 labelled samples after pooling, on **10,000** test samples



Test Error Results on MNIST for 100 and 1000 labelled training samples

Test error % with number of used

Semi-sup. Embedding (Weston et MTC (Rifai et al., 2011) Pseudo-label (Lee, 2013) AtlasRBF (Pitelis et al.,2014) DGN (Kingma et al., 2014) Virtual Adversarial (Miyato et al., 2

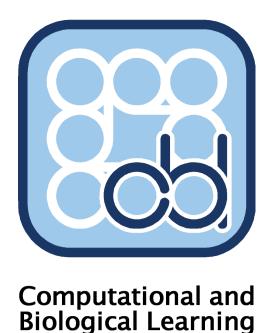
SSL with Ladder Networks (Rasmus

Active Learning with Bayesian CNN Active Learning with Bayesian CNN Active Learning with Bayesian CNN Active Learning with Bayesian CNN

* Starting with 20 training samples only, Bayesian ConvNet model prone to overfitting with 100 training labelled samples (very small dataset)

References

[1] Gal, Y, and Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, 2015. [2] Gal, Y, and Ghahramani, Z. Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference, 2015 [3] Houlsby, N, and Ghahramani, Z. Bayesian Active Learning for Classification and Preference Learning, 2011



University of Cambridge

Ratio Model Fitting

labels	100	1000
al., 2012)	16.86	5.73
	12.03	3.64
	10.49	3.46
	8.10	3.68
	3.33	2.40
2015)	2.12	1.32
ıs et al., 2015)	1.04	0.84
N (Q=1)	in progress	in progress
N (Q=5)	14.26*	in progress
N (Q=10)	16.74*	1.97
N (Q=100)	19.97*	2.29